mirror of
https://github.com/TomHarte/CLK.git
synced 2025-01-02 08:34:14 +00:00
680 lines
19 KiB
C++
680 lines
19 KiB
C++
//
|
|
// Struct.cpp
|
|
// Clock Signal
|
|
//
|
|
// Created by Thomas Harte on 13/03/2020.
|
|
// Copyright © 2020 Thomas Harte. All rights reserved.
|
|
//
|
|
|
|
#include "Struct.hpp"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <iomanip>
|
|
#include <iterator>
|
|
#include <sstream>
|
|
#include <type_traits>
|
|
|
|
#define ForAllInts(x) \
|
|
x(uint8_t); \
|
|
x(int8_t); \
|
|
x(uint16_t); \
|
|
x(int16_t); \
|
|
x(uint32_t); \
|
|
x(int32_t); \
|
|
x(uint64_t); \
|
|
x(int64_t);
|
|
|
|
#define ForAllFloats(x) \
|
|
x(float); \
|
|
x(double);
|
|
|
|
namespace TypeInfo {
|
|
|
|
static bool is_integral(const std::type_info *type) {
|
|
return
|
|
*type == typeid(uint8_t) || *type == typeid(int8_t) ||
|
|
*type == typeid(uint16_t) || *type == typeid(int16_t) ||
|
|
*type == typeid(uint32_t) || *type == typeid(int32_t) ||
|
|
*type == typeid(uint64_t) || *type == typeid(int64_t);
|
|
}
|
|
|
|
static bool is_floating_point(const std::type_info *type) {
|
|
return *type == typeid(float) || *type == typeid(double);
|
|
}
|
|
|
|
static bool is_signed(const std::type_info *type) {
|
|
return
|
|
*type == typeid(int8_t) ||
|
|
*type == typeid(int16_t) ||
|
|
*type == typeid(int32_t) ||
|
|
*type == typeid(int64_t) ||
|
|
*type == typeid(double) ||
|
|
*type == typeid(float);
|
|
}
|
|
|
|
static size_t size(const std::type_info *type) {
|
|
#define TestType(x) if(*type == typeid(x)) return sizeof(x);
|
|
ForAllInts(TestType);
|
|
ForAllFloats(TestType);
|
|
TestType(char *);
|
|
#undef TestType
|
|
|
|
// This is some sort of struct or object type.
|
|
return 0;
|
|
}
|
|
|
|
}
|
|
|
|
// MARK: - Setters
|
|
|
|
template <> bool Reflection::set(Struct &target, const std::string &name, float value, size_t offset) {
|
|
const auto target_type = target.type_of(name);
|
|
if(!target_type) return false;
|
|
|
|
if(*target_type == typeid(float)) {
|
|
target.set(name, &value, offset);
|
|
return true;
|
|
}
|
|
|
|
return set<double>(target, name, value);
|
|
}
|
|
|
|
template <> bool Reflection::set(Struct &target, const std::string &name, double value, size_t offset) {
|
|
const auto target_type = target.type_of(name);
|
|
if(!target_type) return false;
|
|
|
|
if(*target_type == typeid(double)) {
|
|
target.set(name, &value, offset);
|
|
return true;
|
|
}
|
|
|
|
if(*target_type == typeid(float)) {
|
|
const float float_value = float(value);
|
|
target.set(name, &float_value, offset);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template <> bool Reflection::set(Struct &target, const std::string &name, int value, size_t offset) {
|
|
return set<int64_t>(target, name, value);
|
|
}
|
|
|
|
template <> bool Reflection::set(Struct &target, const std::string &name, int64_t value, size_t offset) {
|
|
const auto target_type = target.type_of(name);
|
|
if(!target_type) return false;
|
|
|
|
// No need to convert an int or a registered enum.
|
|
if(*target_type == typeid(int) || !Reflection::Enum::name(*target_type).empty()) {
|
|
const int value32 = int(value);
|
|
target.set(name, &value32, offset);
|
|
return true;
|
|
}
|
|
|
|
// Set an int64_t directly.
