mirror of
https://github.com/TomHarte/CLK.git
synced 2024-11-18 01:07:58 +00:00
384 lines
11 KiB
C++
384 lines
11 KiB
C++
//
|
|
// 6522.hpp
|
|
// Clock Signal
|
|
//
|
|
// Created by Thomas Harte on 06/06/2016.
|
|
// Copyright © 2016 Thomas Harte. All rights reserved.
|
|
//
|
|
|
|
#ifndef _522_hpp
|
|
#define _522_hpp
|
|
|
|
#include <cstdint>
|
|
#include <typeinfo>
|
|
#include <cstdio>
|
|
|
|
namespace MOS {
|
|
|
|
/*!
|
|
Implements a template for emulation of the MOS 6522 Versatile Interface Adaptor ('VIA').
|
|
|
|
The VIA provides:
|
|
* two timers, each of which may trigger interrupts and one of which may repeat;
|
|
* two digial input/output ports; and
|
|
* a serial-to-parallel shifter.
|
|
|
|
Consumers should derive their own curiously-recurring-template-pattern subclass,
|
|
implementing bus communications as required.
|
|
*/
|
|
template <class T> class MOS6522 {
|
|
private:
|
|
enum InterruptFlag: uint8_t {
|
|
CA2ActiveEdge = 1 << 0,
|
|
CA1ActiveEdge = 1 << 1,
|
|
ShiftRegister = 1 << 2,
|
|
CB2ActiveEdge = 1 << 3,
|
|
CB1ActiveEdge = 1 << 4,
|
|
Timer2 = 1 << 5,
|
|
Timer1 = 1 << 6,
|
|
};
|
|
|
|
public:
|
|
enum Port {
|
|
A = 0,
|
|
B = 1
|
|
};
|
|
|
|
enum Line {
|
|
One = 0,
|
|
Two = 1
|
|
};
|
|
|
|
/*! Sets a register value. */
|
|
inline void set_register(int address, uint8_t value)
|
|
{
|
|
address &= 0xf;
|
|
// printf("6522 [%s]: %0x <- %02x\n", typeid(*this).name(), address, value);
|
|
switch(address)
|
|
{
|
|
case 0x0:
|
|
_registers.output[1] = value;
|
|
static_cast<T *>(this)->set_port_output(Port::B, value, _registers.data_direction[1]); // TODO: handshake
|
|
|
|
_registers.interrupt_flags &= ~(InterruptFlag::CB1ActiveEdge | ((_registers.peripheral_control&0x20) ? 0 : InterruptFlag::CB2ActiveEdge));
|
|
reevaluate_interrupts();
|
|
break;
|
|
case 0xf:
|
|
case 0x1:
|
|
_registers.output[0] = value;
|
|
static_cast<T *>(this)->set_port_output(Port::A, value, _registers.data_direction[0]); // TODO: handshake
|
|
|
|
_registers.interrupt_flags &= ~(InterruptFlag::CA1ActiveEdge | ((_registers.peripheral_control&0x02) ? 0 : InterruptFlag::CB2ActiveEdge));
|
|
reevaluate_interrupts();
|
|
break;
|
|
// // No handshake, so write directly
|
|
// _registers.output[0] = value;
|
|
// static_cast<T *>(this)->set_port_output(0, value);
|
|
// break;
|
|
|
|
case 0x2:
|
|
_registers.data_direction[1] = value;
|
|
break;
|
|
case 0x3:
|
|
_registers.data_direction[0] = value;
|
|
break;
|
|
|
|
// Timer 1
|
|
case 0x6: case 0x4: _registers.timer_latch[0] = (_registers.timer_latch[0]&0xff00) | value; break;
|
|
case 0x5: case 0x7:
|
|
_registers.timer_latch[0] = (_registers.timer_latch[0]&0x00ff) | (uint16_t)(value << 8);
|
|
_registers.interrupt_flags &= ~InterruptFlag::Timer1;
|
|
if(address == 0x05)
|
|
{
|
|
_registers.timer[0] = _registers.timer_latch[0];
|
|
_timer_is_running[0] = true;
|
|
}
|
|
reevaluate_interrupts();
|
|
break;
|
|
|
|
// Timer 2
|
|
