1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-05 06:05:27 +00:00
CLK/Components/6560/6560.hpp

527 lines
17 KiB
C++

//
// 6560.hpp
// Clock Signal
//
// Created by Thomas Harte on 05/06/2016.
// Copyright 2016 Thomas Harte. All rights reserved.
//
#ifndef _560_hpp
#define _560_hpp
#include "../../ClockReceiver/ClockReceiver.hpp"
#include "../../Concurrency/AsyncTaskQueue.hpp"
#include "../../Outputs/CRT/CRT.hpp"
#include "../../Outputs/Speaker/Implementation/LowpassSpeaker.hpp"
#include "../../Outputs/Speaker/Implementation/SampleSource.hpp"
namespace MOS {
namespace MOS6560 {
// audio state
class AudioGenerator: public ::Outputs::Speaker::SampleSource {
public:
AudioGenerator(Concurrency::DeferringAsyncTaskQueue &audio_queue);
void set_volume(uint8_t volume);
void set_control(int channel, uint8_t value);
// For ::SampleSource.
void get_samples(std::size_t number_of_samples, int16_t *target);
void skip_samples(std::size_t number_of_samples);
void set_sample_volume_range(std::int16_t range);
static constexpr bool get_is_stereo() { return false; }
private:
Concurrency::DeferringAsyncTaskQueue &audio_queue_;
unsigned int counters_[4] = {2, 1, 0, 0}; // create a slight phase offset for the three channels
unsigned int shift_registers_[4] = {0, 0, 0, 0};
uint8_t control_registers_[4] = {0, 0, 0, 0};
int16_t volume_ = 0;
int16_t range_multiplier_ = 1;
};
struct BusHandler {
void perform_read([[maybe_unused]] uint16_t address, [[maybe_unused]] uint8_t *pixel_data, [[maybe_unused]] uint8_t *colour_data) {
*pixel_data = 0xff;
*colour_data = 0xff;
}
};
enum class OutputMode {
PAL, NTSC
};
/*!
The 6560 Video Interface Chip ('VIC') is a video and audio output chip; it therefore vends both a @c CRT and a @c Speaker.
To run the VIC for a cycle, the caller should call @c get_address, make the requested bus access
and call @c set_graphics_value with the result.
@c write and @c read provide register access.
*/
template <class BusHandler> class MOS6560 {
public:
MOS6560(BusHandler &bus_handler) :
bus_handler_(bus_handler),
crt_(65*4, 1, Outputs::Display::Type::NTSC60, Outputs::Display::InputDataType::Luminance8Phase8),
audio_generator_(audio_queue_),
speaker_(audio_generator_)
{
// default to s-video output
crt_.set_display_type(Outputs::Display::DisplayType::SVideo);
// default to NTSC
set_output_mode(OutputMode::NTSC);
}
~MOS6560() {
audio_queue_.flush();
}
void set_clock_rate(double clock_rate) {
speaker_.set_input_rate(float(clock_rate / 4.0));
}
void set_scan_target(Outputs::Display::ScanTarget *scan_target) { crt_.set_scan_target(scan_target); }
Outputs::Display::ScanStatus get_scaled_scan_status() const { return crt_.get_scaled_scan_status() / 4.0f; }
void set_display_type(Outputs::Display::DisplayType display_type) { crt_.set_display_type(display_type); }
Outputs::Display::DisplayType get_display_type() const { return crt_.get_display_type(); }
Outputs::Speaker::Speaker *get_speaker() { return &speaker_; }
void set_high_frequency_cutoff(float cutoff) {
speaker_.set_high_frequency_cutoff(cutoff);
}
/*!
Sets the output mode to either PAL or NTSC.
*/
void set_output_mode(OutputMode output_mode) {
output_mode_ = output_mode;
// Luminances are encoded trivially: on a 0-255 scale.
const uint8_t luminances[16] = {
0, 255, 64, 192,
128, 128, 64, 192,
128, 192, 128, 255,
192, 192, 128, 255
};
// Chrominances are encoded such that 0-128 is a complete revolution of phase;
// anything above 191 disables the colour subcarrier. Phase is relative to the
// colour burst, so 0 is green (NTSC) or blue/violet (PAL).
