#include "stdafx.h" #include "../inc/mos6502.h" EightBit::MOS6502::MOS6502(Bus& bus) noexcept : LittleEndianProcessor(bus) { RaisedPOWER.connect([this](EventArgs) { X() = Bit7; Y() = 0; A() = 0; P() = RF; S() = Mask8; lowerSYNC(); lowerRW(); }); } DEFINE_PIN_LEVEL_CHANGERS(NMI, MOS6502) DEFINE_PIN_LEVEL_CHANGERS(SO, MOS6502) DEFINE_PIN_LEVEL_CHANGERS(SYNC, MOS6502) DEFINE_PIN_LEVEL_CHANGERS(RDY, MOS6502) DEFINE_PIN_LEVEL_CHANGERS(RW, MOS6502) int EightBit::MOS6502::step() noexcept { resetCycles(); ExecutingInstruction.fire(*this); if (LIKELY(powered())) { tick(); // A cycle is used, whether RDY is high or not if (UNLIKELY(lowered(SO()))) handleSO(); if (LIKELY(raised(RDY()))) { fetchInstruction(); // Priority: RESET > NMI > INT if (UNLIKELY(lowered(RESET()))) handleRESET(); else if (UNLIKELY(lowered(NMI()))) handleNMI(); else if (UNLIKELY(lowered(INT()) && !interruptMasked())) handleINT(); else execute(); } } ExecutedInstruction.fire(*this); ASSUME(cycles() > 0); return cycles(); } // Interrupt (etc.) handlers void EightBit::MOS6502::handleSO() noexcept { raiseSO(); P() |= VF; } void EightBit::MOS6502::handleRESET() noexcept { raiseRESET(); interrupt(RSTvector, hardware, reset); } void EightBit::MOS6502::handleNMI() noexcept { raiseNMI(); interrupt(NMIvector); } void EightBit::MOS6502::handleINT() noexcept { raiseINT(); interrupt(IRQvector); } void EightBit::MOS6502::interrupt(uint8_t vector, interrupt_source_t source, interrupt_type_t type) noexcept { if (type == reset) { dummyPush(); dummyPush(); dummyPush(); } else { pushWord(PC()); push(P() | (source == hardware ? 0 : BF)); } set_flag(IF); // Disable IRQ jump(Processor::getWordPaged(0xff, vector)); } // void EightBit::MOS6502::busWrite() noexcept { tick(); writeToBus(); } uint8_t EightBit::MOS6502::busRead() noexcept { tick(); return readFromBus(); } // void EightBit::MOS6502::execute() noexcept { switch (opcode()) { case 0x00: swallow_fetch(); interrupt(IRQvector, software); break; // BRK (implied) case 0x01: AM_IndexedIndirectX(); orr(); break; // ORA (indexed indirect X) case 0x02: jam(); break; // *JAM case 0x03: AM_IndexedIndirectX(); slo(); break; // *SLO (indexed indirect X) case 0x04: AM_ZeroPage(); break; // *NOP (zero page) case 0x05: AM_ZeroPage(); orr(); break; // ORA (zero page) case 0x06: AM_ZeroPage(); MW(asl); break; // ASL (zero page) case 0x07: AM_ZeroPage(); slo(); break; // *SLO (zero page) case 0x08: swallow(); php(); break; // PHP (implied) case 0x09: AM_Immediate(); orr(); break; // ORA (immediate) case 0x0a: swallow(); A() = asl(A()); break; // ASL A (implied) case 0x0b: AM_Immediate(); anc(); break; // *ANC (immediate) case 0x0c: AM_Absolute(); break; // *NOP (absolute) case 0x0d: AM_Absolute(); orr(); break; // ORA (absolute) case 0x0e: AM_Absolute(); MW(asl); break; // ASL (absolute) case 0x0f: AM_Absolute(); slo(); break; // *SLO (absolute) case 0x10: branch(negative() == 0); break; // BPL (relative) case 0x11: AM_IndirectIndexedY(); orr(); break; // ORA (indirect indexed Y) case 0x12: jam(); break; // *JAM case 0x13: Address_IndirectIndexedY(); fixupR(); slo(); break; // *SLO (indirect indexed Y) case 0x14: AM_ZeroPageX(); break; // *NOP (zero page, X) case 0x15: AM_ZeroPageX(); orr(); break; // ORA (zero page, X) case 0x16: AM_ZeroPageX(); MW(asl); break; // ASL (zero page, X) case 0x17: AM_ZeroPageX(); slo(); break; // *SLO (zero