1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-07-05 10:28:58 +00:00
CLK/Outputs/OpenGL/ScanTargetGLSLFragments.cpp
Thomas Harte b9aca39eb0 Reintroduces Vic-20 output.
Resolving errors in shader generation while I'm here.
2018-11-22 22:43:42 -05:00

251 lines
7.6 KiB
C++

//
// ScanTargetVertexArrayAttributs.cpp
// Clock Signal
//
// Created by Thomas Harte on 11/11/2018.
// Copyright © 2018 Thomas Harte. All rights reserved.
//
#include "ScanTarget.hpp"
using namespace Outputs::Display::OpenGL;
std::string ScanTarget::glsl_globals(ShaderType type) {
switch(type) {
case ShaderType::Scan:
return
"#version 150\n"
"uniform vec2 scale;"
"uniform mat3 lumaChromaToRGB;"
"uniform mat3 rgbToLumaChroma;"
"uniform float rowHeight;"
"uniform float processingWidth;"
"in vec2 startPoint;"
"in float startDataX;"
"in float startCompositeAngle;"
"in vec2 endPoint;"
"in float endDataX;"
"in float endCompositeAngle;"
"in float dataY;"
"in float lineY;"
"in float compositeAmplitude;"
"uniform usampler2D textureName;";
case ShaderType::Line:
return
"#version 150\n"
"uniform vec2 scale;"
"uniform float rowHeight;"
"uniform float processingWidth;"
"in vec2 startPoint;"
"in vec2 endPoint;"
"in float lineY;"
"uniform sampler2D textureName;"
"uniform vec2 origin;"
"uniform vec2 size;";
}
}
std::string ScanTarget::glsl_default_vertex_shader(ShaderType type) {
switch(type) {
case ShaderType::Scan:
return
"out vec2 textureCoordinate;"
"out float compositeAngle;"
"out float compositeAmplitudeOut;"
"void main(void) {"
"float lateral = float(gl_VertexID & 1);"
"float longitudinal = float((gl_VertexID & 2) >> 1);"
"textureCoordinate = vec2(mix(startDataX, endDataX, lateral), dataY) / textureSize(textureName, 0);"
"compositeAngle = (mix(startCompositeAngle, endCompositeAngle, lateral) / 32.0) * 3.141592654;"
"compositeAmplitudeOut = compositeAmplitude / 255.0;"
"vec2 eyePosition = vec2(mix(startPoint.x, endPoint.x, lateral) * processingWidth, lineY + longitudinal) / vec2(scale.x, 2048.0);"
"gl_Position = vec4(eyePosition*2 - vec2(1.0), 0.0, 1.0);"
"}";
case ShaderType::Line:
return
"out vec2 textureCoordinate;"
"void main(void) {"
"float lateral = float(gl_VertexID & 1);"
"float longitudinal = float((gl_VertexID & 2) >> 1);"
"textureCoordinate = vec2(lateral * processingWidth, lineY + 0.5) / vec2(1.0, textureSize(textureName, 0).y);"
"vec2 centrePoint = mix(startPoint, endPoint, lateral) / scale;"
"vec2 height = normalize(endPoint - startPoint).yx * (longitudinal - 0.5) * rowHeight;"
"vec2 eyePosition = vec2(-1.0, 1.0) + vec2(2.0, -2.0) * (((centrePoint + height) - origin) / size);"
"gl_Position = vec4(eyePosition, 0.0, 1.0);"
"}";
}
}
void ScanTarget::enable_vertex_attributes(ShaderType type, Shader &target) {
switch(type) {
case ShaderType::Scan:
for(int c = 0; c < 2; ++c) {
const std::string prefix = c ? "end" : "start";
target.enable_vertex_attribute_with_pointer(
prefix + "Point",
2, GL_UNSIGNED_SHORT, GL_FALSE,
sizeof(Scan),
reinterpret_cast<void *>(offsetof(Scan, scan.end_points[c].x)),
1);
target.enable_vertex_attribute_with_pointer(
prefix + "DataX",
1, GL_UNSIGNED_SHORT, GL_FALSE,
sizeof(Scan),
reinterpret_cast<void *>(offsetof(Scan, scan.end_points[c].data_offset)),
1);
target.enable_vertex_attribute_with_pointer(
prefix + "CompositeAngle",
1, GL_UNSIGNED_SHORT, GL_FALSE,
sizeof(Scan),
reinterpret_cast<void *>(offsetof(Scan, scan.end_points[c].composite_angle)),
1);
}
target.enable_vertex_attribute_with_pointer(
"dataY",
1, GL_UNSIGNED_SHORT, GL_FALSE,
sizeof(Scan),
reinterpret_cast<void *>(offsetof(Scan, data_y)),
1);
target.enable_vertex_attribute_with_pointer(
"lineY",
1, GL_UNSIGNED_SHORT, GL_FALSE,
sizeof(Scan),
reinterpret_cast<void *>(offsetof(Scan, line)),
