EightBit/MC6850/inc/MC6850.h

328 lines
12 KiB
C
Raw Normal View History

#pragma once
#include <cstdint>
2019-01-10 22:23:51 +00:00
#include <ClockedChip.h>
#include <Signal.h>
namespace EightBit {
2019-01-10 22:23:51 +00:00
class mc6850 final : public ClockedChip {
public:
2019-01-10 22:23:51 +00:00
void powerOn() final;
// +--------+----------------------------------------------------------------------------------+
// | | Buffer address |
// | +------------------+------------------+--------------------+-----------------------+
// | | _ | _ | _ | _ |
// | Data | RS * R/W | RS * R/W | RS * R/W | RS * R/W |
// | Bus | (high)(low) | (high)(high) | (low)(low) | (low)(low) |
// | Line | Transmit | Receive | | |
// | Number | Data | Data | Control | Status |
// | | Register | Register | register | register |
// | +------------------+------------------+--------------------+-----------------------+
// | | (Write only) + (Read only) + (Write only) | (Read only) |
// +--------+------------------+------------------+--------------------+-----------------------+
// | 0 | Data bit 0* | Data bit 0 | Counter divide | Receive data register |
// | | | | select 1 (CR0) | full (RDRF) |
// +--------+------------------+------------------+--------------------+-----------------------+
// | 1 | Data bit 1 | Data bit 1 | Counter divide | Transmit data register|
// | | | | select 2 (CR1) | empty (TDRE) |
// +--------+------------------+------------------+--------------------+-----------------------+
// | 2 | Data bit 2 | Data bit 2 | Word select 1 | Data carrier detect |
// | | | | (CR2) | (DCD active) |
// +--------+------------------+------------------+--------------------+-----------------------+
// | 3 | Data bit 3 | Data bit 3 | Word select 1 | Clear to send |
// | | | | (CR3) | (CTS active) |
// +--------+------------------+------------------+--------------------+-----------------------+
// | 4 | Data bit 4 | Data bit 4 | Word select 1 | Framing error |
// | | | | (CR4) | (FE) |
// +--------+------------------+------------------+--------------------+-----------------------+
// | 5 | Data bit 5 | Data bit 5 | Transmit control 1 | Receiver overrun |
// | | | | (CR5) | (OVRN) |
// +--------+------------------+------------------+--------------------+-----------------------+
// | 6 | Data bit 6 | Data bit 6 | Transmit control 2 | Parity error (PE) |
// | | | | (CR6) | |
// +--------+------------------+------------------+--------------------+-----------------------+
// | 7 | Data bit 7*** | Data bit 7** | Receive interrupt | Interrupt request |
// | | | | enable (CR7) | (IRQ active) |
// +--------+------------------+------------------+--------------------+-----------------------+
// * Leading bit = LSB = Bit 0
// ** Data bit will be zero in 7-bit plus parity modes
// *** Data bit is "don't care" in 7-bit plus parity modes
enum ControlRegisters {
CR0 = 0b1, // Counter divide
CR1 = 0b10, // "
CR2 = 0b100, // Word select
CR3 = 0b1000, // "
CR4 = 0b10000, // "
CR5 = 0b100000, // Transmit control
CR6 = 0b1000000, // "
CR7 = 0b10000000 // Receive control
};
// CR0 and CR1
enum CounterDivideSelect {
One = 0b00,
Sixteen = 0b01,
SixtyFour = 0b10,
MasterReset = 0b11
};
// CR2, CR3 and CR4
enum WordSelect {
SevenEvenTwo = 0b000,
SevenOddTwo = 0b001,
SevenEvenOne = 0b010,
SevenOddOne = 0b011,
EightTwo = 0b100,
EightOne = 0b101,
EightEvenOne = 0b110,
EightOddOne = 0b111,
};
// CR5 and CR6
enum TransmitterControl {
ReadyLowInterruptDisabled = 0b00,
ReadyLowInterruptEnabled = 0b01,
ReadyHighInterruptDisabled = 0b10,
ReadyLowInterruptDisabledTransmitBreak = 0b11,
};
// CR7
enum ReceiveControl {
ReceiveInterruptDisable = 0b0,
ReceiveInterruptEnable = 0b1, // Triggers on: RDR full, overrun, DCD low -> high
};
// STATUS REGISTER Information on the status of the ACIA is
// available to the MPU by reading the ACIA Status Register.
