mirror of
https://github.com/TomHarte/CLK.git
synced 2024-11-05 06:05:27 +00:00
e787c03530
Either: (i) 263 is incorrect; or (ii) my logic as to frame height is incorrect. Given that the horizontal side of things is really well documented, I'm currently guessing (i). Research to do.
583 lines
18 KiB
C++
583 lines
18 KiB
C++
//
|
|
// Video.cpp
|
|
// Clock Signal
|
|
//
|
|
// Created by Thomas Harte on 04/10/2019.
|
|
// Copyright © 2019 Thomas Harte. All rights reserved.
|
|
//
|
|
|
|
#include "Video.hpp"
|
|
|
|
#include "../../../Outputs/Log.hpp"
|
|
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
|
|
using namespace Atari::ST;
|
|
|
|
namespace {
|
|
|
|
/*!
|
|
Defines the line counts at which mode-specific events will occur:
|
|
vertical enable being set and being reset, and the line on which
|
|
the frame will end.
|
|
*/
|
|
const struct VerticalParams {
|
|
const int set_enable;
|
|
const int reset_enable;
|
|
const int height;
|
|
} vertical_params[3] = {
|
|
{63, 263, 313}, // 47 rather than 63 on early machines.
|
|
{34, 234, 262}, // TODO: is 262 correct? If it's 263, how does that interact with opening the bottom border?
|
|
{1, 401, 500} // 72 Hz mode: who knows?
|
|
};
|
|
|
|
/// @returns The correct @c VerticalParams for output at @c frequency.
|
|
const VerticalParams &vertical_parameters(Video::FieldFrequency frequency) {
|
|
return vertical_params[int(frequency)];
|
|
}
|
|
|
|
|
|
/*!
|
|
Defines the horizontal counts at which mode-specific events will occur:
|
|
horizontal enable being set and being reset, blank being set and reset, and the
|
|
intended length of this ine.
|
|
|
|
The caller should:
|
|
|
|
* latch line length at cycle 54 (TODO: also for 72Hz mode?);
|
|
* at (line length - 50), start sync and reset enable (usually for the second time);
|
|
* at (line length - 10), disable sync.
|
|
*/
|
|
const struct HorizontalParams {
|
|
const int set_enable;
|
|
const int reset_enable;
|
|
|
|
const int set_blank;
|
|
const int reset_blank;
|
|
|
|
const int length;
|
|
} horizontal_params[3] = {
|
|
{56*2, 376*2, 450*2, 28*2, 512*2},
|
|
{52*2, 372*2, 450*2, 24*2, 508*2},
|
|
{4*2, 164*2, 184*2, 2*2, 224*2}
|
|
};
|
|
|
|
const HorizontalParams &horizontal_parameters(Video::FieldFrequency frequency) {
|
|
return horizontal_params[int(frequency)];
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
struct Checker {
|
|
Checker() {
|
|
for(int c = 0; c < 3; ++c) {
|
|
// Expected horizontal order of events: reset blank, enable display, disable display, enable blank (at least 50 before end of line), end of line
|
|
const auto horizontal = horizontal_parameters(Video::FieldFrequency(c));
|
|
assert(horizontal.reset_blank < horizontal.set_enable);
|
|
assert(horizontal.set_enable < horizontal.reset_enable);
|
|
assert(horizontal.reset_enable < horizontal.set_blank);
|
|
assert(horizontal.set_blank+50 < horizontal.length);
|
|
|
|
// Expected vertical order of events: reset blank, enable display, disable display, enable blank (at least 50 before end of line), end of line
|
|
const auto vertical = vertical_parameters(Video::FieldFrequency(c));
|
|
assert(vertical.set_enable < vertical.reset_enable);
|
|
assert(vertical.reset_enable < vertical.height);
|
|
}
|
|
}
|
|
} checker;
|
|
#endif
|
|
|
|
const int de_delay_period = 28*2;
|
|
|
|
}
|
|
|
|
Video::Video() :
|
|
crt_(1024, 1, Outputs::Display::Type::PAL50, Outputs::Display::InputDataType::Red4Green4Blue4),
|
|
shifter_(crt_, palette_) {
|
|
|
|
// Show a total of 260 lines; a little short for PAL but a compromise between that and the ST's
|
|
// usual output height of 200 lines.
