1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-07-28 09:29:07 +00:00
CLK/Machines/Electron/Electron.cpp

931 lines
28 KiB
C++

//
// Electron.cpp
// Clock Signal
//
// Created by Thomas Harte on 03/01/2016.
// Copyright © 2016 Thomas Harte. All rights reserved.
//
#include "Electron.hpp"
#include "TapeUEF.hpp"
#include <algorithm>
#include <cassert>
using namespace Electron;
namespace {
static const unsigned int cycles_per_line = 128;
static const unsigned int lines_per_frame = 625;
static const unsigned int cycles_per_frame = lines_per_frame * cycles_per_line;
static const unsigned int crt_cycles_multiplier = 8;
static const unsigned int crt_cycles_per_line = crt_cycles_multiplier * cycles_per_line;
static const unsigned int field_divider_line = 312; // i.e. the line, simultaneous with which, the first field's sync ends. So if
// the first line with pixels in field 1 is the 20th in the frame, the first line
// with pixels in field 2 will be 20+field_divider_line
static const unsigned int first_graphics_line = 31;
static const unsigned int first_graphics_cycle = 33;
static const unsigned int display_end_interrupt_line = 256;
static const unsigned int real_time_clock_interrupt_1 = 16704;
static const unsigned int real_time_clock_interrupt_2 = 56704;
}
#define graphics_line(v) ((((v) >> 7) - first_graphics_line + field_divider_line) % field_divider_line)
#define graphics_column(v) ((((v) & 127) - first_graphics_cycle + 128) & 127)
Machine::Machine() :
interrupt_control_(0),
interrupt_status_(Interrupt::PowerOnReset | Interrupt::TransmitDataEmpty | 0x80),
frame_cycles_(0),
display_output_position_(0),
audio_output_position_(0),
current_pixel_line_(-1),
use_fast_tape_hack_(false),
phase_(0)
{
memset(key_states_, 0, sizeof(key_states_));
memset(palette_, 0xf, sizeof(palette_));
for(int c = 0; c < 16; c++)
memset(roms_[c], 0xff, 16384);
tape_.set_delegate(this);
set_clock_rate(2000000);
}
void Machine::setup_output(float aspect_ratio)
{
speaker_.reset(new Speaker);
crt_.reset(new Outputs::CRT::CRT(crt_cycles_per_line, 8, Outputs::CRT::DisplayType::PAL50, 1));
crt_->set_rgb_sampling_function(
"vec3 rgb_sample(usampler2D sampler, vec2 coordinate, vec2 icoordinate)"
"{"
"uint texValue = texture(sampler, coordinate).r;"
"texValue >>= 4 - (int(icoordinate.x * 8) & 4);"
"return vec3( uvec3(texValue) & uvec3(4u, 2u, 1u));"
"}");
// TODO: as implied below, I've introduced a clock's latency into the graphics pipeline somehow. Investigate.
crt_->set_visible_area(crt_->get_rect_for_area(first_graphics_line - 3, 256, (first_graphics_cycle+1) * crt_cycles_multiplier, 80 * crt_cycles_multiplier, 4.0f / 3.0f));
// The maximum output frequency is 62500Hz and all other permitted output frequencies are integral divisions of that;
// however setting the speaker on or off can happen on any 2Mhz cycle, and probably (?) takes effect immediately. So
// run the speaker at a 2000000Hz input rate, at least for the time being.
