EightBit/LR35902/src/LR35902.cpp

868 lines
16 KiB
C++
Raw Normal View History

#include "stdafx.h"
#include "LR35902.h"
// based on http://www.z80.info/decoding.htm
// Half carry flag help from https://github.com/oubiwann/z80
EightBit::LR35902::LR35902(Bus& memory)
: IntelProcessor(memory),
m_ime(false),
m_prefixCB(false) {
}
void EightBit::LR35902::reset() {
IntelProcessor::reset();
sp.word = 0xfffe;
di();
}
void EightBit::LR35902::initialise() {
IntelProcessor::initialise();
AF().word = 0xffff;
BC().word = 0xffff;
DE().word = 0xffff;
HL().word = 0xffff;
m_prefixCB = false;
}
#pragma region Interrupt routines
void EightBit::LR35902::di() {
IME() = false;
}
void EightBit::LR35902::ei() {
IME() = true;
}
int EightBit::LR35902::interrupt(uint8_t value) {
cycles = 0;
di();
restart(value);
return 4;
}
#pragma endregion Interrupt routines
#pragma region Flag manipulation helpers
void EightBit::LR35902::adjustZero(uint8_t& f, uint8_t value) {
clearFlag(f, ZF, value);
}
void EightBit::LR35902::postIncrement(uint8_t& f, uint8_t value) {
adjustZero(f, value);
clearFlag(f, NF);
clearFlag(f, HC, lowNibble(value));
}
void EightBit::LR35902::postDecrement(uint8_t& f, uint8_t value) {
adjustZero(f, value);
setFlag(f, NF);
clearFlag(f, HC, lowNibble(value + 1));
}
#pragma endregion Flag manipulation helpers
#pragma region PC manipulation: call/ret/jp/jr
bool EightBit::LR35902::jrConditionalFlag(int flag) {
switch (flag) {
case 0: // NZ
return jrConditional(!(F() & ZF));
case 1: // Z
return jrConditional(F() & ZF);
case 2: // NC
return jrConditional(!(F() & CF));
case 3: // C
return jrConditional(F() & CF);
}
throw std::logic_error("Unhandled JR conditional");
}
bool EightBit::LR35902::jumpConditionalFlag(int flag) {
switch (flag) {
case 0: // NZ
return jumpConditional(!(F() & ZF));
case 1: // Z
return jumpConditional(F() & ZF);
case 2: // NC
return jumpConditional(!(F() & CF));
case 3: // C
return jumpConditional(F() & CF);
}
throw std::logic_error("Unhandled JP conditional");
}
void EightBit::LR35902::reti() {
ret();
ei();
}
bool EightBit::LR35902::returnConditionalFlag(int flag) {
switch (flag) {
case 0: // NZ
return returnConditional(!(F() & ZF));
case 1: // Z
return returnConditional(F() & ZF);
case 2: // NC
return returnConditional(!(F() & CF));
case 3: // C
return returnConditional(F() & CF);
}
throw std::logic_error("Unhandled RET conditional");
}
bool EightBit::LR35902::callConditionalFlag(int flag) {
switch (flag) {
case 0: // NZ
return callConditional(!(F() & ZF));
case 1: // Z
return callConditional(F() & ZF);
case 2: // NC
return callConditional(!(F() & CF));
case 3: // C
return callConditional(F() & CF);
}
throw std::logic_error("Unhandled CALL conditional");
}
#pragma endregion PC manipulation: call/ret/jp/jr
#pragma region 16-bit arithmetic
void EightBit::LR35902::sbc(register16_t& operand, register16_t value) {
auto before = operand;
auto result = before.word - value.word - (F() & CF);
operand.word = result;
auto& f = F();
clearFlag(f, ZF, operand.word);