|
|
crt_.set_visible_area(crt_.get_rect_for_area(33, 260, 216, 850, 4.0f / 3.0f));
|
|
}
|
|
|
|
void Video::set_ram(uint16_t *ram, size_t size) {
|
|
ram_ = ram;
|
|
}
|
|
|
|
void Video::set_scan_target(Outputs::Display::ScanTarget *scan_target) {
|
|
crt_.set_scan_target(scan_target);
|
|
}
|
|
|
|
void Video::run_for(HalfCycles duration) {
|
|
const auto horizontal_timings = horizontal_parameters(field_frequency_);
|
|
const auto vertical_timings = vertical_parameters(field_frequency_);
|
|
int integer_duration = int(duration.as_integral());
|
|
|
|
// Effect any changes in visible state out here; they're not relevant in the inner loop.
|
|
if(!pending_events_.empty()) {
|
|
auto erase_iterator = pending_events_.begin();
|
|
int duration_remaining = integer_duration;
|
|
while(erase_iterator != pending_events_.end()) {
|
|
erase_iterator->delay -= duration_remaining;
|
|
if(erase_iterator->delay <= 0) {
|
|
duration_remaining = -erase_iterator->delay;
|
|
erase_iterator->apply(public_state_);
|
|
++erase_iterator;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
if(erase_iterator != pending_events_.begin()) {
|
|
pending_events_.erase(pending_events_.begin(), erase_iterator);
|
|
}
|
|
}
|
|
|
|
while(integer_duration) {
|
|
// Seed next event to end of line.
|
|
int next_event = line_length_;
|
|
|
|
// Check the explicitly-placed events.
|
|
if(horizontal_timings.reset_blank > x_) next_event = std::min(next_event, horizontal_timings.reset_blank);
|
|
if(horizontal_timings.set_blank > x_) next_event = std::min(next_event, horizontal_timings.set_blank);
|
|
if(horizontal_timings.reset_enable > x_) next_event = std::min(next_event, horizontal_timings.reset_enable);
|
|
if(horizontal_timings.set_enable > x_) next_event = std::min(next_event, horizontal_timings.set_enable);
|
|
|
|
// Check for events that are relative to existing latched state.
|
|
if(line_length_ - 50*2 > x_) next_event = std::min(next_event, line_length_ - 50*2);
|
|
if(line_length_ - 10*2 > x_) next_event = std::min(next_event, line_length_ - 10*2);
|
|
|
|
// Also, a vertical sync event might intercede.
|
|
if(vertical_.sync_schedule != VerticalState::SyncSchedule::None && x_ < 30*2 && next_event >= 30*2) {
|
|
next_event = 30*2;
|
|
}
|
|
|
|
// Determine current output mode and number of cycles to output for.
|
|
const int run_length = std::min(integer_duration, next_event - x_);
|
|
const bool display_enable = vertical_.enable && horizontal_.enable;
|
|
|
|
if(horizontal_.sync || vertical_.sync) {
|
|
shifter_.output_sync(run_length);
|
|
} else if(horizontal_.blank || vertical_.blank) {
|
|
shifter_.output_blank(run_length);
|
|
} else if(!vertical_.enable || !horizontal_.enable) {
|
|
shifter_.output_border(run_length, output_bpp_);
|
|
} else {
|
|
// There will be pixels this line, subject to the shifter pipeline.
|
|
// Divide into 8-[half-]cycle windows; at the start of each window fetch a word,
|
|
// and during the rest of the window, shift out.
|
|
int start_column = x_ >> 3;
|
|
const int end_column = (x_ + run_length) >> 3;
|
|
|
|
// Rules obeyed below:
|
|
//
|
|
// Video fetches occur as the first act of business in a column. Each
|
|
// fetch is then followed by 8 shift clocks. Whether or not the shifter
|
|
// was reloaded by the fetch depends on the FIFO.
|
|
|
|
if(start_column == end_column) {
|
|
shifter_.output_pixels(run_length, output_bpp_);
|
|
} else {
|
|
// Continue the current column if partway across.
|
|
if(x_&7) {
|
|
// If at least one column boundary is crossed, complete this column.
|
|
shifter_.output_pixels(8 - (x_ & 7), output_bpp_);
|
|
++start_column; // This starts a new column, so latch a new word.