speaker_->set_input_rate(2000000 / Speaker::clock_rate_divider);
}
void Machine::close_output()
{
crt_ = nullptr;
}
unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uint16_t address, uint8_t *value)
{
unsigned int cycles = 1;
if(address < 0x8000)
{
if(isReadOperation(operation))
{
*value = ram_[address];
}
else
{
if(
(
((frame_cycles_ >= first_graphics_line * cycles_per_line) && (frame_cycles_ < (first_graphics_line + 256) * cycles_per_line)) ||
((frame_cycles_ >= (first_graphics_line + field_divider_line) * cycles_per_line) && (frame_cycles_ < (first_graphics_line + 256 + field_divider_line) * cycles_per_line))
)
)
update_display();
ram_[address] = *value;
}
// for the entire frame, RAM is accessible only on odd cycles; in modes below 4
// it's also accessible only outside of the pixel regions
cycles += 1 + (frame_cycles_&1);
if(screen_mode_ < 4)
{
const int current_line = graphics_line(frame_cycles_ + (frame_cycles_&1));
const int current_column = graphics_column(frame_cycles_ + (frame_cycles_&1));
if(current_line < 256 && current_column < 80 && !is_blank_line_)
cycles += (unsigned int)(80 - current_column);
}
}
else
{
// if((address >> 8) == 0xfc)
// {
// printf("d");
// }
switch(address & 0xff0f)
{
case 0xfe00:
if(isReadOperation(operation))
{
*value = interrupt_status_;
interrupt_status_ &= ~PowerOnReset;
}
else
{
interrupt_control_ = (*value) & ~1;
evaluate_interrupts();
}
break;
case 0xfe02:
if(!isReadOperation(operation))
{
start_screen_address_ = (start_screen_address_ & 0xfe00) | (uint16_t)(((*value) & 0xe0) << 1);
if(!start_screen_address_) start_screen_address_ |= 0x8000;
}
break;
case 0xfe03:
if(!isReadOperation(operation))
{
start_screen_address_ = (start_screen_address_ & 0x01ff) | (uint16_t)(((*value) & 0x3f) << 9);
if(!start_screen_address_) start_screen_address_ |= 0x8000;
}
break;
case 0xfe04:
if(isReadOperation(operation))
{
*value = tape_.get_data_register();
tape_.clear_interrupts(Interrupt::ReceiveDataFull);
}
else
{
tape_.set_data_register(*value);
tape_.clear_interrupts(Interrupt::TransmitDataEmpty);
}
break;
case 0xfe05:
if(!isReadOperation(operation))
{
const uint8_t interruptDisable = (*value)&0xf0;
if( interruptDisable )
{
if( interruptDisable&0x10 ) interrupt_status_ &= ~Interrupt::DisplayEnd;
if( interruptDisable&0x20 ) interrupt_status_ &= ~Interrupt::RealTimeClock;
if( interruptDisable&0x40 ) interrupt_status_ &= ~Interrupt::HighToneDetect;
evaluate_interrupts();
// TODO: NMI
}
// latch the paged ROM in case external hardware is being emulated
active_rom_ = (Electron::ROMSlot)(*value & 0xf);
// apply the ULA's test
if(*value & 0x08)
{
if(*value & 0x04)
{
keyboard_is_active_ = false;
basic_is_active_ = false;
}
else
{
keyboard_is_active_ = !(*value & 0x02);
basic_is_active_ = !keyboard_is_active_;
}
}
}
break;
case 0xfe06:
if(!isReadOperation(operation))
{
update_audio();
speaker_->set_divider(*value);
tape_.set_counter(*value);
}
break;
case 0xfe07:
if(!isReadOperation(operation))
{
// update screen mode
uint8_t new_screen_mode = ((*value) >> 3)&7;
if(new_screen_mode == 7) new_screen_mode = 4;
if(new_screen_mode != screen_mode_)
{
update_display();
screen_mode_ = new_screen_mode;
switch(screen_mode_)
{
case 0: case 1: case 2: screen_mode_base_address_ = 0x3000; break;
case 3: screen_mode_base_address_ = 0x4000; break;
case 4: case 5: screen_mode_base_address_ = 0x5800; break;
case 6: screen_mode_base_address_ = 0x6000; break;
}
}
// update speaker mode
bool new_speaker_is_enabled = (*value & 6) == 2;
if(new_speaker_is_enabled != speaker_is_enabled_)
{
update_audio();
speaker_->set_is_enabled(new_speaker_is_enabled);
speaker_is_enabled_ = new_speaker_is_enabled;
}
tape_.set_is_enabled((*value & 6) != 6);
tape_.set_is_in_input_mode((*value & 6) == 0);
tape_.set_is_running(((*value)&0x40) ? true : false);
