1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-05 06:05:27 +00:00
CLK/Machines/MSX/MSX.cpp
2023-05-15 10:17:04 -04:00

1051 lines
32 KiB
C++

//
// MSX.cpp
// Clock Signal
//
// Created by Thomas Harte on 24/11/2017.
// Copyright 2017 Thomas Harte. All rights reserved.
//
#include "MSX.hpp"
#include <algorithm>
#include "DiskROM.hpp"
#include "Keyboard.hpp"
#include "MemorySlotHandler.hpp"
#include "../../Analyser/Static/MSX/Cartridge.hpp"
#include "Cartridges/ASCII8kb.hpp"
#include "Cartridges/ASCII16kb.hpp"
#include "Cartridges/Konami.hpp"
#include "Cartridges/KonamiWithSCC.hpp"
#include "../../Processors/Z80/Z80.hpp"
#include "../../Components/1770/1770.hpp"
#include "../../Components/8255/i8255.hpp"
#include "../../Components/9918/9918.hpp"
#include "../../Components/AudioToggle/AudioToggle.hpp"
#include "../../Components/AY38910/AY38910.hpp"
#include "../../Components/KonamiSCC/KonamiSCC.hpp"
#include "../../Components/OPx/OPLL.hpp"
#include "../../Components/RP5C01/RP5C01.hpp"
#include "../../Storage/Tape/Parsers/MSX.hpp"
#include "../../Storage/Tape/Tape.hpp"
#include "../../Activity/Source.hpp"
#include "../MachineTypes.hpp"
#include "../../Configurable/Configurable.hpp"
#include "../../Outputs/Log.hpp"
#include "../../Outputs/Speaker/Implementation/CompoundSource.hpp"
#include "../../Outputs/Speaker/Implementation/LowpassSpeaker.hpp"
#include "../../Outputs/Speaker/Implementation/SampleSource.hpp"
#include "../../Configurable/StandardOptions.hpp"
#include "../../ClockReceiver/ForceInline.hpp"
#include "../../ClockReceiver/JustInTime.hpp"
#include "../../Analyser/Static/MSX/Target.hpp"
namespace MSX {
class AYPortHandler: public GI::AY38910::PortHandler {
public:
AYPortHandler(Storage::Tape::BinaryTapePlayer &tape_player) : tape_player_(tape_player) {
joysticks_.emplace_back(new Joystick);
joysticks_.emplace_back(new Joystick);
}
void set_port_output(bool port_b, uint8_t value) {
if(port_b) {
// Bits 0-3: touchpad handshaking (?)
// Bit 4-5: monostable timer pulses
// Bit 6: joystick select
selected_joystick_ = (value >> 6) & 1;
// Bit 7: code LED, if any
}
}
uint8_t get_port_input(bool port_b) {
if(!port_b) {
// Bits 0-5: Joystick (up, down, left, right, A, B)
// Bit 6: keyboard switch (not universal)
// Bit 7: tape input
return
(static_cast<Joystick *>(joysticks_[selected_joystick_].get())->get_state() & 0x3f) |
0x40 |
(tape_player_.get_input() ? 0x00 : 0x80);
}
return 0xff;
}
const std::vector<std::unique_ptr<Inputs::Joystick>> &get_joysticks() {
return joysticks_;
}
private:
Storage::Tape::BinaryTapePlayer &tape_player_;
std::vector<std::unique_ptr<Inputs::Joystick>> joysticks_;
size_t selected_joystick_ = 0;
class Joystick: public Inputs::ConcreteJoystick {
public:
Joystick() :
ConcreteJoystick({
Input(Input::Up),
Input(Input::Down),
Input(Input::Left),
Input(Input::Right),
Input(Input::Fire, 0),
Input(Input::Fire, 1),
}) {}
void did_set_input(const Input &input, bool is_active) final {
uint8_t mask = 0;
switch(input.type) {
default: return;
case Input::Up: mask = 0x01; break;
case Input::Down: mask = 0x02; break;
