COMMON/common/common.asm

1090 lines
20 KiB
NASM

#include "rom.h"
#include "common.h"
; ROM code header
.BYTE _SM_FXD
.WORD CMN_CD, _END_CMN_CD - CMN_CD
; beginning of ROM code
* = CMN_CD
_CMN .( ; common function interpreter
JSR _SAV ; save registers
PLA
STA _PCL ; set program counter from return address
PLA
STA _PCH
INC _PCL ; advance the program counter
BNE _1
INC _PCH
_1 JSR _2 ; interpret and execute one common instruction
JMP _1
_2 LDY #0
LDA (_PC),Y ; get operand
INC _PCL ; advance the program counter
BNE _3
INC _PCH
_3 TAX ; save operand for later
AND #$F0
BEQ _4 ; go to BRX 0X instructions
CMP #$F0 ; check for FX functions
BEQ _5 ; go to EXT FX instructions
LSR ; get offset to XR instructions
LSR
LSR
TAY
DEY
DEY
LDA FN_XR+1,Y ; push high address
PHA
LDA FN_XR,Y ; push low address
PHA
TXA ; restore operand
AND #$F ; mask to get register
ASL ; shift to get offset to register
ASL
TAX ; back to index
RTS ; "return" to routine
_4 TXA ; BRX get operand
ASL ; shift to get offset to 0X instructions
TAY
LDA FN_0X+1,Y ; push high address
PHA
LDA FN_0X,Y ; push low address
PHA
TXA ; restore operand
RTS ; "return" to routine
_5 TXA ; EXT get operand
AND #$F ; mask to get index
ASL ; shift to get offset to FX instructions
TAY
LDA FN_FX+1,Y ; push high address
PHA
LDA FN_FX,Y ; push low address
PHA
TXA ; restore operand
RTS ; "return" to routine
.)
_INI .( ; initialize common
LDA #0 ; initialize RSI
STA _RSI
; copy system functions (TODO)
; load program (TODO)
JMP (_PC) ; go to last loaded block
.)
_SAV .( ; save the registers prior to entering common
STA _ACC
STX _IDX
STY _IDY
PHP
PLA
STA _PS
CLD
RTS
.)
_RES .( ; restore the registers prior to leaving common
LDA _PS
PHA
LDA _ACC
LDX _IDX
LDY _IDY
PLP
RTS
.)
_SET .( ; SET r aabbcc.dd 1r dd cc bb aa Rr <- aabbcc.dd - set register
LDY #0
LDA (_PC),Y ; transfer four bytes over
STA _R0,X
INY
LDA (_PC),Y
STA _R0+1,X
INY
LDA (_PC),Y
STA _R0+2,X
INY
LDA (_PC),Y
STA _R0+3,X
LDA #4 ; update program counter
CLC
ADC _PCL
STA _PCL
BCC _1
INC _PCH
_1 RTS ; done
.)
_LDD .( ; LDD r xxyy 2r yy xx Rr <- (xxyy) - load register directly from address
LDY #0 ; set up address in I0
LDA (_PC),Y
STA _I0
INY
LDA (_PC),Y
STA _I0+1
DEY ; transfer four bytes over
LDA (_I0),Y
STA _R0,X
INY
LDA (_I0),Y
STA _R0+1,X
INY
LDA (_I0),Y
STA _R0+2,X
INY
LDA (_I0),Y
STA _R0+3,X
LDA #2 ; update program counter
CLC
ADC _PCL
STA _PCL
BCC _1
INC _PCH
_1 RTS ; done
.)
_SVD .( ; SVD r xxyy 3r yy xx (xxyy) <- Rr - save register directly to address
LDY #0 ; set up address in I0
LDA (_PC),Y
STA _I0
INY
LDA (_PC),Y
STA _I0+1
DEY ; transfer four bytes over
LDA _R0,X
STA (_I0),Y
INY
LDA _R0+1,X
STA (_I0),Y
INY
LDA _R0+2,X
STA (_I0),Y
INY
LDA _R0+3,X
STA (_I0),Y
LDA #2 ; update program counter
CLC
ADC _PCL
STA _PCL
BCC _1
INC _PCH
_1 RTS ; done
.)