// This read-only register is selected when RS is low and R/W is high.
// Information stored in this register indicates the status of the
// Transmit Data Register, the Receive Data Register and error logic,
// and the peripheral/modem status inputs of the ACIA
enum StatusRegisters {
// Receive Data Register Full (RDRF), Bit 0 - Receive Data
// Register Full indicates that received data has been
// transferred to the Receive Data Register. RDRF is cleared
// after an MPU read of the Receive Data Register or by a
// master reset. The cleared or empty state indicates that the
// contents of the Receive Data Register are not current.
// Data Carrier Detect being high also causes RDRF to indicate
// empty.
STATUS_RDRF = 0b1,
// Transmit Data Register Empty (TDRE), Bit 1 - The Transmit
// Data Register Empty bit being set high indicates that the
// Transmit Data Register contents have been transferred and
// that new data may be entered. The low state indicates that
// the register is full and that transmission of a new
// character has not begun since the last write data command.
STATUS_TDRE = 0b10,
// ___
// Data Carrier Detect (DCD), Bit 2 - The Data Carrier Detect
// bit will be high when the DCD (low) input from a modem has gone
// high to indicate that a carrier is not present. This bit
// going high causes an Interrupt Request to be generated when
// the Receive Interrupt Enable is set. It remains high after
// the DCD (low) input is returned low until cleared by first reading
// the Status Register and then the Data Register or until a
// master reset occurs. If the DCD (low) input remains high after
// read status and read data or master reset has occurred, the
// interrupt is cleared, the DCD (low) status bit remains high and
// will follow the DCD (low) input.
STATUS_DCD = 0b100,
// ___
// Clear-to-Send (CTS), Bit 3 - The Clear-to-Send bit indicates
// the state of the Clear-to-Send input from a modem. A low CTS (low)
// indicates that there is a Clear-to-Send from the modem. In
// the high state, the Transmit Data Register Empty bit is
// inhibited and the Clear-to-Send status bit will be high.
// Master reset does not affect the Clear-to-Send status bit.
STATUS_CTS = 0b1000,
// Framing Error (FE), Bit 4 - Framing error indicates that the
// received character is improperly framed by a start and a
// stop bit and is detected by the absence of the first stop
// bit. This error indicates a synchronization error, faulty
// transmission, or a break condition. The framing error flag
// is set or reset during the receive data transfer time.
// Therefore, this error indicator is present throughout the
// time that the associated character is available.
STATUS_FE = 0b10000,
// Receiver Overrun (OVRN), Bit 5- Overrun is an error flag
// that indicates that one or more characters in the data
// stream were lost. That is, a character or a number of
// characters were received but not read from the Receive
// Data Register (RDR) prior to subsequent characters being
// received. The overrun condition begins at the midpoint of
// the last bit of the second character received in succession
// without a read of the RDR having occurred. The Overrun does
// not occur in the Status Register until the valid character
// prior to Overrun has been read. The RDRF bit remains set
// until the Overrun is reset. Character synchronization is
// maintained during the Overrun condition. The Overrun
// indication is reset after the reading of data from the
// Receive Data Register or by a Master Reset.
STATUS_OVRN = 0b100000,
// Parity Error (PE), Bit 6 - The parity error flag indicates
// that the number of highs {ones) in the character does not
// agree with the preselected odd or even parity. Odd parity
// is defined to be when the total number of ones is odd. The
// parity error indication will be present as long as the data
// character is in the RDR. If no parity is selected, then both
// the transmitter parity generator output and the receiver
// parity check results are inhibited
STATUS_PE = 0b1000000,
// ___
// Interrupt Request (IRQ), Bit 7- The IRQ (low) bit indicates the
// state of the IRQ (low) output. Any interrupt condition with its
// applicable enable will be indicated in this status bit.
// Anytime the IRQ (low) output is low the IRQ bit will be high to
// indicate the interrupt or service request status. IRQ (low) is
// cleared by a read operation to the Receive Data Register or
// a write operation to the Transmit Data Register.
