1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-04 06:33:47 +00:00
CLK/Storage/TimedEventLoop.cpp

89 lines
2.3 KiB
C++

//
// TimedEventLoop.cpp
// Clock Signal
//
// Created by Thomas Harte on 29/07/2016.
// Copyright 2016 Thomas Harte. All rights reserved.
//
#include "TimedEventLoop.hpp"
#include <algorithm>
#include <cassert>
#include <cmath>
using namespace Storage;
TimedEventLoop::TimedEventLoop(Cycles::IntType input_clock_rate) :
input_clock_rate_(input_clock_rate) {}
void TimedEventLoop::run_for(const Cycles cycles) {
auto remaining_cycles = cycles.as_integral();
#ifndef NDEBUG
decltype(remaining_cycles) cycles_advanced = 0;
#endif
while(cycles_until_event_ <= remaining_cycles) {
#ifndef NDEBUG
cycles_advanced += cycles_until_event_;
#endif
advance(cycles_until_event_);
remaining_cycles -= cycles_until_event_;
cycles_until_event_ = 0;
process_next_event();
}
if(remaining_cycles) {
cycles_until_event_ -= remaining_cycles;
#ifndef NDEBUG
cycles_advanced += remaining_cycles;
#endif
advance(remaining_cycles);
}
assert(cycles_advanced == cycles.as_integral());
assert(cycles_until_event_ > 0);
}
Cycles::IntType TimedEventLoop::get_cycles_until_next_event() const {
return std::max(cycles_until_event_, Cycles::IntType(0));
}
Cycles::IntType TimedEventLoop::get_input_clock_rate() const {
return input_clock_rate_;
}
void TimedEventLoop::reset_timer() {
subcycles_until_event_ = 0.0;
cycles_until_event_ = 0;
}
void TimedEventLoop::jump_to_next_event() {
reset_timer();
process_next_event();
}
void TimedEventLoop::set_next_event_time_interval(Time interval) {
set_next_event_time_interval(interval.get<float>());
}
void TimedEventLoop::set_next_event_time_interval(float interval) {
// Calculate [interval]*[input clock rate] + [subcycles until this event]
float float_interval = interval * float(input_clock_rate_) + subcycles_until_event_;
// So this event will fire in the integral number of cycles from now, putting us at the remainder
// number of subcycles
const Cycles::IntType addition = Cycles::IntType(float_interval);
cycles_until_event_ += addition;
subcycles_until_event_ = fmodf(float_interval, 1.0);
assert(cycles_until_event_ >= 0);
assert(subcycles_until_event_ >= 0.0);
}
Time TimedEventLoop::get_time_into_next_event() {
// TODO: calculate, presumably as [length of interval] - ([cycles left] + [subcycles left])
Time zero;
return zero;
}