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PREFACE

In the spring of 1977 several of us at Motorola felt
it was time to plan the follow-on part to the successful MESGY
microprocessor. We were not the first to envision such a part,
but we were the first to actually have the time and resources
to proceed with the design. The new part was labeled the
M6809. Terry Ritter and I were assigned the task of defining

the new architecture,

As part of the preliminary design of the M6809 we did
an analysis of the then existing programs written for the
M680P. Much of the data we gathered from this analysis was

very helpful in the design of the ME8GI.

Several years have now passed since the introduction
of the M6889 and I felt it was time to analyze how the M6809
is actually being used. I hope this data will be as useful to
those computer architects that follow as the MEBEF data was to
us. It should enable a future designer to make appropriate

choices regarding his architecture.

During preparation of this paper I solicited help
from many sources. Some people provided their programs for me
to analyze, some people helped me write the programs that col-
lect the data, and some people did both. Special thanks to Ed
Rupp, Mike Cruess, Dave Trissell, Clay Huntsman, Cedell Alex-
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ander, Greg Stevens
also, I would like to
viding both time and
and analyze the data.
Lastly, I wis

Robin and Gena for their patience these last six vyear

4
and Hunter Scales for their assistance,
thank my management at Motorcla for pro-

the computer systems necessary to gather

h to thank my wife Becka and daughters

S,

-=- December 2, 198
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INTRODUCTION

In 1973 Motorola produced the first M6880 micropro-

cessor and its related peripherals. The M680C design was done

Y

ity in Phoenix, Arizona. In 1976

[

£ the HMotorcla faci

Qs

Motorola moved its microprocessor operations to Austin, Texas
and I transferred into the Microprocessor Design group. In
early 1977 I was assigned to the group that was responsible
for the architectural design of the follow on processor to the
M&80® -- the M6809. Since I had several vyears of software
experience at the time, I became most interested in the design

¢f the instruction set.

From very early in the project we felt the need for
more data on which to base design decisions, but none existed.
Some instruction set analyses had been done on large comput-
ers, but no data existed for microprocessors and we weren't
sure the data from the big computers was applicable to
microprocessors. To help alleviate this problem we undertock a
small project to do a static analysis of the existing M6808
programs to see how the M6886J was being used. Our tools were
crude, and it was difficult to find enough code to analyze.We
were, however, able to get some rudimentary data. We relied

heavily on this data in the design of the M6889.

After nearly two years of intensive design, the M6809
became silicon in January of 1979. By now it has been in the

11
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is practical to include in this paper and will gladly provide

it upon request.)

1.1. THE M6809 DESIGN PROJECT

8]

I

[e8

1 order to understand the analysis of the M6889% that

o

"
ot
[

will follow it is necessary to have some understanding of the
goals and constraints of the M6809 design project. Further,
it will be necessary to have some knowledge of the basic

the MEEBGI9.

iy

architecture and instruction set o

1.1.1. Goals and Constraints of the M6809 Project

Every design project in industry begins with some
goals that are shared by the designers, the marketers and,
hopefully, by the customer. Every project also has some design
constraints that must be adhered to in order to design a pro-

duct that is producible.

A personal goal held by both Terry Ritter and me for
the M6809 project was that we wanted to prove that it was pos-
sible to produce an inexpensive microprocessor that was also
easy to program. We felt too many of the existing microproces-
sors were needlessly difficult to program. We suspected that
the reason was not that it was impossible to make a microcom-
puter that was easy to program, but, rather, that the archi-
tects of the wearly microprocessors were generally more

hardware oriented than software oriented. We both had good
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software backgrounds and were determined that the M68869 would

be easier to program than the other 8-bit microprocessors.

ity or orthogonality) of the Instruction set was one of the
features of a computer that made it easy to program. We wanted
all the instructions, addressing modes and system resocurces

3

such as registers, to be treated in

8
9
Q
]
]
ot
n
o
O
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kX
¢
e
-3
®

o+

M68¢% data analysis showed that instructions In the M6808 such
as "add B to A' were rarely used despite the fact that they
provided a wuseful function with better than average perfor-
mance. The reason was that these instructions were ‘unusual’
and behaved differently than other instructions. It was our
observation that programmers will not wuse instructions that

are hard to use or that require the programmer to remember

peculiarities about their executlion. Consist

(D

ncy became the

st

"

e cry of the M6889 designe

The second goali of the design team was to support the

improvements we saw that were rapidly taking place in the

desi

[te!

n of microprocessor software. We wanted the architecture

to efficiently support mode

L]
3

1 block structured high level
languages. Features such as stack addressing were included for
this ©purpcse. We also wanted to better support assembly
language with the ability to write recursive and reentrant

programs. Foremost, we wanted to support the concept of posi-
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tion independent code so that our customers and Motorola could
create libraries of M6889 ROMs that could be placed anywhere

in their address space.

3

Another goal was to greatly improve the performanc

L)

cf the M680S as compared to the M688F. The M6889Y9 had to be the

highest performance 8-bit microprocessor available. Not onl

e

did the circuit designers need to make the M68#9 a producible
2 Mhz., part, but we alsc needed to improve the instruction set
and addressing modes to increase thrcughput; Further, we
wanted to provide the rudiments of 16-bit support without

increasing the cost significantly.