case Input::Left: mask = 0x04; break;
case Input::Right: mask = 0x08; break;
case Input::Fire:
if(input.info.control.index >= 2) return;
mask = input.info.control.index ? 0x20 : 0x10;
break;
}
if(is_active) state_ &= ~mask; else state_ |= mask;
}
uint8_t get_state() {
return state_;
}
private:
uint8_t state_ = 0xff;
};
};
template <bool has_opll> struct Speaker;
template <> struct Speaker<false> {
Speaker() :
ay(GI::AY38910::Personality::AY38910, audio_queue),
audio_toggle(audio_queue),
scc(audio_queue),
mixer(ay, audio_toggle, scc),
speaker(mixer) {}
Concurrency::AsyncTaskQueue<false> audio_queue;
GI::AY38910::AY38910<false> ay;
Audio::Toggle audio_toggle;
Konami::SCC scc;
using CompundSource = Outputs::Speaker::CompoundSource<GI::AY38910::AY38910<false>, Audio::Toggle, Konami::SCC>;
CompundSource mixer;
Outputs::Speaker::PullLowpass<CompundSource> speaker;
};
template <> struct Speaker<true> {
Speaker() :
opll(audio_queue, 1),
ay(GI::AY38910::Personality::AY38910, audio_queue),
audio_toggle(audio_queue),
scc(audio_queue),
mixer(ay, audio_toggle, scc, opll),
speaker(mixer) {}
Concurrency::AsyncTaskQueue<false> audio_queue;
Yamaha::OPL::OPLL opll;
GI::AY38910::AY38910<false> ay;
Audio::Toggle audio_toggle;
Konami::SCC scc;
using CompundSource = Outputs::Speaker::CompoundSource<GI::AY38910::AY38910<false>, Audio::Toggle, Konami::SCC, Yamaha::OPL::OPLL>;
CompundSource mixer;
Outputs::Speaker::PullLowpass<CompundSource> speaker;
};
using Target = Analyser::Static::MSX::Target;
template <Target::Model model, bool has_opll>
class ConcreteMachine:
public Machine,
public CPU::Z80::BusHandler,
public MachineTypes::TimedMachine,
public MachineTypes::AudioProducer,
public MachineTypes::ScanProducer,
public MachineTypes::MediaTarget,
public MachineTypes::MappedKeyboardMachine,
public MachineTypes::JoystickMachine,
public Configurable::Device,
public ClockingHint::Observer,
public Activity::Source,
public MSX::MemorySlotChangeHandler {
private:
// Provide 512kb of memory for an MSX 2; 64kb for an MSX 1. 'Slightly' arbitrary.
static constexpr size_t RAMSize = model == Target::Model::MSX2 ? 512 * 1024 : 64 * 1024;
static constexpr int ClockRate = 3579545;
public:
ConcreteMachine(const Target &target, const ROMMachine::ROMFetcher &rom_fetcher):
z80_(*this),
i8255_(i8255_port_handler_),
tape_player_(3579545 * 2),
i8255_port_handler_(*this, speaker_.audio_toggle, tape_player_),
ay_port_handler_(tape_player_),
memory_slots_{{*this}, {*this}, {*this}, {*this}},
clock_(ClockRate) {
set_clock_rate(ClockRate);
clear_all_keys();
speaker_.ay.set_port_handler(&ay_port_handler_);
speaker_.speaker.set_input_rate(3579545.0f / 2.0f);
tape_player_.set_clocking_hint_observer(this);
// Set the AY to 50% of available volume, the toggle to 10% and leave 40% for an SCC.
// If there is an OPLL, give it equal volume to the AY and expect some clipping.
if constexpr (has_opll) {
speaker_.mixer.set_relative_volumes({0.5f, 0.1f, 0.4f, 0.5f});
} else {
speaker_.mixer.set_relative_volumes({0.5f, 0.1f, 0.4f});
}
// Install the proper TV standard and select an ideal BIOS name.