const uint8_t pal_chrominances[16] = {
255, 255, 90, 20,
96, 42, 8, 72,
84, 90, 90, 20,
96, 42, 8, 72,
};
const uint8_t ntsc_chrominances[16] = {
255, 255, 121, 57,
103, 42, 80, 16,
0, 9, 121, 57,
103, 42, 80, 16,
};
const uint8_t *chrominances;
Outputs::Display::Type display_type;
switch(output_mode) {
default:
chrominances = pal_chrominances;
display_type = Outputs::Display::Type::PAL50;
timing_.cycles_per_line = 71;
timing_.line_counter_increment_offset = 4;
timing_.final_line_increment_position = timing_.cycles_per_line - timing_.line_counter_increment_offset;
timing_.lines_per_progressive_field = 312;
timing_.supports_interlacing = false;
break;
case OutputMode::NTSC:
chrominances = ntsc_chrominances;
display_type = Outputs::Display::Type::NTSC60;
timing_.cycles_per_line = 65;
timing_.line_counter_increment_offset = 40;
timing_.final_line_increment_position = 58;
timing_.lines_per_progressive_field = 261;
timing_.supports_interlacing = true;
break;
}
crt_.set_new_display_type(timing_.cycles_per_line*4, display_type);
switch(output_mode) {
case OutputMode::PAL:
crt_.set_visible_area(Outputs::Display::Rect(0.1f, 0.07f, 0.9f, 0.9f));
break;
case OutputMode::NTSC:
crt_.set_visible_area(Outputs::Display::Rect(0.05f, 0.05f, 0.9f, 0.9f));
break;
}
for(int c = 0; c < 16; c++) {
uint8_t *colour = reinterpret_cast<uint8_t *>(&colours_[c]);
colour[0] = luminances[c];
colour[1] = chrominances[c];
}
}
/*!
Runs for cycles. Derr.
*/
inline void run_for(const Cycles cycles) {
// keep track of the amount of time since the speaker was updated; lazy updates are applied
cycles_since_speaker_update_ += cycles;
auto number_of_cycles = cycles.as_integral();
while(number_of_cycles--) {
// keep an old copy of the vertical count because that test is a cycle later than the actual changes
int previous_vertical_counter = vertical_counter_;
// keep track of internal time relative to this scanline
horizontal_counter_++;
if(horizontal_counter_ == timing_.cycles_per_line) {
if(horizontal_drawing_latch_) {
current_character_row_++;
if(
(current_character_row_ == 16) ||
(current_character_row_ == 8 && !registers_.tall_characters)
) {
current_character_row_ = 0;
current_row_++;
}
pixel_line_cycle_ = -1;
columns_this_line_ = -1;
column_counter_ = -1;
}
horizontal_counter_ = 0;
if(output_mode_ == OutputMode::PAL) is_odd_line_ ^= true;
horizontal_drawing_latch_ = false;
vertical_counter_ ++;
if(vertical_counter_ == lines_this_field()) {
vertical_counter_ = 0;
if(output_mode_ == OutputMode::NTSC) is_odd_frame_ ^= true;
current_row_ = 0;
rows_this_field_ = -1;
vertical_drawing_latch_ = false;
base_video_matrix_address_counter_ = 0;
current_character_row_ = 0;
}
}
// check for vertical starting events
vertical_drawing_latch_ |= registers_.first_row_location == (previous_vertical_counter >> 1);
horizontal_drawing_latch_ |= vertical_drawing_latch_ && (horizontal_counter_ == registers_.first_column_location);
if(pixel_line_cycle_ >= 0) pixel_line_cycle_++;
switch(pixel_line_cycle_) {
case -1:
if(horizontal_drawing_latch_) {
pixel_line_cycle_ = 0;
video_matrix_address_counter_ = base_video_matrix_address_counter_;
}
break;
case 1: columns_this_line_ = registers_.number_of_columns; break;
case 2: if(rows_this_field_ < 0) rows_this_field_ = registers_.number_of_rows; break;
case 3: if(current_row_ < rows_this_field_) column_counter_ = 0; break;
}
uint16_t fetch_address = 0x1c;
if(column_counter_ >= 0 && column_counter_ < columns_this_line_*2) {
if(column_counter_&1) {
fetch_address = registers_.character_cell_start_address + (character_code_*(registers_.tall_characters ? 16 : 8)) + current_character_row_;
} else {
fetch_address = uint16_t(registers_.video_matrix_start_address + video_matrix_address_counter_);
video_matrix_address_counter_++;
if(
(current_character_row_ == 15) ||
(current_character_row_ == 7 && !registers_.tall_characters)
) {
base_video_matrix_address_counter_ = video_matrix_address_counter_;
}
}
}
fetch_address &= 0x3fff;
uint8_t pixel_data;
uint8_t colour_data;
bus_handler_.perform_read(fetch_address, &pixel_data, &colour_data);
// TODO: there should be a further two-cycle delay on pixels being output; the reverse bit should
// divide the byte it is set for 3:1 and then continue as usual.