_PSH .( ; PSH r 4r RS <- Rr - push onto stack
LDY _RSI ; get register stack index
CPY #_RSS ; compare against limit
BCC _1 ; still room, all okay
BRK ; next push will cause a stack overflow, abort and call exception handler (TODO)
_1 LDA _R0,X ; transfer four bytes over
STA _RS,Y
INY
LDA _R0+1,X
STA _RS,Y
INY
LDA _R0+2,X
STA _RS,Y
INY
LDA _R0+3,X
STA _RS,Y
INY
STY _RSI ; update register stack index
RTS
.)
_POP .( ; POP r 5r Rr <- RS - pop from stack
LDY _RSI ; get register stack index
BNE _1 ; all good, something can be popped off the stack
BRK ; next pop will cause a stack underflow, abort and call exception handler (TODO)
_1 DEY ; transfer four bytes over
LDA _RS,Y
STA _R0+3,X
DEY
LDA _RS,Y
STA _R0+2,X
DEY
LDA _RS,Y
STA _R0+1,X
DEY
LDA _RS,Y
STA _R0,X
STY _RSI ; update register stack index
RTS
.)
_EXC .( ; EXC r 6r Rr <-> RS - exchange Rr with stack
LDY _RSI ; RS to I0
LDA _RS-1,Y
STA _I0+3
LDA _RS-2,Y
STA _I0+2
LDA _RS-3,Y
STA _I0+1
LDA _RS-4,Y
STA _I0
LDA _R0,X ; copy Rr to RS
STA _RS-4,Y
LDA _R0+1,X
STA _RS-3,Y
LDA _R0+2,X
STA _RS-2,Y
LDA _R0+3,X
STA _RS-1,Y
LDA _I0 ; copy I0 to Rr
STA _R0,X
LDA _I0+1
STA _R0+1,X
LDA _I0+2
STA _R0+2,X
LDA _I0+3
STA _R0+3,X
RTS
.)
_ADPI0X .( ; add value pointed by I0 to register indexed by X
LDA _R0+3,X
AND #_MSK_O ; check for existing overflow condition
BEQ _1
EOR #_MSK_O
BNE _2 ; existing overflow, skip decrement operation
_1 LDY #0 ; adding RD
LDA (_I0),Y
CLC
ADC _R0,X
STA _R0,X
INY
LDA (_I0),Y
ADC _R0+1,X
STA _R0+1,X
INY
LDA (_I0),Y
ADC _R0+2,X
STA _R0+2,X
INY
LDA (_I0),Y
ADC _R0+3,X
STA _R0+3,X
AND #_MSK_O ; check for overflow
BEQ _3
EOR #_MSK_O
BEQ _2
_2 LDA _F ; set overflow
ORA #_F_O
STA _F
BNE _4
_3 LDA _F ; clear overflow
AND #_F_O^$FF
STA _F
_4 RTS
.)
_INR .( ; INR r 7r Rr <- Rr + 1.0 - increment register
LDA #<PLS_1 ; set I0 to reference plus one
STA _I0
LDA #>PLS_1
STA _I0+1
BEQ _ADPI0X
.)
_DCR .( ; DCR r 8r Rr <- Rr - 1.0 - decrement register
LDA #<MNS_1 ; set I0 to reference minus one
STA _I0
LDA #>MNS_1
STA _I0+1
BNE _ADPI0X
.)
_TST .( ; TST r 9r F <- Rr <=> 0.0 - test register
LDA _F
AND #_MSK_T ; clear TST bits
STA _F
LDA _R0+3,X ; check highest byte
BMI _1 ; is negative
ORA _R0+2,X ; could be positive or zero, OR with all other bytes
ORA _R0+1,X
ORA _R0,X
BNE _2 ; is positive
LDA #_F_Z ; set zero flag
BNE _3
_1 LDA #_F_N ; set negative flag
BNE _3
_2 LDA #_F_P ; set positive flag
_3 ORA _F
STA _F
RTS
.)
