1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-12-28 07:29:45 +00:00
CLK/Machines/ZX8081/ZX8081.cpp

296 lines
8.0 KiB
C++

//
// ZX8081.cpp
// Clock Signal
//
// Created by Thomas Harte on 04/06/2017.
// Copyright © 2017 Thomas Harte. All rights reserved.
//
#include "ZX8081.hpp"
#include "../MemoryFuzzer.hpp"
using namespace ZX8081;
namespace {
// The clock rate is 3.25Mhz.
const unsigned int ZX8081ClockRate = 3250000;
}
Machine::Machine() :
vsync_(false),
hsync_(false),
nmi_is_enabled_(false),
tape_player_(ZX8081ClockRate),
use_fast_tape_hack_(false),
tape_advance_delay_(0),
has_latched_video_byte_(false) {
set_clock_rate(ZX8081ClockRate);
clear_all_keys();
}
int Machine::perform_machine_cycle(const CPU::Z80::PartialMachineCycle &cycle) {
HalfCycles previous_counter = horizontal_counter_;
horizontal_counter_ += cycle.length;
if(previous_counter < vsync_start_ && horizontal_counter_ >= vsync_start_) {
video_->run_for(vsync_start_ - previous_counter);
set_hsync(true);
line_counter_ = (line_counter_ + 1) & 7;
if(nmi_is_enabled_) {
set_non_maskable_interrupt_line(true);
}
video_->run_for(horizontal_counter_ - vsync_start_);
} else if(previous_counter < vsync_end_ && horizontal_counter_ >= vsync_end_) {
video_->run_for(vsync_end_ - previous_counter);
set_hsync(false);
if(nmi_is_enabled_) {
set_non_maskable_interrupt_line(false);
set_wait_line(false);
}
video_->run_for(horizontal_counter_ - vsync_end_);
} else {
video_->run_for(cycle.length);
}
if(is_zx81_) horizontal_counter_ %= HalfCycles(Cycles(207));
if(!tape_advance_delay_) {
tape_player_.run_for(cycle.length);
} else {
tape_advance_delay_ = std::max(tape_advance_delay_ - cycle.length, HalfCycles(0));
}
if(nmi_is_enabled_ && !get_halt_line() && get_non_maskable_interrupt_line()) {
set_wait_line(true);
}
if(!cycle.is_terminal()) {
return 0;
}
uint16_t address = cycle.address ? *cycle.address : 0;
bool is_opcode_read = false;
switch(cycle.operation) {
case CPU::Z80::PartialMachineCycle::Output:
if(!(address & 2)) nmi_is_enabled_ = false;
if(!(address & 1)) nmi_is_enabled_ = is_zx81_;
if(!nmi_is_enabled_) {
// Line counter reset is held low while vsync is active; simulate that lazily by performing
// an instant reset upon the transition from active to inactive.
if(vsync_) line_counter_ = 0;
set_vsync(false);
}
break;
case CPU::Z80::PartialMachineCycle::Input: {
uint8_t value = 0xff;
if(!(address&1)) {
if(!nmi_is_enabled_) set_vsync(true);
uint16_t mask = 0x100;
for(int c = 0; c < 8; c++) {
if(!(address & mask)) value &= key_states_[c];
mask <<= 1;
}
value &= ~(tape_player_.get_input() ? 0x00 : 0x80);
}
*cycle.value = value;
} break;
case CPU::Z80::PartialMachineCycle::Interrupt:
*cycle.value = 0xff;
horizontal_counter_ = 0;
break;
case CPU::Z80::PartialMachineCycle::Refresh:
// The ZX80 and 81 signal an interrupt while refresh is active and bit 6 of the refresh
// address is low. The Z80 signals a refresh, providing the refresh address during the
// final two cycles of an opcode fetch. Therefore communicate a transient signalling
// of the IRQ line if necessary.
if(!(address & 0x40)) {
set_interrupt_line(true, -2);
set_interrupt_line(false);
}
if(has_latched_video_byte_) {
size_t char_address = (size_t)((address & 0xfe00) | ((latched_video_byte_ & 0x3f) << 3) | line_counter_);
uint8_t mask = (latched_video_byte_ & 0x80) ? 0x00 : 0xff;
if(char_address < ram_base_) {
latched_video_byte_ = rom_[char_address & rom_mask_] ^ mask;
} else {
latched_video_byte_ = ram_[address & ram_mask_] ^ mask;
}
video_->output_byte(latched_video_byte_);
has_latched_video_byte_ = false;
}
break;
case CPU::Z80::PartialMachineCycle::ReadOpcodeStart:
case CPU::Z80::PartialMachineCycle::ReadOpcodeWait:
// Check for use of the fast tape hack.