|
|
latch_word();
|
|
}
|
|
|
|
// Run for all columns that have their starts in this time period.
|
|
int complete_columns = end_column - start_column;
|
|
while(complete_columns--) {
|
|
shifter_.output_pixels(8, output_bpp_);
|
|
latch_word();
|
|
}
|
|
|
|
// Output the start of the next column, if necessary.
|
|
if((x_ + run_length) & 7) {
|
|
shifter_.output_pixels((x_ + run_length) & 7, output_bpp_);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check for whether line length should have been latched during this run.
|
|
if(x_ <= 54*2 && (x_ + run_length) > 54*2) line_length_ = horizontal_timings.length;
|
|
|
|
// Make a decision about vertical state on cycle 502.
|
|
if(x_ <= 502*2 && (x_ + run_length) > 502*2) {
|
|
next_y_ = y_ + 1;
|
|
next_vertical_ = vertical_;
|
|
next_vertical_.sync_schedule = VerticalState::SyncSchedule::None;
|
|
|
|
// Use vertical_parameters to get parameters for the current output frequency.
|
|
if(next_y_ == vertical_timings.set_enable) {
|
|
next_vertical_.enable = true;
|
|
} else if(next_y_ == vertical_timings.reset_enable) {
|
|
next_vertical_.enable = false;
|
|
} else if(next_y_ == vertical_timings.height) {
|
|
next_y_ = 0;
|
|
next_vertical_.sync_schedule = VerticalState::SyncSchedule::Begin;
|
|
current_address_ = base_address_ >> 1;
|
|
} else if(next_y_ == 3) {
|
|
next_vertical_.sync_schedule = VerticalState::SyncSchedule::End;
|
|
}
|
|
}
|
|
|
|
// Apply the next event.
|
|
x_ += run_length;
|
|
integer_duration -= run_length;
|
|
|
|
// Check horizontal events.
|
|
if(horizontal_timings.reset_blank == x_) horizontal_.blank = false;
|
|
else if(horizontal_timings.set_blank == x_) horizontal_.blank = true;
|
|
else if(horizontal_timings.reset_enable == x_) horizontal_.enable = false;
|
|
else if(horizontal_timings.set_enable == x_) horizontal_.enable = true;
|
|
else if(line_length_ - 50*2 == x_) horizontal_.sync = true;
|
|
else if(line_length_ - 10*2 == x_) horizontal_.sync = false;
|
|
|
|
// Check vertical events.
|
|
if(vertical_.sync_schedule != VerticalState::SyncSchedule::None && x_ == 30*2) {
|
|
vertical_.sync = vertical_.sync_schedule == VerticalState::SyncSchedule::Begin;
|
|
vertical_.enable &= !vertical_.sync;
|
|
}
|
|
|
|
// Check whether the terminating event was end-of-line; if so then advance
|
|
// the vertical bits of state.
|
|
if(x_ == line_length_) {
|
|
x_ = 0;
|
|
vertical_ = next_vertical_;
|
|
y_ = next_y_;
|
|
}
|
|
|
|
// Chuck any deferred output changes into the queue.
|
|
const bool next_display_enable = vertical_.enable && horizontal_.enable;
|
|
if(display_enable != next_display_enable) {
|
|
add_event(de_delay_period - integer_duration, next_display_enable ? Event::Type::SetDisplayEnable : Event::Type::ResetDisplayEnable);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Video::latch_word() {
|
|
data_latch_[data_latch_position_] = ram_[current_address_ & 262143];
|
|
++current_address_;
|
|
++data_latch_position_;
|
|
if(data_latch_position_ == 4) {
|
|
data_latch_position_ = 0;
|
|
shifter_.load(
|
|
(uint64_t(data_latch_[0]) << 48) |
|
|
(uint64_t(data_latch_[1]) << 32) |
|
|
(uint64_t(data_latch_[2]) << 16) |
|
|
uint64_t(data_latch_[3])
|
|
);
|
|
}
|
|
}
|
|
|
|
bool Video::hsync() {
|
|
return horizontal_.sync;
|
|
}
|
|
|
|
bool Video::vsync() {
|
|
return vertical_.sync;
|
|
}
|
|
|
|
bool Video::display_enabled() {
|
|
return public_state_.display_enable;
|
|
}
|
|
|
|
HalfCycles Video::get_next_sequence_point() {
|
|
// The next sequence point will be whenever display_enabled, vsync or hsync next changes.