adjustHalfCarrySub(f, before.high, value.high, operand.high);
setFlag(f, NF);
setFlag(f, CF, result & Bit16);
}
void EightBit::LR35902::adc(register16_t& operand, register16_t value) {
auto before = operand;
auto result = before.word + value.word + (F() & CF);
operand.word = result;
auto& f = F();
clearFlag(f, ZF, result);
adjustHalfCarryAdd(f, before.high, value.high, operand.high);
clearFlag(f, NF);
setFlag(f, CF, result & Bit16);
}
void EightBit::LR35902::add(register16_t& operand, register16_t value) {
auto before = operand;
auto result = before.word + value.word;
operand.word = result;
auto& f = F();
clearFlag(f, NF);
setFlag(f, CF, result & Bit16);
adjustHalfCarryAdd(f, before.high, value.high, operand.high);
}
#pragma endregion 16-bit arithmetic
#pragma region ALU
void EightBit::LR35902::add(uint8_t& operand, uint8_t value, int carry) {
auto& f = F();
register16_t result;
result.word = operand + value + carry;
adjustHalfCarryAdd(f, operand, value, result.low);
operand = result.low;
clearFlag(f, NF);
setFlag(f, CF, result.word & Bit8);
adjustZero(f, operand);
}
void EightBit::LR35902::adc(uint8_t& operand, uint8_t value) {
add(operand, value, F() & CF);
}
void EightBit::LR35902::sub(uint8_t& operand, uint8_t value, int carry) {
auto& f = F();
register16_t result;
result.word = operand - value - carry;
adjustHalfCarrySub(f, operand, value, result.low);
operand = result.low;
setFlag(f, NF);
setFlag(f, CF, result.word & Bit8);
adjustZero(f, operand);
}
void EightBit::LR35902::sbc(uint8_t& operand, uint8_t value) {
sub(operand, value, F() & CF);
}
void EightBit::LR35902::andr(uint8_t& operand, uint8_t value) {
auto& f = F();
operand &= value;
setFlag(f, HC);
clearFlag(f, CF | NF);
adjustZero(f, operand);
}
void EightBit::LR35902::xorr(uint8_t& operand, uint8_t value) {
auto& f = F();
operand ^= value;
clearFlag(f, HC | CF | NF);
adjustZero(f, operand);
}
void EightBit::LR35902::orr(uint8_t& operand, uint8_t value) {
auto& f = F();
operand |= value;
clearFlag(f, HC | CF | NF);
adjustZero(f, operand);
}
void EightBit::LR35902::compare(uint8_t value) {
auto check = A();
sub(check, value);
}
#pragma endregion ALU
#pragma region Shift and rotate
void EightBit::LR35902::rlc(uint8_t& operand) {
auto& f = F();
auto carry = operand & Bit7;
operand <<= 1;
setFlag(f, CF, carry);
carry ? operand |= Bit0 : operand &= ~Bit0;
clearFlag(f, NF | HC);
adjustZero(f, operand);
}
void EightBit::LR35902::rrc(uint8_t& operand) {
auto& f = F();
auto carry = operand & Bit0;
operand >>= 1;
carry ? operand |= Bit7 : operand &= ~Bit7;
setFlag(f, CF, carry);
clearFlag(f, NF | HC);
adjustZero(f, operand);
}
void EightBit::LR35902::rl(uint8_t& operand) {
auto& f = F();
auto oldCarry = f & CF;
auto newCarry = operand & Bit7;
operand <<= 1;
oldCarry ? operand |= Bit0 : operand &= ~Bit0;
setFlag(f, CF, newCarry);
clearFlag(f, NF | HC);
adjustZero(f, operand);
}
void EightBit::LR35902::rr(uint8_t& operand) {
auto& f = F();
auto oldCarry = f & CF;
auto newCarry = operand & Bit0;
operand >>= 1;
