1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-12-25 18:30:21 +00:00
CLK/Storage/Disk/Drive.cpp

261 lines
7.1 KiB
C++

//
// Drive.cpp
// Clock Signal
//
// Created by Thomas Harte on 25/09/2016.
// Copyright © 2016 Thomas Harte. All rights reserved.
//
#include "Drive.hpp"
#include "Track/UnformattedTrack.hpp"
#include <algorithm>
#include <cassert>
using namespace Storage::Disk;
Drive::Drive(unsigned int input_clock_rate, int revolutions_per_minute, int number_of_heads):
Storage::TimedEventLoop(input_clock_rate),
rotational_multiplier_(60, revolutions_per_minute),
available_heads_(number_of_heads) {
}
Drive::~Drive() {
if(disk_) disk_->flush_tracks();
}
void Drive::set_disk(const std::shared_ptr<Disk> &disk) {
if(disk_) disk_->flush_tracks();
disk_ = disk;
has_disk_ = !!disk_;
invalidate_track();
update_sleep_observer();
}
bool Drive::has_disk() {
return has_disk_;
}
bool Drive::is_sleeping() {
return !motor_is_on_ || !has_disk_;
}
bool Drive::get_is_track_zero() {
return head_position_ == 0;
}
void Drive::step(int direction) {
int old_head_position = head_position_;
head_position_ = std::max(head_position_ + direction, 0);
// If the head moved, flush the old track.
if(head_position_ != old_head_position) {
track_ = nullptr;
}
}
void Drive::set_head(int head) {
head = std::min(head, available_heads_ - 1);
if(head != head_) {
head_ = head;
track_ = nullptr;
}
}
Storage::Time Drive::get_time_into_track() {
// `result` will initially be amount of time since the index hole was seen as a
// proportion of a second; convert it into proportion of a rotation, simplify and return.
Time result(cycles_since_index_hole_, static_cast<int>(get_input_clock_rate()));
result /= rotational_multiplier_;
result.simplify();
assert(result <= Time(1));
return result;
}
bool Drive::get_is_read_only() {
if(disk_) return disk_->get_is_read_only();
return true;
}
bool Drive::get_is_ready() {
return true;
return ready_index_count_ == 2;
}
void Drive::set_motor_on(bool motor_is_on) {
motor_is_on_ = motor_is_on;
if(!motor_is_on) {
ready_index_count_ = 0;
if(disk_) disk_->flush_tracks();
}
update_sleep_observer();
}
bool Drive::get_motor_on() {
return motor_is_on_;
}
void Drive::set_event_delegate(Storage::Disk::Drive::EventDelegate *delegate) {
event_delegate_ = delegate;
}
void Drive::advance(const Cycles cycles) {
cycles_since_index_hole_ += static_cast<unsigned int>(cycles.as_int());
if(event_delegate_) event_delegate_->advance(cycles);
}
void Drive::run_for(const Cycles cycles) {
if(has_disk_ && motor_is_on_) {
Time zero(0);
int number_of_cycles = cycles.as_int();
while(number_of_cycles) {
int cycles_until_next_event = static_cast<int>(get_cycles_until_next_event());
int cycles_to_run_for = std::min(cycles_until_next_event, number_of_cycles);
if(!is_reading_ && cycles_until_bits_written_ > zero) {
int write_cycles_target = static_cast<int>(cycles_until_bits_written_.get_unsigned_int());
if(cycles_until_bits_written_.length % cycles_until_bits_written_.clock_rate) write_cycles_target++;
cycles_to_run_for = std::min(cycles_to_run_for, write_cycles_target);
}
number_of_cycles -= cycles_to_run_for;
if(!is_reading_) {
if(cycles_until_bits_written_ > zero) {
Storage::Time cycles_to_run_for_time(cycles_to_run_for);
if(cycles_until_bits_written_ <= cycles_to_run_for_time) {
if(event_delegate_) event_delegate_->process_write_completed();
if(cycles_until_bits_written_ <= cycles_to_run_for_time)
cycles_until_bits_written_.set_zero();
else
cycles_until_bits_written_ -= cycles_to_run_for_time;
} else {
cycles_until_bits_written_ -= cycles_to_run_for_time;
}
}
}
TimedEventLoop::run_for(Cycles(cycles_to_run_for));
}
}
}
// MARK: - Track timed event loop
void Drive::get_next_event(const Time &duration_already_passed) {
// Grab a new track if not already in possession of one. This will recursively call get_next_event,
// supplying a proper duration_already_passed.
