1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-12-27 01:31:42 +00:00
CLK/Components/DiskII/DiskII.cpp
2018-05-22 21:50:07 -04:00

258 lines
8.5 KiB
C++

//
// DiskII.cpp
// Clock Signal
//
// Created by Thomas Harte on 20/04/2018.
// Copyright 2018 Thomas Harte. All rights reserved.
//
#include "DiskII.hpp"
#include <cstdio>
#include <cstring>
using namespace Apple;
namespace {
const uint8_t input_command = 0x4; // i.e. Q6
const uint8_t input_mode = 0x8; // i.e. Q7
const uint8_t input_flux = 0x1;
}
DiskII::DiskII() :
inputs_(input_command),
drives_{{2045454, 300, 1}, {2045454, 300, 1}}
{
drives_[0].set_sleep_observer(this);
drives_[1].set_sleep_observer(this);
drives_[active_drive_].set_event_delegate(this);
}
void DiskII::set_control(Control control, bool on) {
int previous_stepper_mask = stepper_mask_;
switch(control) {
case Control::P0: stepper_mask_ = (stepper_mask_ & 0xe) | (on ? 0x1 : 0x0); break;
case Control::P1: stepper_mask_ = (stepper_mask_ & 0xd) | (on ? 0x2 : 0x0); break;
case Control::P2: stepper_mask_ = (stepper_mask_ & 0xb) | (on ? 0x4 : 0x0); break;
case Control::P3: stepper_mask_ = (stepper_mask_ & 0x7) | (on ? 0x8 : 0x0); break;
case Control::Motor:
motor_is_enabled_ = on;
drives_[active_drive_].set_motor_on(on);
return;
}
// If the stepper magnet selections have changed, and any is on, see how
// that moves the head.
if(previous_stepper_mask ^ stepper_mask_ && stepper_mask_) {
// Convert from a representation of bits set to the centre of pull.
int direction = 0;
if(stepper_mask_&1) direction += (((stepper_position_ - 0) + 4)&7) - 4;
if(stepper_mask_&2) direction += (((stepper_position_ - 2) + 4)&7) - 4;
if(stepper_mask_&4) direction += (((stepper_position_ - 4) + 4)&7) - 4;
if(stepper_mask_&8) direction += (((stepper_position_ - 6) + 4)&7) - 4;
const int bits_set = (stepper_mask_&1) + ((stepper_mask_ >> 1)&1) + ((stepper_mask_ >> 2)&1) + ((stepper_mask_ >> 3)&1);
direction /= bits_set;
// Compare to the stepper position to decide whether that pulls in the current cog notch,
// or grabs a later one.
drives_[active_drive_].step(Storage::Disk::HeadPosition(-direction, 4));
stepper_position_ = (stepper_position_ - direction + 8) & 7;
}
}
void DiskII::select_drive(int drive) {
if((drive&1) == active_drive_) return;
drives_[active_drive_].set_event_delegate(this);
drives_[active_drive_^1].set_event_delegate(nullptr);
drives_[active_drive_].set_motor_on(false);
active_drive_ = drive & 1;
drives_[active_drive_].set_motor_on(motor_is_enabled_);
}
void DiskII::run_for(const Cycles cycles) {
if(is_sleeping()) return;
if(!controller_can_sleep_) {
int integer_cycles = cycles.as_int();
while(integer_cycles--) {
const int address = (state_ & 0xf0) | inputs_ | ((shift_register_&0x80) >> 6);
inputs_ |= input_flux;
state_ = state_machine_[static_cast<std::size_t>(address)];
switch(state_ & 0xf) {
default: shift_register_ = 0; break; // clear
case 0x8: break; // nop
case 0x9: shift_register_ = static_cast<uint8_t>(shift_register_ << 1); break; // shift left, bringing in a zero
case 0xd: shift_register_ = static_cast<uint8_t>((shift_register_ << 1) | 1); break; // shift left, bringing in a one
case 0xa: // shift right, bringing in write protected status
shift_register_ = (shift_register_ >> 1) | (is_write_protected() ? 0x80 : 0x00);
// If the controller is in the sense write protect loop but the register will never change,
// short circuit further work and return now.
if(shift_register_ == is_write_protected() ? 0xff : 0x00) {
if(!drive_is_sleeping_[0]) drives_[0].run_for(Cycles(integer_cycles));
if(!drive_is_sleeping_[1]) drives_[1].run_for(Cycles(integer_cycles));
set_controller_can_sleep();
return;
}
break;
case 0xb: shift_register_ = data_input_; break; // load data register from data bus
}
// Currently writing?
if(inputs_&input_mode) {
// state_ & 0x80 should be the current level sent to the disk;
// therefore transitions in that bit should become flux transitions
drives_[active_drive_].write_bit(!!((state_ ^ address) & 0x80));
}
// TODO: surely there's a less heavyweight solution than this?