Along with the goals must come some constraints. it
was felt that the M6809 must be compatible with the M68G0 at
either the assembler socurce or machine <c¢ode level. The
machine code level was preferable. However, as it was impossi-
ble to get the necessary throughput improvements and remain
machine code compatible, we selected assembler scurce code

compatibility.

Since the company was already involved in the techni-
cally risky M68888 project, Motorola's management felt that
the M6809 should be produced with as little technical risk as
possible. Therefore, the M68F9 had to be built with the same
basic structure and technology as the M688¢. It would contain

dynamic nodes and be implemented in random logic rather than
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microcode., It had to be producible in either the HMOS or NMOS
production process. Lastly, the most overriding constraint of
all, the die size had to be such that the price of the M6EEY

would lie between the MGE8¢0 and the MEBEGD.

The success of the MGBE9 In the marketplace indicates

o
]

that these constraints were valid and that most of the goals

For those interested, more detalls regarding the
design stage o©f the ME869 can be found in the articles that
Terry Ritter and I published in "Byte® magazine in January,

February and March of 1979, [BON1] [BONZ] [BON3]

1.2. BRIEF QOVERVIEW OF THE M6889 ARCHITECTURE

In order to understand the data analysis that fol-
lows, it will be helpful to have a working knowledge of the

MBBEY architecture. The fo

]

lowing sections will describe the
programmer’s model, the instruction classes, and the address-

ing modes of the M68OY.

1.2.1. Programmer's Model

The M68BCY9 is a one and a half address, 8&-bit Von Neu-

man architecture microcomputer, Figure 1-1 is the

programmer's model of the ME6809,
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! A accumulator i B accumulator |
o e e e o e e e e +
o e e e o e e e +
| ¥ index register !
o e o e e e e +
o e e e e e e
! Y index register
o e o e +
s e +
i U stack pointer/index register |
e e e +
o e e i o +
] S stack pointer/index register i
o e o e e +
o o e e o e +
! program counter |
o e o e e e e +
g 4
| direct page register |
o o e e e e e +
i e e e e +
fcondition code register]
o e +

Figure l-1: M6809 Programmer’s Model

The A and B accumulators are general purpose 8-bit
accumulators that can be considered as one 16-bit accumulator
for 16-bit operations. When used as a 16-bit accumulator it is

&

called the D accumulator.

The X and Y index registers are general purpose index
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registers wused in the wvariocus forms of indexed addressing.
{Indexed addressing will be explained later.}) The U and 5

registers are also index registers, but they have the addi~

rt

io

w3

&

ot
hQ

vality that they can be used as stack pointers. The U

Al
™
t

Fomad

register

ot
n
9]

alled the user stack pointer. The 5 register is

P
15
¢

the hardware stack pointer and is alsc used by the hardware to

store machine state during subroutine calls and interrupts.

The program counter on the M680Y% 1is 16~bits wide,
thus supporting an address space of 65,536 Dbytes. All

addresses on the MH8EYS are 16-bits wide.

The address field of an instruction with direct
addressing on the M68£Y% is only 8-~bits wide. The direct page
register is a base register that provides the most significant
8-bits of address for direct addressing. The condition code
register contains the results from the last arithmetic or log-
ical operation as well as interrupt masks and other control

bits.

1.2.2¢ Instruction Classes

The 6889 has 7 major classes of instructions:

Arithmetic, Logical, Load and Store
Read / Modify / Write

Conditional Branch

Load Effective Address

pPush / Pull

Control Transfer

Miscellaneous



is

The arithmetic, logical, load and store instructions
make up the largest set of instructions. They are one and a
half address instructions that get one of their operands from
memory and the other from an accumulator and store the result,

if any, in the accumulator.

The read/modify/write instructions read a memory
location or accumulator, perform some operation on its con-
tents (e.g., clear, shift, increment), and store the resulf

back to the same memory location or accumulator.

The conditional branch instructions are used for con-
ditional ©program control transfer. The address field of the
branch instructions contains an offset to be added to the pro-
gram counter rather than specifing an absoclute address. These

instructions are inherently position independent.

The load effective address instructions evaluate the
effective address of an indexed addressing mode instruction
and return the effective address to an index register. This
makes the powerful address calculation hardware already
present for indexed addressing available for address manipula-

tion.

The push/pull instructions allow cone or several of
the registers to be pushed or pulled on the stacks pointed to

by the U or § stack pointers. A single push or pull instruc-
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tion can push or pull from 1 to B registers.

The control transfer instructions include the subrou-
tine wc¢alls as well as the unconditional jumps and branches.

The miscellaneous cate

W)

ory includes instructions such as sign

w
s

e

L]

extend, no-operation, transfer vregil to  register, etc.

Their addressing mode, if any, 1is inherent.

