1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-04 15:05:36 +00:00
CLK/Outputs/CRT/Internals/Shaders/IntermediateShader.cpp

420 lines
14 KiB
C++

//
// IntermediateShader.cpp
// Clock Signal
//
// Created by Thomas Harte on 28/04/2016.
// Copyright © 2016 Thomas Harte. All rights reserved.
//
#include "IntermediateShader.hpp"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "../../../../SignalProcessing/FIRFilter.hpp"
using namespace OpenGL;
namespace {
const OpenGL::Shader::AttributeBinding bindings[] =
{
{"inputPosition", 0},
{"outputPosition", 1},
{"phaseAndAmplitude", 2},
{"phaseTime", 3},
{nullptr}
};
}
std::unique_ptr<IntermediateShader> IntermediateShader::make_shader(const char *fragment_shader, bool use_usampler, bool input_is_inputPosition)
{
const char *sampler_type = use_usampler ? "usampler2D" : "sampler2D";
const char *input_variable = input_is_inputPosition ? "inputPosition" : "outputPosition";
char *vertex_shader;
asprintf(&vertex_shader,
"#version 150\n"
"in vec2 inputStart;"
"in vec2 outputStart;"
"in vec2 ends;"
"in vec3 phaseTimeAndAmplitude;"
"uniform ivec2 outputTextureSize;"
"uniform float extension;"
"uniform %s texID;"
"uniform float offsets[5];"
"uniform vec2 widthScalers;"
"uniform float inputVerticalOffset;"
"uniform float outputVerticalOffset;"
"uniform float textureHeightDivisor;"
"out vec2 phaseAndAmplitudeVarying;"
"out vec2 inputPositionsVarying[11];"
"out vec2 iInputPositionVarying;"
"out vec2 delayLinePositionVarying;"
"void main(void)"
"{"
// odd vertices are on the left, even on the right
"float extent = float(gl_VertexID & 1);"
"float longitudinal = float((gl_VertexID & 2) >> 1);"
// inputPosition.x is either inputStart.x or ends.x, depending on whether it is on the left or the right;
// outputPosition.x is either outputStart.x or ends.y;
// .ys are inputStart.y and outputStart.y respectively
"vec2 inputPosition = vec2(mix(inputStart.x, ends.x, extent)*widthScalers[0], inputStart.y + inputVerticalOffset);"
"vec2 outputPosition = vec2(mix(outputStart.x, ends.y, extent)*widthScalers[1], outputStart.y + outputVerticalOffset);"
"inputPosition.y += longitudinal;"
"outputPosition.y += longitudinal;"
// extension is the amount to extend both the input and output by to add a full colour cycle at each end
"vec2 extensionVector = vec2(extension, 0.0) * 2.0 * (extent - 0.5);"
// extended[Input/Output]Position are [input/output]Position with the necessary applied extension
"vec2 extendedInputPosition = %s + extensionVector;"
"vec2 extendedOutputPosition = outputPosition + extensionVector;"
// keep iInputPositionVarying in whole source pixels, scale mappedInputPosition to the ordinary normalised range
"vec2 textureSize = vec2(textureSize(texID, 0));"
"iInputPositionVarying = extendedInputPosition;"
"vec2 mappedInputPosition = extendedInputPosition / textureSize;" // + vec2(0.0, 0.5)
// setup input positions spaced as per the supplied offsets; these are for filtering where required
"inputPositionsVarying[0] = mappedInputPosition - (vec2(5.0, 0.0) / textureSize);"
"inputPositionsVarying[1] = mappedInputPosition - (vec2(4.0, 0.0) / textureSize);"
"inputPositionsVarying[2] = mappedInputPosition - (vec2(3.0, 0.0) / textureSize);"
"inputPositionsVarying[3] = mappedInputPosition - (vec2(2.0, 0.0) / textureSize);"
"inputPositionsVarying[4] = mappedInputPosition - (vec2(1.0, 0.0) / textureSize);"