if(!drive_is_sleeping_[0]) drives_[0].run_for(Cycles(1));
if(!drive_is_sleeping_[1]) drives_[1].run_for(Cycles(1));
}
} else {
if(!drive_is_sleeping_[0]) drives_[0].run_for(cycles);
if(!drive_is_sleeping_[1]) drives_[1].run_for(cycles);
}
set_controller_can_sleep();
}
void DiskII::set_controller_can_sleep() {
// Permit the controller to sleep if it's in sense write protect mode, and the shift register
// has already filled with the result of shifting eight times.
bool controller_could_sleep = controller_can_sleep_;
controller_can_sleep_ =
(
(inputs_ == input_flux) &&
!motor_is_enabled_ &&
!shift_register_
) ||
(
(inputs_ == (input_command | input_flux)) &&
(shift_register_ == (is_write_protected() ? 0xff : 0x00))
);
if(controller_could_sleep != controller_can_sleep_)
update_sleep_observer();
}
bool DiskII::is_write_protected() {
return !!(stepper_mask_ & 2) | drives_[active_drive_].get_is_read_only();
}
void DiskII::set_state_machine(const std::vector<uint8_t> &state_machine) {
/*
An unadulterated P6 ROM read returns values with an address formed as:
state b0, state b2, state b3, pulse, Q7, Q6, shift, state b1
... and has the top nibble of each value stored in the ROM reflected.
Beneath Apple Pro-DOS uses a different order and several of the
online copies are reformatted into that order.
So the code below remaps into Beneath Apple Pro-DOS order if the
supplied state machine isn't already in that order.
*/
if(state_machine[0] != 0x18) {
for(size_t source_address = 0; source_address < 256; ++source_address) {
// Remap into Beneath Apple Pro-DOS address form.
size_t destination_address =
((source_address&0x80) ? 0x10 : 0x00) |
((source_address&0x01) ? 0x20 : 0x00) |
((source_address&0x40) ? 0x40 : 0x00) |
((source_address&0x20) ? 0x80 : 0x00) |
((source_address&0x10) ? 0x01 : 0x00) |
((source_address&0x08) ? 0x08 : 0x00) |
((source_address&0x04) ? 0x04 : 0x00) |
((source_address&0x02) ? 0x02 : 0x00);
uint8_t source_value = state_machine[source_address];
// Remap into Beneath Apple Pro-DOS value form.
source_value =
((source_value & 0x80) ? 0x10 : 0x0) |
((source_value & 0x40) ? 0x20 : 0x0) |
((source_value & 0x20) ? 0x40 : 0x0) |
((source_value & 0x10) ? 0x80 : 0x0) |
(source_value & 0x0f);
// Store.
state_machine_[destination_address] = source_value;
}
} else {
memcpy(&state_machine_[0], &state_machine[0], 128);
}
}
void DiskII::set_disk(const std::shared_ptr<Storage::Disk::Disk> &disk, int drive) {
drives_[drive].set_disk(disk);
}
void DiskII::process_event(const Storage::Disk::Track::Event &event) {
if(event.type == Storage::Disk::Track::Event::FluxTransition) {
inputs_ &= ~input_flux;
set_controller_can_sleep();
}
}
void DiskII::set_component_is_sleeping(Sleeper *component, bool is_sleeping) {
drive_is_sleeping_[0] = drives_[0].is_sleeping();
drive_is_sleeping_[1] = drives_[1].is_sleeping();
update_sleep_observer();
}
bool DiskII::is_sleeping() {
return controller_can_sleep_ && drive_is_sleeping_[0] && drive_is_sleeping_[1];
}
void DiskII::set_data_input(uint8_t input) {
data_input_ = input;
}
int DiskII::read_address(int address) {
switch(address & 0xf) {
default:
case 0x0: set_control(Control::P0, false); break;
case 0x1: set_control(Control::P0, true); break;
case 0x2: set_control(Control::P1, false); break;
case 0x3: set_control(Control::P1, true); break;
case 0x4: set_control(Control::P2, false); break;
case 0x5: set_control(Control::P2, true); break;
case 0x6: set_control(Control::P3, false); break;
case 0x7: set_control(Control::P3, true); break;
case 0x8:
shift_register_ = 0;
set_control(Control::Motor, false);
break;
case 0x9: set_control(Control::Motor, true); break;
case 0xa: select_drive(0); break;
case 0xb: select_drive(1); break;
case 0xc: inputs_ &= ~input_command; break;
case 0xd: inputs_ |= input_command; break;
case 0xe:
if(inputs_ & input_mode)
drives_[active_drive_].end_writing();
inputs_ &= ~input_mode;
break;
case 0xf:
if(!(inputs_ & input_mode))
drives_[active_drive_].begin_writing(Storage::Time(1, 2045454), false);
inputs_ |= input_mode;
break;
}
set_controller_can_sleep();
return (address & 1) ? 0xff : shift_register_;
}
void DiskII::set_activity_observer(Activity::Observer *observer) {
drives_[0].set_activity_observer(observer, "Drive 1", true);
drives_[1].set_activity_observer(observer, "Drive 2", true);
}