page, X) case 0x18: swallow(); reset_flag(CF); break; // CLC (implied) case 0x19: AM_AbsoluteY(); orr(); break; // ORA (absolute, Y) case 0x1a: swallow(); break; // *NOP (implied) case 0x1b: Address_AbsoluteY(); fixupR(); slo(); break; // *SLO (absolute, Y) case 0x1c: Address_AbsoluteX(); maybe_fixupR(); break; // *NOP (absolute, X) case 0x1d: AM_AbsoluteX(); orr(); break; // ORA (absolute, X) case 0x1e: Address_AbsoluteX(); fixupR(); MW(asl); break; // ASL (absolute, X) case 0x1f: Address_AbsoluteX(); fixupR(); slo(); break; // *SLO (absolute, X) case 0x20: jsr(); break; // JSR (absolute) case 0x21: AM_IndexedIndirectX(); andr(); break; // AND (indexed indirect X) case 0x22: jam(); break; // *JAM case 0x23: AM_IndexedIndirectX(); rla();; break; // *RLA (indexed indirect X) case 0x24: AM_ZeroPage(); bit(); break; // BIT (zero page) case 0x25: AM_ZeroPage(); andr(); break; // AND (zero page) case 0x26: AM_ZeroPage(); MW(rol); break; // ROL (zero page) case 0x27: AM_ZeroPage(); rla();; break; // *RLA (zero page) case 0x28: swallow(); plp(); break; // PLP (implied) case 0x29: AM_Immediate(); andr(); break; // AND (immediate) case 0x2a: swallow(); A() = rol(A()); break; // ROL A (implied) case 0x2b: AM_Immediate(); anc(); break; // *ANC (immediate) case 0x2c: AM_Absolute(); bit(); break; // BIT (absolute) case 0x2d: AM_Absolute(); andr(); break; // AND (absolute) case 0x2e: AM_Absolute(); MW(rol); break; // ROL (absolute) case 0x2f: AM_Absolute(); rla();; break; // *RLA (absolute) case 0x30: branch(negative()); break; // BMI (relative) case 0x31: AM_IndirectIndexedY(); andr(); break; // AND (indirect indexed Y) case 0x32: jam(); break; // *JAM case 0x33: Address_IndirectIndexedY(); fixupR(); rla();; break; // *RLA (indirect indexed Y) case 0x34: AM_ZeroPageX(); break; // *NOP (zero page, X) case 0x35: AM_ZeroPageX(); andr(); break; // AND (zero page, X) case 0x36: AM_ZeroPageX(); MW(rol); break; // ROL (zero page, X) case 0x37: AM_ZeroPageX(); rla();; break; // *RLA (zero page, X) case 0x38: swallow(); set_flag(CF); break; // SEC (implied) case 0x39: AM_AbsoluteY(); andr(); break; // AND (absolute, Y) case 0x3a: swallow(); break; // *NOP (implied) case 0x3b: Address_AbsoluteY(); fixupR(); rla();; break; // *RLA (absolute, Y) case 0x3c: Address_AbsoluteX(); maybe_fixupR(); break; // *NOP (absolute, X) case 0x3d: AM_AbsoluteX(); andr(); break; // AND (absolute, X) case 0x3e: Address_AbsoluteX(); fixupR(); MW(rol); break; // ROL (absolute, X) case 0x3f: Address_AbsoluteX(); fixupR(); rla();; break; // *RLA (absolute, X) case 0x40: swallow(); rti(); break; // RTI (implied) case 0x41: AM_IndexedIndirectX(); eorr(); break; // EOR (indexed indirect X) case 0x42: jam(); break; // *JAM case 0x43: AM_IndexedIndirectX(); sre(); break; // *SRE (indexed indirect X) case 0x44: AM_ZeroPage(); break; // *NOP (zero page) case 0x45: AM_ZeroPage(); eorr(); break; // EOR (zero page) case 0x46: AM_ZeroPage(); MW(lsr); break; // LSR (zero page) case 0x47: AM_ZeroPage(); sre(); break; // *SRE (zero page) case 0x48: swallow(); push(A()); break; // PHA (implied) case 0x49: AM_Immediate(); eorr(); break; // EOR (immediate) case 0x4a: swallow(); A() = lsr(A()); break; // LSR A (implied) case 0x4b: AM_Immediate(); asr(); break; // *ASR (immediate) case 0x4c: Address_Absolute(); jump(BUS().ADDRESS()); break; // JMP (absolute) case 0x4d: AM_Absolute(); eorr(); break; // EOR (absolute) case 0x4e: AM_Absolute(); MW(lsr); break; // LSR (absolute) case 0x4f: AM_Absolute(); sre(); break; // *SRE (absolute) case 0x50: branch(overflow() == 0); break; // BVC (relative) case 0x51: AM_IndirectIndexedY(); eorr(); break; // EOR (indirect indexed Y) case 0x52: jam(); break; // *JAM case 0x53: Address_IndirectIndexedY(); fixupR(); sre(); break; // *SRE (indirect indexed Y) case 0x54: AM_ZeroPageX(); break; // *NOP (zero page, X) case 0x55: AM_ZeroPageX(); eorr(); break; // EOR (zero page, X) case 0x56: AM_ZeroPageX(); MW(lsr); break; // LSR (zero page, X) case 0x57: AM_ZeroPageX(); sre(); break; // *SRE (zero page, X) case 0x58: swallow(); reset_flag(IF); break; // CLI (implied) case 0x59: AM_AbsoluteY(); eorr(); break; // EOR (absolute, Y) case 0x5a: swallow(); break; // *NOP (implied) case 0x5b: Address_AbsoluteY(); fixupR(); sre(); break; // *SRE (absolute, Y) case 0x5c: Address_AbsoluteX(); maybe_fixupR(); break; // *NOP (absolute, X) case 0x5d: AM_AbsoluteX(); eorr(); break; // EOR (absolute, X) case 0x5e: Address_AbsoluteX(); fixupR(); MW(lsr); break; // LSR (absolute, X) case 0x5f: Address_AbsoluteX(); fixupR(); sre(); break; // *SRE (absolute, X) case 0x60: swallow(); rts(); break; // RTS (implied) case 0x61: AM_IndexedIndirectX(); adc(); break; // ADC (indexed indirect X) case 0x62: jam(); break; // *JAM case 0x63: AM_IndexedIndirectX(); rra(); break; // *RRA (indexed indirect X) case 0x64: AM_ZeroPage(); break; // *NOP (zero page) case 0x65: AM_ZeroPage(); adc(); break; // ADC (zero page) case 0x66: AM_ZeroPage(); MW(ror); break; // ROR (zero page) case 0x67: AM_ZeroPage(); rra(); break; // *RRA (zero page) case 0x68: swallow(); swallow_stack(); A() = through(pop()); break; // PLA (implied) case 0x69: AM_Immediate(); adc(); break; // ADC (immediate) case 0x6a: swallow(); A() = ror(A()); break; // ROR A (implied) case 0x6b: AM_Immediate(); arr(); break; // *ARR (immediate) case 0x6c: Address_Indirect(); jump(BUS().ADDRESS()); break; // JMP (indirect) case 0x6d: AM_Absolute(); adc(); break; // ADC (absolute) case 0x6e: AM_Absolute(); MW(ror); break; // ROR (absolute) case 0x6f: AM_Absolute(); rra(); break; // *RRA (absolute) case 0x70: branch(overflow()); break; // BVS (relative) case 0x71: AM_IndirectIndexedY(); adc(); break; // ADC (indirect indexed Y) case 0x72: jam(); break; // *JAM case 0x73: Address_IndirectIndexedY(); fixupR(); rra(); break; // *RRA (indirect indexed Y) case 0x74: AM_ZeroPageX(); break; // *NOP (zero page, X) case 0x75: AM_ZeroPageX(); adc(); break; // ADC (zero page, X) case 0x76: AM_ZeroPageX(); MW(ror); break; // ROR (zero page, X) case 0x77: AM_ZeroPageX(); rra(); break; // *RRA (zero page, X) case 0x78: swallow(); set_flag(IF); break; // SEI (implied) case 0x79: AM_AbsoluteY(); adc(); break; // ADC (absolute, Y) case 0x7a: swallow(); break; // *NOP (implied) case 0x7b: Address_AbsoluteY(); fixupR(); rra(); break; // *RRA (absolute, Y) case 0x7c: Address_AbsoluteX(); maybe_fixupR(); break; // *NOP (absolute, X) case 0x7d: AM_AbsoluteX(); adc(); break; // ADC (absolute, X) case 0x7e: Address_AbsoluteX(); fixupR(); MW(ror); break; // ROR (absolute, X) case 0x7f: Address_AbsoluteX(); fixupR(); rra(); break; // *RRA (absolute, X) case 0x80: AM_Immediate(); break; // *NOP (immediate) case 0x81: Address_IndexedIndirectX(); memoryWrite(A()); break; // STA (indexed indirect X) case 0x82: AM_Immediate(); break; // *NOP (immediate) case 0x83: Address_IndexedIndirectX(); memoryWrite(A() & X()); break; // *SAX (indexed indirect X) case 0x84: Address_ZeroPage(); memoryWrite(Y()); break; // STY (zero page) case 0x85: Address_ZeroPage(); memoryWrite(A()); break; // STA (zero page) case 0x86: Address_ZeroPage(); memoryWrite(X()); break; // STX (zero page) case 0x87: Address_ZeroPage(); memoryWrite(A() & X()); break; // *SAX (zero page) case 0x88: swallow(); Y() = dec(Y()); break; // DEY (implied) case 0x89: AM_Immediate(); break; // *NOP (immediate) case 0x8a: swallow(); A() = through(X()); break; // TXA (implied) case 0x8b: AM_Immediate(); ane(); break; // *ANE (immediate) case 0x8c: Address_Absolute(); memoryWrite(Y()); break; // STY (absolute) case 0x8d: Address_Absolute(); memoryWrite(A()); break; // STA (absolute) case 0x8e: Address_Absolute(); memoryWrite(X()); break; // STX (absolute) case 0x8f: Address_Absolute(); memoryWrite(A() & X()); break; // *SAX (absolute) case 0x90: branch(carry() == 0); break; // BCC (relative) case 0x91: Address_IndirectIndexedY(); fixup(); memoryWrite(A()); break; // STA (indirect indexed Y) case 0x92: jam(); break; // *JAM case 0x93: Address_IndirectIndexedY(); fixup(); sha(); break; // *SHA (indirect indexed, Y) case 0x94: Address_ZeroPageX(); memoryWrite(Y()); break; // STY (zero page, X) case 0x95: Address_ZeroPageX(); memoryWrite(A()); break; // STA (zero page, X) case 0x96: Address_ZeroPageY(); memoryWrite(X()); break; // STX (zero page, Y) case 0x97: Address_ZeroPageY(); memoryWrite(A() & X()); break; // *SAX (zero page, Y) case 0x98: swallow(); A() = through(Y()); break; // TYA (implied) case 0x99: Address_AbsoluteY(); fixup(); memoryWrite(A()); break; // STA (absolute, Y) case 0x9a: swallow(); S() = X(); break; // TXS (implied) case 0x9b: Address_AbsoluteY(); fixup(); tas(); break; // *TAS (absolute, Y) case 0x9c: Address_AbsoluteX(); fixup(); sya(); break; // *SYA (absolute, X) case 0x9d: Address_AbsoluteX(); fixup(); memoryWrite(A()); break; // STA (absolute, X) case 0x9e: Address_AbsoluteY(); fixup(); sxa(); break; // *SXA (absolute, Y) case 0x9f: Address_AbsoluteY(); fixup(); sha(); break; // *SHA (absolute, Y) case 0xa0: AM_Immediate(); Y() = through(); break; // LDY (immediate) case 0xa1: AM_IndexedIndirectX(); A() = through(); break; // LDA (indexed indirect X) case 0xa2: AM_Immediate(); X() = through(); break; // LDX (immediate) case 0xa3: AM_IndexedIndirectX(); A() = X() = through(); break; // *LAX (indexed indirect X) case 0xa4: AM_ZeroPage(); Y() = through(); break; // LDY (zero page) case 0xa5: AM_ZeroPage(); A() = through(); break; // LDA (zero page) case 0xa6: AM_ZeroPage(); X() = through(); break; // LDX (zero page) case 0xa7: AM_ZeroPage(); A() = X() = through(); break; // *LAX (zero page) case 0xa8: swallow(); Y() = through(A()); break; // TAY (implied) case 0xa9: AM_Immediate(); A() = through(); break; // LDA (immediate) case 0xaa: swallow(); X() = through(A()); break; // TAX (implied) case 0xab: AM_Immediate(); atx(); break; // *ATX (immediate) case 0xac: AM_Absolute(); Y() = through(); break; // LDY (absolute) case 0xad: AM_Absolute(); A() = through(); break; // LDA (absolute) case 0xae: AM_Absolute(); X() = through(); break; // LDX (absolute) case 0xaf: AM_Absolute(); A() = X() = through(); break; // *LAX (absolute) case 