1.2.3. Addressing Modes

The M688% supports a wide variety of addressing

modes. There are 7 major types with several sub-types:

Inherent
Accumulator
Register
Immediate
Absolute
Extended
Direct
Relative
Long
Short
7. Indexed
Constant offset
Constant cffget from the PC
Accumulator offset
Auto increment / decrement

1 abs Loy BN b
o o ® O

o
1]

Inherent addressing includes those instructions which
have no addressing options. Accumulator addressing is similar
to inherent except that an accumulator is specified (e.g.,
CLRA, CLRB). Some M6809 instructions specify one or several

of the registers as the operands {(e.g., TFR D,X - transfer D
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to Xj. This 1is called register addressing. In immediate
addressing the source operand is assumed to be in the memory

location immediately following the current opcode. The M6889

n

supports both 8 and 16-bit immediate values.

s
P

N

b

[
o
i
n
ot
-+
Qwu.!

o e addressing all or part of the absolute

o
£

g‘}

feh

ds: iz included in the instruction. In extended

4
M
n
n

memory a

Xl

addressing the full 16-bit address is included in the instruc-—

¥

tion. In direct addressing only the lower 8 bits of the
address are included in the instruction. The upper 8 bits of

et
b
D

address are supplied by the direct page register.

Relative addressing is used for branches. In relative
addressing the 8 or 16-bit signed offset that follows in the
instruction i1s added to the current program counter if the
branch «condition is true or if the branch was unconditional.
The short form branch has an 8-bit offset and the long form

branch has a 16-bit offset.

Many of the new features supported by the M6889 in
comparison to the M6808 lie in its greatly expanded indexed
addressing modes. In the M6860 the second byte of an indexed
instruction contains an 8-bit offset. In the M6889 this post-

"byte contains additional addressing information.

In the constant offset indexed addressing modes a

constant wvalue of length @, 5, 8 or 16 bits is added to an

[is]
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index register to obtain the effective address that is used to
fetch the operand. The original contents of the index regis-

ter are unchanged by this addressing mode.

Constant offset from the program counter ({program
counter relative) works in much the same way excepbt the pro-
EN kN

gram counter is used as the index register. This addressing
mode is wused most often by the ‘fload effective address'

-

instruction to find the starting address of tables in a po

Ui

=

tion independent ROM. The original contents of the program

counter are unchanged by this addressing mode.

In accumulator offset mode the effective address is
the sum of the signed accumulator and the specified index
register. For example, 'LDA D,X' calculates the address of the
value to be loaded into the A accumulator by adding the con-
tents of the D accumulator to the contents of X 1Index regis-

ter. The original contents of the index register and the

accumulator are unchanged by this addressing mcode.

In auto increment mode the contents of the specified
index register are used as the effective address; then it is
incremented by 1 or 2 ({(post-increment). In auto decrement Lhe
contents of the index register specified are first decremented
by 1 or 2 and then wused as the effective address (pre-
decrement} . In both cases the contents of the index register

are permanently changed.
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As a further feature, all the indexed addressing
modes and the extended addressing mode of the ME80Q provide
for an additional level of indirection. That is, the original
effective address calculated by the addressing mode can be

used as the address of another 16-bit value that specifies the

Most opcodes on the M68¢9 are one byte long plus the
number of bytes required for the addressing mode. Some
opcodes, however, are two bytes long. It was necegsary on the
M68G9 to go to some two byte opcodes so that we could include
the new instructions we felt were important. The two byte
opcodes are implemented by defining two separate one byte
opcodes to be ‘escape' opcodes. Conceptually, we viewed these
opcodes as escaping us into a whole new page of 256 possible

opcodes. Therefore, we refer to these escape opcodes as the

"page 2' and 'page 3' opcode pre-bytes. We tried to keep the
most freguently executed instructions as one byte (page 1)

opcodes and let the less fregquently used ones become two bytes
long (page 2 or 3). The data presented in this report will
indicate just how good a job we did of selecting which

instructions should be on which page.

For more detailed information about the M6809 szee

[N

Appendix I for a 1list of M6899 instructions. Appendix II



contains an opcode map of the M6869 and the format of the

postbyte for indexed instructions.

1.3, MG6E80¢ ARCHITECTURE

architecture in detail here, it is useful to remember that the
M6889 is upward source compatible to the MB8EZ, The major
differences are that the M6800 has only the A and B accumula-

tors, the X index register, the S stack pointer, the program

e

counter and a simpler condition code register. There is no D,
¥, U or direct page register. The instruction set of the M685Q
contains almost no 16-bit operations. Many individual inherent
instructions that occur on the M6808 were combined into
several more powerful instructions on the M6889. Lastly, the
indexed mode of addressing on the M688¢ includes only the 8-~

bit constant offset mode and the X register is the only index-

able register,



STATIC ANALYSIS OF THE M6809

There are essentially two types of analyses that can
be performed on an instruction set --- static and dynamic. In
static anelysis either the source or object code of a progran
or programs 1s analyzed to determine the frequency of appear-

ance of various instructions, addressing modes, registers,

2

etc., In dynamic analysis data is taken during the actual exe-
cution of a program and is used to determine the frequency of

execution of an instruction, addressing mode, etc.

Both types of data are useful for specific purposes.
The static data can lead to improvements in the architecture
that will reduce the size of the average program. The dynamic
data can lead to & reduction in the execution time of the
average program. They are also related. If a program is
smaller, it generally has to fetch fewer bytes of opcode and,
hence, runs faster. This relaticnship will be analyzed

further in a later chapter on the dynamic analysis.