const std::string machine_name = "MSX";
constexpr ROM::Name bios_name = model == Target::Model::MSX1 ? ROM::Name::MSXGenericBIOS : ROM::Name::MSX2GenericBIOS;
ROM::Request bios_request = ROM::Request(bios_name);
if constexpr (model == Target::Model::MSX2) {
bios_request = bios_request && ROM::Request(ROM::Name::MSX2Extension);
}
bool is_ntsc = true;
uint8_t character_generator = 1; /* 0 = Japan, 1 = USA, etc, 2 = USSR */
uint8_t date_format = 1; /* 0 = Y/M/D, 1 = M/D/Y, 2 = D/M/Y */
uint8_t keyboard = 1; /* 0 = Japan, 1 = USA, 2 = France, 3 = UK, 4 = Germany, 5 = USSR, 6 = Spain */
[[maybe_unused]] ROM::Name regional_bios_name;
switch(target.region) {
default:
case Target::Region::Japan:
if constexpr (model == Target::Model::MSX1) {
regional_bios_name = ROM::Name::MSXJapaneseBIOS;
}
vdp_->set_tv_standard(TI::TMS::TVStandard::NTSC);
is_ntsc = true;
character_generator = 0;
date_format = 0;
break;
case Target::Region::USA:
if constexpr (model == Target::Model::MSX1) {
regional_bios_name = ROM::Name::MSXAmericanBIOS;
}
vdp_->set_tv_standard(TI::TMS::TVStandard::NTSC);
is_ntsc = true;
character_generator = 1;
date_format = 1;
break;
case Target::Region::Europe:
if constexpr (model == Target::Model::MSX1) {
regional_bios_name = ROM::Name::MSXEuropeanBIOS;
}
vdp_->set_tv_standard(TI::TMS::TVStandard::PAL);
is_ntsc = false;
character_generator = 1;
date_format = 2;
break;
}
if constexpr (model == Target::Model::MSX1) {
bios_request = bios_request || ROM::Request(regional_bios_name);
}
// Fetch the necessary ROMs; try the region-specific ROM first,
// but failing that fall back on patching the main one.
ROM::Request request = bios_request;
if(target.has_disk_drive) {
request = request && ROM::Request(ROM::Name::MSXDOS);
}
if(target.has_msx_music) {
request = request && ROM::Request(ROM::Name::MSXMusic);
}
auto roms = rom_fetcher(request);
if(!request.validate(roms)) {
throw ROMMachine::Error::MissingROMs;
}
// Figure out which BIOS to use, either a specific one or the generic
// one appropriately patched.
bool has_bios = false;
if constexpr (model == Target::Model::MSX1) {
const auto regional_bios = roms.find(regional_bios_name);
if(regional_bios != roms.end()) {
regional_bios->second.resize(32768);
bios_slot().set_source(regional_bios->second);
has_bios = true;
}
}
if(!has_bios) {
std::vector<uint8_t> &bios = roms.find(bios_name)->second;
bios.resize(32768);
// Modify the generic ROM to reflect the selected region, date format, etc.
bios[0x2b] = uint8_t(
(is_ntsc ? 0x00 : 0x80) |
(date_format << 4) |
character_generator
);
bios[0x2c] = keyboard;
bios_slot().set_source(bios);
}
bios_slot().map(0, 0, 32768);
ram_slot().resize_source(RAMSize);
ram_slot().template map<MemorySlot::AccessType::ReadWrite>(0, 0, 65536);
if constexpr (model == Target::Model::MSX2) {
memory_slots_[3].supports_secondary_paging = true;
const auto extension = roms.find(ROM::Name::MSX2Extension);
extension->second.resize(32768);
extension_rom_slot().set_source(extension->second);
extension_rom_slot().map(0, 0, 32768);
}
// Add a disk cartridge if any disks were supplied.
if(target.has_disk_drive) {
disk_primary().handler = std::make_unique<DiskROM>(disk_slot());
std::vector<uint8_t> &dos = roms.find(ROM::Name::MSXDOS)->second;
dos.resize(16384);
disk_slot().set_source(dos);
disk_slot().map(0, 0x4000, 0x2000);
disk_slot().map_handler(0x6000, 0x2000);
}
// Grab the MSX-MUSIC ROM if applicable.
if(target.has_msx_music) {
std::vector<uint8_t> &msx_music = roms.find(ROM::Name::MSXMusic)->second;
msx_music.resize(65536);
msx_music_slot().set_source(msx_music);
msx_music_slot().map(0, 0, 0x10000);
}
// Insert the media.
insert_media(target.media);
// Type whatever has been requested.
if(!target.loading_command.empty()) {
type_string(target.loading_command);
}
// Establish default paging.