case 0x8: _registers.timer_latch[1] = value; break;
|
|
case 0x9:
|
|
_registers.interrupt_flags &= ~InterruptFlag::Timer2;
|
|
_registers.timer[1] = _registers.timer_latch[1] | (uint16_t)(value << 8);
|
|
_timer_is_running[1] = true;
|
|
reevaluate_interrupts();
|
|
break;
|
|
|
|
// Shift
|
|
case 0xa: _registers.shift = value; break;
|
|
|
|
// Control
|
|
case 0xb:
|
|
_registers.auxiliary_control = value;
|
|
break;
|
|
case 0xc:
|
|
// printf("Peripheral control %02x\n", value);
|
|
_registers.peripheral_control = value;
|
|
|
|
// TODO: simplify below; trying to avoid improper logging of unimplemented warnings in input mode
|
|
if(value & 0x08)
|
|
{
|
|
switch(value & 0x0e)
|
|
{
|
|
default: printf("Unimplemented control line mode %d\n", (value >> 1)&7); break;
|
|
case 0x0c: static_cast<T *>(this)->set_control_line_output(Port::A, Line::Two, false); break;
|
|
case 0x0e: static_cast<T *>(this)->set_control_line_output(Port::A, Line::Two, true); break;
|
|
}
|
|
}
|
|
if(value & 0x80)
|
|
{
|
|
switch(value & 0xe0)
|
|
{
|
|
default: printf("Unimplemented control line mode %d\n", (value >> 5)&7); break;
|
|
case 0xc0: static_cast<T *>(this)->set_control_line_output(Port::B, Line::Two, false); break;
|
|
case 0xe0: static_cast<T *>(this)->set_control_line_output(Port::B, Line::Two, true); break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
// Interrupt control
|
|
case 0xd:
|
|
_registers.interrupt_flags &= ~value;
|
|
reevaluate_interrupts();
|
|
break;
|
|
case 0xe:
|
|
if(value&0x80)
|
|
_registers.interrupt_enable |= value;
|
|
else
|
|
_registers.interrupt_enable &= ~value;
|
|
reevaluate_interrupts();
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*! Gets a register value. */
|
|
inline uint8_t get_register(int address)
|
|
{
|
|
address &= 0xf;
|
|
// printf("6522 %p: %d\n", this, address);
|
|
switch(address)
|
|
{
|
|
case 0x0:
|
|
_registers.interrupt_flags &= ~(InterruptFlag::CB1ActiveEdge | InterruptFlag::CB2ActiveEdge);
|
|
reevaluate_interrupts();
|
|
return get_port_input(Port::B, _registers.data_direction[1], _registers.output[1]);
|
|
case 0xf: // TODO: handshake, latching
|
|
case 0x1:
|
|
_registers.interrupt_flags &= ~(InterruptFlag::CA1ActiveEdge | InterruptFlag::CA2ActiveEdge);
|
|
reevaluate_interrupts();
|
|
return get_port_input(Port::A, _registers.data_direction[0], _registers.output[0]);
|
|
|
|
case 0x2: return _registers.data_direction[1];
|
|
case 0x3: return _registers.data_direction[0];
|
|
|
|
// Timer 1
|
|
case 0x4:
|
|
_registers.interrupt_flags &= ~InterruptFlag::Timer1;
|
|
reevaluate_interrupts();
|
|
return _registers.timer[0] & 0x00ff;
|
|
case 0x5: return _registers.timer[0] >> 8;
|
|
case 0x6: return _registers.timer_latch[0] & 0x00ff;
|
|
case 0x7: return _registers.timer_latch[0] >> 8;
|
|
|
|
// Timer 2
|
|
case 0x8:
|
|
_registers.interrupt_flags &= ~InterruptFlag::Timer2;
|
|
reevaluate_interrupts();
|
|
return _registers.timer[1] & 0x00ff;