// TODO: caps lock LED
}
break;
case 0xfe08: case 0xfe09: case 0xfe0a: case 0xfe0b: case 0xfe0c: case 0xfe0d: case 0xfe0e: case 0xfe0f:
{
if(!isReadOperation(operation))
{
update_display();
static const int registers[4][4] = {
{10, 8, 2, 0},
{14, 12, 6, 4},
{15, 13, 7, 5},
{11, 9, 3, 1},
};
const int index = (address >> 1)&3;
const uint8_t colour = ~(*value);
if(address&1)
{
palette_[registers[index][0]] = (palette_[registers[index][0]]&3) | ((colour >> 1)&4);
palette_[registers[index][1]] = (palette_[registers[index][1]]&3) | ((colour >> 0)&4);
palette_[registers[index][2]] = (palette_[registers[index][2]]&3) | ((colour << 1)&4);
palette_[registers[index][3]] = (palette_[registers[index][3]]&3) | ((colour << 2)&4);
palette_[registers[index][2]] = (palette_[registers[index][2]]&5) | ((colour >> 4)&2);
palette_[registers[index][3]] = (palette_[registers[index][3]]&5) | ((colour >> 3)&2);
}
else
{
palette_[registers[index][0]] = (palette_[registers[index][0]]&6) | ((colour >> 7)&1);
palette_[registers[index][1]] = (palette_[registers[index][1]]&6) | ((colour >> 6)&1);
palette_[registers[index][2]] = (palette_[registers[index][2]]&6) | ((colour >> 5)&1);
palette_[registers[index][3]] = (palette_[registers[index][3]]&6) | ((colour >> 4)&1);
palette_[registers[index][0]] = (palette_[registers[index][0]]&5) | ((colour >> 2)&2);
palette_[registers[index][1]] = (palette_[registers[index][1]]&5) | ((colour >> 1)&2);
}
// regenerate all palette tables for now
#define pack(a, b) (uint8_t)((a << 4) | (b))
for(int byte = 0; byte < 256; byte++)
{
uint8_t *target = (uint8_t *)&palette_tables_.forty1bpp[byte];
target[0] = pack(palette_[(byte&0x80) >> 4], palette_[(byte&0x40) >> 3]);
target[1] = pack(palette_[(byte&0x20) >> 2], palette_[(byte&0x10) >> 1]);
target = (uint8_t *)&palette_tables_.eighty2bpp[byte];
target[0] = pack(palette_[((byte&0x80) >> 4) | ((byte&0x08) >> 2)], palette_[((byte&0x40) >> 3) | ((byte&0x04) >> 1)]);
target[1] = pack(palette_[((byte&0x20) >> 2) | ((byte&0x02) >> 0)], palette_[((byte&0x10) >> 1) | ((byte&0x01) << 1)]);
target = (uint8_t *)&palette_tables_.eighty1bpp[byte];
target[0] = pack(palette_[(byte&0x80) >> 4], palette_[(byte&0x40) >> 3]);
target[1] = pack(palette_[(byte&0x20) >> 2], palette_[(byte&0x10) >> 1]);
target[2] = pack(palette_[(byte&0x08) >> 0], palette_[(byte&0x04) << 1]);
target[3] = pack(palette_[(byte&0x02) << 2], palette_[(byte&0x01) << 3]);
palette_tables_.forty2bpp[byte] = pack(palette_[((byte&0x80) >> 4) | ((byte&0x08) >> 2)], palette_[((byte&0x40) >> 3) | ((byte&0x04) >> 1)]);
palette_tables_.eighty4bpp[byte] = pack( palette_[((byte&0x80) >> 4) | ((byte&0x20) >> 3) | ((byte&0x08) >> 2) | ((byte&0x02) >> 1)],
palette_[((byte&0x40) >> 3) | ((byte&0x10) >> 2) | ((byte&0x04) >> 1) | ((byte&0x01) >> 0)]);
}
#undef pack
}
}
break;
case 0xfc04: case 0xfc05: case 0xfc06: case 0xfc07:
if(plus3_ && (address&0x00f0) == 0x00c0)
{
if(is_holding_shift_ && address == 0xfcc4)
{
is_holding_shift_ = false;
set_key_state(KeyShift, false);
}
if(isReadOperation(operation))
*value = plus3_->get_register(address);
else
plus3_->set_register(address, *value);
}
break;
case 0xfc00:
if(plus3_ && (address&0x00f0) == 0x00c0)
{
if(!isReadOperation(operation))
{
plus3_->set_control_register(*value);
}
else
*value = 1;
}
break;
default:
if(address >= 0xc000)
{
if(isReadOperation(operation))
{
if(
use_fast_tape_hack_ &&
tape_.has_tape() &&
(operation == CPU6502::BusOperation::ReadOpcode) &&
(
(address == 0xf4e5) || (address == 0xf4e6) || // double NOPs at 0xf4e5, 0xf6de, 0xf6fa and 0xfa51
(address == 0xf6de) || (address == 0xf6df) || // act to disable the normal branch into tape-handling
(address == 0xf6fa) || (address == 0xf6fb) || // code, forcing the OS along the serially-accessed ROM
(address == 0xfa51) || (address == 0xfa52) || // pathway.
