1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-12-28 07:29:45 +00:00
CLK/Storage/Disk/Drive.cpp

406 lines
12 KiB
C++

//
// Drive.cpp
// Clock Signal
//
// Created by Thomas Harte on 25/09/2016.
// Copyright 2016 Thomas Harte. All rights reserved.
//
#include "Drive.hpp"
#include "Track/UnformattedTrack.hpp"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <chrono>
#include <random>
using namespace Storage::Disk;
Drive::Drive(int input_clock_rate, int revolutions_per_minute, int number_of_heads):
Storage::TimedEventLoop(input_clock_rate),
available_heads_(number_of_heads) {
set_rotation_speed(revolutions_per_minute);
const auto seed = static_cast<std::default_random_engine::result_type>(std::chrono::system_clock::now().time_since_epoch().count());
std::default_random_engine randomiser(seed);
// Get at least 64 bits of random information; rounding is likey to give this a slight bias.
random_source_ = 0;
auto half_range = (randomiser.max() - randomiser.min()) / 2;
for(int bit = 0; bit < 64; ++bit) {
random_source_ <<= 1;
random_source_ |= ((randomiser() - randomiser.min()) >= half_range) ? 1 : 0;
}
}
Drive::Drive(int input_clock_rate, int number_of_heads) : Drive(input_clock_rate, 300, number_of_heads) {}
void Drive::set_rotation_speed(float revolutions_per_minute) {
// Rationalise the supplied speed so that cycles_per_revolution_ is exact.
cycles_per_revolution_ = int(0.5f + float(get_input_clock_rate()) * 60.0f / revolutions_per_minute);
// From there derive the appropriate rotational multiplier and possibly update the
// count of cycles since the index hole proportionally.
const float new_rotational_multiplier = float(cycles_per_revolution_) / float(get_input_clock_rate());
cycles_since_index_hole_ *= new_rotational_multiplier / rotational_multiplier_;
rotational_multiplier_ = new_rotational_multiplier;
cycles_since_index_hole_ %= cycles_per_revolution_;
}
Drive::~Drive() {
if(disk_) disk_->flush_tracks();
}
void Drive::set_disk(const std::shared_ptr<Disk> &disk) {
if(disk_) disk_->flush_tracks();
disk_ = disk;
has_disk_ = !!disk_;
invalidate_track();
did_set_disk();
update_clocking_observer();
}
bool Drive::has_disk() {
return has_disk_;
}
ClockingHint::Preference Drive::preferred_clocking() {
return (!motor_is_on_ || !has_disk_) ? ClockingHint::Preference::None : ClockingHint::Preference::JustInTime;
}
bool Drive::get_is_track_zero() {
return head_position_ == HeadPosition(0);
}
void Drive::step(HeadPosition offset) {
HeadPosition old_head_position = head_position_;
head_position_ += offset;
if(head_position_ < HeadPosition(0)) {
head_position_ = HeadPosition(0);
if(observer_) observer_->announce_drive_event(drive_name_, Activity::Observer::DriveEvent::StepBelowZero);
} else {
if(observer_) observer_->announce_drive_event(drive_name_, Activity::Observer::DriveEvent::StepNormal);
}
// If the head moved, flush the old track.
if(head_position_ != old_head_position) {
track_ = nullptr;
}
// Allow a subclass to react, if desired.
did_step(head_position_);
}
std::shared_ptr<Track> Drive::step_to(HeadPosition offset) {
HeadPosition old_head_position = head_position_;
head_position_ = std::max(offset, HeadPosition(0));
if(disk_ && head_position_ != old_head_position) {
track_ = nullptr;
setup_track();
}
return track_;
}
void Drive::set_head(int head) {
head = std::min(head, available_heads_ - 1);
if(head != head_) {
head_ = head;
track_ = nullptr;
}
}
int Drive::get_head_count() {
return available_heads_;
}
bool Drive::get_tachometer() {
// I have made a guess here that the tachometer is a symmetric square wave;
// if that is correct then around 60 beats per rotation appears to be correct
// to proceed beyond the speed checks I've so far uncovered.
const float ticks_per_rotation = 60.0f; // 56 was too low; 64 too high.
return int(get_rotation() * 2.0f * ticks_per_rotation) & 1;
}
float Drive::get_rotation() {
return get_time_into_track();
}
float Drive::get_time_into_track() {
// i.e. amount of time since the index hole was seen, as a proportion of a second,
// converted to a proportion of a rotation.