2.1. COLLECTING THE M68#0% STATIC DATA

This section will Dbriefly describe the mechanical

methods used to collect the static data analyzed in this

Static analysis can be performed on either object or
source code. Object code is easier to obtain and more compact

25
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than socurce code, but it is impossible to determine whether
the object code Dbeing analyzed is really instructions or is
data such as tables. Therefore, I decided to analyze source
code, The scource data was collected and processed on
Motorola's PDP-11/72 under the UNIX operating system. Unfor-

tunately, many of the source programs I wished to analyze were

not resident on the UNIX system nor were they all writte for
the same M6889 assembler. This required uploading many of the

iy
ot

programs and preprocessing them with a series of UNIX ilters

E

to remove the variation in assemblers.

Once the data was all in the same format and on UNIX,
it was processed by a program called STATY9. STATY is a modi-
fied assembler that takes M6889 source as its input and out-
puts the object code in ASCII with each instruction's object
code on & separate line. It only outputs the object code for

instructions and throws away the object code for data and

Next, the various output files of STATY were con-
catenated into £files representing different program classes
and into a file with all the static data. Another program,
RPT, then took this data and generated the data used in the
analysis. Appendix III contains the data for the concatena-

tion of all the static data.
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2.2. PROGRAM MIX

In order to make the data as useful as possible, I

analyzed static code from several different classes of pro-

W

rams. I tried to balance the amount of code in each class so
that one <class of program would not pervert the data. For
example, I could have included over 108,000 bytes of compiler
generated «code which would have accounted for two thirds of
the total, but marketing information does not indicate that
two thirds of the M6889 programs are written in high level
language. Therefore, in some classes I deliberately reduced
the amount of code in a given class to give what I considered
a better mix,., The following paragraphs will describe each
ciass and its constituents. I classified the programs into

the following classes:

Program Class Number of Bytes
Compiler generated code 14549
Compiler code 7695
Application code 26385
Monitor code 6293
Numeric code 7135
61977

Compiler generated code (compiled code) is any code
that 1is generated by a high level language compiler. The two
compilers used were the Motorola M6849 Pascal compiler and a

version of the Portable 'C' Compiler. The data consists of
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the compiled code from two programs. The first program was
written in Pascal and is a calculator interface to the M6839
floating point ROM. The second program is portion of an

operating system written in *C°%.

Compiler code is the actual compiler itself. The com-

piler wused for analysis 1is an in-house compiler used by
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microprocessors and peripherals. his com-
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algorithms for
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iler were written in Pascal, but the code itself was written
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w
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modular assembly language.
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Five application programs were analyzed. One
high speed world-class chess program. It was coded for maximum
speed and by nature is recursive. The second program is a
screen editor. It was written mainly just to get the job done
and was not optimized for either speed or size. The third is

a small segment of the diagnostics for a complex serial peri-

pheral part under development at Motorola. The fourth is a
graphics package and the fifth is the on-board program that

controls a smart terminal.,

Three monitors were selected because they represent a
class of small programs that are I/0 and interrupt intensive.
The first monitor is a general purpose, position independent,
ROMable monitor <called Assist@9. [MOT2]. The second monitor

is a minimal monitor for use in a system where most program
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are in high 1level language. The third monitor is a special
purpose monitor used as a tool for executing large diagnos-

rics.

The numeric category only includes one program, but
it 1s fairly large for this type of program. It is the M6839
IEEE compatible floating peoint package. This package not only
includes the basic add, sub, multiply and divide cperations,
but also includes all the format conversions including BCD to
floating point and floating point to BCD. The program is posi-
tion independent, modular and was written in a structured

assembly language.

2.3, AVERAGE INSTRUCTION BSIZE

One parameter of interest is the average size of an
M6809 instruction. This data can be useful in helping to
estimate the memory needed for an application. The size of the
average instruction for the various program classes and for

all classes combined is given in table 2-1.
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Class Average 8ize
numeric 2.16 bvtes
monitor 2.27 bytes
compiler 2.3% bytes
application 2.40 bvtes
compiled 2,43 bytes
all 2.35 bytes

Table 2=1: Average Instruction Size

These numbers are very close ©to one another. The
larger size of the compiled code is probably due to the com-
pilers' inability to determine when the shorter form of some
instructions could be used. Smarter compilers might do better.
The small average size of the numeric code is probably due to
the fact that it doesn't use extended addressing (3 or 4 bytes

leong) and uses more indexed instructions.

An average instruction size of 2.8 would be nearly
optimal. The slightly larger size seems to be caused by the
large number of the 3 byte 'long branch to subroutine', 16-bit
immediate, and ‘'jump to subroutine extended' instructions.
Since it would be impossible to make any of these instructions
smaller, the size is probably as close to the minimum as pos-
sible. Only a small percentage of the size is due to page 2

and page 3 opcodes and to indexed addressing.