|
|
|
|
// Sequence of events within a standard line:
|
|
//
|
|
// 1) blank disabled;
|
|
// 2) display enabled;
|
|
// 3) display disabled;
|
|
// 4) blank enabled;
|
|
// 5) sync enabled;
|
|
// 6) sync disabled;
|
|
// 7) end-of-line, potential vertical event.
|
|
//
|
|
// If this line has a vertical sync event on it, there will also be an event at cycle 30,
|
|
// which will always falls somewhere between (1) and (4) but might or might not be in the
|
|
// visible area.
|
|
|
|
const auto horizontal_timings = horizontal_parameters(field_frequency_);
|
|
|
|
int event_time = line_length_; // Worst case: report end of line.
|
|
|
|
// If any events are pending, give the first of those the chance to be next.
|
|
if(!pending_events_.empty()) {
|
|
event_time = std::min(event_time, x_ + event_time);
|
|
}
|
|
|
|
// If this is a vertically-enabled line, check for the display enable boundaries, + the standard delay.
|
|
if(vertical_.enable) {
|
|
if(x_ < horizontal_timings.set_enable + de_delay_period) {
|
|
event_time = std::min(event_time, horizontal_timings.set_enable + de_delay_period);
|
|
}
|
|
else if(x_ < horizontal_timings.reset_enable + de_delay_period) {
|
|
event_time = std::min(event_time, horizontal_timings.reset_enable + de_delay_period);
|
|
}
|
|
}
|
|
|
|
// If a vertical sync event is scheduled, test for that.
|
|
if(vertical_.sync_schedule != VerticalState::SyncSchedule::None && (x_ < 30*2)) {
|
|
event_time = std::min(event_time, 30*2);
|
|
}
|
|
|
|
// Test for beginning and end of horizontal sync.
|
|
if(x_ < line_length_ - 50*2) event_time = std::min(line_length_ - 50*2, event_time);
|
|
else if(x_ < line_length_ - 10*2) event_time = std::min(line_length_ - 10*2, event_time);
|
|
|
|
// It wasn't any of those, so as a temporary expedient, just supply end of line.
|
|
return HalfCycles(event_time - x_);
|
|
}
|
|
|
|
// MARK: - IO dispatch
|
|
|
|
uint16_t Video::read(int address) {
|
|
address &= 0x3f;
|
|
switch(address) {
|
|
default:
|
|
break;
|
|
case 0x00: return uint16_t(0xff00 | (base_address_ >> 16));
|
|
case 0x01: return uint16_t(0xff00 | (base_address_ >> 8));
|
|
case 0x02: return uint16_t(0xff00 | (current_address_ >> 15)); // Current address is kept in word precision internally;
|
|
case 0x03: return uint16_t(0xff00 | (current_address_ >> 7)); // the shifts here represent a conversion back to
|
|
case 0x04: return uint16_t(0xff00 | (current_address_ << 1)); // byte precision.
|
|
|
|
case 0x05: return sync_mode_ | 0xfcff;
|
|
case 0x30: return video_mode_ | 0xfcff;
|
|
|
|
case 0x20: case 0x21: case 0x22: case 0x23:
|
|
case 0x24: case 0x25: case 0x26: case 0x27:
|
|
case 0x28: case 0x29: case 0x2a: case 0x2b:
|
|
case 0x2c: case 0x2d: case 0x2e: case 0x2f: return raw_palette_[address - 0x20];
|
|
}
|
|
return 0xff;
|
|
}
|
|
|
|
void Video::write(int address, uint16_t value) {
|
|
address &= 0x3f;
|
|
switch(address) {
|
|
default: break;
|
|
|
|
// Start address.
|
|
case 0x00: base_address_ = (base_address_ & 0x00ffff) | ((value & 0xff) << 16); break;
|
|
case 0x01: base_address_ = (base_address_ & 0xff00ff) | ((value & 0xff) << 8); break;
|
|
|
|
// Sync mode and pixel mode.
|
|
case 0x05:
|
|
sync_mode_ = value;
|
|
update_output_mode();
|
|
break;
|
|
case 0x30:
|
|
video_mode_ = value;
|
|
update_output_mode();
|
|
break;
|
|
|
|
// Palette.