0xb0: branch(carry()); break; // BCS (relative) case 0xb1: AM_IndirectIndexedY(); A() = through(); break; // LDA (indirect indexed Y) case 0xb2: jam(); break; // *JAM case 0xb3: AM_IndirectIndexedY(); A() = X() = through(); break; // *LAX (indirect indexed Y) case 0xb4: AM_ZeroPageX(); Y() = through(); break; // LDY (zero page, X) case 0xb5: AM_ZeroPageX(); A() = through(); break; // LDA (zero page, X) case 0xb6: AM_ZeroPageY(); X() = through(); break; // LDX (zero page, Y) case 0xb7: AM_ZeroPageY(); A() = X() = through(); break; // *LAX (zero page, Y) case 0xb8: swallow(); reset_flag(VF); break; // CLV (implied) case 0xb9: AM_AbsoluteY(); A() = through(); break; // LDA (absolute, Y) case 0xba: swallow(); X() = through(S()); break; // TSX (implied) case 0xbb: Address_AbsoluteY(); maybe_fixup(); las(); break; // *LAS (absolute, Y) case 0xbc: AM_AbsoluteX(); Y() = through(); break; // LDY (absolute, X) case 0xbd: AM_AbsoluteX(); A() = through(); break; // LDA (absolute, X) case 0xbe: AM_AbsoluteY(); X() = through(); break; // LDX (absolute, Y) case 0xbf: AM_AbsoluteY(); A() = X() = through(); break; // *LAX (absolute, Y) case 0xc0: AM_Immediate(); cmp(Y()); break; // CPY (immediate) case 0xc1: AM_IndexedIndirectX(); cmp(A()); break; // CMP (indexed indirect X) case 0xc2: AM_Immediate(); break; // *NOP (immediate) case 0xc3: AM_IndexedIndirectX(); dcp(); break; // *DCP (indexed indirect X) case 0xc4: AM_ZeroPage(); cmp(Y()); break; // CPY (zero page) case 0xc5: AM_ZeroPage(); cmp(A()); break; // CMP (zero page) case 0xc6: AM_ZeroPage(); MW(dec); break; // DEC (zero page) case 0xc7: AM_ZeroPage(); dcp(); break; // *DCP (zero page) case 0xc8: swallow(); Y() = inc(Y()); break; // INY (implied) case 0xc9: AM_Immediate(); cmp(A()); break; // CMP (immediate) case 0xca: swallow(); X() = dec(X()); break; // DEX (implied) case 0xcb: AM_Immediate(); axs(); break; // *AXS (immediate) case 0xcc: AM_Absolute(); cmp(Y()); break; // CPY (absolute) case 0xcd: AM_Absolute(); cmp(A()); break; // CMP (absolute) case 0xce: AM_Absolute(); MW(dec); break; // DEC (absolute) case 0xcf: AM_Absolute(); dcp(); break; // *DCP (absolute) case 0xd0: branch(zero() == 0); break; // BNE (relative) case 0xd1: AM_IndirectIndexedY(); cmp(A()); break; // CMP (indirect indexed Y) case 0xd2: jam(); break; // *JAM case 0xd3: Address_IndirectIndexedY(); fixupR(); dcp(); break; // *DCP (indirect indexed Y) case 0xd4: AM_ZeroPageX(); break; // *NOP (zero page, X) case 0xd5: AM_ZeroPageX(); cmp(A()); break; // CMP (zero page, X) case 0xd6: AM_ZeroPageX(); MW(dec); break; // DEC (zero page, X) case 0xd7: AM_ZeroPageX(); dcp(); break; // *DCP (zero page, X) case 0xd8: swallow(); reset_flag(DF); break; // CLD (implied) case 0xd9: AM_AbsoluteY(); cmp(A()); break; // CMP (absolute, Y) case 0xda: swallow(); break; // *NOP (implied) case 0xdb: Address_AbsoluteY(); fixupR(); dcp(); break; // *DCP (absolute, Y) case 0xdc: Address_AbsoluteX(); maybe_fixupR(); break; // *NOP (absolute, X) case 0xdd: AM_AbsoluteX(); cmp(A()); break; // CMP (absolute, X) case 0xde: Address_AbsoluteX(); fixupR(); MW(dec); break; // DEC (absolute, X) case 0xdf: Address_AbsoluteX(); fixupR(); dcp(); break; // *DCP (absolute, X) case 0xe0: AM_Immediate(); cmp(X()); break; // CPX (immediate) case 0xe1: AM_IndexedIndirectX(); sbc(); break; // SBC (indexed indirect X) case 0xe2: AM_Immediate(); break; // *NOP (immediate) case 0xe3: AM_IndexedIndirectX(); isb(); break; // *ISB (indexed indirect X) case 0xe4: AM_ZeroPage(); cmp(X()); break; // CPX (zero page) case 0xe5: AM_ZeroPage(); sbc(); break; // SBC (zero page) case 0xe6: AM_ZeroPage(); MW(inc); break; // INC (zero page) case 0xe7: AM_ZeroPage(); isb(); break; // *ISB (zero page) case 0xe8: swallow(); X() = inc(X()); break; // INX (implied) case 0xe9: AM_Immediate(); sbc(); break; // SBC (immediate) case 0xea: swallow(); break; // NOP (implied) case 0xeb: AM_Immediate(); sbc(); break; // *SBC (immediate) case 0xec: AM_Absolute(); cmp(X()); break; // CPX (absolute) case 0xed: AM_Absolute(); sbc(); break; // SBC (absolute) case 0xee: AM_Absolute(); MW(inc); break; // INC (absolute) case 0xef: AM_Absolute(); isb(); break; // *ISB (absolute) case 0xf0: branch(zero()); break; // BEQ (relative) case 0xf1: AM_IndirectIndexedY(); sbc(); break; // SBC (indirect indexed Y) case 0xf2: jam(); break; // *JAM case 0xf3: Address_IndirectIndexedY(); fixupR(); isb(); break; // *ISB (indirect indexed Y) case 0xf4: AM_ZeroPageX(); break; // *NOP (zero page, X) case 0xf5: AM_ZeroPageX(); sbc(); break; // SBC (zero page, X) case 0xf6: AM_ZeroPageX(); MW(inc); break; // INC (zero page, X) case 0xf7: AM_ZeroPageX(); isb(); break; // *ISB (zero page, X) case 0xf8: swallow(); set_flag(DF); break; // SED (implied) case 0xf9: AM_AbsoluteY(); sbc(); break; // SBC (absolute, Y) case 0xfa: swallow(); break; // *NOP (implied) case 0xfb: Address_AbsoluteY(); fixupR(); isb(); break; // *ISB (absolute, Y) case 0xfc: Address_AbsoluteX(); maybe_fixupR(); break; // *NOP (absolute, X) case 0xfd: AM_AbsoluteX(); sbc(); break; // SBC (absolute, X) case 0xfe: Address_AbsoluteX(); fixupR(); MW(inc); break; // INC (absolute, X) case 0xff: Address_AbsoluteX(); fixupR(); isb(); break; // *ISB (absolute, X) } } //// void EightBit::MOS6502::push(uint8_t value) noexcept { lowerStack(); memoryWrite(value); } uint8_t EightBit::MOS6502::pop() noexcept { raiseStack(); return memoryRead(); } void EightBit::MOS6502::dummyPush() noexcept { lowerStack(); tick(); // In place of the memory write } //// void EightBit::MOS6502::branch(const int condition) noexcept { AM_Immediate(); if (condition) { const auto relative = int8_t(BUS().DATA()); swallow(); const auto address = PC() + relative; noteFixedAddress(address); jump(address); maybe_fixup(); } } //// void EightBit::MOS6502::sbc() noexcept { const auto operand = A(); A() = sub(operand, carry(~P())); adjustOverflow_subtract(operand); adjustNZ(m_intermediate.low); reset_flag(CF, m_intermediate.high); } uint8_t EightBit::MOS6502::sub(const uint8_t operand, const int borrow) noexcept { return decimal() ? sub_d(operand, borrow) : sub_b(operand, borrow); } uint8_t EightBit::MOS6502::sub_b(const uint8_t operand, const int borrow) noexcept { const auto data = BUS().DATA(); m_intermediate.word = operand - data - borrow; return m_intermediate.low; } uint8_t EightBit::MOS6502::sub_d(const uint8_t operand, const int borrow) noexcept { const auto data = BUS().DATA(); m_intermediate.word = operand - data - borrow; uint8_t low = lowNibble(operand) - lowNibble(data) - borrow; const auto lowNegative = negative(low); if (lowNegative) low -= 6; uint8_t high = highNibble(operand) - highNibble(data) - (lowNegative >> 7); const auto highNegative = negative(high); if (highNegative) high -= 