STATUS_IRQ = 0b10000000,
};
// Receive data, (I) Active high
auto& RXDATA() { return m_RXDATA; }
// Transmit data, (O) Active high
auto& TXDATA() { return m_TXDATA; }
// Request to send, (O) Active low
auto& RTS() { return m_RTS; }
// Clear to send, (I) Active low
auto& CTS() { return m_CTS; }
// Data carrier detect, (I) Active low
auto& DCD() { return m_DCD; }
// Transmit clock, (I) Active high
auto& RXCLK() { return m_RXCLK; }
// Receive clock, (I) Active high
auto& TXCLK() { return m_TXCLK; }
// Chip select, bit 0, (I) Active high
auto& CS0() { return m_CS0; }
// Chip select, bit 1, (I) Active high
auto& CS1() { return m_CS1; }
// Chip select, bit 2, (I) Active low
auto& CS2() { return m_CS2; }
// Register select, (I) Active high
auto& RS() { return m_RS; }
// Read/Write, (I) Read high, write low
auto& RW() { return m_RW; }
// ACIA Enable, (I) Active high
auto& E() { return m_E; }
// Interrupt request, (O) Active low
auto& IRQ() { return m_IRQ; }
// Data, (I/O)
auto& DATA() { return m_data; }
// Expose these internal registers, so we can update internal state
// Transmit data register;
auto& TDR() { return m_TDR; }
// Receive data register;
auto& RDR() { return m_RDR; }
2019-01-10 22:23:51 +00:00
void step();
2019-01-10 22:23:51 +00:00
bool activated() { return powered() && raised(E()) && selected(); }
bool selected();
void markTransmitComplete();
void markReceiveStarting();
std::string dumpStatus();
Signal<EventArgs> Accessing;
Signal<EventArgs> Accessed;
Signal<EventArgs> Transmitting;
Signal<EventArgs> Transmitted;
Signal<EventArgs> Receiving;
Signal<EventArgs> Received;
private:
uint8_t status();
void reset();
void startTransmit();
void completeReceive();
bool isInterruptRequired() const;
bool isTransmitInterruptRequired() const;
bool isReceiveInterruptRequired() const;
bool transmitInterruptEnabled() const { return m_transmitControl == ReadyLowInterruptEnabled; }
bool receiveInterruptEnabled() const { return m_receiveControl == ReceiveInterruptEnable; }
bool transmitReadyHigh() const { return m_transmitControl == ReadyHighInterruptDisabled; }
bool transmitReadyLow() const { return !transmitReadyHigh(); }
PinLevel m_RXDATA = PinLevel::Low;
PinLevel m_TXDATA = PinLevel::Low;
PinLevel m_RTS = PinLevel::Low;
PinLevel m_CTS = PinLevel::Low;
PinLevel m_DCD = PinLevel::Low;
PinLevel m_oldDCD = PinLevel::Low; // So we can detect low -> high transition
PinLevel m_RXCLK = PinLevel::Low;
PinLevel m_TXCLK = PinLevel::Low;
PinLevel m_CS0 = PinLevel::Low;;
PinLevel m_CS1 = PinLevel::Low;;
PinLevel m_CS2 = PinLevel::Low;;
PinLevel m_RS = PinLevel::Low;;
PinLevel m_RW = PinLevel::Low;;
PinLevel m_E = PinLevel::Low;;
PinLevel m_IRQ = PinLevel::Low;;
uint8_t m_data = 0;
bool m_statusRead = false;
// Control registers
CounterDivideSelect m_counterDivide = One;
WordSelect m_wordSelect = SevenEvenTwo;
TransmitterControl m_transmitControl = ReadyLowInterruptDisabled;
ReceiveControl m_receiveControl = ReceiveInterruptDisable;
// Status registers
bool m_statusRDRF = false;
bool m_statusTDRE = true;
bool m_statusOVRN = false;
// Data registers
uint8_t m_TDR = 0;
uint8_t m_RDR = 0;
2019-01-10 22:23:51 +00:00
enum StartupCondition { ColdStart, WarmStart, Unknown };
StartupCondition m_startup = WarmStart;
};
}