|
|
case 0x20: case 0x21: case 0x22: case 0x23:
|
|
case 0x24: case 0x25: case 0x26: case 0x27:
|
|
case 0x28: case 0x29: case 0x2a: case 0x2b:
|
|
case 0x2c: case 0x2d: case 0x2e: case 0x2f: {
|
|
raw_palette_[address - 0x20] = value;
|
|
uint8_t *const entry = reinterpret_cast<uint8_t *>(&palette_[address - 0x20]);
|
|
entry[0] = uint8_t((value & 0x700) >> 7);
|
|
entry[1] = uint8_t((value & 0x77) << 1);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
void Video::update_output_mode() {
|
|
// If this is black and white mode, that's that.
|
|
switch((video_mode_ >> 8) & 3) {
|
|
case 0: output_bpp_ = OutputBpp::Four; break;
|
|
case 1: output_bpp_ = OutputBpp::Two; break;
|
|
|
|
// 1bpp mode ignores the otherwise-programmed frequency.
|
|
default:
|
|
case 2:
|
|
output_bpp_ = OutputBpp::One;
|
|
field_frequency_ = FieldFrequency::SeventyTwo;
|
|
return;
|
|
}
|
|
|
|
field_frequency_ = (sync_mode_ & 0x200) ? FieldFrequency::Fifty : FieldFrequency::Sixty;
|
|
}
|
|
|
|
// MARK: - The shifter
|
|
|
|
void Video::Shifter::flush_output(OutputMode next_mode) {
|
|
switch(output_mode_) {
|
|
case OutputMode::Sync: crt_.output_sync(duration_); break;
|
|
case OutputMode::Blank: crt_.output_blank(duration_); break;
|
|
case OutputMode::Border: {
|
|
// if(!border_colour_) {
|
|
// crt_.output_blank(duration_);
|
|
// } else {
|
|
uint16_t *const colour_pointer = reinterpret_cast<uint16_t *>(crt_.begin_data(1));
|
|
if(colour_pointer) *colour_pointer = border_colour_;
|
|
crt_.output_level(duration_);
|
|
// }
|
|
} break;
|
|
case OutputMode::Pixels: {
|
|
crt_.output_data(duration_, pixel_pointer_);
|
|
pixel_buffer_ = nullptr;
|
|
pixel_pointer_ = 0;
|
|
} break;
|
|
}
|
|
duration_ = 0;
|
|
output_mode_ = next_mode;
|
|
}
|
|
|
|
|
|
void Video::Shifter::output_blank(int duration) {
|
|
if(output_mode_ != OutputMode::Blank) {
|
|
flush_output(OutputMode::Blank);
|
|
}
|
|
duration_ += duration;
|
|
}
|
|
|
|
void Video::Shifter::output_sync(int duration) {
|
|
if(output_mode_ != OutputMode::Sync) {
|
|
flush_output(OutputMode::Sync);
|
|
}
|
|
duration_ += duration;
|
|
}
|
|
|
|
void Video::Shifter::output_border(int duration, OutputBpp bpp) {
|
|
// If there's still anything in the shifter, redirect this to an output_pixels call.
|
|
if(output_shifter_) {
|
|
// This doesn't take an opinion on how much of the shifter remains populated;
|
|
// it assumes the worst case.
|
|
const int pixel_length = std::min(32, duration);
|
|
output_pixels(pixel_length, bpp);
|
|
duration -= pixel_length;
|
|
if(!duration) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Flush anything that isn't level output *in the current border colour*.
|
|
if(output_mode_ != OutputMode::Border || border_colour_ != palette_[0]) {
|
|
flush_output(OutputMode::Border);
|
|
border_colour_ = palette_[0];
|
|
}
|
|
duration_ += duration;
|
|
}
|
|
|
|
void Video::Shifter::output_pixels(int duration, OutputBpp bpp) {
|
|
// If the shifter is empty and there's no pixel buffer at present,
|
|
// redirect this to an output_level call. Otherwise, do a quick
|
|
// memset-type fill, since the special case has been detected anyway.