"inputPositionsVarying[5] = mappedInputPosition;"
"inputPositionsVarying[6] = mappedInputPosition + (vec2(1.0, 0.0) / textureSize);"
"inputPositionsVarying[7] = mappedInputPosition + (vec2(2.0, 0.0) / textureSize);"
"inputPositionsVarying[8] = mappedInputPosition + (vec2(3.0, 0.0) / textureSize);"
"inputPositionsVarying[9] = mappedInputPosition + (vec2(4.0, 0.0) / textureSize);"
"inputPositionsVarying[10] = mappedInputPosition + (vec2(5.0, 0.0) / textureSize);"
"delayLinePositionVarying = mappedInputPosition - vec2(0.0, 1.0);"
// setup phaseAndAmplitudeVarying.x as colour burst subcarrier phase, in radians;
// setup phaseAndAmplitudeVarying.x as colour burst amplitude
"phaseAndAmplitudeVarying.x = (extendedOutputPosition.x + (phaseTimeAndAmplitude.x / 64.0)) * 0.5 * 3.141592654;"
"phaseAndAmplitudeVarying.y = 0.33;" // TODO: reinstate connection with (phaseTimeAndAmplitude.y/256.0)
// determine output position by scaling the output position according to the texture size
"vec2 eyePosition = 2.0*(extendedOutputPosition / outputTextureSize) - vec2(1.0) + vec2(1.0)/outputTextureSize;"
"gl_Position = vec4(eyePosition, 0.0, 1.0);"
"}", sampler_type, input_variable);
std::unique_ptr<IntermediateShader> shader(new IntermediateShader(vertex_shader, fragment_shader, bindings));
free(vertex_shader);
return shader;
}
std::unique_ptr<IntermediateShader> IntermediateShader::make_source_conversion_shader(const char *composite_shader, const char *rgb_shader)
{
char *composite_sample = (char *)composite_shader;
if(!composite_sample)
{
asprintf(&composite_sample,
"%s\n"
"uniform mat3 rgbToLumaChroma;"
"float composite_sample(usampler2D texID, vec2 coordinate, vec2 iCoordinate, float phase, float amplitude)"
"{"
"vec3 rgbColour = clamp(rgb_sample(texID, coordinate, iCoordinate), vec3(0.0), vec3(1.0));"
"vec3 lumaChromaColour = rgbToLumaChroma * rgbColour;"
"vec2 quadrature = vec2(cos(phase), -sin(phase)) * amplitude;"
"return dot(lumaChromaColour, vec3(1.0 - amplitude, quadrature));"
"}",
rgb_shader);
}
char *fragment_shader;
asprintf(&fragment_shader,
"#version 150\n"
"in vec2 inputPositionsVarying[11];"
"in vec2 iInputPositionVarying;"
"in vec2 phaseAndAmplitudeVarying;"
"out vec4 fragColour;"
"uniform usampler2D texID;"
"\n%s\n"
"void main(void)"
"{"
"fragColour = vec4(composite_sample(texID, inputPositionsVarying[5], iInputPositionVarying, phaseAndAmplitudeVarying.x, phaseAndAmplitudeVarying.y));"
"}"
, composite_sample);
if(!composite_shader) free(composite_sample);
std::unique_ptr<IntermediateShader> shader = make_shader(fragment_shader, true, true);
free(fragment_shader);
return shader;
}
std::unique_ptr<IntermediateShader> IntermediateShader::make_rgb_source_shader(const char *rgb_shader)
{
char *fragment_shader;
asprintf(&fragment_shader,
"#version 150\n"
"in vec2 inputPositionsVarying[11];"
"in vec2 iInputPositionVarying;"
"in vec2 phaseAndAmplitudeVarying;"
"out vec3 fragColour;"
"uniform usampler2D texID;"
"\n%s\n"
"void main(void)"
"{"
"fragColour = rgb_sample(texID, inputPositionsVarying[5], iInputPositionVarying);"
"}"
, rgb_shader);
std::unique_ptr<IntermediateShader> shader = make_shader(fragment_shader, true, true);
free(fragment_shader);
return shader;
}
std::unique_ptr<IntermediateShader> IntermediateShader::make_chroma_luma_separation_shader()
{
return make_shader(
"#version 150\n"
"in vec2 phaseAndAmplitudeVarying;"
"in vec2 inputPositionsVarying[11];"