page_primary(0);
}
~ConcreteMachine() {
speaker_.audio_queue.flush();
}
void set_scan_target(Outputs::Display::ScanTarget *scan_target) final {
vdp_->set_scan_target(scan_target);
}
Outputs::Display::ScanStatus get_scaled_scan_status() const final {
return vdp_->get_scaled_scan_status();
}
void set_display_type(Outputs::Display::DisplayType display_type) final {
vdp_.last_valid()->set_display_type(display_type);
}
Outputs::Display::DisplayType get_display_type() const final {
return vdp_.last_valid()->get_display_type();
}
Outputs::Speaker::Speaker *get_speaker() final {
return &speaker_.speaker;
}
void run_for(const Cycles cycles) final {
z80_.run_for(cycles);
}
float get_confidence() final {
if(performed_unmapped_access_ || pc_zero_accesses_ > 1) return 0.0f;
if(cartridge_primary().handler) {
return cartridge_primary().handler->get_confidence();
}
return 0.5f;
}
std::string debug_type() final {
if(cartridge_primary().handler) {
return "MSX:" + cartridge_primary().handler->debug_type();
}
return "MSX";
}
bool insert_media(const Analyser::Static::Media &media) final {
if(!media.cartridges.empty()) {
const auto &segment = media.cartridges.front()->get_segments().front();
auto &slot = cartridge_slot();
slot.set_source(segment.data);
slot.map(0, uint16_t(segment.start_address), std::min(segment.data.size(), 65536 - segment.start_address));
auto msx_cartridge = dynamic_cast<Analyser::Static::MSX::Cartridge *>(media.cartridges.front().get());
if(msx_cartridge) {
switch(msx_cartridge->type) {
default: break;
case Analyser::Static::MSX::Cartridge::Konami:
cartridge_primary().handler = std::make_unique<Cartridge::KonamiROMSlotHandler>(static_cast<MSX::MemorySlot &>(slot));
break;
case Analyser::Static::MSX::Cartridge::KonamiWithSCC:
cartridge_primary().handler = std::make_unique<Cartridge::KonamiWithSCCROMSlotHandler>(static_cast<MSX::MemorySlot &>(slot), speaker_.scc);
break;
case Analyser::Static::MSX::Cartridge::ASCII8kb:
cartridge_primary().handler = std::make_unique<Cartridge::ASCII8kbROMSlotHandler>(static_cast<MSX::MemorySlot &>(slot));
break;
case Analyser::Static::MSX::Cartridge::ASCII16kb:
cartridge_primary().handler = std::make_unique<Cartridge::ASCII16kbROMSlotHandler>(static_cast<MSX::MemorySlot &>(slot));
break;
}
}
}
if(!media.tapes.empty()) {
tape_player_.set_tape(media.tapes.front());
}
if(!media.disks.empty()) {
DiskROM *const handler = disk_handler();
if(handler) {
size_t drive = 0;
for(auto &disk : media.disks) {
handler->set_disk(disk, drive);
drive++;
if(drive == 2) break;
}
}
}
set_use_fast_tape();
return true;
}
void type_string(const std::string &string) final {
std::transform(
string.begin(),
string.end(),
std::back_inserter(input_text_),
[](unsigned char c) -> unsigned char { return (c == '\n') ? '\r' : c; }
);
}
bool can_type(char c) const final {
// Make an effort to type the entire printable ASCII range.
return c >= 32 && c < 127;
}
// MARK: Memory paging.
void page_primary(uint8_t value) {
primary_slots_ = value;
update_paging();
}
void did_page() final {
update_paging();
}
void update_paging() {
uint8_t primary = primary_slots_;
// Update final slot; this direct pointer will be used for
// secondary slot communication.
final_slot_ = &memory_slots_[primary >> 6];
for(int c = 0; c < 8; c += 2) {
const HandledSlot &slot = memory_slots_[primary & 3];
primary >>= 2;
read_pointers_[c] = slot.read_pointer(c);
write_pointers_[c] = slot.write_pointer(c);
read_pointers_[c+1] = slot.read_pointer(c+1);
write_pointers_[c+1] = slot.write_pointer(c+1);
}
set_use_fast_tape();
}
// MARK: Z80::BusHandler
forceinline HalfCycles perform_machine_cycle(const CPU::Z80::PartialMachineCycle &cycle) {
// Per the best information I currently have, the MSX inserts an extra cycle into each opcode read,
// but otherwise runs without pause.
const HalfCycles addition((cycle.operation == CPU::Z80::PartialMachineCycle::ReadOpcode) ? 2 : 0);
const HalfCycles total_length = addition + cycle.length;
if(vdp_ += total_length) {
z80_.set_interrupt_line(vdp_->get_interrupt_line(), vdp_.last_sequence_point_overrun());
}
time_since_ay_update_ += total_length;
memory_slots_[0].cycles_since_update += total_length;
memory_slots_[1].cycles_since_update += total_length;
memory_slots_[2].cycles_since_update += total_length;
memory_slots_[3].cycles_since_update += total_length;
if constexpr (model >= Target::Model::MSX2) {
clock_.run_for(total_length);
}
if(cycle.is_terminal()) {
uint16_t address = cycle.address ? *cycle.address : 0x0000;
switch(cycle.operation) {
case CPU::Z80::PartialMachineCycle::ReadOpcode:
if(use_fast_tape_) {
if(address == 0x1a63) {
// TAPION
// Enable the tape motor.