|
|
if(!output_shifter_) {
|
|
if(!pixel_buffer_) {
|
|
output_border(duration, bpp);
|
|
} else {
|
|
duration_ += duration;
|
|
|
|
switch(bpp_) {
|
|
case OutputBpp::One: {
|
|
const size_t pixels = size_t(duration << 1);
|
|
memset(&pixel_buffer_[pixel_pointer_], 0, pixels * sizeof(uint16_t));
|
|
pixel_pointer_ += pixels;
|
|
} break;
|
|
|
|
default:
|
|
case OutputBpp::Four:
|
|
assert(!(duration & 1));
|
|
duration >>= 1;
|
|
case OutputBpp::Two: {
|
|
while(duration--) {
|
|
pixel_buffer_[pixel_pointer_] = palette_[0];
|
|
++pixel_pointer_;
|
|
}
|
|
} break;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Flush anything that isn't pixel output in the proper bpp; also flush if there's nowhere
|
|
// left to put pixels.
|
|
if(output_mode_ != OutputMode::Pixels || bpp_ != bpp || pixel_pointer_ >= 320) {
|
|
flush_output(OutputMode::Pixels);
|
|
bpp_ = bpp;
|
|
pixel_buffer_ = reinterpret_cast<uint16_t *>(crt_.begin_data(320 + 32));
|
|
}
|
|
duration_ += duration;
|
|
|
|
switch(bpp_) {
|
|
case OutputBpp::One: {
|
|
int pixels = duration << 1;
|
|
if(pixel_buffer_) {
|
|
while(pixels--) {
|
|
pixel_buffer_[pixel_pointer_] = ((output_shifter_ >> 63) & 1) * 0xffff;
|
|
output_shifter_ <<= 1;
|
|
++pixel_pointer_;
|
|
}
|
|
} else {
|
|
pixel_pointer_ += size_t(pixels);
|
|
output_shifter_ <<= pixels;
|
|
}
|
|
} break;
|
|
case OutputBpp::Two: {
|
|
#if TARGET_RT_BIG_ENDIAN
|
|
const int upper = 0;
|
|
#else
|
|
const int upper = 1;
|
|
#endif
|
|
if(pixel_buffer_) {
|
|
while(duration--) {
|
|
pixel_buffer_[pixel_pointer_] = palette_[
|
|
((output_shifter_ >> 63) & 1) |
|
|
((output_shifter_ >> 46) & 2)
|
|
];
|
|
// This ensures that the top two words shift one to the left;
|
|
// their least significant bits are fed from the most significant bits
|
|
// of the bottom two words, respectively.
|
|
shifter_halves_[upper] = (shifter_halves_[upper] << 1) & 0xfffefffe;
|
|
shifter_halves_[upper] |= (shifter_halves_[upper^1] & 0x80008000) >> 15;
|
|
shifter_halves_[upper^1] = (shifter_halves_[upper^1] << 1) & 0xfffefffe;
|
|
|
|
++pixel_pointer_;
|
|
}
|
|
} else {
|
|
pixel_pointer_ += size_t(duration);
|
|
while(duration--) {
|
|
shifter_halves_[upper] = (shifter_halves_[upper] << 1) & 0xfffefffe;
|
|
shifter_halves_[upper] |= (shifter_halves_[upper^1] & 0x80008000) >> 15;
|
|
shifter_halves_[upper^1] = (shifter_halves_[upper^1] << 1) & 0xfffefffe;
|
|
}
|
|
}
|
|
} break;
|
|
default:
|
|
case OutputBpp::Four:
|
|
assert(!(duration & 1));
|
|
if(pixel_buffer_) {
|
|
while(duration) {
|
|
pixel_buffer_[pixel_pointer_] = palette_[
|
|
((output_shifter_ >> 63) & 1) |
|
|
((output_shifter_ >> 46) & 2) |
|
|
((output_shifter_ >> 29) & 4) |
|
|
((output_shifter_ >> 12) & 8)
|
|
];
|
|
output_shifter_ = (output_shifter_ << 1) & 0xfffefffefffefffe;
|
|
++pixel_pointer_;
|
|
duration -= 2;
|
|
}
|
|
} else {
|
|
pixel_pointer_ += size_t(duration >> 1);
|
|
while(duration) {
|
|
output_shifter_ = (output_shifter_ << 1) & 0xfffefffefffefffe;
|
|
duration -= 2;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void Video::Shifter::load(uint64_t value) {
|
|
output_shifter_ = value;
|
|
}
|