operand |= oldCarry << 7;
setFlag(f, CF, newCarry);
clearFlag(f, NF | HC);
adjustZero(f, operand);
}
//
void EightBit::LR35902::sla(uint8_t& operand) {
auto& f = F();
auto newCarry = operand & Bit7;
operand <<= 1;
setFlag(f, CF, newCarry);
clearFlag(f, NF | HC);
adjustZero(f, operand);
}
void EightBit::LR35902::sra(uint8_t& operand) {
auto& f = F();
auto new7 = operand & Bit7;
auto newCarry = operand & Bit0;
operand >>= 1;
operand |= new7;
setFlag(f, CF, newCarry);
clearFlag(f, NF | HC);
adjustZero(f, operand);
}
void EightBit::LR35902::srl(uint8_t& operand) {
auto& f = F();
auto newCarry = operand & Bit0;
operand >>= 1;
operand &= ~Bit7; // clear bit 7
setFlag(f, CF, newCarry);
clearFlag(f, NF | HC);
adjustZero(f, operand);
}
#pragma endregion Shift and rotate
#pragma region BIT/SET/RES
void EightBit::LR35902::bit(int n, uint8_t& operand) {
auto& f = F();
auto carry = f & CF;
uint8_t discarded = operand;
andr(discarded, 1 << n);
setFlag(f, CF, carry);
}
void EightBit::LR35902::res(int n, uint8_t& operand) {
auto bit = 1 << n;
operand &= ~bit;
}
void EightBit::LR35902::set(int n, uint8_t& operand) {
auto bit = 1 << n;
operand |= bit;
}
#pragma endregion BIT/SET/RES
#pragma region Miscellaneous instructions
void EightBit::LR35902::daa() {
auto& f = F();
uint8_t a = A();
auto lowAdjust = (f & HC) | ((A() & Mask4) > 9);
auto highAdjust = (f & CF) | (A() > 0x99);
if (F() & NF) {
if (lowAdjust)
a -= 6;
if (highAdjust)
a -= 0x60;
} else {
if (lowAdjust)
a += 6;
if (highAdjust)
a += 0x60;
}
f = (f & (CF | NF)) | (A() > 0x99) | ((A() ^ a) & HC);
adjustZero(f, a);
A() = a;
}
void EightBit::LR35902::cpl() {
A() = ~A();
auto& f = F();
setFlag(f, HC | NF);
}
void EightBit::LR35902::scf() {
auto& f = F();
setFlag(f, CF);
clearFlag(f, HC | NF);
}
void EightBit::LR35902::ccf() {
auto& f = F();
auto carry = f & CF;
clearFlag(f, CF, carry);
clearFlag(f, NF | HC);
}
void EightBit::LR35902::swap(uint8_t& operand) {
auto& f = F();
auto low = lowNibble(operand);
auto high = highNibble(operand);
operand = promoteNibble(low) | demoteNibble(high);
adjustZero(f, operand);
clearFlag(f, NF | HC | CF);
}
#pragma endregion Miscellaneous instructions
int EightBit::LR35902::step() {
ExecutingInstruction.fire(*this);
m_prefixCB = false;
cycles = 0;
return fetchExecute();
}
int EightBit::LR35902::execute(uint8_t opcode) {
auto x = (opcode & 0b11000000) >> 6;
auto y = (opcode & 0b111000) >> 3;
auto z = (opcode & 0b111);
auto p = (y & 0b110) >> 1;
auto q = (y & 1);
if (m_prefixCB)
executeCB(x, y, z, p, q);
else
executeOther(x, y, z, p, q);
if (cycles == 0)
throw std::logic_error("Unhandled opcode");
return cycles * 4;
}
void EightBit::LR35902::executeCB(int x, int y, int z, int p, int q) {
switch (x) {
case 0: // rot[y] r[z]
switch (y) {
case 0:
rlc(R(z));
break;
case 1:
rrc(R(z));
break;
case 2:
rl(R(z));
break;
case 3:
rr(R(z));
break;
case 4:
sla(R(z));
break;
case 5:
sra(R(z));
break;
case 6:
swap(R(z));
break;
case 7:
srl(R(z));
break;
}
adjustZero(F(), R(z));
cycles += 2;
if (z == 6)
cycles += 2;