_GETPQ .( ; sets X as p register and Y as q register, advances PC
LDY #0
LDA (_PC),Y ; get source registers
LSR
LSR
AND #_MSK_R ; p register
TAX
LDA (_PC),Y
ASL
ASL
AND #_MSK_R ; q register
TAY
_2 INC _PCL ; advance PC
BNE _3
INC _PCH
_3 RTS
.)
_GETPQF .( ; sets X as p register and Y as q register, advances PC, checks for overflow in the operands
JSR _GETPQ
LDA _R0+3,X
AND #_MSK_O ; check for existing overflow condition
BEQ _1 ; sign and overflow are both clear
EOR #_MSK_O
BEQ _1 ; sign and overflow are both set
BRK ; an operand is in an overflow condition, abort and call exception handler (TODO)
_1 LDA _R0+3,Y
AND #_MSK_O ; check for existing overflow condition
BEQ _2 ; sign and overflow are both clear
EOR #_MSK_O
BEQ _2 ; sign and overflow are both set
BRK ; an operand is in an overflow condition, abort and call exception handler (TODO)
_2 RTS
.)
_ZERI0 .( ; clears I0
LDA #0
STA _I0
STA _I0+1
STA _I0+2
STA _I0+3
RTS
.)
_TRFI0X .( ; transfer I0 to register indexed by X, MSB returned in A
LDA _I0
STA _R0,X
LDA _I0+1
STA _R0+1,X
LDA _I0+2
STA _R0+2,X
LDA _I0+3
STA _R0+3,X
RTS
.)
_RTZI0X .( ; clears I0, clears underflow, *falls thru* to _RETI0X
JSR _ZERI0
LDA _F ; clear underflow
AND #_F_U^$FF
STA _F
.)
_RETI0X .( ; pulls X, transfers I0 to register indexed by X, updates overflow flag
PLA
TAX
JSR _TRFI0X ; transfer result to register indexed by X
AND #_MSK_O ; check for overflow
BEQ _1
EOR #_MSK_O
BEQ _1
LDA _F ; set overflow
ORA #_F_O
STA _F
BNE _2
_1 LDA _F ; clear overflow
AND #_F_O^$FF
STA _F
_2 RTS
.)
_ADD .( ; ADD r pq ar pq Rr <- Rp + Rq - addition
TXA
PHA ; save r register for later
JSR _GETPQF
LDA _R0,X ; set I0 to Rp + Rq
CLC
ADC _R0,Y
STA _I0
LDA _R0+1,X
ADC _R0+1,Y
STA _I0+1
LDA _R0+2,X
ADC _R0+2,Y
STA _I0+2
LDA _R0+3,X
ADC _R0+3,Y
STA _I0+3
JMP _RETI0X ; pull X, transfer I0 to r register, let it handle the return
.)
_SBXYI0 .( ; set I0 to register pointed by X - register pointed by Y
LDA _R0,X ; set I0 to Rp - Rq
SEC
SBC _R0,Y
STA _I0
LDA _R0+1,X
SBC _R0+1,Y
STA _I0+1
LDA _R0+2,X
SBC _R0+2,Y
STA _I0+2
LDA _R0+3,X
SBC _R0+3,Y
STA _I0+3
RTS
.)
_SUB .( ; SUB r pq br pq Rr <- Rp - Rq - subtraction
TXA
PHA ; save r register for later
JSR _GETPQF
JSR _SBXYI0
JMP _RETI0X ; pull X, transfer I0 to r register, let it handle the return
.)