(address == 0xf0a8) // 0xf0a8 is from where a service call would normally be
// dispatched; we can check whether it would be call 14
// (i.e. read byte) and, if so, whether the OS was about to
// issue a read byte call to a ROM despite being the tape
// FS being selected. If so then this is a get byte that
// we should service synthetically. Put the byte into Y
// and set A to zero to report that action was taken, then
// allow the PC read to return an RTS.
)
)
{
uint8_t service_call = (uint8_t)get_value_of_register(CPU6502::Register::X);
if(address == 0xf0a8)
{
if(!ram_[0x247] && service_call == 14)
{
tape_.set_delegate(nullptr);
// TODO: handle tape wrap around.
int cycles_left_while_plausibly_in_data = 50;
tape_.clear_interrupts(Interrupt::ReceiveDataFull);
while(!tape_.get_tape()->is_at_end())
{
tape_.run_for_input_pulse();
cycles_left_while_plausibly_in_data--;
if(!cycles_left_while_plausibly_in_data) fast_load_is_in_data_ = false;
if( (tape_.get_interrupt_status() & Interrupt::ReceiveDataFull) &&
(fast_load_is_in_data_ || tape_.get_data_register() == 0x2a)
) break;
}
tape_.set_delegate(this);
tape_.clear_interrupts(Interrupt::ReceiveDataFull);
interrupt_status_ |= tape_.get_interrupt_status();
fast_load_is_in_data_ = true;
set_value_of_register(CPU6502::Register::A, 0);
set_value_of_register(CPU6502::Register::Y, tape_.get_data_register());
*value = 0x60; // 0x60 is RTS
}
else
*value = os_[address & 16383];
}
else
*value = 0xea;
}
else
{
*value = os_[address & 16383];
}
}
}
else
{
if(isReadOperation(operation))
{
*value = roms_[active_rom_][address & 16383];
if(keyboard_is_active_)
{
*value &= 0xf0;
for(int address_line = 0; address_line < 14; address_line++)
{
if(!(address&(1 << address_line))) *value |= key_states_[address_line];
}
}
if(basic_is_active_)
{
*value &= roms_[ROMSlotBASIC][address & 16383];
}
} else if(rom_write_masks_[active_rom_])
{
roms_[active_rom_][address & 16383] = *value;
}
}
break;
}
}
// if(operation == CPU6502::BusOperation::ReadOpcode)
// {
// printf("%04x: %02x (%d)\n", address, *value, _fieldCycles);
// }
// const int end_of_field =
// if(frame_cycles_ < (256 + first_graphics_line) << 7))
const unsigned int pixel_line_clock = frame_cycles_;// + 128 - first_graphics_cycle + 80;
const unsigned int line_before_cycle = graphics_line(pixel_line_clock);
const unsigned int line_after_cycle = graphics_line(pixel_line_clock + cycles);
// implicit assumption here: the number of 2Mhz cycles this bus operation will take
// is never longer than a line. On the Electron, it's a safe one.