break;
case 1: // BIT y, r[z]
bit(y, R(z));
cycles += 2;
if (z == 6)
cycles += 2;
break;
case 2: // RES y, r[z]
res(y, R(z));
cycles += 2;
if (z == 6)
cycles += 2;
break;
case 3: // SET y, r[z]
set(y, R(z));
cycles += 2;
if (z == 6)
cycles += 2;
break;
}
}
void EightBit::LR35902::executeOther(int x, int y, int z, int p, int q) {
switch (x) {
case 0:
switch (z) {
case 0: // Relative jumps and assorted ops
switch (y) {
case 0: // NOP
cycles++;
break;
case 1: // GB: LD (nn),SP
fetchWord();
m_memory.setWord(MEMPTR().word, sp);
cycles += 5;
break;
case 2: // GB: STOP
stop();
cycles++;
break;
case 3: // JR d
jr(fetchByte());
cycles += 4;
break;
default: { // JR cc,d
auto condition = y - 4;
if (condition < 4) {
if (jrConditionalFlag(condition))
cycles++;
cycles += 2;
}
}
break;
}
break;
case 1: // 16-bit load immediate/add
switch (q) {
case 0: // LD rp,nn
Processor::fetchWord(RP(p));
cycles += 3;
break;
case 1: // ADD HL,rp
add(HL(), RP(p));
cycles += 2;
break;
}
break;
case 2: // Indirect loading
switch (q) {
case 0:
switch (p) {
case 0: // LD (BC),A
MEMPTR() = BC();
MEMPTR().high = memptrReference() = A();
cycles += 2;
break;
case 1: // LD (DE),A
MEMPTR() = DE();
MEMPTR().high = memptrReference() = A();
cycles += 2;
break;
case 2: // GB: LDI (HL),A
MEMPTR().word = HL().word++;
MEMPTR().high = memptrReference() = A();
cycles += 2;
break;
case 3: // GB: LDD (HL),A
MEMPTR().word = HL().word--;
MEMPTR().high = memptrReference() = A();
cycles += 2;
break;
}
break;
case 1:
switch (p) {
case 0: // LD A,(BC)
MEMPTR() = BC();
A() = memptrReference();
cycles += 2;
break;
case 1: // LD A,(DE)
MEMPTR() = DE();
A() = memptrReference();
cycles += 2;
break;
case 2: // GB: LDI A,(HL)
MEMPTR().word = HL().word++;
A() = m_memory.reference();
cycles += 2;
break;
case 3: // GB: LDD A,(HL)
MEMPTR().word = HL().word--;
A() = m_memory.reference();
cycles += 2;
break;
}
break;
}
break;
case 3: // 16-bit INC/DEC
switch (q) {
case 0: // INC rp
++RP(p).word;
break;
case 1: // DEC rp
--RP(p).word;
break;
}
cycles += 2;
break;
case 4: // 8-bit INC
postIncrement(F(), ++R(y)); // INC r
cycles++;
if (y == 6)
cycles += 2;
break;
case 5: // 8-bit DEC
postDecrement(F(), --R(y)); // DEC r
cycles++;
if (y == 6)
cycles += 2;
break;
case 6: // 8-bit load immediate
R(y) = fetchByte();
cycles += 2;
break;
case 7: // Assorted operations on accumulator/flags
switch (y) {
case 0:
rlc(A());
break;
case 1:
rrc(A());
break;
case 2:
rl(A());
break;
case 3:
rr(A());
break;
case 4:
daa();
break;
case 5:
cpl();
break;
case 6:
scf();
break;
case 7:
ccf();
break;
}
cycles++;
break;
}
break;
case 1: // 8-bit loading
if (z == 6 && y == 6) { // Exception (replaces LD (HL), (HL))
halt();
} else {
R(y) = R(z);
if ((y == 6) || (z == 6)) // M operations
cycles++;
}
cycles++;
break;
case 2: // Operate on accumulator and register/memory location
switch (y) {
case 0: // ADD A,r
add(A(), R(z));
break;
case 1: // ADC A,r
adc(A(), R(z));
break;
case 2: // SUB r
sub(A(), R(z));
break;
case 3: // SBC A,r
sbc(A(), R(z));
break;