"out vec3 fragColour;"
"uniform sampler2D texID;"
"void main(void)"
"{"
"vec4 samples = vec4("
"texture(texID, inputPositionsVarying[3]).r,"
"texture(texID, inputPositionsVarying[4]).r,"
"texture(texID, inputPositionsVarying[5]).r,"
"texture(texID, inputPositionsVarying[6]).r"
");"
"float luminance = dot(samples, vec4(0.25));"
// define chroma to be whatever was here, minus luma
"float chrominance = 0.5 * (samples.z - luminance) / phaseAndAmplitudeVarying.y;"
"luminance /= (1.0 - phaseAndAmplitudeVarying.y);"
// split choma colours here, as the most direct place, writing out
// RGB = (luma, chroma.x, chroma.y)
"vec2 quadrature = vec2(cos(phaseAndAmplitudeVarying.x), -sin(phaseAndAmplitudeVarying.x));"
"fragColour = vec3(luminance, vec2(0.5) + (chrominance * quadrature));"
"}",false, false);
}
std::unique_ptr<IntermediateShader> IntermediateShader::make_chroma_filter_shader()
{
return make_shader(
"#version 150\n"
"in vec2 inputPositionsVarying[11];"
"uniform vec4 weights[3];"
"out vec3 fragColour;"
"uniform sampler2D texID;"
"uniform mat3 lumaChromaToRGB;"
"void main(void)"
"{"
"vec3 samples[] = vec3[]("
"texture(texID, inputPositionsVarying[3]).rgb,"
"texture(texID, inputPositionsVarying[4]).rgb,"
"texture(texID, inputPositionsVarying[5]).rgb,"
"texture(texID, inputPositionsVarying[6]).rgb"
");"
"vec4 chromaChannel1 = vec4(samples[0].g, samples[1].g, samples[2].g, samples[3].g);"
"vec4 chromaChannel2 = vec4(samples[0].b, samples[1].b, samples[2].b, samples[3].b);"
"vec3 lumaChromaColour = vec3(samples[2].r,"
"dot(chromaChannel1, vec4(0.25)),"
"dot(chromaChannel2, vec4(0.25))"
");"
"vec3 lumaChromaColourInRange = (lumaChromaColour - vec3(0.0, 0.5, 0.5)) * vec3(1.0, 2.0, 2.0);"
"fragColour = lumaChromaToRGB * lumaChromaColourInRange;"
"}", false, false);
}
std::unique_ptr<IntermediateShader> IntermediateShader::make_rgb_filter_shader()
{
return make_shader(
"#version 150\n"
"in vec2 inputPositionsVarying[11];"
"uniform vec4 weights[3];"
"out vec3 fragColour;"
"uniform sampler2D texID;"
"void main(void)"
"{"
"vec3 samples[] = vec3[]("
"texture(texID, inputPositionsVarying[0]).rgb,"
"texture(texID, inputPositionsVarying[1]).rgb,"
"texture(texID, inputPositionsVarying[2]).rgb,"
"texture(texID, inputPositionsVarying[3]).rgb,"
"texture(texID, inputPositionsVarying[4]).rgb,"
"texture(texID, inputPositionsVarying[5]).rgb,"
"texture(texID, inputPositionsVarying[6]).rgb,"
"texture(texID, inputPositionsVarying[7]).rgb,"
"texture(texID, inputPositionsVarying[8]).rgb,"
"texture(texID, inputPositionsVarying[9]).rgb,"
"texture(texID, inputPositionsVarying[10]).rgb"
");"
"vec4 channel1[] = vec4[]("
"vec4(samples[0].r, samples[1].r, samples[2].r, samples[3].r),"
"vec4(samples[4].r, samples[5].r, samples[6].r, samples[7].r),"
"vec4(samples[8].r, samples[9].r, samples[10].r, 0.0)"
");"
"vec4 channel2[] = vec4[]("
"vec4(samples[0].g, samples[1].g, samples[2].g, samples[3].g),"
"vec4(samples[4].g, samples[5].g, samples[6].g, samples[7].g),"
"vec4(samples[8].g, samples[9].g, samples[10].g, 0.0)"
");"
"vec4 channel3[] = vec4[]("
"vec4(samples[0].b, samples[1].b, samples[2].b, samples[3].b),"
"vec4(samples[4].b, samples[5].b, samples[6].b, samples[7].b),"
"vec4(samples[8].b, samples[9].b, samples[10].b, 0.0)"
");"
"fragColour = vec3("
"dot(vec3("
"dot(channel1[0], weights[0]),"
"dot(channel1[1], weights[1]),"
"dot(channel1[2], weights[2])"
