1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-20 05:30:35 +00:00
CLK/Machines/Atari/ST/DMAController.cpp
Thomas Harte c1bae49a92 Standardises on read and write for bus accesses.
Logic being: name these things for the bus action they model, not the effect they have.
2020-01-05 13:40:02 -05:00

262 lines
7.5 KiB
C++

//
// DMAController.cpp
// Clock Signal
//
// Created by Thomas Harte on 26/10/2019.
// Copyright © 2019 Thomas Harte. All rights reserved.
//
#include "DMAController.hpp"
#define LOG_PREFIX "[DMA] "
#include "../../../Outputs/Log.hpp"
#include <cstdio>
using namespace Atari::ST;
namespace {
enum Control: uint16_t {
Direction = 0x100,
DRQSource = 0x80,
SectorCountSelect = 0x10,
CPUTarget = 0x08
};
}
DMAController::DMAController() {
fdc_.set_delegate(this);
fdc_.set_clocking_hint_observer(this);
}
uint16_t DMAController::read(int address) {
switch(address & 7) {
// Reserved.
default: break;
// Disk controller or sector count.
case 2:
if(control_ & Control::SectorCountSelect) {
return uint16_t((byte_count_ + 511) >> 9); // Assumed here: the count is of sectors remaining, i.e. it decrements
// only when a sector is complete.
} else {
if(control_ & Control::CPUTarget) {
return 0xffff;
} else {
return 0xff00 | fdc_.read(control_ >> 1);
}
}
break;
// DMA status.
case 3:
// TODO: should DRQ come from the HDC if that mode is selected?
return 0xfff8 | (error_ ? 0 : 1) | (byte_count_ ? 2 : 0) | (fdc_.get_data_request_line() ? 4 : 0);
// DMA addressing.
case 4: return uint16_t(0xff00 | ((address_ >> 16) & 0xff));
case 5: return uint16_t(0xff00 | ((address_ >> 8) & 0xff));
case 6: return uint16_t(0xff00 | ((address_ >> 0) & 0xff));
}
return 0xffff;
}
void DMAController::write(int address, uint16_t value) {
switch(address & 7) {
// Reserved.
default: break;
// Disk controller or sector count.
case 2:
if(control_ & Control::SectorCountSelect) {
byte_count_ = (value & 0xff) << 9; // The computer provides a sector count; that times 512 is a byte count.
// TODO: if this is a write-mode DMA operation, try to fill both buffers, ASAP.
} else {
if(control_ & Control::CPUTarget) {
// TODO: HDC.
} else {
fdc_.write(control_ >> 1, uint8_t(value));
}
}
break;
// DMA control; meaning is:
//
// b0: unused
// b1, b2 = address lines for FDC access.
// b3 = 1 => CPU HDC access; 0 => CPU FDC access.
// b4 = 1 => sector count access; 0 => [F/H]DC access.
// b5: unused.
// b6 = officially, 1 => DMA off; 0 => DMA on. Ignored in real hardware.
// b7 = 1 => FDC DRQs being observed; 0 => HDC access DRQs being observed.
// b8 = 1 => DMA is writing to [F/H]DC; 0 => DMA is reading. Changing value resets DMA state.
//
// All other bits: undefined.
case 3:
// Check for a DMA state reset.
if((control_^value) & Control::Direction) {
bytes_received_ = active_buffer_ = 0;
error_ = false;
byte_count_ = 0;
}
control_ = value;
break;
// DMA addressing; cf. http://www.atari-forum.com/viewtopic.php?t=30289 on a hardware
// feature emulated here: 'carry' will ripple upwards if a write resets the top bit
// of the byte it is adjusting.
case 4: address_ = int((address_ & 0x00ffff) | ((value & 0xff) << 16)); break;
case 5:
if(((value << 8) ^ address_) & ~(value << 8) & 0x8000) address_ += 0x10000;
address_ = int((address_ & 0xff00ff) | ((value & 0xff) << 8));
break;
case 6:
if((value ^ address_) & ~value & 0x80) address_ += 0x100;
address_ = int((address_ & 0xffff00) | ((value & 0xfe) << 0));
break; // Lowest bit: discarded.