|
|
case 0x9: return _registers.timer[1] >> 8;
|
|
|
|
case 0xa: return _registers.shift;
|
|
|
|
case 0xb: return _registers.auxiliary_control;
|
|
case 0xc: return _registers.peripheral_control;
|
|
|
|
case 0xd: return _registers.interrupt_flags | (get_interrupt_line() ? 0x80 : 0x00);
|
|
case 0xe: return _registers.interrupt_enable | 0x80;
|
|
}
|
|
|
|
return 0xff;
|
|
}
|
|
|
|
inline void set_control_line_input(Port port, Line line, bool value)
|
|
{
|
|
switch(line)
|
|
{
|
|
case Line::One:
|
|
if( value != _control_inputs[port].line_one &&
|
|
value == !!(_registers.peripheral_control & (port ? 0x10 : 0x01))
|
|
)
|
|
{
|
|
_registers.interrupt_flags |= port ? InterruptFlag::CB1ActiveEdge : InterruptFlag::CA1ActiveEdge;
|
|
reevaluate_interrupts();
|
|
}
|
|
_control_inputs[port].line_one = value;
|
|
break;
|
|
|
|
case Line::Two:
|
|
// TODO: output modes, but probably elsewhere?
|
|
if( value != _control_inputs[port].line_two && // i.e. value has changed ...
|
|
!(_registers.peripheral_control & (port ? 0x80 : 0x08)) && // ... and line is input ...
|
|
value == !!(_registers.peripheral_control & (port ? 0x40 : 0x04)) // ... and it's either high or low, as required
|
|
)
|
|
{
|
|
_registers.interrupt_flags |= port ? InterruptFlag::CB2ActiveEdge : InterruptFlag::CA2ActiveEdge;
|
|
reevaluate_interrupts();
|
|
}
|
|
_control_inputs[port].line_two = value;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
Runs for a specified number of half cycles.
|
|
|
|
Although the original chip accepts only a phase-2 input, timer reloads are specified as occuring
|
|
1.5 cycles after the timer hits zero. It is therefore necessary to emulate at half-cycle precision.
|
|
|
|
The first emulated half-cycle will be the period between the trailing edge of a phase-2 input and the
|
|
next rising edge. So it should align with a full system's phase-1. The next emulated half-cycle will be
|
|
that which occurs during phase-2.
|
|
*/
|
|
inline void run_for_half_cycles(unsigned int number_of_cycles)
|
|
{
|
|
while(number_of_cycles--)
|
|
{
|
|
if(_is_phase2)
|
|
{
|
|
_registers.last_timer[0] = _registers.timer[0];
|
|
_registers.last_timer[1] = _registers.timer[1];
|
|
|
|
if(_registers.timer_needs_reload)
|
|
{
|
|
_registers.timer_needs_reload = false;
|
|
_registers.timer[0] = _registers.timer_latch[0];
|
|
}
|
|
else
|
|
_registers.timer[0] --;
|
|
|
|
_registers.timer[1] --;
|
|
}
|
|
else
|
|
{
|
|
// IRQ is raised on the half cycle after overflow
|
|
if((_registers.timer[1] == 0xffff) && !_registers.last_timer[1] && _timer_is_running[1])
|
|
{
|
|
_timer_is_running[1] = false;
|
|
_registers.interrupt_flags |= InterruptFlag::Timer2;
|
|
reevaluate_interrupts();
|
|
}
|
|
|
|
if((_registers.timer[0] == 0xffff) && !_registers.last_timer[0] && _timer_is_running[0])
|
|
{
|
|
_registers.interrupt_flags |= InterruptFlag::Timer1;
|
|
reevaluate_interrupts();
|
|
|
|
if(_registers.auxiliary_control&0x40)
|
|