i8255_.write(0xab, 0x8);
// Disable interrupts.
z80_.set_value_of(CPU::Z80::Register::IFF1, 0);
z80_.set_value_of(CPU::Z80::Register::IFF2, 0);
// Use the parser to find a header, and if one is found then populate
// LOWLIM and WINWID, and reset carry. Otherwise set carry.
using Parser = Storage::Tape::MSX::Parser;
std::unique_ptr<Parser::FileSpeed> new_speed = Parser::find_header(tape_player_);
if(new_speed) {
ram()[0xfca4] = new_speed->minimum_start_bit_duration;
ram()[0xfca5] = new_speed->low_high_disrimination_duration;
z80_.set_value_of(CPU::Z80::Register::Flags, 0);
} else {
z80_.set_value_of(CPU::Z80::Register::Flags, 1);
}
// RET.
*cycle.value = 0xc9;
break;
}
if(address == 0x1abc) {
// TAPIN
// Grab the current values of LOWLIM and WINWID.
using Parser = Storage::Tape::MSX::Parser;
Parser::FileSpeed tape_speed;
tape_speed.minimum_start_bit_duration = ram()[0xfca4];
tape_speed.low_high_disrimination_duration = ram()[0xfca5];
// Ask the tape parser to grab a byte.
int next_byte = Parser::get_byte(tape_speed, tape_player_);
// If a byte was found, return it with carry unset. Otherwise set carry to
// indicate error.
if(next_byte >= 0) {
z80_.set_value_of(CPU::Z80::Register::A, uint16_t(next_byte));
z80_.set_value_of(CPU::Z80::Register::Flags, 0);
} else {
z80_.set_value_of(CPU::Z80::Register::Flags, 1);
}
// RET.
*cycle.value = 0xc9;
break;
}
}
if(!address) {
pc_zero_accesses_++;
}
// TODO: below relates to confidence measurements. Reinstate, somehow.
// if(is_unpopulated_[address >> 13] == unpopulated_) {
// performed_unmapped_access_ = true;
// }
pc_address_ = address; // This is retained so as to be able to name the source of an access to cartridge handlers.
[[fallthrough]];
case CPU::Z80::PartialMachineCycle::Read:
if(address == 0xffff && final_slot_->supports_secondary_paging) {
*cycle.value = final_slot_->secondary_paging() ^ 0xff;
break;
}
if(read_pointers_[address >> 13]) {
*cycle.value = read_pointers_[address >> 13][address & 8191];
} else {
const int slot_hit = (primary_slots_ >> ((address >> 14) * 2)) & 3;
memory_slots_[slot_hit].handler->run_for(memory_slots_[slot_hit].cycles_since_update.template flush<HalfCycles>());
*cycle.value = memory_slots_[slot_hit].handler->read(address);
}
break;
case CPU::Z80::PartialMachineCycle::Write: {
if(address == 0xffff && final_slot_->supports_secondary_paging) {
final_slot_->set_secondary_paging(*cycle.value);
update_paging();
break;
}
const int slot_hit = (primary_slots_ >> ((address >> 14) * 2)) & 3;
if(memory_slots_[slot_hit].handler) {
update_audio();
memory_slots_[slot_hit].handler->run_for(memory_slots_[slot_hit].cycles_since_update.template flush<HalfCycles>());
memory_slots_[slot_hit].handler->write(
address,
*cycle.value,
read_pointers_[pc_address_ >> 13] != memory_slots_[0].read_pointer(pc_address_ >> 13));
} else {
write_pointers_[address >> 13][address & 8191] = *cycle.value;
}
} break;
case CPU::Z80::PartialMachineCycle::Input:
switch(address & 0xff) {
case 0x9a: case 0x9b:
if constexpr (vdp_model() == TI::TMS::TMS9918A) {
break;
}
[[fallthrough]];
case 0x98: case 0x99:
*cycle.value = vdp_->read(address);
z80_.set_interrupt_line(vdp_->get_interrupt_line());
break;
case 0xa2:
update_audio();
*cycle.value = GI::AY38910::Utility::read(speaker_.ay);
break;
case 0xa8: case 0xa9:
case 0xaa: case 0xab:
*cycle.value = i8255_.read(address);
break;
case 0xb5:
if constexpr (model == Target::Model::MSX1) {
break;
}
*cycle.value = clock_.read(next_clock_register_);
break;
case 0xfc: case 0xfd: case 0xfe: case 0xff:
if constexpr (model != Target::Model::MSX1) {
*cycle.value = ram_mapper_[(address & 0xff) - 0xfc];
break;
}
[[fallthrough]];
default:
// printf("Unhandled read %02x\n", address & 0xff);
*cycle.value = 0xff;
break;
}
break;
case CPU::Z80::PartialMachineCycle::Output: {
const int port = address & 0xff;
switch(port) {
case 0x9a: case 0x9b:
if constexpr (vdp_model() == TI::TMS::TMS9918A) {
break;
}
[[fallthrough]];
case 0x98: case 0x99:
vdp_->write(address, *cycle.value);
z80_.set_interrupt_line(vdp_->get_interrupt_line());
break;
case 0xa0: case 0xa1:
update_audio();
GI::AY38910::Utility::write(speaker_.ay, port == 0xa1, *cycle.value);
break;
case 0xa8: case 0xa9:
case 0xaa: case 0xab:
i8255_.write(address, *cycle.value);
break;
case 0xb4:
if constexpr (model == Target::Model::MSX1) {
break;
}
next_clock_register_ = *cycle.value;
break;
case 0xb5:
if constexpr (model == Target::Model::MSX1) {
break;
}
clock_.write(next_clock_register_, *cycle.value);
break;
case 0xfc: case 0xfd: case 0xfe: case 0xff: {
if constexpr (model == Target::Model::MSX1) {
break;
}
ram_mapper_[port - 0xfc] = *cycle.value;
// Apply to RAM.
//
// On a real MSX this may also affect other slots.
// I've not yet needed it to propagate further, so
// have not implemented any onward route.
const uint16_t region = uint16_t((port - 0xfc) << 14);
const size_t base = size_t(*cycle.value) << 14;
if(base < RAMSize) {
ram_slot().template map<MemorySlot::AccessType::ReadWrite>(base, region, 0x4000);
} else {
ram_slot().unmap(region, 0x4000);
}
update_paging();
} break;
case 0x7c: case 0x7d:
if constexpr (has_opll) {
speaker_.opll.write(address, *cycle.value);
break;
}
[[fallthrough]];
default:
printf("Unhandled write %02x of %02x\n", address & 0xff, *cycle.value);
break;
}
} break;
case CPU::Z80::PartialMachineCycle::Interrupt:
*cycle.value = 0xff;
// Take this as a convenient moment to jump into the keyboard buffer, if desired.
if(!input_text_.empty()) {
// The following are KEYBUF per the Red Book; its address and its definition as DEFS 40.
const int buffer_start = 0xfbf0;
const int buffer_size = 40;
// Also from the Red Book: GETPNT is at F3FAH and PUTPNT is at F3F8H.
int read_address = ram()[0xf3fa] | (ram()[0xf3fb] << 8);
int write_address = ram()[0xf3f8] | (ram()[0xf3f9] << 8);
// Write until either the string is exhausted or the write_pointer is immediately
// behind the read pointer; temporarily map write_address and read_address into
// buffer-relative values.
std::size_t characters_written = 0;
write_address -= buffer_start;
read_address -= buffer_start;
while(characters_written < input_text_.size()) {
const int next_write_address = (write_address + 1) % buffer_size;
if(next_write_address == read_address) break;
ram()[write_address + buffer_start] = uint8_t(input_text_[characters_written]);
++characters_written;
write_address = next_write_address;
}
input_text_.erase(input_text_.begin(), input_text_.begin() + std::string::difference_type(characters_written));
// Map the write address back into absolute terms and write it out again as PUTPNT.