_NEGX .( ; negates register at X
LDA #0
SEC
SBC _R0,X
STA _R0,X
LDA #0
SBC _R0+1,X
STA _R0+1,X
LDA #0
SBC _R0+2,X
STA _R0+2,X
LDA #0
SBC _R0+3,X
STA _R0+3,X
RTS
.)
_ABSX .( ; sets register at X to absolute value
LDA _R0+3,X
BMI _NEGX
RTS
.)
_BKRRD .( ; implement banker's rounding on quad-word pointed by X
; The logic table below shows the expected results. The only differences are
; when the least significant byte (LSB) is 128 and the second byte (2B) is even
; vs odd.
;
; LSB 2B CARRY LSB + 127 + C CARRY* DELTA 2B*
; <127 EVEN 0 <254 0 0
; 127 EVEN 0 254 0 0
; 128 EVEN 0 255 0 0 <- not rounding up
; 129 EVEN 0 0 1 +1
; >129 EVEN 0 >0 1 +1
; <127 ODD 1 <255 0 0
; 127 ODD 1 255 0 0
; 128 ODD 1 0 1 +1 <- rounding up
; 129 ODD 1 1 1 +1
; >129 ODD 1 >1 1 +1
LDA _R0+1,X
ROR ; will set carry if odd
LDA _R0,X
ADC #127 ; adding just less than half
STA _R0,X
BCC _1
INC _R0+1,X ; propagate through the rest
BNE _1
INC _R0+2,X
BNE _1
INC _R0+3,X
BNE _1
INC _R1,X
BNE _1
INC _R1+1,X
BNE _1
INC _R1+2,X
BNE _1
INC _R1+3,X
_1 RTS
.)
_CPXI0 .( ; copy four bytes at X index to I0, returns MSB in A
LDA _R0,X
STA _I0
LDA _R0+1,X
STA _I0+1
LDA _R0+2,X
STA _I0+2
LDA _R0+3,X
STA _I0+3
RTS
.)
_CPYI1 .( ; copy four bytes at Y index to I1, returns MSB in A
LDA _R0,Y
STA _I1
LDA _R0+1,Y
STA _I1+1
LDA _R0+2,Y
STA _I1+2
LDA _R0+3,Y
STA _I1+3
RTS
.)
_RDXFI0 .( ; using X index, round quad-word, transfer to I0, set overflow in I0, set or clear the underflow flag
JSR _BKRRD ; banker's rounding
INX ; skip extra fraction
JSR _CPXI0 ; copy to I0
AND #_MSK_O ; consider the overflow bits
ORA _R1,X ; check all the other bytes
ORA _R1+1,X
ORA _R1+2,X
BEQ _1 ; all zeroes means no overflow
LDA _I0+3 ; overflow situation
AND #_MSK_O^$FF ; set overflow
ORA #_F_O
STA _I0+3
_1 LDA _I0 ; check for underflow
ORA _I0+1
ORA _I0+2
ORA _I0+3
BNE _2 ; non-zero result means no underflow
LDA _F ; we checked earlier for zero operands, so a zero result means underflow, set underflow
ORA #_F_U
STA _F
BNE _3
_2 LDA _F ; clear underflow
AND #_F_U^$FF
STA _F
_3 RTS
.)