if(line_before_cycle != line_after_cycle)
{
switch(line_before_cycle)
{
// case real_time_clock_interrupt_line: signal_interrupt(Interrupt::RealTimeClock); break;
// case real_time_clock_interrupt_line+1: clear_interrupt(Interrupt::RealTimeClock); break;
case display_end_interrupt_line: signal_interrupt(Interrupt::DisplayEnd); break;
// case display_end_interrupt_line+1: clear_interrupt(Interrupt::DisplayEnd); break;
}
}
if(
(pixel_line_clock < real_time_clock_interrupt_1 && pixel_line_clock + cycles >= real_time_clock_interrupt_1) ||
(pixel_line_clock < real_time_clock_interrupt_2 && pixel_line_clock + cycles >= real_time_clock_interrupt_2))
{
signal_interrupt(Interrupt::RealTimeClock);
}
frame_cycles_ += cycles;
if(!(frame_cycles_&127)) phase_ += 64;
// deal with frame wraparound by updating the two dependent subsystems
// as though the exact end of frame had been hit, then reset those
// and allow the frame cycle counter to assume its real value
if(frame_cycles_ >= cycles_per_frame)
{
unsigned int nextFrameCycles = frame_cycles_ - cycles_per_frame;
frame_cycles_ = cycles_per_frame;
update_display();
update_audio();
display_output_position_ = 0;
audio_output_position_ = 0;
frame_cycles_ = nextFrameCycles;
}
if(!(frame_cycles_&16383))
update_audio();
tape_.run_for_cycles(cycles);
if(typer_) typer_->update((int)cycles);
if(plus3_) plus3_->run_for_cycles(4*cycles);
return cycles;
}
void Machine::synchronise()
{
update_display();
update_audio();
speaker_->flush();
}
void Machine::configure_as_target(const StaticAnalyser::Target &target)
{
if(target.tapes.size())
{
tape_.set_tape(target.tapes.front());
}
if(target.disks.size())
{
plus3_.reset(new Plus3);
if(target.acorn.has_dfs)
{
set_rom(ROMSlot0, dfs_, true);
}
if(target.acorn.has_adfs)
{
set_rom(ROMSlot4, adfs_, true);
set_rom(ROMSlot5, std::vector<uint8_t>(adfs_.begin() + 16384, adfs_.end()), true);
}
plus3_->set_disk(target.disks.front(), 0);
}
ROMSlot slot = ROMSlot12;
for(std::shared_ptr<Storage::Cartridge::Cartridge> cartridge : target.cartridges)
{
set_rom(slot, cartridge->get_segments().front().data, false);
slot = (ROMSlot)(((int)slot + 1)&15);
}
if(target.loadingCommand.length()) // TODO: and automatic loading option enabled
{
set_typer_for_string(target.loadingCommand.c_str());
}
if(target.acorn.should_hold_shift)
{
set_key_state(KeyShift, true);
is_holding_shift_ = true;
}
}
void Machine::set_rom(ROMSlot slot, std::vector<uint8_t> data, bool is_writeable)
{
uint8_t *target = nullptr;
switch(slot)
{
case ROMSlotDFS: dfs_ = data; return;
case ROMSlotADFS: adfs_ = data; return;
case ROMSlotOS: target = os_; break;
default:
target = roms_[slot];
rom_write_masks_[slot] = is_writeable;
break;
}
memcpy(target, &data[0], std::min((size_t)16384, data.size()));
}
inline void Machine::signal_interrupt(Electron::Interrupt interrupt)
{
interrupt_status_ |= interrupt;
evaluate_interrupts();
}
inline void Machine::clear_interrupt(Electron::Interrupt interrupt)
{
interrupt_status_ &= ~interrupt;
evaluate_interrupts();
}
void Machine::tape_did_change_interrupt_status(Tape *tape)
{
interrupt_status_ = (interrupt_status_ & ~(Interrupt::TransmitDataEmpty | Interrupt::ReceiveDataFull | Interrupt::HighToneDetect)) | tape_.get_interrupt_status();
evaluate_interrupts();
}
inline void Machine::evaluate_interrupts()
{
if(interrupt_status_ & interrupt_control_)
{
interrupt_status_ |= 1;
}
else
{
interrupt_status_ &= ~1;
}
set_irq_line(interrupt_status_ & 1);
}
inline void Machine::update_audio()
{
unsigned int difference = frame_cycles_ - audio_output_position_ + audio_output_position_error_;
audio_output_position_ = frame_cycles_;
speaker_->run_for_cycles(difference / Speaker::clock_rate_divider);
audio_output_position_error_ = difference % Speaker::clock_rate_divider;
}
inline void Machine::start_pixel_line()
{
current_pixel_line_ = (current_pixel_line_+1)&255;
if(!current_pixel_line_)
{
start_line_address_ = start_screen_address_;
current_character_row_ = 0;
is_blank_line_ = false;
}
else
{
bool mode_has_blank_lines = (screen_mode_ == 6) || (screen_mode_ == 3);
is_blank_line_ = (mode_has_blank_lines && ((current_character_row_ > 7 && current_character_row_ < 10) || (current_pixel_line_ > 249)));
if(!is_blank_line_)
{
start_line_address_++;
if(current_character_row_ > 7)