|
|
if(*target_type == typeid(int64_t)) {
|
|
target.set(name, &value, offset);
|
|
return true;
|
|
}
|
|
|
|
#define SetInt(x) if(*target_type == typeid(x)) { x truncated_value = x(value); target.set(name, &truncated_value, offset); }
|
|
ForAllInts(SetInt);
|
|
#undef SetInt
|
|
|
|
return false;
|
|
}
|
|
|
|
template <> bool Reflection::set(Struct &target, const std::string &name, const std::string &value, size_t offset) {
|
|
const auto target_type = target.type_of(name);
|
|
if(!target_type) return false;
|
|
|
|
// If the target is a string, assign.
|
|
if(*target_type == typeid(std::string)) {
|
|
auto child = reinterpret_cast<std::string *>(target.get(name));
|
|
*child = value;
|
|
return true;
|
|
}
|
|
|
|
// From here on, make an attempt to convert to a named enum.
|
|
if(Reflection::Enum::name(*target_type).empty()) {
|
|
return false;
|
|
}
|
|
|
|
const int enum_value = Reflection::Enum::from_string(*target_type, value);
|
|
if(enum_value < 0) {
|
|
return false;
|
|
}
|
|
target.set(name, &enum_value, offset);
|
|
|
|
return true;
|
|
}
|
|
|
|
template <> bool Reflection::set(Struct &target, const std::string &name, const char *value, size_t offset) {
|
|
const std::string string(value);
|
|
return set<const std::string &>(target, name, string);
|
|
}
|
|
|
|
template <> bool Reflection::set(Struct &target, const std::string &name, bool value, size_t offset) {
|
|
const auto target_type = target.type_of(name);
|
|
if(!target_type) return false;
|
|
|
|
if(*target_type == typeid(bool)) {
|
|
target.set(name, &value, offset);;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// MARK: - Fuzzy setter
|
|
|
|
bool Reflection::fuzzy_set(Struct &target, const std::string &name, const std::string &value) {
|
|
const auto target_type = target.type_of(name);
|
|
if(!target_type) return false;
|
|
|
|
// If the target is a registered enum, ttry to convert the value. Failing that,
|
|
// try to match without case sensitivity.
|
|
if(Reflection::Enum::size(*target_type)) {
|
|
const int from_string = Reflection::Enum::from_string(*target_type, value);
|
|
if(from_string >= 0) {
|
|
target.set(name, &from_string);
|
|
return true;
|
|
}
|
|
|
|
const auto all_values = Reflection::Enum::all_values(*target_type);
|
|
const auto value_location = std::find_if(all_values.begin(), all_values.end(),
|
|
[&value] (const auto &entry) {
|
|
if(value.size() != entry.size()) return false;
|
|
const char *v = value.c_str();
|
|
const char *e = entry.c_str();
|
|
while(*v) {
|
|
if(tolower(*v) != tolower(*e)) return false;
|
|
++v;
|
|
++e;
|
|
}
|
|
return true;
|
|
});
|
|
if(value_location != all_values.end()) {
|
|
const int offset = int(value_location - all_values.begin());
|
|
target.set(name, &offset);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// MARK: - Getters
|
|
|
|
template <typename Type> bool Reflection::get(const Struct &target, const std::string &name, Type &value, size_t offset) {
|
|
const auto target_type = target.type_of(name);
|
|
if(!target_type) return false;
|
|
|
|
// If type is a direct match, copy.
|
|
if(*target_type == typeid(Type)) {
|
|
memcpy(&value, reinterpret_cast<const uint8_t *>(target.get(name)) + offset * sizeof(Type), sizeof(Type));
|
|
return true;
|
|
}
|
|
|
|
// If the type is a registered enum and the value type is int, copy.
|
|
if constexpr (std::is_integral<Type>::value && sizeof(Type) == sizeof(int)) {
|
|
if(!Enum::name(*target_type).empty()) {
|
|
memcpy(&value, target.get(name), sizeof(int));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// If the type is an int that is larger than the stored type and matches the signedness, cast upward.
|
|
if constexpr (std::is_integral<Type>::value) {
|
|
if(TypeInfo::is_integral(target_type)) {
|
|
const bool target_is_signed = TypeInfo::is_signed(target_type);
|
|
const size_t target_size = TypeInfo::size(target_type);
|
|
|
|
// An unsigned type can map to any larger type, signed or unsigned;
|
|
// a signed type can map to a larger type only if it also is signed.