// determine output state; colour burst and sync timing are currently a guess
if(horizontal_counter_ > timing_.cycles_per_line-4) this_state_ = State::ColourBurst;
else if(horizontal_counter_ > timing_.cycles_per_line-7) this_state_ = State::Sync;
else {
this_state_ = (column_counter_ >= 0 && column_counter_ < columns_this_line_*2) ? State::Pixels : State::Border;
}
// apply vertical sync
if(
(vertical_counter_ < 3 && is_odd_frame()) ||
(registers_.interlaced &&
(
(vertical_counter_ == 0 && horizontal_counter_ > 32) ||
(vertical_counter_ == 1) || (vertical_counter_ == 2) ||
(vertical_counter_ == 3 && horizontal_counter_ <= 32)
)
))
this_state_ = State::Sync;
// update the CRT
if(this_state_ != output_state_) {
switch(output_state_) {
case State::Sync: crt_.output_sync(cycles_in_state_ * 4); break;
case State::ColourBurst: crt_.output_colour_burst(cycles_in_state_ * 4, (is_odd_frame_ || is_odd_line_) ? 128 : 0); break;
case State::Border: output_border(cycles_in_state_ * 4); break;
case State::Pixels: crt_.output_data(cycles_in_state_ * 4); break;
}
output_state_ = this_state_;
cycles_in_state_ = 0;
pixel_pointer = nullptr;
if(output_state_ == State::Pixels) {
pixel_pointer = reinterpret_cast<uint16_t *>(crt_.begin_data(260));
}
}
cycles_in_state_++;
if(this_state_ == State::Pixels) {
// TODO: palette changes can happen within half-characters; the below needs to be divided.
// Also: a perfect opportunity to rearrange this inner loop for no longer needing to be
// two parts with a cooperative owner?
if(column_counter_&1) {
character_value_ = pixel_data;
if(pixel_pointer) {
uint16_t cell_colour = colours_[character_colour_ & 0x7];
if(!(character_colour_&0x8)) {
uint16_t colours[2];
if(registers_.invertedCells) {
colours[0] = cell_colour;
colours[1] = registers_.backgroundColour;
} else {
colours[0] = registers_.backgroundColour;
colours[1] = cell_colour;
}
pixel_pointer[0] = colours[(character_value_ >> 7)&1];
pixel_pointer[1] = colours[(character_value_ >> 6)&1];
pixel_pointer[2] = colours[(character_value_ >> 5)&1];
pixel_pointer[3] = colours[(character_value_ >> 4)&1];
pixel_pointer[4] = colours[(character_value_ >> 3)&1];
pixel_pointer[5] = colours[(character_value_ >> 2)&1];
pixel_pointer[6] = colours[(character_value_ >> 1)&1];
pixel_pointer[7] = colours[(character_value_ >> 0)&1];
} else {
uint16_t colours[4] = {registers_.backgroundColour, registers_.borderColour, cell_colour, registers_.auxiliary_colour};
pixel_pointer[0] =
pixel_pointer[1] = colours[(character_value_ >> 6)&3];
pixel_pointer[2] =
pixel_pointer[3] = colours[(character_value_ >> 4)&3];
pixel_pointer[4] =
pixel_pointer[5] = colours[(character_value_ >> 2)&3];
pixel_pointer[6] =
pixel_pointer[7] = colours[(character_value_ >> 0)&3];
}
pixel_pointer += 8;
}
} else {
character_code_ = pixel_data;
character_colour_ = colour_data;
}
}
// Keep counting columns even if sync or the colour burst have interceded.
if(column_counter_ >= 0 && column_counter_ < columns_this_line_*2) {
column_counter_++;
}
}
}
/*!
Causes the 6560 to flush as much pending CRT and speaker communications as possible.
*/
inline void flush() {
update_audio();
audio_queue_.perform();
}
/*!
Writes to a 6560 register.
