1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-19 08:31:11 +00:00
CLK/Components/DiskII/DiskII.cpp
2018-04-25 21:59:18 -04:00

156 lines
5.0 KiB
C++

//
// DiskII.cpp
// Clock Signal
//
// Created by Thomas Harte on 20/04/2018.
// Copyright © 2018 Thomas Harte. All rights reserved.
//
#include "DiskII.hpp"
#include <cstdio>
using namespace Apple;
namespace {
const uint8_t input_command = 0x1;
const uint8_t input_mode = 0x2;
const uint8_t input_flux = 0x4;
}
DiskII::DiskII() :
drives_{{2000000, 300, 1}, {2045454, 300, 1}}
{
}
void DiskII::set_control(Control control, bool on) {
int previous_stepper_mask = stepper_mask_;
switch(control) {
case Control::P0: stepper_mask_ = (stepper_mask_ & 0xe) | (on ? 0x1 : 0x0); break;
case Control::P1: stepper_mask_ = (stepper_mask_ & 0xd) | (on ? 0x2 : 0x0); break;
case Control::P2: stepper_mask_ = (stepper_mask_ & 0xb) | (on ? 0x4 : 0x0); break;
case Control::P3: stepper_mask_ = (stepper_mask_ & 0x7) | (on ? 0x8 : 0x0); break;
case Control::Motor:
// TODO: does the motor control trigger both motors at once?
drives_[0].set_motor_on(on);
drives_[1].set_motor_on(on);
break;
}
// printf("%0x: Set control %d %s\n", stepper_mask_, control, on ? "on" : "off");
// If the stepper magnet selections have changed, and any is on, see how
// that moves the head.
if(previous_stepper_mask ^ stepper_mask_ && stepper_mask_) {
// Convert from a representation of bits set to the centre of pull.
int direction = 0;
if(stepper_mask_&1) direction += (((stepper_position_ - 0) + 4)&7) - 4;
if(stepper_mask_&2) direction += (((stepper_position_ - 2) + 4)&7) - 4;
if(stepper_mask_&4) direction += (((stepper_position_ - 4) + 4)&7) - 4;
if(stepper_mask_&8) direction += (((stepper_position_ - 6) + 4)&7) - 4;
const int bits_set = (stepper_mask_&1) + ((stepper_mask_ >> 1)&1) + ((stepper_mask_ >> 2)&1) + ((stepper_mask_ >> 3)&1);
direction /= bits_set;
// Compare to the stepper position to decide whether that pulls in the current cog notch,
// or grabs a later one.
drives_[active_drive_].step(-direction);
stepper_position_ = (stepper_position_ - direction + 8) & 7;
}
}
void DiskII::set_mode(Mode mode) {
// printf("Set mode %d\n", mode);
inputs_ = (inputs_ & ~input_mode) | ((mode == Mode::Write) ? input_mode : 0);
}
void DiskII::select_drive(int drive) {
// printf("Select drive %d\n", drive);
active_drive_ = drive & 1;
drives_[active_drive_].set_event_delegate(this);
drives_[active_drive_^1].set_event_delegate(nullptr);
}
void DiskII::set_data_register(uint8_t value) {
// printf("Set data register (?)\n");
inputs_ |= input_command;
data_register_ = value;
}
uint8_t DiskII::get_shift_register() {
// printf("[%02x] ", shift_register_);
inputs_ &= ~input_command;
return shift_register_;
}
void DiskII::run_for(const Cycles cycles) {
/*
... address the P6 ROM with an index byte built up as:
+-------+-------+-------+-------+-------+-------+-------+-------+
| STATE | STATE | STATE | PULSE | Q7 | Q6 | SR | STATE |
| bit 0 | bit 2 | bit 3 | | | | MSB | bit 1 |
+-------+-------+-------+-------+-------+-------+-------+-------+
7 6 5 4 3 2 1 0
...
The bytes in the P6 ROM has the high four bits reversed compared to the BAPD charts, so you will have to reverse them after fetching the byte.
*/
// TODO: optimise the resting state.
int integer_cycles = cycles.as_int();
while(integer_cycles--) {
const int address =
(inputs_ << 2) |
((shift_register_&0x80) >> 6) |
((state_&0x2) >> 1) |
((state_&0x1) << 7) |
((state_&0x4) << 4) |
((state_&0x8) << 2);
inputs_ |= input_flux;
const uint8_t update = state_machine_[static_cast<std::size_t>(address)];
state_ = update >> 4;
state_ = ((state_ & 0x8) ? 0x1 : 0x0) | ((state_ & 0x4) ? 0x2 : 0x0) | ((state_ & 0x2) ? 0x4 : 0x0) | ((state_ & 0x1) ? 0x8 : 0x0);
uint8_t command = update & 0xf;
switch(command) {
case 0x0: shift_register_ = 0; break; // clear
case 0x9: shift_register_ = static_cast<uint8_t>(shift_register_ << 1); break; // shift left, bringing in a zero
case 0xd: shift_register_ = static_cast<uint8_t>((shift_register_ << 1) | 1); break; // shift left, bringing in a one
case 0xb: shift_register_ = data_register_; break; // load
case 0xa:
shift_register_ = (shift_register_ >> 1) | (is_write_protected() ? 0x80 : 0x00);
break; // shift right, bringing in write protected status
default: break;
}
// printf(" -> %02x performing %02x (address was %02x)\n", state_, command, address);
// TODO: surely there's a less heavyweight solution than this?
drives_[0].run_for(Cycles(1));
drives_[1].run_for(Cycles(1));
}
}
bool DiskII::is_write_protected() {
return true;
}
void DiskII::set_state_machine(const std::vector<uint8_t> &state_machine) {
state_machine_ = state_machine;
// run_for(Cycles(15));
// TODO: shuffle ordering here?
}
void DiskII::set_disk(const std::shared_ptr<Storage::Disk::Disk> &disk, int drive) {
drives_[drive].set_disk(disk);
}
void DiskII::process_event(const Storage::Disk::Track::Event &event) {
if(event.type == Storage::Disk::Track::Event::FluxTransition) {
inputs_ &= ~input_flux;
}
}