if(!track_) {
setup_track();
return;
}
if(track_) {
current_event_ = track_->get_next_event();
} else {
current_event_.length.length = 1;
current_event_.length.clock_rate = 1;
current_event_.type = Track::Event::IndexHole;
}
// divide interval, which is in terms of a single rotation of the disk, by rotation speed to
// convert it into revolutions per second; this is achieved by multiplying by rotational_multiplier_
assert(current_event_.length <= Time(1) && current_event_.length >= Time(0));
Time interval = (current_event_.length - duration_already_passed) * rotational_multiplier_;
set_next_event_time_interval(interval);
}
void Drive::process_next_event() {
// TODO: ready test here.
if(current_event_.type == Track::Event::IndexHole) {
assert(get_time_into_track() == Time(1) || get_time_into_track() == Time(0));
if(ready_index_count_ < 2) ready_index_count_++;
cycles_since_index_hole_ = 0;
}
if(
event_delegate_ &&
(current_event_.type == Track::Event::IndexHole || is_reading_)
){
event_delegate_->process_event(current_event_);
}
get_next_event(Time(0));
}
// MARK: - Track management
std::shared_ptr<Track> Drive::get_track() {
if(disk_) return disk_->get_track_at_position(Track::Address(head_, head_position_));
return nullptr;
}
void Drive::set_track(const std::shared_ptr<Track> &track) {
if(disk_) disk_->set_track_at_position(Track::Address(head_, head_position_), track);
}
void Drive::setup_track() {
track_ = get_track();
if(!track_) {
track_.reset(new UnformattedTrack);
}
Time offset;
Time track_time_now = get_time_into_track();
assert(track_time_now >= Time(0) && current_event_.length <= Time(1));
Time time_found = track_->seek_to(track_time_now);
assert(time_found >= Time(0) && time_found < Time(1) && time_found <= track_time_now);
offset = track_time_now - time_found;
get_next_event(offset);
}
void Drive::invalidate_track() {
track_ = nullptr;
if(patched_track_) {
set_track(patched_track_);
patched_track_ = nullptr;
}
}
// MARK: - Writing
void Drive::begin_writing(Time bit_length, bool clamp_to_index_hole) {
is_reading_ = false;
clamp_writing_to_index_hole_ = clamp_to_index_hole;
cycles_per_bit_ = Storage::Time(get_input_clock_rate()) * bit_length;
cycles_per_bit_.simplify();
write_segment_.length_of_a_bit = bit_length / rotational_multiplier_;
write_segment_.data.clear();
write_segment_.number_of_bits = 0;
write_start_time_ = get_time_into_track();
}
void Drive::write_bit(bool value) {
bool needs_new_byte = !(write_segment_.number_of_bits&7);
if(needs_new_byte) write_segment_.data.push_back(0);
if(value) write_segment_.data[write_segment_.number_of_bits >> 3] |= 0x80 >> (write_segment_.number_of_bits & 7);
write_segment_.number_of_bits++;
cycles_until_bits_written_ += cycles_per_bit_;
}
void Drive::end_writing() {
if(!is_reading_) {
is_reading_ = true;
if(!patched_track_) {
// Avoid creating a new patched track if this one is already patched
patched_track_ = std::dynamic_pointer_cast<PCMPatchedTrack>(track_);
if(!patched_track_) {
patched_track_.reset(new PCMPatchedTrack(track_));
}
}
patched_track_->add_segment(write_start_time_, write_segment_, clamp_writing_to_index_hole_);
cycles_since_index_hole_ %= get_input_clock_rate();
invalidate_track();
}
}