case 4: // AND r
andr(A(), R(z));
break;
case 5: // XOR r
xorr(A(), R(z));
break;
case 6: // OR r
orr(A(), R(z));
break;
case 7: // CP r
compare(R(z));
break;
}
cycles++;
if (z == 6)
cycles++;
break;
case 3:
switch (z) {
case 0: // Conditional return
if (y < 4) {
if (returnConditionalFlag(y))
cycles += 3;
cycles += 2;
} else {
switch (y) {
case 4: // GB: LD (FF00 + n),A
m_memory.set(0xff00 + fetchByte(), A());
cycles += 3;
break;
case 5: { // GB: ADD SP,dd
auto& f = F();
auto before = sp;
auto value = fetchByte();
sp.word += (int8_t)value;
clearFlag(f, ZF | NF);
setFlag(f, CF, sp.word & Bit16);
adjustHalfCarryAdd(f, before.high, value, sp.high);
}
cycles += 4;
break;
case 6: // GB: LD A,(FF00 + n)
A() = m_memory.get(0xff00 + fetchByte());
cycles += 3;
break;
case 7: { // GB: LD HL,SP + dd
auto& f = F();
auto before = sp;
auto value = fetchByte();
HL().word = before.word + (int8_t)value;
clearFlag(f, ZF | NF);
setFlag(f, CF, HL().word & Bit16);
adjustHalfCarryAdd(f, before.high, value, HL().high);
}
cycles += 3;
break;
}
}
break;
case 1: // POP & various ops
switch (q) {
case 0: // POP rp2[p]
popWord(RP2(p));
cycles += 3;
break;
case 1:
switch (p) {
case 0: // RET
ret();
cycles += 4;
break;
case 1: // GB: RETI
reti();
cycles += 4;
break;
case 2: // JP HL
pc = HL();
cycles += 1;
break;
case 3: // LD SP,HL
sp = HL();
cycles += 2;
break;
}
}
break;
case 2: // Conditional jump
if (y < 4) {
jumpConditionalFlag(y);
cycles += 3;
} else {
switch (y) {
case 4: // GB: LD (FF00 + C),A
m_memory.set(0xff00 + C(), A());
cycles += 2;
break;
case 5: // GB: LD (nn),A
fetchWord();
m_memory.ADDRESS() = MEMPTR();
m_memory.reference() = A();
cycles += 4;
break;
case 6: // GB: LD A,(FF00 + C)
m_memory.ADDRESS().word = 0xff00 + C();
A() = m_memory.reference();
cycles += 2;
break;
case 7: // GB: LD A,(nn)
fetchWord();
m_memory.ADDRESS() = MEMPTR();
A() = m_memory.reference();
cycles += 4;
break;
}
}
break;
case 3: // Assorted operations
switch (y) {
case 0: // JP nn
fetchWord();
jump();
cycles += 4;
break;
case 1: // CB prefix
m_prefixCB = true;
fetchExecute();
break;
case 6: // DI
di();
cycles++;
break;
case 7: // EI
ei();
cycles++;
break;
}
break;
case 4: // Conditional call: CALL cc[y], nn
if (callConditionalFlag(y))
cycles += 3;
cycles += 3;
break;
case 5: // PUSH & various ops
switch (q) {
case 0: // PUSH rp2[p]
pushWord(RP2(p));
cycles += 4;
break;
case 1:
switch (p) {
case 0: // CALL nn
fetchWord();
call();
cycles += 6;
break;
}
}
break;
case 6: // Operate on accumulator and immediate operand: alu[y] n
switch (y) {
case 0: // ADD A,n
add(A(), fetchByte());
break;
case 1: // ADC A,n
adc(A(), fetchByte());
break;
case 2: // SUB n
sub(A(), fetchByte());
break;
case 3: // SBC A,n
sbc(A(), fetchByte());
break;
case 4: // AND n
andr(A(), fetchByte());
break;
case 5: // XOR n
xorr(A(), fetchByte());
break;
case 6: // OR n
orr(A(), fetchByte());
break;
case 7: // CP n
compare(fetchByte());
break;
}
cycles += 2;
break;
case 7: // Restart: RST y * 8
restart(y << 3);
cycles += 4;
break;
}
break;
}
}