|
|
if(sizeof(Type) > target_size && (!target_is_signed || std::is_signed<Type>::value)) {
|
|
const auto address = reinterpret_cast<const uint8_t *>(target.get(name)) + offset * target_size;
|
|
|
|
#define Map(x) if(*target_type == typeid(x)) { value = static_cast<Type>(*reinterpret_cast<const x *>(address)); }
|
|
ForAllInts(Map);
|
|
#undef Map
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the type is a double and stored type is a float, cast upward.
|
|
if constexpr (std::is_floating_point<Type>::value) {
|
|
constexpr size_t size = sizeof(Type);
|
|
const bool target_is_floating_point = TypeInfo::is_floating_point(target_type);
|
|
const size_t target_size = TypeInfo::size(target_type);
|
|
|
|
if(size > target_size && target_is_floating_point) {
|
|
const auto address = reinterpret_cast<const uint8_t *>(target.get(name)) + offset * target_size;
|
|
|
|
#define Map(x) if(*target_type == typeid(x)) { value = static_cast<Type>(*reinterpret_cast<const x *>(address)); }
|
|
ForAllFloats(Map);
|
|
#undef Map
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template <typename Type> Type Reflection::get(const Struct &target, const std::string &name, size_t offset) {
|
|
Type value{};
|
|
get(target, name, value, offset);
|
|
return value;
|
|
}
|
|
|
|
// MARK: - Description
|
|
|
|
void Reflection::Struct::append(std::ostringstream &stream, const std::string &key, const std::type_info *const type, size_t offset) const {
|
|
// Output Bools as yes/no.
|
|
if(*type == typeid(bool)) {
|
|
stream << ::Reflection::get<bool>(*this, key, offset);
|
|
return;
|
|
}
|
|
|
|
// Output Ints of all sizes as hex.
|
|
#define OutputIntC(int_type, cast_type) if(*type == typeid(int_type)) { stream << std::setfill('0') << std::setw(sizeof(int_type)*2) << std::hex << cast_type(::Reflection::get<int_type>(*this, key, offset)); return; }
|
|
#define OutputInt(int_type) OutputIntC(int_type, int_type)
|
|
OutputIntC(int8_t, int16_t);
|
|
OutputIntC(uint8_t, uint16_t);
|
|
OutputInt(int16_t);
|
|
OutputInt(uint16_t);
|
|
OutputInt(int32_t);
|
|
OutputInt(uint32_t);
|
|
OutputInt(int64_t);
|
|
OutputInt(uint64_t);
|
|
#undef OutputInt
|
|
#undef OutputIntC
|
|
|
|
// Output floats and strings natively.
|
|
#define OutputNative(val_type) if(*type == typeid(val_type)) { stream << ::Reflection::get<val_type>(*this, key, offset); return; }
|
|
OutputNative(float);
|
|
OutputNative(double);
|
|
OutputNative(char *);
|
|
OutputNative(std::string);
|
|
#undef OutputNative
|
|
|
|
// Output the current value of any enums.
|
|
if(!Enum::name(*type).empty()) {
|
|
const int value = ::Reflection::get<int>(*this, key, offset);
|
|
stream << Enum::to_string(*type, value);
|
|
return;
|
|
}
|
|
|
|
// Recurse to deal with embedded objects.