_MUL .( ; MUL r pq cr pq Rr <- Rp * Rq - multiplication
TXA ; adapted from http://www.6502.org/source/integers/32muldiv.htm
PHA ; save r register for later
JSR _GETPQF
LDA _R0,X ; check for zero argument
ORA _R0+1,X
ORA _R0+2,X
ORA _R0+3,X
BNE _1 ; p is non-zero
JMP _RTZI0X ; p is zero, return zero
_1 LDA _R0,Y ; check for zero argument
ORA _R0+1,Y
ORA _R0+2,Y
ORA _R0+3,Y
BNE _2 ; q is non-zero
JMP _RTZI0X ; q is zero, return zero
_2 LDA _R0+3,X
EOR _R0+3,Y
AND #_MSK_O ; save sign of product
PHA
JSR _CPXI0 ; transfer p to I0
JSR _CPYI1 ; transfer q to I1
LDX #_I0-_R0
JSR _ABSX ; set to absolute value
LDX #_I1-_R0
JSR _ABSX ; set to absolute value
LDA #0
STA _I3 ; clear upper half of product in I3
STA _I3+1
STA _I3+2
STA _I3+3
LDY #34 ; thirty bit multiply and four bit shift to ensure product is aligned
_3 LSR _I1+3 ; get lowest bit of operand
ROR _I1+2
ROR _I1+1
ROR _I1
BCC _4 ; skip adding in product if bit is zero
LDA _I3 ; add in p register
CLC
ADC _I0
STA _I3
LDA _I3+1
ADC _I0+1
STA _I3+1
LDA _I3+2
ADC _I0+2
STA _I3+2
LDA _I3+3
ADC _I0+3
STA _I3+3
_4 LSR _I3+3 ; shift the product down
ROR _I3+2
ROR _I3+1
ROR _I3
ROR _I2+3
ROR _I2+2
ROR _I2+1
ROR _I2
DEY
BNE _3 ; repeat until bits are done
LDX #_I2-_R0
JSR _RDXFI0 ; round and transfer to I0, set or clear underflow flag
PLA ; set the sign of the product
BEQ _5
LDX #_I0-_R0 ; negate I0
JSR _NEGX
_5 JMP _RETI0X ; pull X, transfer I0 to r register, let it handle the return
.)
_ZERQX .( ; zero quad-word (64 bits) at X
LDA #0
STA _R0,X
STA _R0+1,X
STA _R0+2,X
STA _R0+3,X
STA _R0+4,X
STA _R0+5,X
STA _R0+6,X
STA _R0+7,X
RTS
.)
_INIDM .( ; initialize for DIV and MOD, returns sign of result in A
JSR _GETPQF
LDA _R0,X ; check for zero argument
ORA _R0+1,X
ORA _R0+2,X
ORA _R0+3,X
BNE _1 ; p is non-zero
JMP _RTZI0X ; p is zero, return zero
_1 LDA _R0,Y ; check for zero argument
ORA _R0+1,Y
ORA _R0+2,Y
ORA _R0+3,Y
BNE _2 ; q is non-zero
BRK ; q is zero, abort and call exception handler (TODO)
; I0 / I1 will form 64-bit quantity with high order bytes I1 as zero
_2 JSR _CPXI0 ; copy p to I0
LDX #_I1-_R0
JSR _ZERQX
; I2 / I3 will form 64-bit quantity with low order bytes I2 as zero
LDA _R0,Y ; copy q to I3
STA _I3
LDA _R0+1,Y
STA _I3+1
LDA _R0+2,Y
STA _I3+2
LDA _R0+3,Y
STA _I3+3
; I4 / I5 will form 64-bit result for DIV
LDX #_I4-_R0
JSR _ZERQX
LDA _I0+3 ; get sign of result
EOR _I3+3
AND #_MSK_O
RTS
.)
_CPQXDM .( ; compare I0/I1 to quadword pointed by X, return result in status
LDA _I1+3
CMP _R1+3,X
BCC _1 ; definitely less
BNE _1 ; definitely greater
LDA _I1+2
CMP _R1+2,X
BCC _1 ; definitely less
BNE _1 ; definitely greater
LDA _I1+1
CMP _R1+1,X
BCC _1 ; definitely less
BNE _1 ; definitely greater
LDA _I1
CMP _R1,X
BCC _1 ; definitely less
BNE _1 ; definitely greater
LDA _I0+3
CMP _R0+3,X
BCC _1 ; definitely less
BNE _1 ; definitely greater
LDA _I0+2
CMP _R0+2,X
BCC _1 ; definitely less
BNE _1 ; definitely greater
LDA _I0+1
CMP _R0+1,X
BCC _1 ; definitely less
BNE _1 ; definitely greater
LDA _I0
CMP _R0,X
_1 RTS
.)