write_address += buffer_start;
ram()[0xf3f8] = uint8_t(write_address);
ram()[0xf3f9] = uint8_t(write_address >> 8);
}
break;
default: break;
}
}
if(!tape_player_is_sleeping_)
tape_player_.run_for(int(cycle.length.as_integral()));
return addition;
}
void flush_output(int outputs) final {
if(outputs & Output::Video) {
vdp_.flush();
}
if(outputs & Output::Audio) {
update_audio();
speaker_.audio_queue.perform();
}
}
void set_keyboard_line(int line) {
selected_key_line_ = line;
}
uint8_t read_keyboard() {
return key_states_[selected_key_line_];
}
void clear_all_keys() final {
std::memset(key_states_, 0xff, sizeof(key_states_));
}
void set_key_state(uint16_t key, bool is_pressed) final {
const int mask = 1 << (key & 7);
const int line = key >> 4;
if(is_pressed) key_states_[line] &= ~mask; else key_states_[line] |= mask;
}
KeyboardMapper *get_keyboard_mapper() final {
return &keyboard_mapper_;
}
// MARK: - Configuration options.
std::unique_ptr<Reflection::Struct> get_options() final {
auto options = std::make_unique<Options>(Configurable::OptionsType::UserFriendly);
options->output = get_video_signal_configurable();
options->quickload = allow_fast_tape_;
return options;
}
void set_options(const std::unique_ptr<Reflection::Struct> &str) final {
const auto options = dynamic_cast<Options *>(str.get());
set_video_signal_configurable(options->output);
allow_fast_tape_ = options->quickload;
set_use_fast_tape();
}
// MARK: - Sleeper
void set_component_prefers_clocking(ClockingHint::Source *, ClockingHint::Preference) final {
tape_player_is_sleeping_ = tape_player_.preferred_clocking() == ClockingHint::Preference::None;
set_use_fast_tape();
}
// MARK: - Activity::Source
void set_activity_observer(Activity::Observer *observer) final {
DiskROM *const handler = disk_handler();
if(handler) {
handler->set_activity_observer(observer);
}
i8255_port_handler_.set_activity_observer(observer);
}
// MARK: - Joysticks
const std::vector<std::unique_ptr<Inputs::Joystick>> &get_joysticks() final {
return ay_port_handler_.get_joysticks();
}
private:
void update_audio() {
speaker_.speaker.run_for(speaker_.audio_queue, time_since_ay_update_.divide_cycles(Cycles(2)));
}
class i8255PortHandler: public Intel::i8255::PortHandler {
public:
i8255PortHandler(ConcreteMachine &machine, Audio::Toggle &audio_toggle, Storage::Tape::BinaryTapePlayer &tape_player) :
machine_(machine), audio_toggle_(audio_toggle), tape_player_(tape_player) {}
void set_value(int port, uint8_t value) {
switch(port) {
case 0: machine_.page_primary(value); break;
case 2: {
// TODO:
// b6 caps lock LED
// b5 audio output
// b4: cassette motor relay
tape_player_.set_motor_control(!(value & 0x10));
if(activity_observer_) activity_observer_->set_led_status("Tape motor", !(value & 0x10));
// b7: keyboard click
bool new_audio_level = !!(value & 0x80);
if(audio_toggle_.get_output() != new_audio_level) {
machine_.update_audio();
audio_toggle_.set_output(new_audio_level);
}
// b0-b3: keyboard line
machine_.set_keyboard_line(value & 0xf);
} break;
default: LOG("Unrecognised: MSX set 8255 output port " << port << " to value " << PADHEX(2) << value); break;
}
}
uint8_t get_value(int port) {
if(port == 1) {
return machine_.read_keyboard();
} else LOG("MSX attempted to read from 8255 port " << port);
return 0xff;
}
void set_activity_observer(Activity::Observer *observer) {
activity_observer_ = observer;
if(activity_observer_) {
activity_observer_->register_led("Tape motor");
activity_observer_->set_led_status("Tape motor", tape_player_.get_motor_control());
}
}
private:
ConcreteMachine &machine_;
Audio::Toggle &audio_toggle_;
Storage::Tape::BinaryTapePlayer &tape_player_;
Activity::Observer *activity_observer_ = nullptr;
};
static constexpr TI::TMS::Personality vdp_model() {
switch(model) {
case Target::Model::MSX1: return TI::TMS::Personality::TMS9918A;
case Target::Model::MSX2: return TI::TMS::Personality::V9938;
}
}
CPU::Z80::Processor<ConcreteMachine, false, false> z80_;
JustInTimeActor<TI::TMS::TMS9918<vdp_model()>> vdp_;
Intel::i8255::i8255<i8255PortHandler> i8255_;
Storage::Tape::BinaryTapePlayer tape_player_;
bool tape_player_is_sleeping_ = false;
bool allow_fast_tape_ = false;
bool use_fast_tape_ = false;
void set_use_fast_tape() {
use_fast_tape_ =
!tape_player_is_sleeping_ &&
allow_fast_tape_ &&
tape_player_.has_tape() &&
!(primary_slots_ & 3) &&
!(memory_slots_[0].secondary_paging() & 3);
}
i8255PortHandler i8255_port_handler_;
Speaker<has_opll> speaker_;
AYPortHandler ay_port_handler_;
/// The current primary and secondary slot selections; the former retains whatever was written
/// last to the 8255 PPI via port A8 and the latter — if enabled — captures 0xffff on a per-slot basis.