|
|
if(*type == typeid(Reflection::Struct)) {
|
|
const Reflection::Struct *const child = reinterpret_cast<const Reflection::Struct *>(get(key));
|
|
stream << child->description();
|
|
return;
|
|
}
|
|
}
|
|
|
|
std::string Reflection::Struct::description() const {
|
|
std::ostringstream stream;
|
|
|
|
stream << "{";
|
|
|
|
bool is_first = true;
|
|
for(const auto &key: all_keys()) {
|
|
if(!is_first) stream << ", ";
|
|
is_first = false;
|
|
stream << key << ": ";
|
|
|
|
const auto count = count_of(key);
|
|
const auto type = type_of(key);
|
|
|
|
if(count != 1) {
|
|
stream << "[";
|
|
}
|
|
|
|
for(size_t index = 0; index < count; ++index) {
|
|
append(stream, key, type, index);
|
|
if(index != count-1) stream << ", ";
|
|
}
|
|
|
|
if(count != 1) {
|
|
stream << "]";
|
|
}
|
|
}
|
|
|
|
stream << "}";
|
|
|
|
return stream.str();
|
|
}
|
|
|
|
/* Contractually, this serialises as BSON. */
|
|
std::vector<uint8_t> Reflection::Struct::serialise() const {
|
|
auto push_name = [] (std::vector<uint8_t> &result, const std::string &name) {
|
|
std::copy(name.begin(), name.end(), std::back_inserter(result));
|
|
result.push_back(0);
|
|
};
|
|
|
|
auto append = [push_name, this] (std::vector<uint8_t> &result, const std::string &key, const std::string &output_name, const std::type_info *type, size_t offset) {
|
|
auto push_int = [push_name, &result, &output_name] (auto x) {
|
|
for(size_t c = 0; c < sizeof(x); ++c)
|
|
result.push_back(uint8_t((x) >> (8 * c)));
|
|
};
|
|
|
|
auto push_named_int = [push_int, push_name, &result, &output_name] (uint8_t type, auto x) {
|
|
result.push_back(type);
|
|
push_name(result, output_name);
|
|
push_int(x);
|
|
};
|
|
|
|
auto push_string = [push_int, push_name, &result, &output_name] (const std::string &text) {
|
|
result.push_back(0x02);
|
|
push_name(result, output_name);
|
|
|
|
const uint32_t string_length = uint32_t(text.size() + 1);
|
|
push_int(string_length);
|
|
std::copy(text.begin(), text.end(), std::back_inserter(result));
|
|
result.push_back(0);
|
|
};
|
|
|
|
// Test for an exact match on Booleans.
|
|
if(*type == typeid(bool)) {
|
|
result.push_back(0x08);
|
|
push_name(result, output_name);
|
|
result.push_back(uint8_t(Reflection::get<bool>(*this, key, offset)));
|
|
return;
|
|
}
|
|
|
|
// Record the string value for enums.
|
|
if(!Reflection::Enum::name(*type).empty()) {
|
|
int value;
|
|
Reflection::get(*this, key, value, offset);
|
|
const auto text = Reflection::Enum::to_string(*type, 0);
|
|
push_string(text);
|
|
return;
|
|
}
|
|
|
|
// Test for ints that will safely convert to an int32.
|
|
int32_t int32;
|
|
if(Reflection::get(*this, key, int32, offset)) {
|
|
push_named_int(0x10, int32);
|
|
return;
|
|
}
|
|
|
|
// Test for ints that can be converted to an int64.
|
|
int64_t int64;
|
|
if(Reflection::get(*this, key, int64, offset)) {
|
|
push_named_int(0x12, int64);
|
|
return;
|
|
}
|
|
|
|
// There's only one BSON float type: a double.
|
|
double float64;
|
|
if(Reflection::get(*this, key, float64, offset)) {
|
|
result.push_back(0x01);
|
|
push_name(result, output_name);
|
|
|
|
// The following declines to assume an internal representation
|
|
// for doubles, constructing IEEE 708 from first principles.
|
|
// Which is probably absurd given how often I've assumed
|
|
// e.g. two's complement.
|
|
int exponent;
|
|
const double mantissa = frexp(fabs(float64), &exponent);
|
|
exponent += 1022;
|
|
const uint64_t integer_mantissa =
|
|
static_cast<uint64_t>(mantissa * 9007199254740992.0);
|
|
const uint64_t binary64 =
|
|
((float64 < 0) ? 0x8000'0000'0000'0000 : 0) |
|
|
(integer_mantissa & 0x000f'ffff'ffff'ffff) |
|
|
(static_cast<uint64_t>(exponent) << 52);
|
|
push_int(binary64);
|
|
|
|
return;
|
|
}
|
|
|
|
// Strings are written naturally.
|
|
if(*type == typeid(std::string)) {
|
|
const uint8_t *address = reinterpret_cast<const uint8_t *>(get(key));
|
|
const std::string *const text = reinterpret_cast<const std::string *>(address + offset*sizeof(std::string));
|
|
push_string(*text);
|
|
return;
|
|
}
|
|
|
|
// Store std::vector<uint_8>s as binary data.