return float(cycles_since_index_hole_) / (float(get_input_clock_rate()) * rotational_multiplier_);
}
bool Drive::get_is_read_only() {
if(disk_) return disk_->get_is_read_only();
return true;
}
bool Drive::get_is_ready() {
return ready_index_count_ == 2;
}
void Drive::set_motor_on(bool motor_is_on) {
if(motor_is_on_ != motor_is_on) {
motor_is_on_ = motor_is_on;
if(observer_) {
observer_->set_drive_motor_status(drive_name_, motor_is_on_);
if(announce_motor_led_) {
observer_->set_led_status(drive_name_, motor_is_on_);
}
}
if(!motor_is_on) {
ready_index_count_ = 0;
if(disk_) disk_->flush_tracks();
}
update_clocking_observer();
}
}
bool Drive::get_motor_on() {
return motor_is_on_;
}
void Drive::set_event_delegate(Storage::Disk::Drive::EventDelegate *delegate) {
event_delegate_ = delegate;
}
void Drive::advance(const Cycles cycles) {
cycles_since_index_hole_ += cycles.as_integral();
if(event_delegate_) event_delegate_->advance(cycles);
}
void Drive::run_for(const Cycles cycles) {
if(motor_is_on_) {
if(has_disk_) {
Time zero(0);
auto number_of_cycles = cycles.as_integral();
while(number_of_cycles) {
auto cycles_until_next_event = get_cycles_until_next_event();
auto cycles_to_run_for = std::min(cycles_until_next_event, number_of_cycles);
if(!is_reading_ && cycles_until_bits_written_ > zero) {
auto write_cycles_target = cycles_until_bits_written_.get<Cycles::IntType>();
if(cycles_until_bits_written_.length % cycles_until_bits_written_.clock_rate) ++write_cycles_target;
cycles_to_run_for = std::min(cycles_to_run_for, write_cycles_target);
}
number_of_cycles -= cycles_to_run_for;
if(!is_reading_) {
if(cycles_until_bits_written_ > zero) {
Storage::Time cycles_to_run_for_time(static_cast<int>(cycles_to_run_for));
if(cycles_until_bits_written_ <= cycles_to_run_for_time) {
if(event_delegate_) event_delegate_->process_write_completed();
if(cycles_until_bits_written_ <= cycles_to_run_for_time)
cycles_until_bits_written_.set_zero();
else
cycles_until_bits_written_ -= cycles_to_run_for_time;
} else {
cycles_until_bits_written_ -= cycles_to_run_for_time;
}
}
}
TimedEventLoop::run_for(Cycles(cycles_to_run_for));
}
} else {
TimedEventLoop::run_for(cycles);
}
}
}
// MARK: - Track timed event loop
void Drive::get_next_event(float duration_already_passed) {
if(!disk_) {
current_event_.type = Track::Event::IndexHole;
current_event_.length = 1.0f;
set_next_event_time_interval((current_event_.length - duration_already_passed) * rotational_multiplier_);
return;
}
// Grab a new track if not already in possession of one. This will recursively call get_next_event,
// supplying a proper duration_already_passed.
if(!track_) {
random_interval_ = 0.0f;
setup_track();
return;
}
// If gain has now been turned up so as to generate noise, generate some noise.
if(random_interval_ > 0.0f) {
current_event_.type = Track::Event::FluxTransition;
current_event_.length = float(2 + (random_source_&1)) / 1000000.0f;
random_source_ = (random_source_ >> 1) | (random_source_ << 63);
if(random_interval_ < current_event_.length) {
current_event_.length = random_interval_;
random_interval_ = 0.0f;
} else {
random_interval_ -= current_event_.length;
}
set_next_event_time_interval(current_event_.length);
return;
}
if(track_) {
const auto track_event = track_->get_next_event();
current_event_.type = track_event.type;
current_event_.length = track_event.length.get<float>();
} else {
current_event_.length = 1.0f;
current_event_.type = Track::Event::IndexHole;
}
// divide interval, which is in terms of a single rotation of the disk, by rotation speed to
// convert it into revolutions per second; this is achieved by multiplying by rotational_multiplier_
float interval = std::max((current_event_.length - duration_already_passed) * rotational_multiplier_, 0.0f);
// An interval greater than 15ms => adjust gain up the point where noise starts happening.