2.4. MOST FREQUENTLY APPEARING SINGLE OPCODES

There are two ways of looking at the static data. One
is to order the frequency of appearance based soley on the

percent of the total number of opcodes represented by a par-—

T

¥

ticular opcode. I call this the percent by count. The other
is to order the frequency based on the percent of the bytes

actually taken by an instruction. I call this the percent by

bytes. I have generally sorted the data by count unless oth-
erwise noted; however, both the ‘'percent by count® and ‘per-

cent by bytes® are given in the data.

Table 2-2 is the data from the 18 most frequently
appearing single opcodes in the concatenation of all of the

static data:

Opcode Instr. By Count Percent By Bytes Percent
17 ibsr 2387 8.76 6921 11.17
30 leax 922 3.58 2653 4,28
34 pshs 918 3.46 1820 2.94
86 lda imm. 9%6 3.44 1812 2.92
29 bra 877 3.33 1754 2.83
Se idx imm. 862 3.27 2586 4,17
26 ne 864 3.85 1668 2.59
27 beg 53530 3.824 168¢ 2.58
ed std index 739 2.81 1584 2.56
s 1dd imm. 722 2.74 2166 3.49

total 37.489 39.53

Table 2-2: Top 10 Most Freguently Appearing Opcodes
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For those not familiar with the ME809 instruction

set, a brief description is given in Appendix I.

It is interesting to note that the top 10 opcodes
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codes are only 3.76% of

all possible opcodes. The top three opcodes are new MESES

ot

nstructions that were not available on the M6806. They
account for 15.72% of all opcodes. Clearly there was a need
for these instructions. Table 2-3 contains the next 18 most

frequently appearing single opcodes.

Opcode Instr. By Count Percent By Bvtes Percent

ec 1dd index 663 2.52 1451 2.34

5 puls 645 2.45 1298 2.08
ae 1dx index 613 2.33 1272 2.85
bd Jsr ext. 605 2.30 1815 2.93
a6 l1da index 588 2.23 1261 2.83
cé 1db imm. 564 2.14 1128 1.82
81 cmpa imm. 517 1.96 1834 1.67
36 pshu 516 1.96 1832 1.67
1f tfr 486 1.85 972 1.57
39 rts 434 1.65 434 G.78
total from 2nd 140 21.39 18.86
total from lst 18 37.46 39.53
total for lst 24 58.79 58.39

Table 2-3: Second 10 Most Frequently Appearing Opcodes

The next 10 opcodes account for another 21.39% of all
opcodes. The top 286 opcodes account for over 58% of all
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opcodes. It is interesting to note that the percentage by
count and the percentage by bytes is almost identical for he

top 20. Since there are no opcodes in the top 20 that are

from page 2 or page 3, we did a reascnable job of selecting

1

WHicC

o

o

opcodes should be on page 1. The most frequently exe-

cuted page 2 opcode was ldy immediat

0]

, and 1t accounted for
1.3% by count and 2.2% by bytes. On page 3 it was cmpu immedi-

ate, and it accounted for only .83% by count and .85% by

By observing the raw data in Appendix III, it can be
seen that some opcodes did not appear at all. Only 214 of the
possible 266 opcodes were used (88%). Possibly the largest

surprise is that cmps (compare stack pointer) was never used.

Table 2-4 contains the top 10 most frequently appear-

ing single opcodes sorted by percent of bytes taken.
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Opcode Instr. By Count Percent By Bytes Percent
17 lbsr 2387 8.76 6921 11.17
30 leax 922 3.5¢ 2653 4,28
8e ldx imm. 862 3.27 2586 4,17
cC 1dd imm. 722 2.74 2166 3.49

4 shs 91lg 3.46 1828 2.94
bd 3sr ext 665 2.38 1815 2.93
86 ida imm. 926 3.44 1812 2.92
290 bra B77 3.33 1754 2.83
26 bne 804 3.85 1688 2.5%
27 beg 8ga 3.484 1628 2.58

Table 2-4: Top 18 Opcodes By Percent of Bytes

Table 2-4 looks much like the ones that were ordered
by count, except that the 16-bit immediates have risen higher
up the list and Jsr extended moved from l14th to 6th ©place

overall.

2.5. MOST FREQUENTLY APPEARING OPCODES BY CLASS

Py

Although it 1s wuseful to know which individual
des occur most frequently, it is more useful to have the
broken down intoc slightly larger classes. While there are

some cases where an architect may be able to reduce the size

or execution spes

{
[o 5

of some single opcode, it 1is more likely

o

hat he will be able ¢to chaﬁ@é a whole class of related
instructions. For example, from the previous data we find the
single opcode for lbsr is the most frequently appearing, but
we also find three other relative branches in the top 28.

Therefore, it would pe better if all branches could be reduced



in size or speed.

The data for all the classes can be found in Appendix

III. Table 2-5 contains the top 16 classes sorted by count

for the concatenation of all the static data:
class count % bytes %
idie 4114 15.62 11291 18.22
1d 2868 16.89 6144 9.91
ibsr 2387 8.76 6921 11.1
lea 17¢8 6.49 4629 7.47
psh 1426 5.42 2852 4.69
stlé 1376 5.23 3155 5.89
st 1219 4.63 2991 4.83
bra 877 3.33 1754 2.83
cmp 869 3.27 1792 2.89
bne 824 3.85 16068 2.59
total 66.69 69.60

Table 2-5: Top 1¢ Classes Scorted By Count

The classes *1d16°' and 'stl6?' are the 16-bit loads
and stores, and '1d4°' and ‘st are the 8-bit loads and stores.
The 'lea' class contains the load effective address instruc-

tions.