|
|
if(*type == typeid(std::vector<uint8_t>)) {
|
|
result.push_back(0x05);
|
|
push_name(result, output_name);
|
|
|
|
auto source = reinterpret_cast<const std::vector<uint8_t> *>(get(key));
|
|
push_int(uint32_t(source->size()));
|
|
result.push_back(0x00);
|
|
std::copy(source->begin(), source->end(), std::back_inserter(result));
|
|
return;
|
|
}
|
|
|
|
// Okay, check for a potential recursion.
|
|
// Not currently supported: arrays of structs.
|
|
if(*type == typeid(Reflection::Struct)) {
|
|
result.push_back(0x03);
|
|
push_name(result, output_name);
|
|
|
|
const Reflection::Struct *const child = reinterpret_cast<const Reflection::Struct *>(get(key));
|
|
const auto sub_document = child->serialise();
|
|
std::copy(sub_document.begin(), sub_document.end(), std::back_inserter(result));
|
|
return;
|
|
}
|
|
|
|
// Should never reach here; that means a type was discovered in a struct which is intended for
|
|
// serialisation but which could not be parsed.
|
|
assert(false);
|
|
};
|
|
|
|
auto wrap_object = [] (std::vector<uint8_t> &data) {
|
|
/*
|
|
document ::= int32 e_list "\x00"
|
|
The int32 is the total number of bytes comprising the document.
|
|
*/
|
|
data.push_back(0);
|
|
const uint32_t size_with_prefix = uint32_t(data.size()) + 4;
|
|
data.insert(data.begin(), uint8_t(size_with_prefix >> 24));
|
|
data.insert(data.begin(), uint8_t(size_with_prefix >> 16));
|
|
data.insert(data.begin(), uint8_t(size_with_prefix >> 8));
|
|
data.insert(data.begin(), uint8_t(size_with_prefix & 0xff));
|
|
};
|
|
|
|
std::vector<uint8_t> result;
|
|
|
|
for(const auto &key: all_keys()) {
|
|
if(!should_serialise(key)) continue;
|
|
|
|
/* Here: e_list ::= element e_list | "" */
|
|
const auto count = count_of(key);
|
|
const auto type = type_of(key);
|
|
|
|
if(count > 1) {
|
|
// In BSON, an array is a sub-document with ASCII keys '0', '1', etc.
|
|
result.push_back(0x04);
|
|
push_name(result, key);
|
|
|
|
std::vector<uint8_t> array;
|
|
for(size_t c = 0; c < count; ++c) {
|
|
append(array, key, std::to_string(c), type, c);
|
|
}
|
|
wrap_object(array);
|
|
|
|
std::copy(array.begin(), array.end(), std::back_inserter(result));
|
|
} else {
|
|
append(result, key, key, type, 0);
|
|
}
|
|
}
|
|
|
|
wrap_object(result);
|
|
return result;
|
|
}
|
|
|
|
bool Reflection::Struct::deserialise(const std::vector<uint8_t> &bson) {
|
|
return deserialise(bson.data(), bson.size());
|
|
}
|
|
|
|
namespace {
|
|
|
|
/*!
|
|
Provides a proxy struct that redirects calls to set to another object and property, picking
|
|
an offset based on the propety name specified here.
|
|
*/
|
|
struct ArrayReceiver: public Reflection::Struct {
|
|
ArrayReceiver(Reflection::Struct *target, const std::type_info *type, const std::string &key, size_t count) :
|
|
target_(target), type_(type), key_(key), count_(count) {}
|
|
|
|
std::vector<std::string> all_keys() const final { return {}; }
|
|
const std::type_info *type_of(const std::string &name) const final { return type_; }
|
|
size_t count_of(const std::string &name) const final { return 0; }
|
|
|
|
void set(const std::string &name, const void *value, size_t offset) final {
|
|
const auto index = size_t(std::stoi(name));
|
|
if(index >= count_) {
|
|
return;
|
|
}
|
|
target_->set(key_, value, index);
|
|
}
|
|
|
|
virtual std::vector<std::string> values_for(const std::string &name) const final {
|
|
return {};
|
|
}
|
|
|
|
void *get(const std::string &name) final {
|
|
return nullptr;
|
|
}
|
|
|
|
private:
|
|
Reflection::Struct *target_;
|
|
const std::type_info *type_;
|
|
std::string key_;
|
|
size_t count_;
|
|
};
|
|
|
|
}
|
|
|
|
bool Reflection::Struct::deserialise(const uint8_t *bson, size_t size) {
|
|
// Validate the object's declared size.