_UPDDM .( ; update DIV and MOD
LDA _I0 ; I0/I1 -= I2/I3
SEC
SBC _I2
STA _I0
LDA _I0+1
SBC _I2+1
STA _I0+1
LDA _I0+2
SBC _I2+2
STA _I0+2
LDA _I0+3
SBC _I2+3
STA _I0+3
LDA _I1
SBC _I3
STA _I1
LDA _I1+1
SBC _I3+1
STA _I1+1
LDA _I1+2
SBC _I3+2
STA _I1+2
LDA _I1+3
SBC _I3+3
STA _I1+3
RTS
.)
_SHUDM .( ; shift up for DIV and MOD, C should be set or cleared as required
ROL _I4 ; I4/I5 *= 2
ROL _I4+1
ROL _I4+2
ROL _I4+3
ROL _I5
ROL _I5+1
ROL _I5+2
ROL _I5+3
RTS
.)
_SHDDM .( ; shift down for DIV and MOD
CLC ; I2/I3 /= 2
ROR _I3+3
ROR _I3+2
ROR _I3+1
ROR _I3
ROR _I2+3
ROR _I2+2
ROR _I2+1
ROR _I2
RTS
.)
_DIV .( ; DIV r pq dr pq Rr <- Rp / Rq - division
TXA
PHA ; save r register for later
JSR _INIDM ; initialize
PHA ; save sign of result
LDX #_I0-_R0 ; absolute value of register p saved in I0
JSR _ABSX
LDX #_I3-_R0 ; absolute value of register q saved in I3
JSR _ABSX
LDY #51 ; 51 bits are enough, and ensure alignment
_1 LDX #_I2-_R0 ; is I0/I1 < I2/I3
JSR _CPQXDM
BCC _2 ; yes, skip subtraction
BEQ _4 ; special case when p = q
JSR _UPDDM ; I0/I1 -= I2/I3
_2 JSR _SHUDM ; I4/I5 *= 2 += CARRY
JSR _SHDDM ; I2/I3 /= 2
DEY
BNE _1
BEQ _5
_3 CLC ; special case when p = q, just shift up to the end
_4 JSR _SHUDM ; I4/I5 *= 2 += CARRY
DEY
BNE _3
_5 LDX #_I4-_R0
JSR _RDXFI0 ; round and transfer to I0, set or clear underflow flag
PLA ; set the sign of the product
BEQ _6
LDX #_I0-_R0 ; negate I0
JSR _NEGX
_6 JMP _RETI0X ; pull X, transfer I0 to r register, let it handle the return
.)
_MOD .( ; MOD r pq er pq Rr <- Rp % Rq - modulus
TXA
PHA ; save r register for later
JSR _INIDM ; initialize
PHA ; save sign of result
LDX #_I0-_R0 ; absolute value of register p saved in I0
JSR _ABSX
LDX #_I3-_R0 ; absolute value of register q saved in I3
JSR _ABSX
LDA _I3 ; copy |q| in I3 to I4
STA _I4
LDA _I3+1
STA _I4+1
LDA _I3+2
STA _I4+2
LDA _I3+3
STA _I4+3
LDY #34 ; 34 shifts are enough
_1 LDX #_I4-_R0 ; is I0/I1 < I4/I5?
JSR _CPQXDM
BCC _3 ; yes, all done
LDX #_I2-_R0 ; is I0/I1 < I2/I3
JSR _CPQXDM
BCC _2 ; yes, skip subtraction
JSR _UPDDM ; I0/I1 -= I2/I3
_2 JSR _SHDDM ; I2/I3 /= 2
DEY
BNE _1
_3 LDA _F ; clear underflow
AND #_F_U^$FF
STA _F
PLA ; set the sign of the product
BEQ _4
LDX #_I0-_R0 ; negate I0
JSR _NEGX
_4 JMP _RETI0X ; pull X, transfer I0 to r register, let it handle the return
.)