The first six classes account for over 52% of all
instructions and the top 1% for 66.6%9%. Conclusion: The M6889
behaves like most computers in that a very few instruction

types account for most of the instructions [STO]. Furthermore,
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most of the instructions are in the load-store category.
{Pushes and pulls are also classified as loads and stores in

some literature.)

The new MBEES instruction fleat {load effective

address) 1s a cross between a load instruction and instruction
that performs arithmetic con an index register. It is probably
best classified as an address manipulation instruction.

It might be valid at this point to ask just how valid
is this data? Is it consistent across the program classes that
go together to make up the concatenated data? {i.e., What Iis

the wvariation from program type to program type?) Table 2-6

was compiled by taking a union of the top 18 instruction

[

classes In each program type. It is interesting to note that

the union of the top 18 contains only 14 unigue classes.
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class all compiler numeric appl. monitor compiled
1d1e6 15.62 9.76 6,13 16.30 7.49 27.84
1d 12.89 9.76 13.15 14.42 9.49 4.20
lbsr 8.76 19.90 8.07 9.97 7.17 7.78
lea 6.49 8.02 8.46 3.19 5.04 11.12
psh 5,42 3.92 1.72 6.53 5.69 5.97
stlé 5.23 4,40 4,26 2.60 3.28 12.64
5t £.63 3.62 5.95 5.09 5.19 3,45
bra 3.33 5.68 5.98 2.71 3.67 1.34
cmp 3.27 5.45 3.54 3.77 4.72 .24
bne 3.85 4.4¢ 3.51 3.38 4.93 1.19*%
beg 3.04 5.086 1.24 4,21 4,18 1.24%
pul 2.72 3.58 1.42 2.99 5.44 3.95
isr 2.41 1.35 .06 4,76 2.16 .13
rol .56 .83 3.41 .16 .22 .14

* used lbne and lbeqg since the compilers didn't generate
short conditional branches.

Table 2-6: Union of the Top 1@ Classes for Each Program Class

Only Jsr (jump to subroutine) and rol (rotate 1left)
are suspect data points. Jsr seems to vary from program to
program depending on whether the program is position indepen-
dent or not. Rol is undoubtedly an application dependent data
point and probably should be ignored. Otherwise, the data

looks consistent.

Table 2-7 contains the next 18 most freguently

appearing opcode classes for all the static data.



class count % bytes %

beg 800 3.04 1608 2.58
pul 716 2.72 1432 2.31
isr 635 2.41 1985 3.87
clr 521 1.98 853 1.38
tfr 486 1.85 972 1.57
res 434 1.65 434 2.7¢
cmpld 422 1.66 1489 2.27
lbra 493 1.53 1289 1.85
bsr 347 1.32 694 1.12
inc 278 1.83 518 Z.84

Table 2~7: Second 186 Most Fregquently Appearin

Classes

[E8]

Note: no arithmetic or logical instructions show up
in the top 20 except increment, compare, and clear. This cer-
tainly casts doubt on the old benchmarking method that consid-

ers adds and subtracts as representative instructions.

2.6. MOST FREQUENTLY APPEARING BY LARGE CLASS

We can take an even bigger view of the instruction
classes. This data 1is useful for comparing the usage of the
M6869 to other computers. Table 2-8 contains this information

for all the static data.



Class count % bytes %
load 6882 26.52 17435 28.13
call 3289 12.49 9520 15.36
conditional branch 2652 12.487 59892 9.67
store 2595 9,86 6146 9.92
push/pull 2142 8.14 4284 £.91
addr. manipulation 1788 6.49 45629 7.47
compare/test 1482 5.63 3614 . 5.83
control xfr 1384 5.26 3255 5.25%
arithmetic 538 2.04 1315 2.12
logical 526 2.88 1273 1.73
inc/dec 528 1.87 9g3 1.4¢6
shifts 378 1.44 542 B.87
total 84.44 94.73

Table 2-8: Most Freguently Appearing By Large Class

The ‘*call’ class includes lbsr, bsr and Jsr. The
address manipulation class includes the lea's. The ‘control

xfr' class is all the unconditional control transfers: bra,

ek

bra and Jmp. Arithmetic includes add, addlé, sub, sublé, adc

and sbc. Logical includes Tand® ‘or® and ‘exclusive or'.

If the pushes and pulls and the load effective
address are included in the loads and stores, and if arith-
metic and logical are combined, then a simpler 1list looks

like:
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Class % by count % by bytes
load/store 5¢ .83 52.43
call 12.49 15.36
cond. branch 19.87 9.67
control xfr. 5.26 5.25
cmp/tst 5.63 5.83
arith/logical 4,04 3.85
other 11.68 7.61

The large classes above account for 94.73% of all the
bytes in an M6809 program, but only use 127 of the 266 possi-~

ble opcodes {(47.74%).