"), vec3(1.0)),"
"dot(vec3("
"dot(channel2[0], weights[0]),"
"dot(channel2[1], weights[1]),"
"dot(channel2[2], weights[2])"
"), vec3(1.0)),"
"dot(vec3("
"dot(channel3[0], weights[0]),"
"dot(channel3[1], weights[1]),"
"dot(channel3[2], weights[2])"
"), vec3(1.0))"
");"
"}", false, false);
}
void IntermediateShader::set_output_size(unsigned int output_width, unsigned int output_height)
{
set_uniform("outputTextureSize", (GLint)output_width, (GLint)output_height);
}
void IntermediateShader::set_source_texture_unit(GLenum unit)
{
set_uniform("texID", (GLint)(unit - GL_TEXTURE0));
}
void IntermediateShader::set_filter_coefficients(float sampling_rate, float cutoff_frequency)
{
// The process below: the source texture will have bilinear filtering enabled; so by
// sampling at non-integral offsets from the centre the shader can get a weighted sum
// of two source pixels, then scale that once, to do two taps per sample. However
// that works only if the two coefficients being joined have the same sign. So the
// number of usable taps is between 11 and 21 depending on the values that come out.
// Perform a linear search for the highest number of taps we can use with 11 samples.
GLfloat weights[12];
GLfloat offsets[5];
unsigned int taps = 11;
// unsigned int taps = 21;
while(1)
{
float coefficients[21];
SignalProcessing::FIRFilter luminance_filter(taps, sampling_rate, 0.0f, cutoff_frequency, SignalProcessing::FIRFilter::DefaultAttenuation);
luminance_filter.get_coefficients(coefficients);
// int sample = 0;
// int c = 0;
memset(weights, 0, sizeof(float)*12);
memset(offsets, 0, sizeof(float)*5);
int halfSize = (taps >> 1);
for(int c = 0; c < taps; c++)
{
if(c < 5) offsets[c] = (halfSize - c);
weights[c] = coefficients[c];
}
break;
// int halfSize = (taps >> 1);
// while(c < halfSize && sample < 5)
// {
// offsets[sample] = (float)(halfSize - c);
// if((coefficients[c] < 0.0f) == (coefficients[c+1] < 0.0f) && c+1 < (taps >> 1))
// {
// weights[sample] = coefficients[c] + coefficients[c+1];
// offsets[sample] -= (coefficients[c+1] / weights[sample]);
// c += 2;
// }
// else
// {
// weights[sample] = coefficients[c];
// c++;
// }
// sample ++;
// }
// if(c == halfSize) // i.e. we finished combining inputs before we ran out of space
// {
// weights[sample] = coefficients[c];
// for(int c = 0; c < sample; c++)
// {
// weights[sample+c+1] = weights[sample-c-1];
// }
// break;
// }
taps -= 2;
}
set_uniform("weights", 4, 3, weights);
set_uniform("offsets", 1, 5, offsets);
}
void IntermediateShader::set_separation_frequency(float sampling_rate, float colour_burst_frequency)
{
set_filter_coefficients(sampling_rate, colour_burst_frequency);
}
void IntermediateShader::set_extension(float extension)
{
set_uniform("extension", extension);
}
void IntermediateShader::set_colour_conversion_matrices(float *fromRGB, float *toRGB)
{
set_uniform_matrix("lumaChromaToRGB", 3, false, toRGB);
set_uniform_matrix("rgbToLumaChroma", 3, false, fromRGB);
}
void IntermediateShader::set_width_scalers(float input_scaler, float output_scaler)
{
set_uniform("widthScalers", input_scaler, output_scaler);
}
void IntermediateShader::set_is_double_height(bool is_double_height, float input_offset, float output_offset)
{
set_uniform("textureHeightDivisor", is_double_height ? 2.0f : 1.0f);
set_uniform("inputVerticalOffset", input_offset);
set_uniform("outputVerticalOffset", output_offset);
}