1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-15 05:31:30 +00:00
2021-06-29 15:44:02 -04:00

314 lines
9.0 KiB
C++

//
// Dave.cpp
// Clock Signal
//
// Created by Thomas Harte on 22/06/2021.
// Copyright © 2021 Thomas Harte. All rights reserved.
//
#include "Dave.hpp"
using namespace Enterprise::Dave;
// MARK: - Audio generator
Audio::Audio(Concurrency::DeferringAsyncTaskQueue &audio_queue) :
audio_queue_(audio_queue) {}
void Audio::write(uint16_t address, uint8_t value) {
address &= 0xf;
audio_queue_.defer([address, value, this] {
switch(address) {
case 0: case 2: case 4:
channels_[address >> 1].reload = (channels_[address >> 1].reload & 0xff00) | value;
break;
case 1: case 3: case 5:
channels_[address >> 1].reload = uint16_t((channels_[address >> 1].reload & 0x00ff) | ((value & 0xf) << 8));
channels_[address >> 1].distortion = Channel::Distortion((value >> 4)&3);
channels_[address >> 1].high_pass = value & 0x40;
channels_[address >> 1].ring_modulate = value & 0x80;
break;
case 6:
noise_.frequency = Noise::Frequency(value&3);
noise_.polynomial = Noise::Polynomial((value >> 2)&3);
noise_.swap_polynomial = value & 0x10;
noise_.low_pass = value & 0x20;
noise_.high_pass = value & 0x40;
noise_.ring_modulate = value & 0x80;
break;
case 7:
channels_[0].sync = value & 0x01;
channels_[1].sync = value & 0x02;
channels_[2].sync = value & 0x04;
use_direct_output_[0] = value & 0x08;
use_direct_output_[1] = value & 0x10;
// Interrupt bits are handled separately.
break;
case 8: case 9: case 10:
channels_[address - 8].amplitude[0] = value & 0x3f;
break;
case 12: case 13: case 14:
channels_[address - 12].amplitude[1] = value & 0x3f;
break;
case 11: noise_.amplitude[0] = value & 0x3f; break;
case 15: noise_.amplitude[1] = value & 0x3f; break;
}
});
}
void Audio::set_sample_volume_range(int16_t range) {
audio_queue_.defer([range, this] {
volume_ = range / (63*4);
});
}
void Audio::update_channel(int c) {
if(channels_[c].sync) {
channels_[c].count = channels_[c].reload;
channels_[c].output <<= 1;
return;
}
auto output = channels_[c].output & 1;
channels_[c].output <<= 1;
if(!channels_[c].count) {
channels_[c].count = channels_[c].reload;
if(channels_[c].distortion == Channel::Distortion::None)
output ^= 1;
else
output = poly_state_[int(channels_[c].distortion)];
if(channels_[c].high_pass && (channels_[(c+1)%3].output&3) == 2) {
output = 0;
}
if(channels_[c].ring_modulate) {
output = ~(output ^ channels_[(c+2)%3].output) & 1;
}
} else {
--channels_[c].count;
}
channels_[c].output |= output;
}
void Audio::get_samples(std::size_t number_of_samples, int16_t *target) {
for(size_t c = 0; c < number_of_samples; c++) {
poly_state_[int(Channel::Distortion::FourBit)] = poly4_.next();
poly_state_[int(Channel::Distortion::FiveBit)] = poly5_.next();
poly_state_[int(Channel::Distortion::SevenBit)] = poly7_.next();
if(noise_.swap_polynomial) {
poly_state_[int(Channel::Distortion::SevenBit)] = poly_state_[int(Channel::Distortion::None)];
}
// Update tone channels.
update_channel(0);
update_channel(1);
update_channel(2);
// Update noise channel.
// Step 1: decide whether there is a tick to apply.
bool noise_tick = false;
if(noise_.frequency == Noise::Frequency::DivideByFour) {
if(!noise_.count) {
noise_tick = true;
noise_.count = 3;
} else {
--noise_.count;
}
} else {
noise_tick = (channels_[int(noise_.frequency) - 1].output&3) == 2;
}
// Step 2: tick if necessary.
if(noise_tick) {
switch(noise_.polynomial) {
case Noise::Polynomial::SeventeenBit:
poly_state_[int(Channel::Distortion::None)] = uint8_t(poly17_.next());
break;
case Noise::Polynomial::FifteenBit:
poly_state_[int(Channel::Distortion::None)] = uint8_t(poly15_.next());
break;
case Noise::Polynomial::ElevenBit:
poly_state_[int(Channel::Distortion::None)] = uint8_t(poly11_.next());
break;
case Noise::Polynomial::NineBit:
poly_state_[int(Channel::Distortion::None)] = uint8_t(poly9_.next());
break;
}
noise_.output <<= 1;
noise_.output |= poly_state_[int(Channel::Distortion::None)];
// Low pass: sample channel 2 on downward transitions of the prima facie output.
if(noise_.low_pass) {
if((noise_.output & 3) == 2) {
noise_.output = (noise_.output & ~1) | (channels_[2].output & 1);
} else {
noise_.output = (noise_.output & ~1) | (noise_.output & 1);
}
}
}
// Apply noise high-pass at the rate of the tone channels.