}
}
void DMAController::set_floppy_drive_selection(bool drive1, bool drive2, bool side2) {
// LOG("Selected: " << (drive1 ? "1" : "-") << (drive2 ? "2" : "-") << (side2 ? "s" : "-"));
fdc_.set_floppy_drive_selection(drive1, drive2, side2);
}
void DMAController::set_floppy_disk(std::shared_ptr<Storage::Disk::Disk> disk, size_t drive) {
fdc_.drives_[drive]->set_disk(disk);
}
void DMAController::run_for(HalfCycles duration) {
running_time_ += duration;
fdc_.run_for(duration.flush<Cycles>());
}
void DMAController::wd1770_did_change_output(WD::WD1770 *) {
// Check for a change in interrupt state.
const bool old_interrupt_line = interrupt_line_;
interrupt_line_ = fdc_.get_interrupt_request_line();
if(delegate_ && interrupt_line_ != old_interrupt_line) {
delegate_->dma_controller_did_change_output(this);
}
// Check for a change in DRQ state, if it's the FDC that is currently being watched.
if(byte_count_ && fdc_.get_data_request_line() && (control_ & Control::DRQSource)) {
--byte_count_;
if(control_ & Control::Direction) {
// TODO: DMA is supposed to be helping with a write.
} else {
// DMA is enabling a read.
// Read from the data register into the active buffer.
if(bytes_received_ < 16) {
buffer_[active_buffer_].contents[bytes_received_] = fdc_.read(3);
++bytes_received_;
}
if(bytes_received_ == 16) {
// Mark buffer as full.
buffer_[active_buffer_].is_full = true;
// Move to the next if it is empty; if it isn't, note a DMA error.
const auto next_buffer = active_buffer_ ^ 1;
error_ |= buffer_[next_buffer].is_full;
if(!buffer_[next_buffer].is_full) {
bytes_received_ = 0;
active_buffer_ = next_buffer;
}
// Set bus request.
if(!bus_request_line_) {
bus_request_line_ = true;
if(delegate_) delegate_->dma_controller_did_change_output(this);
}
}
}
}
}
int DMAController::bus_grant(uint16_t *ram, size_t size) {
// Being granted the bus negates the request.
bus_request_line_ = false;
if(delegate_) delegate_->dma_controller_did_change_output(this);
size <<= 1; // Convert to bytes.
if(control_ & Control::Direction) {
// TODO: writes.
return 0;
} else {
// Check that the older buffer is full; stop if not.
if(!buffer_[active_buffer_ ^ 1].is_full) return 0;
#define b(i, n) " " << PADHEX(2) << int(buffer_[i].contents[n])
#define b2(i, n) b(i, n) << b(i, n+1)
#define b4(i, n) b2(i, n) << b2(i, n+2)
#define b16(i) b4(i, 0) << b4(i, 4) << b4(i, 8) << b4(i, 12)
// LOG("[1] to " << PADHEX(6) << address_ << b16(active_buffer_ ^ 1));
for(int c = 0; c < 8; ++c) {
if(size_t(address_) < size) {
ram[address_ >> 1] = uint16_t(
(buffer_[active_buffer_ ^ 1].contents[(c << 1) + 0] << 8) |
(buffer_[active_buffer_ ^ 1].contents[(c << 1) + 1] << 0)
);
}
address_ += 2;
}
buffer_[active_buffer_ ^ 1].is_full = false;
// Check that the newer buffer is full; stop if not.
if(!buffer_[active_buffer_ ].is_full) return 8;
// LOG("[2] to " << PADHEX(6) << address_ << b16(active_buffer_));
#undef b16
#undef b4
#undef b2
#undef b
for(int c = 0; c < 8; ++c) {
if(size_t(address_) < size) {
ram[address_ >> 1] = uint16_t(
(buffer_[active_buffer_].contents[(c << 1) + 0] << 8) |
(buffer_[active_buffer_].contents[(c << 1) + 1] << 0)
);
}
address_ += 2;
}
buffer_[active_buffer_].is_full = false;
// Both buffers were full, so unblock reading.
bytes_received_ = 0;
return 16;
}
}
void DMAController::set_delegate(Delegate *delegate) {
delegate_ = delegate;
}
bool DMAController::get_interrupt_line() {
return interrupt_line_;
}
bool DMAController::get_bus_request_line() {
return bus_request_line_;
}
void DMAController::set_component_prefers_clocking(ClockingHint::Source *, ClockingHint::Preference) {
update_clocking_observer();
}
ClockingHint::Preference DMAController::preferred_clocking() {
return (fdc_.preferred_clocking() == ClockingHint::Preference::None) ? ClockingHint::Preference::None : ClockingHint::Preference::RealTime;
}
void DMAController::set_activity_observer(Activity::Observer *observer) {
fdc_.drives_[0]->set_activity_observer(observer, "Internal", true);
fdc_.drives_[1]->set_activity_observer(observer, "External", true);
}