// Seed that up and leave a 15ms gap until it starts.
const float safe_gain_period = 15.0f / 1000000.0f;
if(interval >= safe_gain_period) {
random_interval_ = interval - safe_gain_period;
interval = safe_gain_period;
}
set_next_event_time_interval(interval);
}
void Drive::process_next_event() {
if(current_event_.type == Track::Event::IndexHole) {
if(ready_index_count_ < 2) ready_index_count_++;
cycles_since_index_hole_ = 0;
}
if(
event_delegate_ &&
(current_event_.type == Track::Event::IndexHole || is_reading_)
){
event_delegate_->process_event(current_event_);
}
get_next_event(0.0f);
}
// MARK: - Track management
std::shared_ptr<Track> Drive::get_track() {
if(disk_) return disk_->get_track_at_position(Track::Address(head_, head_position_));
return nullptr;
}
void Drive::set_track(const std::shared_ptr<Track> &track) {
if(disk_) disk_->set_track_at_position(Track::Address(head_, head_position_), track);
}
void Drive::setup_track() {
track_ = get_track();
if(!track_) {
track_.reset(new UnformattedTrack);
}
float offset = 0.0f;
const auto track_time_now = get_time_into_track();
const auto time_found = track_->seek_to(Time(track_time_now)).get<float>();
// `time_found` can be greater than `track_time_now` if limited precision caused rounding.
if(time_found <= track_time_now) {
offset = track_time_now - time_found;
}
// Reseed cycles_since_index_hole_; 99.99% of the time it'll still be correct as is,
// but if the track has rounded one way or the other it may now be very slightly adrift.
cycles_since_index_hole_ = (int((time_found + offset) * cycles_per_revolution_)) % cycles_per_revolution_;
get_next_event(offset);
}
void Drive::invalidate_track() {
random_interval_ = 0.0f;
track_ = nullptr;
if(patched_track_) {
set_track(patched_track_);
patched_track_ = nullptr;
}
}
// MARK: - Writing
void Drive::begin_writing(Time bit_length, bool clamp_to_index_hole) {
// Do nothing if already writing.
// TODO: cope properly if there's no disk to write to.
if(!is_reading_ || !disk_) return;
// Get a copy of the track if that hasn't happened yet.
if(!track_) {
setup_track();
}
// Store the relevant parameters, and kick off writing.
is_reading_ = false;
clamp_writing_to_index_hole_ = clamp_to_index_hole;
cycles_per_bit_ = Storage::Time(int(get_input_clock_rate())) * bit_length;
cycles_per_bit_.simplify();
write_segment_.length_of_a_bit = bit_length / Time(rotational_multiplier_);
write_segment_.data.clear();
write_start_time_ = Time(get_time_into_track());
}
void Drive::write_bit(bool value) {
write_segment_.data.push_back(value);
cycles_until_bits_written_ += cycles_per_bit_;
}
void Drive::end_writing() {
// If the user modifies a track, it's scaled up to a "high" resolution and modifications
// are plotted on top of that.
//
// "High" is defined as: two samples per clock relative to an idiomatic
// 8Mhz disk controller and 300RPM disk speed.
const size_t high_resolution_track_rate = 3200000;
if(!is_reading_) {
is_reading_ = true;
if(!patched_track_) {
// Avoid creating a new patched track if this one is already patched
patched_track_ = std::dynamic_pointer_cast<PCMTrack>(track_);
if(!patched_track_ || !patched_track_->is_resampled_clone()) {
Track *const tr = track_.get();
patched_track_.reset(PCMTrack::resampled_clone(tr, high_resolution_track_rate));
}
}
patched_track_->add_segment(write_start_time_, write_segment_, clamp_writing_to_index_hole_);
cycles_since_index_hole_ %= cycles_per_revolution_;
invalidate_track();
}
}
bool Drive::is_writing() {
return !is_reading_;
}
void Drive::set_activity_observer(Activity::Observer *observer, const std::string &name, bool add_motor_led) {
observer_ = observer;
announce_motor_led_ = add_motor_led;
if(observer) {
drive_name_ = name;
observer->register_drive(drive_name_);
observer->set_drive_motor_status(drive_name_, motor_is_on_);
if(add_motor_led) {
observer->register_led(drive_name_);
observer->set_led_status(drive_name_, motor_is_on_);
}
}
}