uint8_t primary_slots_ = 0;
// Divides the current 64kb address space into 8kb chunks.
// 8kb resolution is used by some cartride titles.
const uint8_t *read_pointers_[8];
uint8_t *write_pointers_[8];
uint8_t ram_mapper_[4]{};
/// Optionally attaches non-default logic to any of the four things selectable
/// via the primary slot register.
///
/// In principle one might want to attach a handler to a secondary slot rather
/// than a primary, but in practice that isn't required in the slot allocation used
/// by this emulator.
struct HandledSlot: public MSX::PrimarySlot {
using MSX::PrimarySlot::PrimarySlot;
/// Storage for a slot-specialised handler.
std::unique_ptr<MemorySlotHandler> handler;
/// The handler is updated just-in-time.
HalfCycles cycles_since_update;
};
HandledSlot memory_slots_[4];
HandledSlot *final_slot_ = nullptr;
HalfCycles time_since_ay_update_;
uint8_t key_states_[16];
int selected_key_line_ = 0;
std::string input_text_;
MSX::KeyboardMapper keyboard_mapper_;
int pc_zero_accesses_ = 0;
bool performed_unmapped_access_ = false;
uint16_t pc_address_;
Ricoh::RP5C01::RP5C01 clock_;
int next_clock_register_ = 0;
//
// Various helpers that dictate the slot arrangement used by this emulator.
//
// That arrangement is:
//
// Slot 0 is the BIOS, and does not support secondary paging.
// Slot 1 holds a [game, probably] cartridge, if inserted. No secondary paging.
// Slot 2 holds the disk cartridge, if inserted.
//
// On an MSX 1, Slot 3 holds 64kb of RAM.
//
// On an MSX 2:
//
// Slot 3-0 holds a larger amount of RAM (cf. RAMSize) that is subject to the
// FC-FF paging selections.
//
// Slot 3-1 holds the BIOS extension ROM.
//
// Slot 3-2 holds the MSX-MUSIC.
//
MemorySlot &bios_slot() {
return memory_slots_[0].subslot(0);
}
MemorySlot &ram_slot() {
return memory_slots_[3].subslot(0);
}
MemorySlot &extension_rom_slot() {
return memory_slots_[3].subslot(1);
}
MemorySlot &msx_music_slot() {
return memory_slots_[3].subslot(2);
}
MemorySlot &cartridge_slot() {
return cartridge_primary().subslot(0);
}
MemorySlot &disk_slot() {
return disk_primary().subslot(0);
}
HandledSlot &cartridge_primary() {
return memory_slots_[1];
}
HandledSlot &disk_primary() {
return memory_slots_[2];
}
uint8_t *ram() {
return ram_slot().source().data();
}
DiskROM *disk_handler() {
return dynamic_cast<DiskROM *>(disk_primary().handler.get());
}
};
}
using namespace MSX;
Machine *Machine::MSX(const Analyser::Static::Target *target, const ROMMachine::ROMFetcher &rom_fetcher) {
const auto msx_target = dynamic_cast<const Target *>(target);
if(msx_target->has_msx_music) {
switch(msx_target->model) {
default: return nullptr;
case Target::Model::MSX1: return new ConcreteMachine<Target::Model::MSX1, true>(*msx_target, rom_fetcher);
case Target::Model::MSX2: return new ConcreteMachine<Target::Model::MSX2, true>(*msx_target, rom_fetcher);
}
} else {
switch(msx_target->model) {
default: return nullptr;
case Target::Model::MSX1: return new ConcreteMachine<Target::Model::MSX1, false>(*msx_target, rom_fetcher);
case Target::Model::MSX2: return new ConcreteMachine<Target::Model::MSX2, false>(*msx_target, rom_fetcher);
}
}
}
Machine::~Machine() {}