Table 2-9 compares this data with the static data
gathered by Leonard Shustek for the IBM378 and the PDP-11.

[SHU]

Class M6BAS IBM370 PDP~11
load/store 56.83 48.80 32.8%
call 12.49 5.58 6.3¢2
cond branch 16.97 15.39 20.1¢
cntreol xfir 5.26 7 e
cmp/tst 5.63 8.88 ©.50
arith/logical 4,24 3.50% 3. BpwE*
other 11.68 18.9¢ 26.30

* gubtract only
%% control transfer included in conditional branch
#%% add only

Table 2-9: Comparison of Static Data

From the above data we can deduce that the ME6BIS is

not much different from other Von Neuman machines. All three
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machines have a high percentage of loads and stores, subrou-

tine calls, conditional branches, and compares/tests. Further,

the amount of arithmetic and logical instructions is low.
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it might also be useful to see which instructions are
most used 1in each M6809Y9 instruction group. Below are several
groups and the top several instruction classes in each group

- 2

liste

(&)

with their per

(o]

w3
o

e cf bytes taken.

Load and SBStores:

idils 18.22
14 5.91
5t16 5.89
st 4.83

se

Read - Modify ~ Write

clr 1,38
inc .84
dec .62
st .67
rol .39
ror 025
asl .12

Arithmetic:

cmp 2.88
cmplé 2.27
sublé .66
addlé .63

add .57
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Calls and Control Transfers:

lbsr 11.17
isr 3.87
bra Z2.83
lbra 1.85
bsr 1.12
Jmp .47

Push / Pulls:

psh 4.60
pul 2.31

Conditicnal Branches:

bne 2.59
beg 2.58
lbne .81
ibeg .72
bmi 241

becs({blo) .35
bce{bhs) . 35

Some conclusions that can be drawn from the above

The average program has approximately three times

more loads than stores,

In read/modify/write the simple functions (clr, inc,

dec) occur much more often than do the shifts.

Compares are the most frequent arithmetic operation

(if you consider them to be arithmetic).
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4. There are more 16-bit adds, subtracts, loads, and

stores than 8-bit ones,

5. Most programmers prefer to use lbsr and lbra rather

than jsr and jmp.

5. There are twice as many pushes as pulls. This is a
L 5 - 2
iittle puzzling.

7. The second page opcodes 'long branch eqgual' and 'long
branch not equal' have a higher frequency than all

the other conditional branches except their short
counterparts, In fact when 2ll the long conditional
branches are added up, lbne and 1lbeg account for

58.9% of all long conditional branches.

2.8. OTHER INSTRUCTION SET DATA

During the design of the M6809 we made several deci-
sions based on rather tenuous M&é8OU data or on no data at all.
To verify the correctness of these decisions, I instrumented

the static data taking to gather some additional data.

2.8.1. Opcode Page Usage

As mentioned previously, we tried to determined which
opcodes would occur most frequently so we could decide which
opcodes should have 1 byte opcodes and which opcodes should

have two. The 1 byte opcodes are called page 1 opcodes and the
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two byte opcodes are called page 2 and page 3 opcodes depend-
ing on their escape opcode. Below is a table of the number of

opcodes that appear in each page and their percentages.

Page Count Percent Bytes Percent
1 24968 94.8% 56863 91.75
2 1354 5.14 5858 8.16
3 16 .86 56 -89

Table 2-1¢: Number of Opcodes per Page

These results are encouraging. It appears less than
12% of all bytes in an average program are due to page 2 or 3
opcodes. Ten percent seems a fair price to pay £for the new

instructions on the M6889.

Z.8.2. Push / Pull Statistics

The M6800 had four one byte instructions to push and
pull the A and B accumulator. The M6801 added two more to push
and pull the X index register. When we added the additional
registers for the M6889, we knew that we would either have to
come up with enough single byte opcodes so that we could have
an individual push and pull for each register or we would have
to have a two byte instruction. Analysis indicated that there

were barely enough unimplemented ©page 1 opcodes to assign

-+

separate push and pull opcodes for each register. We idnt

h

want to use up all of the page 1 cpcodes with pushes and pulls
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if at all possible. Then we realized that, if we had to have
a two Dbyte instruction, we could push or pull more than 1
register at a time. So which was better? It depended on
whether programmers would take advantage of the multiple
register capabilities of the two byte instruction. Table 2-11

contains the usage statistics.

Total number of push/pulls = 2142

Average number of registers push/pulled per instruction: 2.25

Register push/pulled count percent
a 1216 25.23
X 1991 22.63
b 844 17.51
Y 837 17.37
jole 442 9.17
u 293 6.20
cc 62 1.29
dpr 27 g.56
s 2 7.04

Table 2Z2-11: Push Pull Statistics

The break even point is 2.0 registers pushed/pulled
per instruction. Even though 2.25 registers per instruction is
somewhat disappointing, it is apparent from marketing input
that the multi-register push/pull 1is well received by the
user. However, a future M68#9 architect might want to consider
implementing additional individual one byte pushes and pulls

for the A, B, X, and Y registers. This needs some additional
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study since the data above doesn’t tell enough about how the
registers are paired. For example, if A and B are pushed
simultaneously most of the time, then separate instructions

would be of little benefit.