if(noise_.high_pass && (channels_[0].output & 3) == 2) {
noise_.output &= ~1;
}
// Update noise ring modulation, if any.
if(noise_.ring_modulate) {
noise_.final_output = !((noise_.output ^ channels_[1].output) & 1);
} else {
noise_.final_output = noise_.output & 1;
}
// I'm unclear on the details of the time division multiplexing so,
// for now, just sum the outputs.
target[(c << 1) + 0] =
volume_ *
(use_direct_output_[0] ?
channels_[0].amplitude[0]
: (
channels_[0].amplitude[0] * (channels_[0].output & 1) +
channels_[1].amplitude[0] * (channels_[1].output & 1) +
channels_[2].amplitude[0] * (channels_[2].output & 1) +
noise_.amplitude[0] * noise_.final_output
));
target[(c << 1) + 1] =
volume_ *
(use_direct_output_[1] ?
channels_[0].amplitude[1]
: (
channels_[0].amplitude[1] * (channels_[0].output & 1) +
channels_[1].amplitude[1] * (channels_[1].output & 1) +
channels_[2].amplitude[1] * (channels_[2].output & 1) +
noise_.amplitude[1] * noise_.final_output
));
}
}
// MARK: - Interrupt source
uint8_t TimedInterruptSource::get_new_interrupts() {
const uint8_t result = interrupts_;
interrupts_ = 0;
return result;
}
void TimedInterruptSource::write(uint16_t address, uint8_t value) {
address &= 15;
switch(address) {
default: break;
case 0: case 2:
channels_[address >> 1].reload = (channels_[address >> 1].reload & 0xff00) | value;
break;
case 1: case 3:
channels_[address >> 1].reload = uint16_t((channels_[address >> 1].reload & 0x00ff) | ((value & 0xf) << 8));
break;
case 7: {
channels_[0].sync = value & 0x01;
channels_[1].sync = value & 0x02;
const InterruptRate rate = InterruptRate((value >> 5) & 3);
if(rate != rate_) {
rate_ = InterruptRate((value >> 5) & 3);
if(rate_ >= InterruptRate::ToneGenerator0) {
programmable_level_ = channels_[int(rate_) - int(InterruptRate::ToneGenerator0)].level;
} else {
programmable_offset_ = programmble_reload(rate_);
}
}
} break;
}
}
void TimedInterruptSource::update_channel(int c, bool is_linked, int decrement) {
if(channels_[c].sync) {
channels_[c].value = channels_[c].reload;
} else {
if(decrement <= channels_[c].value) {
channels_[c].value -= decrement;
} else {
const int num_flips = (decrement - channels_[c].value) / (channels_[c].reload + 1);
if(is_linked && num_flips + channels_[c].level >= 2) {
interrupts_ |= uint8_t(Interrupt::VariableFrequency);
}
channels_[c].level ^= (num_flips & 1);
channels_[c].value = (decrement - channels_[c].value) % (channels_[c].reload + 1);
}
}
}
void TimedInterruptSource::run_for(Cycles cycles) {
// Update the 1Hz interrupt.
one_hz_offset_ -= cycles;
if(one_hz_offset_ <= Cycles(0)) {
interrupts_ |= uint8_t(Interrupt::OneHz);
one_hz_offset_ += clock_rate;
}
// Update the two tone channels.
update_channel(0, rate_ == InterruptRate::ToneGenerator0, cycles.as<int>());
update_channel(1, rate_ == InterruptRate::ToneGenerator1, cycles.as<int>());
// Update the programmable-frequency interrupt.
if(rate_ < InterruptRate::ToneGenerator0) {
programmable_offset_ -= cycles.as<int>();
if(programmable_offset_ <= 0) {
if(programmable_level_) {
interrupts_ |= uint8_t(Interrupt::VariableFrequency);
}
programmable_level_ ^= true;
programmable_offset_ = programmble_reload(rate_);
}
}
}
Cycles TimedInterruptSource::get_next_sequence_point() const {
int result = one_hz_offset_.as<int>();
switch(rate_) {
case InterruptRate::OnekHz:
case InterruptRate::FiftyHz:
result = std::min(result, programmable_offset_);
break;
case InterruptRate::ToneGenerator0:
case InterruptRate::ToneGenerator1: {
const auto& channel = channels_[int(rate_) - int(InterruptRate::ToneGenerator0)];
const int cycles_until_interrupt = (channel.value + 1) + (channel.level ? 0 : channel.reload + 1);
result = std::min(result, cycles_until_interrupt);
} break;
}
return Cycles(result);
}
uint8_t TimedInterruptSource::get_divider_state() {
bool programmable_flag = false;
switch(rate_) {
case InterruptRate::OnekHz:
case InterruptRate::FiftyHz:
programmable_flag = programmable_level_;
break;
case InterruptRate::ToneGenerator0:
programmable_flag = channels_[0].level;
break;
case InterruptRate::ToneGenerator1:
programmable_flag = channels_[1].level;
break;
}
// one_hz_offset_ counts downwards, so when it crosses the halfway mark
// it enters the high part of its wave.
return
(one_hz_offset_ < half_clock_rate ? 0x4 : 0x0) |
(programmable_flag ? 0x1 : 0x0);
}