6; return promoteNibble(high) | lowNibble(low); } void EightBit::MOS6502::adc() noexcept { decimal() ? adc_d() : adc_b(); } void EightBit::MOS6502::adc_b() noexcept { const auto operand = A(); const auto data = BUS().DATA(); m_intermediate.word = operand + data + carry(); adjustOverflow_add(operand); set_flag(CF, carry(m_intermediate.high)); adjustNZ(m_intermediate.low); A() = m_intermediate.low; } void EightBit::MOS6502::adc_d() noexcept { const auto operand = A(); const auto data = BUS().DATA(); register16_t low = lowerNibble(operand) + lowerNibble(data) + carry(); m_intermediate = higherNibble(operand) + higherNibble(data); auto& high = m_intermediate; adjustZero((low + high).low); if (low.word > 0x09) { high += 0x10; low += 0x06; } adjustNegative(high.low); adjustOverflow_add(operand); if (high.word > 0x90) high += 0x60; set_flag(CF, high.high); A() = lowerNibble(low.low) | higherNibble(high.low); } void EightBit::MOS6502::andr() noexcept { A() = through(A() & BUS().DATA()); } void EightBit::MOS6502::bit() noexcept { const auto data = BUS().DATA(); set_flag(VF, overflow(data)); adjustZero(A() & data); adjustNegative(data); } void EightBit::MOS6502::cmp(const uint8_t first) noexcept { const auto second = BUS().DATA(); const register16_t result = first - second; adjustNZ(result.low); reset_flag(CF, result.high); } uint8_t EightBit::MOS6502::dec(const uint8_t value) noexcept { return through(value - 1); } void EightBit::MOS6502::eorr() noexcept { A() = through(A() ^ BUS().DATA()); } uint8_t EightBit::MOS6502::inc(const uint8_t value) noexcept { return through(value + 1); } void EightBit::MOS6502::jsr() noexcept { const auto low = fetchByte(); swallow_stack(); pushWord(PC()); PC() = { low, fetchByte() }; } void EightBit::MOS6502::orr() noexcept { A() = through(A() | BUS().DATA()); } void EightBit::MOS6502::php() noexcept { push(P() | BF); } void EightBit::MOS6502::plp() noexcept { swallow_stack(); P() = (pop() | RF) & ~BF; } void EightBit::MOS6502::rti() noexcept { plp(); ret(); } void EightBit::MOS6502::rts() noexcept { swallow_stack(); ret(); swallow_fetch(); } // Undocumented compound instructions void EightBit::MOS6502::anc() noexcept { andr(); set_flag(CF, A() & NF); } void EightBit::MOS6502::arr() noexcept { const auto value = BUS().DATA(); decimal() ? arr_d(value) : arr_b(value); } void EightBit::MOS6502::arr_d(const uint8_t value) noexcept { // With thanks to https://github.com/TomHarte/CLK // What a very strange instruction ARR is... A() &= value; auto unshiftedA = A(); A() = through((A() >> 1) | (carry() << 7)); set_flag(VF, overflow((A() ^ (A() << 1)))); if (lowerNibble(unshiftedA) + (unshiftedA & 0x1) > 5) A() = lowerNibble(A() + 6) | higherNibble(A()); set_flag(CF, higherNibble(unshiftedA) + (unshiftedA & 0x10) > 0x50); if (carry()) A() += 0x60; } void EightBit::MOS6502::arr_b(const uint8_t value) noexcept { A() &= value; A() = through((A() >> 1) | (carry() << 7)); set_flag(CF, A() & VF); set_flag(VF, overflow((A() ^ (A() << 1)))); } void EightBit::MOS6502::axs() noexcept { X() = through(sub_b(A() & X())); reset_flag(CF, m_intermediate.high); } void EightBit::MOS6502::jam() noexcept { BUS().ADDRESS() = PC(); memoryRead(); memoryRead(0xffff); BUS().ADDRESS().low = 0xfe; memoryRead(); memoryRead(); BUS().ADDRESS().low = 0xff; memoryRead(); memoryRead(); memoryRead(); memoryRead(); memoryRead(); memoryRead(); }