{
start_line_address_ += ((screen_mode_ < 4) ? 80 : 40) * 8 - 8;
current_character_row_ = 0;
}
}
}
current_screen_address_ = start_line_address_;
current_pixel_column_ = 0;
initial_output_target_ = current_output_target_ = nullptr;
}
inline void Machine::end_pixel_line()
{
if(current_output_target_) crt_->output_data((unsigned int)((current_output_target_ - initial_output_target_) * current_output_divider_), current_output_divider_);
current_character_row_++;
}
inline void Machine::output_pixels(unsigned int number_of_cycles)
{
if(!number_of_cycles) return;
if(is_blank_line_)
{
crt_->output_blank(number_of_cycles * crt_cycles_multiplier);
}
else
{
unsigned int divider = 0;
switch(screen_mode_)
{
case 0: case 3: divider = 2; break;
case 1: case 4: case 6: divider = 4; break;
case 2: case 5: divider = 8; break;
}
if(!initial_output_target_ || divider != current_output_divider_)
{
if(current_output_target_) crt_->output_data((unsigned int)((current_output_target_ - initial_output_target_) * current_output_divider_), current_output_divider_);
current_output_divider_ = divider;
initial_output_target_ = current_output_target_ = crt_->allocate_write_area(640 / current_output_divider_);
}
#define get_pixel() \
if(current_screen_address_&32768)\
{\
current_screen_address_ = (screen_mode_base_address_ + current_screen_address_)&32767;\
}\
last_pixel_byte_ = ram_[current_screen_address_];\
current_screen_address_ = current_screen_address_+8
switch(screen_mode_)
{
case 0: case 3:
if(initial_output_target_)
{
while(number_of_cycles--)
{
get_pixel();
*(uint32_t *)current_output_target_ = palette_tables_.eighty1bpp[last_pixel_byte_];
current_output_target_ += 4;
current_pixel_column_++;
}
} else current_output_target_ += 4*number_of_cycles;
break;
case 1:
if(initial_output_target_)
{
while(number_of_cycles--)
{
get_pixel();
*(uint16_t *)current_output_target_ = palette_tables_.eighty2bpp[last_pixel_byte_];
current_output_target_ += 2;
current_pixel_column_++;
}
} else current_output_target_ += 2*number_of_cycles;
break;
case 2:
if(initial_output_target_)
{
while(number_of_cycles--)
{
get_pixel();
*current_output_target_ = palette_tables_.eighty4bpp[last_pixel_byte_];
current_output_target_ += 1;
current_pixel_column_++;
}
} else current_output_target_ += number_of_cycles;
break;
case 4: case 6:
if(initial_output_target_)
{
if(current_pixel_column_&1)
{
last_pixel_byte_ <<= 4;
*(uint16_t *)current_output_target_ = palette_tables_.forty1bpp[last_pixel_byte_];
current_output_target_ += 2;
number_of_cycles--;
current_pixel_column_++;
}
while(number_of_cycles > 1)
{
get_pixel();
*(uint16_t *)current_output_target_ = palette_tables_.forty1bpp[last_pixel_byte_];
current_output_target_ += 2;
last_pixel_byte_ <<= 4;
*(uint16_t *)current_output_target_ = palette_tables_.forty1bpp[last_pixel_byte_];
current_output_target_ += 2;
number_of_cycles -= 2;
current_pixel_column_+=2;
}
if(number_of_cycles)
{
get_pixel();
*(uint16_t *)current_output_target_ = palette_tables_.forty1bpp[last_pixel_byte_];
current_output_target_ += 2;
current_pixel_column_++;
}
} else current_output_target_ += 2 * number_of_cycles;
break;
case 5:
if(initial_output_target_)
{
if(current_pixel_column_&1)
{
last_pixel_byte_ <<= 2;
*current_output_target_ = palette_tables_.forty2bpp[last_pixel_byte_];
current_output_target_ += 1;
number_of_cycles--;
current_pixel_column_++;
}
while(number_of_cycles > 1)
{
get_pixel();
*current_output_target_ = palette_tables_.forty2bpp[last_pixel_byte_];
current_output_target_ += 1;
last_pixel_byte_ <<= 2;
*current_output_target_ = palette_tables_.forty2bpp[last_pixel_byte_];
current_output_target_ += 1;
number_of_cycles -= 2;
current_pixel_column_+=2;
}
if(number_of_cycles)
{
get_pixel();
*current_output_target_ = palette_tables_.forty2bpp[last_pixel_byte_];
current_output_target_ += 1;
current_pixel_column_++;
}
} else current_output_target_ += number_of_cycles;
break;
}
#undef get_pixel
}
}
inline void Machine::update_display()
{
/*
Odd field: Even field:
|--S--| -S-|
|--S--| |--S--|
|-S-B-| = 3 |--S--| = 2.5
|--B--| |--B--|
|--P--| |--P--|
|--B--| = 312 |--B--| = 312.5
|-B-
*/
int final_line = frame_cycles_ >> 7;
while(display_output_position_ < frame_cycles_)
{
int line = display_output_position_ >> 7;
// Priority one: sync.