|
|
const auto end = bson + size;
|
|
auto read_int = [&bson] (auto &target) {
|
|
constexpr auto shift = 8 * (sizeof(target) - 1);
|
|
target = 0;
|
|
for(size_t c = 0; c < sizeof(target); ++c) {
|
|
target >>= 8;
|
|
target |= decltype(target)(*bson) << shift;
|
|
++bson;
|
|
}
|
|
};
|
|
|
|
uint32_t object_size;
|
|
read_int(object_size);
|
|
if(object_size > size) return false;
|
|
|
|
while(true) {
|
|
const uint8_t next_type = *bson;
|
|
++bson;
|
|
if(!next_type)
|
|
break;
|
|
|
|
std::string key;
|
|
while(*bson) {
|
|
key.push_back(char(*bson));
|
|
++bson;
|
|
}
|
|
++bson;
|
|
|
|
switch(next_type) {
|
|
default:
|
|
return false;
|
|
|
|
// 0x03: A subdocument; try to install the inner BSON.
|
|
// 0x05: Binary data. Seek to populate a std::vector<uint8_t>.
|
|
case 0x03:
|
|
case 0x05: {
|
|
const auto type = type_of(key);
|
|
|
|
uint32_t subobject_size;
|
|
read_int(subobject_size);
|
|
|
|
if(next_type == 0x03 && *type == typeid(Reflection::Struct)) {
|
|
auto child = reinterpret_cast<Reflection::Struct *>(get(key));
|
|
child->deserialise(bson - 4, size_t(end - bson + 4));
|
|
bson += subobject_size - 4;
|
|
}
|
|
|
|
if(next_type == 0x05 && *type == typeid(std::vector<uint8_t>)) {
|
|
auto child = reinterpret_cast<std::vector<uint8_t> *>(get(key));
|
|
*child = std::vector<uint8_t>(bson, bson + subobject_size);
|
|
bson += subobject_size;
|
|
}
|
|
} break;
|
|
|
|
// Array. BSON's encoding of these is a minor pain, but could be worse;
|
|
// they're presented as a subobject with objects serialised in array order
|
|
// but given the string keys "0", "1", etc. So: validate the keys, decode
|
|
// the objects.
|
|
case 0x04: {
|
|
ArrayReceiver receiver(this, type_of(key), key, count_of(key));
|
|
|
|
uint32_t subobject_size;
|
|
read_int(subobject_size);
|
|
|
|
receiver.deserialise(bson - 4, size_t(end - bson + 4));
|
|
|
|
bson += subobject_size - 4;
|
|
} break;
|
|
|
|
// String.
|
|
case 0x02: {
|
|
uint32_t length;
|
|
read_int(length);
|
|
|
|
const std::string value(bson, bson + length - 1);
|
|
::Reflection::set<const std::string &>(*this, key, value);
|
|
|
|
bson += length;
|
|
} break;
|
|
|
|
// Boolean.
|
|
case 0x08: {
|
|
const bool value = *bson;
|
|
++bson;
|
|
::Reflection::set(*this, key, value);
|
|
} break;
|
|
|
|
// 32-bit int.
|
|
case 0x10: {
|
|
int32_t value;
|
|
read_int(value);
|
|
::Reflection::set(*this, key, value);
|
|
} break;
|
|
|
|
// 64-bit int.
|
|
case 0x12: {
|
|
int64_t value;
|
|
read_int(value);
|
|
::Reflection::set(*this, key, value);
|
|
} break;
|
|
|
|
// 64-bit double.
|
|
case 0x01: {
|
|
uint64_t value;
|
|
read_int(value);
|
|
|
|
const double mantissa = 0.5 + double(value & 0x000f'ffff'ffff'ffff) / 9007199254740992.0;
|
|
const int exponent = ((value >> 52) & 2047) - 1022;
|
|
const double double_value = ldexp(mantissa, exponent);
|
|
const double sign = (value & 0x8000'0000'0000'0000) ? -1 : 1;
|
|
|
|
::Reflection::set(*this, key, double_value * sign);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|