_ESC .( ; ESC 00 - escape back into regular assembler
PLA ; discard the COMMON _1 return address
PLA
JSR _RES ; restore the registers
JMP (_PC) ; get back in the code
.)
_RTN .( ; RTN 01 - return from subroutine
; some stack hocus pocus
; currently the stack has return address corresponding to _CMN._1 + 2, _PCL, _PCH, ...
; we need to pop that, pop the updated PC, then push the address back
PLA ; save the return address
STA _I0+2
PLA
STA _I0+3
PLA ; pull the program counter to return
STA _PCH
PLA
STA _PCL
LDA _I0+3 ; push the return address back
PHA
LDA _I0+2
PHA
RTS
.)
_INIBR .( ; save the branch offset in I0, *falls thru* to _UPDPC
LDY #1 ; save the offset
LDA (_PC), Y
STA _I0+1 ; high byte
DEY
LDA (_PC), Y
STA _I0 ; low byte
.)
_UPDPC .( ; update PC by the length of a branch address
LDA #2 ; the length of a branch address
CLC
ADC _PCL
STA _PCL
BNE _1
INC _PCH
_1 RTS
.)
_UPPCI0 .( ; update PC with offset in I0
LDA _I0 ; get the low byte
CLC
ADC _PCL
STA _PCL
LDA _I0+1 ; get the high byte
ADC _PCH
STA _PCH
RTS
.)
_BRS .( ; BRS xxyy 02 yy xx PC <- PC + xxyy - branch to subroutine
; some stack hocus pocus
; currently the stack has return address corresponding to _CMN._1 + 2, ...
; we need to pop that, push the updated PC, then push the address back
JSR _INIBR ; save the offset and update PC by the length of a branch address
PLA
STA _I0+2
PLA
STA _I0+3
LDA _PCL ; push the program counter to return
PHA
LDA _PCH
PHA
LDA _I0+3 ; push the return address back
PHA
LDA _I0+2
PHA
; stack is now _CMN._1 + 2, _PCL, _PCH, ...
JMP _UPPCI0 ; update PC with I0 offset, let it handle the return
.)
_BRA .( ; BRA xxyy 03 yy xx PC <- PC + xxyy - branch always
JSR _INIBR ; save the offset and update PC by the length of a branch address
JMP _UPPCI0 ; update PC with I0 offset, let it handle the return
.)
_BRX .( ; generic branch testing
AND _F ; check the bit
BNE _BRA ; if set, branch
JMP _UPDPC ; not set, advance the program counter over the xxyy offset, let it handle the return
.)
_BRE .( ; BRE xxyy 04 yy xx PC <- PC + xxyy - branch if Rp = Rq (after CMR)
LDA #_F_E
BNE _BRX
.)
_BRG .( ; BRG xxyy 05 yy xx PC <- PC + xxyy - branch if Rp > Rq (after CMR)
LDA #_F_G
BNE _BRX
.)
_BRL .( ; BRL xxyy 06 yy xx PC <- PC + xxyy - branch if Rp < Rq (after CMR)
LDA #_F_L
BNE _BRX
.)
_BRZ .( ; BRZ xxyy 07 yy xx PC <- PC + xxyy - branch if Rr = 0.0 (after TST)
LDA #_F_Z
BNE _BRX
.)
_BRP .( ; BRP xxyy 08 yy xx PC <- PC + xxyy - branch if Rr > 0.0 (after TST)
LDA #_F_P
BNE _BRX
.)
_BRN .( ; BRN xxyy 09 yy xx PC <- PC + xxyy - branch if Rr < 0.0 (after TST)
LDA #_F_N
BNE _BRX
.)
_BRO .( ; BRO xxyy 0a yy xx PC <- PC + xxyy - branch if overflow (after arithmetic operations)
LDA #_F_O
BNE _BRX
.)