The large number of uses of the PC register 1is due to
the ability to exit a subroutine on the M6889% by pulling the
PC along with the other saved registers. (e.g., PULS A,B,X,PC
pulls A, B and X from the hardware stack as well as returning

from a subroutine.)

2.8.3., Direct Page Register Usage

The decision to include the direct page register on
the M68B89 was a controversial one. The M6880 data clearly
indicated that it would be used often, but we alsc suspected
that the M6800 date was influenced by the small amount of data

memory that was used in the early M6880 programs due to th

[

1

high «cost of memory in those days. Would programmers still

¥

o

use direct addressing even 1f memory costs dropped? Several
customers said they would 1If we provided more '"pages’ of
memory that could be accessed by direct addressing. Therefore,

after much debate we included the direct page register {(DPR}.

It is a little hard to judge how often the DPR regis-
ter is used since we didn't provide a separate locad DPR

instruction. However most {all?) loads of the DPR take place
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by transferring some register to the DPR (e.g., TFR A,DP}., The

statistics gathering program looked for and counted these
transfers. Further, we can look at the percentage of all
instructions that use direct addressing. The two statistics

gathered are:
1. The DPR register was only transferred to 9 times.

2. Direct addressing accounted for enly 3.64% of all

addressing

The percent of direct addressing is much less than on
the M68060, and the number of transfers to the DPR is almost

zero. Conclusion: the direct page register was a mistake.

2.5. STATIC APPEARANCE OF ADDRESSING MODES

Another major area of interest to an architect is the
use of the addressing modes of a computer, They not only indi-
cate areas of the processor that could be optimized, but they
also indicate how the machine is being used. Table 2-12 is the
addressing mode statistics for the concatenation of all the

static data.
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Addressing mode count percent

indexed 7371 27.99
immediate 5132 19.49
short relative = 3532 13.41
inherent 3466 13.16
long relative 3654 11.6%
extended 1937 7.36
direct 958 3.64
accumulator b 456 1.73
accumulator_ a 424 1.61
indirect 175 .66

Table Z-12: M6889 Static Addressing Mode Usage

Indexed addressing is by £far the most frequently

o

appearing addressing mode because many of the unique features
of the M06B88% addressing modes are hidden under the umbrella of
indexed addressing. For this reason indexed addressing will be

discussed in more detail in a later section.

The relative addressing modes account for 25.81% of
all addressing modes. This indicates that the programmers are
using the relative rather than the absolute control transfers
and subroutine calls. In short, programmers are writing a lot
of position independent code for the ME6849. The relatively
small amounts of extended and direct addressing also back up

this conclusion.

The accumulator addressing modes supported for

[ns
y
[§)

read / modify / write instructions are not used much.
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When we designed the M6889, one of the most hotly
debated areas of the architecture was whether to include

indirect addressing. Some PDP-11 dynamic statistics indicated

[
ey
o}
[
[
o3

direct addressing was used less than 2.2% of the time.
[SHU] [MAR] However, we felt that the stack and stack-frame
addressing capabilities of the M6809 would cause programmers
to put addresses on the stacks and then to reference their
data indirectly through the stacked addresses. The data above,
however, does not back this up. The M6869 programmers only
used indirect addressing .66% of the time. The inclusion of
indirect addressing did not cost a lot of silicen on the
M6829, but it did cause some cultural incompatibilities with

the M680@@ which doesn't support indirect addressing.

2.9.1. Indexed Addressing Static Statistics

Since indexed addressing represents about 72% of all
the addressing modes that reference memory (direct, extended,
and indexed), we will spend some more time looking at the
indexed addressing data. Table 2-13 breaks the indexed
addressing down into its subgroups. The basic subgroups are
the auto Increment/decrement, the no offset, the constant

offset, the register offset, and extended indirect.
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subgroup addr mode number % of total % of subgroup
inc/dec + 286 3.88 39.61
inc/dec ++ 120 1.63 16.62
inc/dec - 43 g.58 5.96
inc/dec - 273 3.76 37.81
no offset 861 13.84 108 .92
cffset 5 3949 53.45 73.32
offset 8 631 §.56 11.74
offset 16 572 7.76 18.64
offset pcé 92 1.25 1.71
offset pcld 139 1.89 2.5%
reg offset a 85 1.15 28.62
reg offset b 99 1.34 33.33
reg offset a 13 1.53 38.985

Bt
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ext indirect 100 .00

Average additional bytes for indexed

i
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L
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Table 2-13: Static Indexed Addressing Data

The constant offset varieties account for 72.%1% of

the to

ot
=y

al. If 'no offset? is combined with the constant

offset

n

ubgroup, we find that 85.95% of the Iindexed instruc-
tions are of a simple type. As iIs indicated in the table, the
program that took the data also calculated the average number
of bytes that are added for each indexed addressing mode above
the base opcode. The average is 1.17 bytes. Since the minimum
possible is 1.¢ bytes, this is a very encouraging statistic.
The code size penalty for providing all the new M6889 indexed

addressing modes is minimal.



