#include "stdafx.h" #include "Z80.h" // based on http://www.z80.info/decoding.htm // Half carry flag help from https://github.com/oubiwann/z80 EightBit::Z80::Z80(Memory& memory, InputOutput& ports) : IntelProcessor(memory), m_ports(ports), m_registerSet(0), m_accumulatorFlagsSet(0), m_refresh(0x7f), iv(0xff), m_interruptMode(0), m_iff1(false), m_iff2(false), m1(false), m_prefixCB(false), m_prefixDD(false), m_prefixED(false), m_prefixFD(false) { IX().word = 0xffff; IY().word = 0xffff; } void EightBit::Z80::reset() { IntelProcessor::reset(); di(); } void EightBit::Z80::initialise() { IntelProcessor::initialise(); IM() = 0; AF().word = 0xffff; BC().word = 0xffff; DE().word = 0xffff; HL().word = 0xffff; exxAF(); exx(); AF().word = 0xffff; BC().word = 0xffff; DE().word = 0xffff; HL().word = 0xffff; IX().word = 0xffff; IY().word = 0xffff; REFRESH() = 0x7f; IV() = 0xff; m_prefixCB = false; m_prefixDD = false; m_prefixED = false; m_prefixFD = false; } #pragma region Interrupt routines void EightBit::Z80::di() { IFF1() = IFF2() = false; } void EightBit::Z80::ei() { IFF1() = IFF2() = true; } int EightBit::Z80::interrupt(bool maskable, uint8_t value) { cycles = 0; if (!maskable || (maskable && IFF1())) { if (maskable) { di(); switch (IM()) { case 0: M1() = true; cycles += execute(value); break; case 1: restart(7 << 3); cycles += 13; break; case 2: pushWord(pc); pc.low = value; pc.high = IV(); cycles += 19; break; } } else { IFF1() = false; restart(0x66); cycles += 13; } } // Could be zero for a masked interrupt... return cycles; } #pragma endregion Interrupt routines #pragma region Flag manipulation helpers void EightBit::Z80::adjustSign(uint8_t& f, uint8_t value) { setFlag(f, SF, value & SF); } void EightBit::Z80::adjustZero(uint8_t& f, uint8_t value) { clearFlag(f, ZF, value); } void EightBit::Z80::adjustParity(uint8_t& f, uint8_t value) { static const uint8_t lookup[0x10] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 }; auto set = lookup[highNibble(value)] + lookup[lowNibble(value)]; clearFlag(f, PF, set % 2); } void EightBit::Z80::adjustSZ(uint8_t& f, uint8_t value) { adjustSign(f, value); adjustZero(f, value); } void EightBit::Z80::adjustSZP(uint8_t& f, uint8_t value) { adjustSZ(f, value); adjustParity(f, value); } void EightBit::Z80::adjustXY(uint8_t& f, uint8_t value) { setFlag(f, XF, value & XF); setFlag(f, YF, value & YF); } void EightBit::Z80::adjustSZPXY(uint8_t& f, uint8_t value) { adjustSZP(f, value); adjustXY(f, value); } void EightBit::Z80::adjustSZXY(uint8_t& f, uint8_t value) { adjustSZ(f, value); adjustXY(f, value); } void EightBit::Z80::postIncrement(uint8_t& f, uint8_t value) { adjustSZXY(f, value); clearFlag(f, NF); setFlag(f, VF, value == Bit7); clearFlag(f, HC, lowNibble(value)); } void EightBit::Z80::postDecrement(uint8_t& f, uint8_t value) { adjustSZXY(f, value); setFlag(f, NF); setFlag(f, VF, value == Mask7); clearFlag(f, HC, lowNibble(value + 1)); } #pragma endregion Flag manipulation helpers #pragma region PC manipulation: call/ret/jp/jr bool EightBit::Z80::jrConditionalFlag(int flag) { switch (flag) { case 0: // NZ return jrConditional(!(F() & ZF)); case 1: // Z return jrConditional(F() & ZF); case 2: // NC return jrConditional(!(F() & CF)); case 3: // C return jrConditional(F() & CF); case 4: // PO return jrConditional(!(F() & PF)); case 5: // PE return jrConditional(F() & PF); case 6: // P return jrConditional(!(F() & SF)); case 7: // M return jrConditional(F() & SF); } throw std::logic_error("Unhandled JR conditional"); } bool EightBit::Z80::jumpConditionalFlag(int flag) { switch (flag) { case 0: // NZ return jumpConditional(!(F() & ZF)); case 1: // Z return jumpConditional(F() & ZF); case 2: // NC return jumpConditional(!(F() & CF)); case 3: // C return jumpConditional(F() & CF); case 4: // PO return jumpConditional(!(F() & PF)); case 5: // PE return jumpConditional(F() & PF); case 6: // P return jumpConditional(!(F() & SF)); case 7: // M return jumpConditional(F() & SF); } throw std::logic_error("Unhandled JP conditional"); } void EightBit::Z80::retn() { ret(); IFF1() = IFF2(); } void EightBit::Z80::reti() { retn(); } bool EightBit::Z80::returnConditionalFlag(int flag) { switch (flag) { case 0: // NZ return returnConditional(!(F() & ZF)); case 1: // Z return returnConditional(F() & ZF); case 2: // NC return returnConditional(!(F() & CF)); case 3: // C return returnConditional(F() & CF); case 4: // PO return returnConditional(!