_BRU .( ; BRU xxyy 0b yy xx PC <- PC + xxyy - branch if underflow (after arithmetic operations)
LDA #_F_U
BNE _BRX
.)
_CPR .( ; CPR pq 0c pq Rp <- Rq - copy register
JSR _GETPQ
LDA _R0,Y ; transfer q to p
STA _R0,X
LDA _R0+1,Y
STA _R0+1,X
LDA _R0+2,Y
STA _R0+2,X
LDA _R0+3,Y
STA _R0+3,X
RTS
.)
_INILS .( ; common initialization for LDI and SVI
JSR _CPYI1 ; copy q to I1
LDA _I1+3 ; check for negative offsets
BMI _1
CLC ; add the allocated memory offset
LDA _ARLL
ADC _I1+1
STA _I1+1
LDA _ARLH
ADC _I1+2
STA _I1+2
CMP _ARUH ; compare against upper limit
BCC _2 ; for sure less
BNE _1 ; not equal, must be more
LDA _I1+1
CMP _ARUL
BCC _2 ; for sure less
_1 BRK ; accessing out of bounds, abort and call exception handler (TODO)
_2 RTS
.)
_LDI .( ; LDI pq 0d pq Rp <- (Rq:bbcc) - load indirect from memory
JSR _GETPQ
JSR _INILS
LDY #0 ; transfer
LDA (_I1+1),Y
STA _R0,X
INY
LDA (_I1+1),Y
STA _R0+1,X
INY
LDA (_I1+1),Y
STA _R0+2,X
INY
LDA (_I1+1),Y
STA _R0+3,X
RTS
.)
_SVI .( ; SVI pq 0e pq (Rp:bbcc) <- Rq - save indirect to memory
JSR _GETPQ
TXA ; swap X and Y
PHA ; X on stack
TYA
TAX ; X becomes Y
PLA
TAY ; pull Y (was X)
JSR _INILS
LDY #0 ; transfer
LDA _R0,X
STA (_I1+1),Y
INY
LDA _R0+1,X
STA (_I1+1),Y
INY
LDA _R0+2,X
STA (_I1+1),Y
INY
LDA _R0+3,X
STA (_I1+1),Y
RTS
.)
_CMR .( ; CMR pq 0f pq F <- Rp <=> Rq - compare registers
JSR _GETPQF
JSR _SBXYI0
LDA _F
AND #_MSK_C ; clear CMR bits
STA _F
LDA _I0+3 ; check highest byte
BMI _1 ; is less than
ORA _I0+2 ; could be greater than or equal to, OR with all other bytes
ORA _I0+1
ORA _I0
BNE _2 ; is greater than
LDA #_F_E ; set equal to flag
BNE _3
_1 LDA #_F_L ; set less than flag
BNE _3
_2 LDA #_F_G ; set greater than flag
_3 ORA _F
STA _F
RTS
.)
_END_CMN_CD
; ROM data header
.BYTE _SM_FXD
.WORD CMN_DT, _END_CMN_DT - CMN_DT
; beginning of ROM data
* = CMN_DT
FN_0X .WORD _ESC-1, _RTN-1, _BRS-1, _BRA-1, _BRE-1, _BRG-1, _BRL-1, _BRZ-1,
.WORD _BRP-1, _BRN-1, _BRO-1, _BRU-1, _CPR-1, _LDI-1, _SVI-1, _CMR-1
FN_XR .WORD _SET-1, _LDD-1, _SVD-1, _PSH-1, _POP-1, _EXC-1, _INR-1,
.WORD _DCR-1, _TST-1, _ADD-1, _SUB-1, _MUL-1, _DIV-1, _MOD-1
; numerical constants
PLS_1 .BYTE $00, $04, $00, $00
MNS_1 .BYTE $00, $fc, $ff, $ff
_END_CMN_DT
; 6502 addresses
.BYTE _SM_FXD
.WORD ADDR, 6
; 6502 NMI, Reset and IRQ
* = $FFFA
ADDR .WORD 0, _INI, 0