if(use_fast_tape_hack_ && address == tape_trap_address_ && tape_player_.has_tape()) {
uint64_t prior_offset = tape_player_.get_tape()->get_offset();
int next_byte = parser_.get_next_byte(tape_player_.get_tape());
if(next_byte != -1) {
uint16_t hl = get_value_of_register(CPU::Z80::Register::HL);
ram_[hl & ram_mask_] = (uint8_t)next_byte;
*cycle.value = 0x00;
set_value_of_register(CPU::Z80::Register::ProgramCounter, tape_return_address_ - 1);
// Assume that having read one byte quickly, we're probably going to be asked to read
// another shortly. Therefore, temporarily disable the tape motor for 1000 cycles in order
// to avoid fighting with real time. This is a stop-gap fix.
tape_advance_delay_ = 1000;
return 0;
} else {
tape_player_.get_tape()->set_offset(prior_offset);
}
}
// Check for automatic tape control.
if(use_automatic_tape_motor_control_) {
tape_player_.set_motor_control((address >= automatic_tape_motor_start_address_) && (address < automatic_tape_motor_end_address_));
}
is_opcode_read = true;
case CPU::Z80::PartialMachineCycle::Read:
if(address < ram_base_) {
*cycle.value = rom_[address & rom_mask_];
} else {
uint8_t value = ram_[address & ram_mask_];
// If this is an M1 cycle reading from above the 32kb mark and HALT is not
// currently active, latch for video output and return a NOP. Otherwise,
// just return the value as read.
if(is_opcode_read && address&0x8000 && !(value & 0x40) && !get_halt_line()) {
latched_video_byte_ = value;
has_latched_video_byte_ = true;
*cycle.value = 0;
} else *cycle.value = value;
}
break;
case CPU::Z80::PartialMachineCycle::Write:
if(address >= ram_base_) {
ram_[address & ram_mask_] = *cycle.value;
}
break;
default: break;
}
if(typer_) typer_->update(cycle.length.as_int());
return 0;
}
void Machine::flush() {
video_->flush();
}
void Machine::setup_output(float aspect_ratio) {
video_.reset(new Video);
}
void Machine::close_output() {
video_.reset();
}
std::shared_ptr<Outputs::CRT::CRT> Machine::get_crt() {
return video_->get_crt();
}
std::shared_ptr<Outputs::Speaker> Machine::get_speaker() {
return nullptr;
}
void Machine::run_for(const Cycles &cycles) {
CPU::Z80::Processor<Machine>::run_for(cycles);
}
void Machine::configure_as_target(const StaticAnalyser::Target &target) {
is_zx81_ = target.zx8081.isZX81;
if(is_zx81_) {
rom_ = zx81_rom_;
tape_trap_address_ = 0x37c;
tape_return_address_ = 0x380;
vsync_start_ = HalfCycles(32);
vsync_end_ = HalfCycles(64);
automatic_tape_motor_start_address_ = 0x0340;
automatic_tape_motor_end_address_ = 0x03c3;
} else {
rom_ = zx80_rom_;
tape_trap_address_ = 0x220;
tape_return_address_ = 0x248;
vsync_start_ = HalfCycles(26);
vsync_end_ = HalfCycles(66);
automatic_tape_motor_start_address_ = 0x0206;
automatic_tape_motor_end_address_ = 0x024d;
}
rom_mask_ = (uint16_t)(rom_.size() - 1);
switch(target.zx8081.memory_model) {
case StaticAnalyser::ZX8081MemoryModel::Unexpanded:
ram_.resize(1024);
ram_base_ = 16384;
ram_mask_ = 1023;
break;
case StaticAnalyser::ZX8081MemoryModel::SixteenKB:
ram_.resize(16384);
ram_base_ = 16384;
ram_mask_ = 16383;
break;
case StaticAnalyser::ZX8081MemoryModel::SixtyFourKB:
ram_.resize(65536);
ram_base_ = 8192;
ram_mask_ = 65535;
break;
}
Memory::Fuzz(ram_);
if(target.tapes.size()) {
tape_player_.set_tape(target.tapes.front());
}
if(target.loadingCommand.length()) {
set_typer_for_string(target.loadingCommand.c_str());
}
}
void Machine::set_rom(ROMType type, std::vector<uint8_t> data) {
switch(type) {
case ZX80: zx80_rom_ = data; break;
case ZX81: zx81_rom_ = data; break;
}
}
#pragma mark - Video
void Machine::set_vsync(bool sync) {
vsync_ = sync;
update_sync();
}
void Machine::set_hsync(bool sync) {
hsync_ = sync;
update_sync();
}
void Machine::update_sync() {
video_->set_sync(vsync_ || hsync_);
}
#pragma mark - Keyboard
void Machine::set_key_state(uint16_t key, bool isPressed) {
if(isPressed)
key_states_[key >> 8] &= (uint8_t)(~key);
else
key_states_[key >> 8] |= (uint8_t)key;
}
void Machine::clear_all_keys() {
memset(key_states_, 0xff, 8);
}