*/
void write(int address, uint8_t value) {
address &= 0xf;
registers_.direct_values[address] = value;
switch(address) {
case 0x0:
registers_.interlaced = !!(value&0x80) && timing_.supports_interlacing;
registers_.first_column_location = value & 0x7f;
break;
case 0x1:
registers_.first_row_location = value;
break;
case 0x2:
registers_.number_of_columns = value & 0x7f;
registers_.video_matrix_start_address = uint16_t((registers_.video_matrix_start_address & 0x3c00) | ((value & 0x80) << 2));
break;
case 0x3:
registers_.number_of_rows = (value >> 1)&0x3f;
registers_.tall_characters = !!(value&0x01);
break;
case 0x5:
registers_.character_cell_start_address = uint16_t((value & 0x0f) << 10);
registers_.video_matrix_start_address = uint16_t((registers_.video_matrix_start_address & 0x0200) | ((value & 0xf0) << 6));
break;
case 0xa:
case 0xb:
case 0xc:
case 0xd:
update_audio();
audio_generator_.set_control(address - 0xa, value);
break;
case 0xe:
update_audio();
registers_.auxiliary_colour = colours_[value >> 4];
audio_generator_.set_volume(value & 0xf);
break;
case 0xf: {
uint16_t new_border_colour = colours_[value & 0x07];
if(this_state_ == State::Border && new_border_colour != registers_.borderColour) {
output_border(cycles_in_state_ * 4);
cycles_in_state_ = 0;
}
registers_.invertedCells = !((value >> 3)&1);
registers_.borderColour = new_border_colour;
registers_.backgroundColour = colours_[value >> 4];
}
break;
// TODO: the lightpen, etc
default:
break;
}
}
/*
Reads from a 6560 register.
*/
uint8_t read(int address) const {
address &= 0xf;
switch(address) {
default: return registers_.direct_values[address];
case 0x03: return uint8_t(raster_value() << 7) | (registers_.direct_values[3] & 0x7f);
case 0x04: return (raster_value() >> 1) & 0xff;
}
}
private:
BusHandler &bus_handler_;
Outputs::CRT::CRT crt_;
Concurrency::DeferringAsyncTaskQueue audio_queue_;
AudioGenerator audio_generator_;
Outputs::Speaker::PullLowpass<AudioGenerator> speaker_;
Cycles cycles_since_speaker_update_;
void update_audio() {
speaker_.run_for(audio_queue_, Cycles(cycles_since_speaker_update_.divide(Cycles(4))));
}
// register state
struct {
bool interlaced = false, tall_characters = false;
uint8_t first_column_location = 0, first_row_location = 0;
uint8_t number_of_columns = 0, number_of_rows = 0;
uint16_t character_cell_start_address = 0, video_matrix_start_address = 0;
uint16_t backgroundColour = 0, borderColour = 0, auxiliary_colour = 0;
bool invertedCells = false;
uint8_t direct_values[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
} registers_;
// output state
enum State {
Sync, ColourBurst, Border, Pixels
} this_state_ = State::Sync, output_state_ = State::Sync;
int cycles_in_state_ = 0;
// counters that cover an entire field
int horizontal_counter_ = 0, vertical_counter_ = 0;
int lines_this_field() const {
// Necessary knowledge here: only the NTSC 6560 supports interlaced video.
return registers_.interlaced ? (is_odd_frame_ ? 262 : 263) : timing_.lines_per_progressive_field;
}
int raster_value() const {
const int bonus_line = (horizontal_counter_ + timing_.line_counter_increment_offset) / timing_.cycles_per_line;
const int line = vertical_counter_ + bonus_line;
const int final_line = lines_this_field();
if(line < final_line)
return line;
if(is_odd_frame()) {
return (horizontal_counter_ >= timing_.final_line_increment_position) ? 0 : final_line - 1;
} else {
return line % final_line;
}
// Cf. http://www.sleepingelephant.com/ipw-web/bulletin/bb/viewtopic.php?f=14&t=7237&start=15#p80737
}
bool is_odd_frame() const {
return is_odd_frame_ || !registers_.interlaced;
}
// latches dictating start and length of drawing
bool vertical_drawing_latch_ = false, horizontal_drawing_latch_ = false;
int rows_this_field_ = 0, columns_this_line_ = 0;
// current drawing position counter
int pixel_line_cycle_ = 0, column_counter_ = 0;
int current_row_ = 0;
uint16_t current_character_row_ = 0;
uint16_t video_matrix_address_counter_ = 0, base_video_matrix_address_counter_ = 0;
// data latched from the bus
uint8_t character_code_ = 0, character_colour_ = 0, character_value_ = 0;
bool is_odd_frame_ = false, is_odd_line_ = false;
// lookup table from 6560 colour index to appropriate PAL/NTSC value
uint16_t colours_[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
uint16_t *pixel_pointer = nullptr;
void output_border(int number_of_cycles) {
uint16_t *colour_pointer = reinterpret_cast<uint16_t *>(crt_.begin_data(1));
if(colour_pointer) *colour_pointer = registers_.borderColour;
crt_.output_level(number_of_cycles);
}
struct {
int cycles_per_line = 0;
int line_counter_increment_offset = 0;
int final_line_increment_position = 0;
int lines_per_progressive_field = 0;
bool supports_interlacing = 0;
} timing_;
OutputMode output_mode_ = OutputMode::NTSC;
};
}
}
#endif /* _560_hpp */