1);
target.enable_vertex_attribute_with_pointer(
"compositeAmplitude",
1, GL_UNSIGNED_BYTE, GL_FALSE,
sizeof(Scan),
reinterpret_cast<void *>(offsetof(Scan, scan.composite_amplitude)),
1);
break;
case ShaderType::Line:
for(int c = 0; c < 2; ++c) {
const std::string prefix = c ? "end" : "start";
target.enable_vertex_attribute_with_pointer(
prefix + "Point",
2, GL_UNSIGNED_SHORT, GL_FALSE,
sizeof(Line),
reinterpret_cast<void *>(offsetof(Line, end_points[c].x)),
1);
}
target.enable_vertex_attribute_with_pointer(
"lineY",
1, GL_UNSIGNED_SHORT, GL_FALSE,
sizeof(Line),
reinterpret_cast<void *>(offsetof(Line, line)),
1);
break;
}
}
std::unique_ptr<Shader> ScanTarget::input_shader(InputDataType input_data_type, DisplayType display_type) {
std::string fragment_shader =
"#version 150\n"
"out vec4 fragColour;"
"in vec2 textureCoordinate;"
"in float compositeAngle;"
"in float compositeAmplitudeOut;"
"uniform mat3 lumaChromaToRGB;"
"uniform mat3 rgbToLumaChroma;"
"uniform usampler2D textureName;"
"void main(void) {";
DisplayType computed_display_type;
switch(input_data_type) {
case InputDataType::Luminance1:
computed_display_type = DisplayType::CompositeMonochrome;
fragment_shader += "fragColour = vec4(vec3(texture(textureName, textureCoordinate).r), 1.0);";
break;
case InputDataType::Luminance8:
computed_display_type = DisplayType::CompositeMonochrome;
fragment_shader += "fragColour = vec4(vec3(texture(textureName, textureCoordinate).r / 255.0), 1.0);";
break;
case InputDataType::Luminance8Phase8:
computed_display_type = DisplayType::SVideo;
fragment_shader +=
"vec2 yc = texture(textureName, textureCoordinate).rg / vec2(255.0);"
"float phaseOffset = 3.141592654 * 2.0 * 2.0 * yc.y;"
"float chroma = step(yc.y, 0.75) * cos(compositeAngle + phaseOffset);"
"fragColour = vec4(yc.x, chroma, 0.0, 1.0);";
break;
case InputDataType::Red1Green1Blue1:
computed_display_type = DisplayType::RGB;
fragment_shader +=
"uint textureValue = texture(textureName, textureCoordinate).r;"
"fragColour = vec4(uvec3(textureValue) & uvec3(4u, 2u, 1u), 1.0);";
break;
case InputDataType::Red2Green2Blue2:
computed_display_type = DisplayType::RGB;
fragment_shader +=
"uint textureValue = texture(textureName, textureCoordinate).r;"
"fragColour = vec4(vec3(float((textureValue >> 4) & 3u), float((textureValue >> 2) & 3u), float(textureValue & 3u)) / 3.0, 1.0);";
break;
case InputDataType::Red4Green4Blue4:
computed_display_type = DisplayType::RGB;
fragment_shader +=
"uvec2 textureValue = texture(textureName, textureCoordinate).rg;"
"fragColour = vec4(float(textureValue.r) / 15.0, float(textureValue.g & 240u) / 240.0, float(textureValue.g & 15u) / 15.0, 1.0);";
break;
case InputDataType::Red8Green8Blue8:
computed_display_type = DisplayType::RGB;
fragment_shader += "fragColour = vec4(texture(textureName, textureCoordinate).rgb / vec3(255.0), 1.0);";
break;
}
if(computed_display_type != display_type) {
// If the input type is RGB but the output type isn't then
// there'll definitely be an RGB to SVideo step.
if(computed_display_type == DisplayType::RGB) {
fragment_shader +=
"vec3 composite_colour = rgbToLumaChroma * vec3(fragColour);"
"vec2 quadrature = vec2(cos(compositeAngle), sin(compositeAngle));"
"fragColour = vec4(composite_colour.r, 0.5 + dot(quadrature, composite_colour.gb)*0.5, 0.0, 1.0);";
}
// If the output type isn't SVideo, add an SVideo to composite step.
if(display_type != DisplayType::SVideo) {
fragment_shader += "fragColour = vec4(vec3(mix(fragColour.r, 2.0*(fragColour.g - 0.5), compositeAmplitudeOut)), 1.0);";
}
}
return std::unique_ptr<Shader>(new Shader(
glsl_globals(ShaderType::Scan) + glsl_default_vertex_shader(ShaderType::Scan),
fragment_shader + "}"
));
}