_registers.timer_needs_reload = true;
|
|
else
|
|
_timer_is_running[0] = false;
|
|
}
|
|
}
|
|
|
|
_is_phase2 ^= true;
|
|
}
|
|
}
|
|
|
|
/*! @returns @c true if the IRQ line is currently active; @c false otherwise. */
|
|
inline bool get_interrupt_line()
|
|
{
|
|
uint8_t interrupt_status = _registers.interrupt_flags & _registers.interrupt_enable & 0x7f;
|
|
return !!interrupt_status;
|
|
}
|
|
|
|
MOS6522() :
|
|
_timer_is_running{false, false},
|
|
_last_posted_interrupt_status(false),
|
|
_is_phase2(false)
|
|
{}
|
|
|
|
private:
|
|
// Expected to be overridden
|
|
uint8_t get_port_input(Port port) { return 0xff; }
|
|
void set_port_output(Port port, uint8_t value, uint8_t direction_mask) {}
|
|
void set_control_line_output(Port port, Line line, bool value) {}
|
|
void set_interrupt_status(bool status) {}
|
|
|
|
// Input/output multiplexer
|
|
uint8_t get_port_input(Port port, uint8_t output_mask, uint8_t output)
|
|
{
|
|
uint8_t input = static_cast<T *>(this)->get_port_input(port);
|
|
return (input & ~output_mask) | (output & output_mask);
|
|
}
|
|
|
|
// Phase toggle
|
|
bool _is_phase2;
|
|
|
|
// Delegate and communications
|
|
bool _last_posted_interrupt_status;
|
|
inline void reevaluate_interrupts()
|
|
{
|
|
bool new_interrupt_status = get_interrupt_line();
|
|
if(new_interrupt_status != _last_posted_interrupt_status)
|
|
{
|
|
_last_posted_interrupt_status = new_interrupt_status;
|
|
static_cast<T *>(this)->set_interrupt_status(new_interrupt_status);
|
|
}
|
|
}
|
|
|
|
// The registers
|
|
struct Registers {
|
|
uint8_t output[2], input[2], data_direction[2];
|
|
uint16_t timer[2], timer_latch[2], last_timer[2];
|
|
uint8_t shift;
|
|
uint8_t auxiliary_control, peripheral_control;
|
|
uint8_t interrupt_flags, interrupt_enable;
|
|
bool timer_needs_reload;
|
|
|
|
// "A low reset (RES) input clears all R6522 internal registers to logic 0"
|
|
Registers() :
|
|
output{0, 0}, input{0, 0}, data_direction{0, 0},
|
|
auxiliary_control(0), peripheral_control(0),
|
|
interrupt_flags(0), interrupt_enable(0),
|
|
last_timer{0, 0}, timer_needs_reload(false) {}
|
|
} _registers;
|
|
|
|
// control state
|
|
struct {
|
|
bool line_one, line_two;
|
|
} _control_inputs[2];
|
|
|
|
// Internal state other than the registers
|
|
bool _timer_is_running[2];
|
|
};
|
|
|
|
/*!
|
|
Provided for optional composition with @c MOS6522, @c MOS6522IRQDelegate provides for a delegate
|
|
that will receive IRQ line change notifications.
|
|
*/
|
|
class MOS6522IRQDelegate {
|
|
public:
|
|
class Delegate {
|
|
public:
|
|
virtual void mos6522_did_change_interrupt_status(void *mos6522) = 0;
|
|
};
|
|
|
|
void set_interrupt_delegate(Delegate *delegate)
|
|
{
|
|
_delegate = delegate;
|
|
}
|
|
|
|
void set_interrupt_status(bool new_status)
|
|
{
|
|
if(_delegate) _delegate->mos6522_did_change_interrupt_status(this);
|
|
}
|
|
|
|
private:
|
|
Delegate *_delegate;
|
|
};
|
|
|
|
}
|
|
|
|
#endif /* _522_hpp */
|