// ===================
// full sync lines are 0, 1, field_divider_line+1 and field_divider_line+2
if(line == 0 || line == 1 || line == field_divider_line+1 || line == field_divider_line+2)
{
// wait for the line to complete before signalling
if(final_line == line) return;
crt_->output_sync(128 * crt_cycles_multiplier);
display_output_position_ += 128;
continue;
}
// line 2 is a left-sync line
if(line == 2)
{
// wait for the line to complete before signalling
if(final_line == line) return;
crt_->output_sync(64 * crt_cycles_multiplier);
crt_->output_blank(64 * crt_cycles_multiplier);
display_output_position_ += 128;
continue;
}
// line field_divider_line is a right-sync line
if(line == field_divider_line)
{
// wait for the line to complete before signalling
if(final_line == line) return;
crt_->output_sync(9 * crt_cycles_multiplier);
crt_->output_blank(55 * crt_cycles_multiplier);
crt_->output_sync(64 * crt_cycles_multiplier);
display_output_position_ += 128;
continue;
}
// Priority two: blank lines.
// ==========================
//
// Given that it is not a sync line, this is a blank line if it is less than first_graphics_line, or greater
// than first_graphics_line+255 and less than first_graphics_line+field_divider_line, or greater than
// first_graphics_line+field_divider_line+255 (TODO: or this is Mode 3 or 6 and this should be blank)
if(
line < first_graphics_line ||
(line > first_graphics_line+255 && line < first_graphics_line+field_divider_line) ||
line > first_graphics_line+field_divider_line+255)
{
if(final_line == line) return;
crt_->output_sync(9 * crt_cycles_multiplier);
crt_->output_blank(119 * crt_cycles_multiplier);
display_output_position_ += 128;
continue;
}
// Final possibility: this is a pixel line.
// ========================================
// determine how far we're going from left to right
unsigned int this_cycle = display_output_position_&127;
unsigned int final_cycle = frame_cycles_&127;
if(final_line > line)
{
final_cycle = 128;
}
// output format is:
// 9 cycles: sync
// ... to 24 cycles: colour burst
// ... to first_graphics_cycle: blank
// ... for 80 cycles: pixels
// ... until end of line: blank
while(this_cycle < final_cycle)
{
if(this_cycle < 9)
{
if(final_cycle < 9) return;
crt_->output_sync(9 * crt_cycles_multiplier);
display_output_position_ += 9;
this_cycle = 9;
}
if(this_cycle < 24)
{
if(final_cycle < 24) return;
crt_->output_colour_burst((24-9) * crt_cycles_multiplier, phase_, 12);
display_output_position_ += 24-9;
this_cycle = 24;
// TODO: phase shouldn't be zero on every line
}
if(this_cycle < first_graphics_cycle)
{
if(final_cycle < first_graphics_cycle) return;
crt_->output_blank((first_graphics_cycle - 24) * crt_cycles_multiplier);
display_output_position_ += first_graphics_cycle - 24;
this_cycle = first_graphics_cycle;
start_pixel_line();
}
if(this_cycle < first_graphics_cycle + 80)
{
unsigned int length_to_output = std::min(final_cycle, (first_graphics_cycle + 80)) - this_cycle;
output_pixels(length_to_output);
display_output_position_ += length_to_output;
this_cycle += length_to_output;
}
if(this_cycle >= first_graphics_cycle + 80)
{
if(final_cycle < 128) return;
end_pixel_line();
crt_->output_blank((128 - (first_graphics_cycle + 80)) * crt_cycles_multiplier);
display_output_position_ += 128 - (first_graphics_cycle + 80);
this_cycle = 128;
}
}
}
}
void Machine::clear_all_keys()
{
memset(key_states_, 0, sizeof(key_states_));
}
void Machine::set_key_state(uint16_t key, bool isPressed)
{
if(key == KeyBreak)
{
set_reset_line(isPressed);
}
else
{
if(isPressed)
key_states_[key >> 4] |= key&0xf;
else
key_states_[key >> 4] &= ~(key&0xf);
}
}