(F() & PF)); case 5: // PE return returnConditional(F() & PF); case 6: // P return returnConditional(!(F() & SF)); case 7: // M return returnConditional(F() & SF); } throw std::logic_error("Unhandled RET conditional"); } bool EightBit::Z80::callConditionalFlag(int flag) { switch (flag) { case 0: // NZ return callConditional(!(F() & ZF)); case 1: // Z return callConditional(F() & ZF); case 2: // NC return callConditional(!(F() & CF)); case 3: // C return callConditional(F() & CF); case 4: // PO return callConditional(!(F() & PF)); case 5: // PE return callConditional(F() & PF); case 6: // P return callConditional(!(F() & SF)); case 7: // M return callConditional(F() & SF); } throw std::logic_error("Unhandled CALL conditional"); } #pragma endregion PC manipulation: call/ret/jp/jr #pragma region 16-bit arithmetic void EightBit::Z80::sbc(register16_t& operand, register16_t value) { auto& f = F(); auto before = operand; auto beforeNegative = before.high & SF; auto valueNegative = value.high & SF; auto result = before.word - value.word - (f & CF); operand.word = result; auto afterNegative = operand.high & SF; setFlag(f, SF, afterNegative); clearFlag(f, ZF, operand.word); adjustHalfCarrySub(f, before.high, value.high, operand.high); adjustOverflowSub(f, beforeNegative, valueNegative, afterNegative); setFlag(f, NF); setFlag(f, CF, result & Bit16); adjustXY(f, operand.high); } void EightBit::Z80::adc(register16_t& operand, register16_t value) { auto& f = F(); auto before = operand; auto beforeNegative = before.high & SF; auto valueNegative = value.high & SF; auto result = before.word + value.word + (f & CF); operand.word = result; auto afterNegative = operand.high & SF; setFlag(f, SF, afterNegative); clearFlag(f, ZF, result); adjustHalfCarryAdd(f, before.high, value.high, operand.high); adjustOverflowAdd(f, beforeNegative, valueNegative, afterNegative); clearFlag(f, NF); setFlag(f, CF, result & Bit16); adjustXY(f, operand.high); } void EightBit::Z80::add(register16_t& operand, register16_t value) { auto& f = F(); auto before = operand; auto result = before.word + value.word; operand.word = result; clearFlag(f, NF); setFlag(f, CF, result & Bit16); adjustHalfCarryAdd(f, before.high, value.high, operand.high); adjustXY(f, operand.high); } #pragma endregion 16-bit arithmetic #pragma region ALU void EightBit::Z80::add(uint8_t& operand, uint8_t value, int carry) { auto& f = F(); register16_t result; result.word = operand + value + carry; adjustHalfCarryAdd(f, operand, value, result.low); adjustOverflowAdd(f, operand, value, result.low); operand = result.low; clearFlag(f, NF); setFlag(f, CF, result.word & Bit8); adjustSZXY(f, operand); } void EightBit::Z80::adc(uint8_t& operand, uint8_t value) { add(operand, value, F() & CF); } void EightBit::Z80::sub(uint8_t& operand, uint8_t value, int carry) { auto& f = F(); register16_t result; result.word = operand - value - carry; adjustHalfCarrySub(f, operand, value, result.low); adjustOverflowSub(f, operand, value, result.low); operand = result.low; setFlag(f, NF); setFlag(f, CF, result.word & Bit8); adjustSZXY(f, operand); } void EightBit::Z80::sbc(uint8_t& operand, uint8_t value) { sub(operand, value, F() & CF); } void EightBit::Z80::andr(uint8_t& operand, uint8_t value) { auto& f = F(); operand &= value; setFlag(f, HC); clearFlag(f, CF | NF); adjustSZPXY(f, operand); } void EightBit::Z80::xorr(uint8_t& operand, uint8_t value) { auto& f = F(); operand ^= value; clearFlag(f, HC | CF | NF); adjustSZPXY(f, operand); } void EightBit::Z80::orr(uint8_t& operand, uint8_t value) { auto& f = F(); operand |= value; clearFlag(f, HC | CF | NF); adjustSZPXY(f, operand); } void EightBit::Z80::compare(uint8_t value) { auto& f = F(); auto check = A(); sub(check, value); adjustXY(f, value); } #pragma endregion ALU #pragma region Shift and rotate uint8_t& EightBit::Z80::rlc(uint8_t& operand) { auto& f = F(); auto carry = operand & Bit7; operand <<= 1; carry ? operand |= Bit0 : operand &= ~Bit0; setFlag(f, CF, carry); clearFlag(f, NF | HC); adjustXY(f, operand); return operand; } uint8_t& EightBit::Z80::rrc(uint8_t& operand) { auto& f = F(); auto carry = operand & Bit0; operand >>= 1; carry ? operand |= Bit7 : operand &= ~Bit7; setFlag(f, CF, carry); clearFlag(f, NF | HC); adjustXY(f, operand); return operand; } uint8_t& EightBit::Z80::rl(uint8_t& operand) { auto& f = F(); auto oldCarry = f & CF; auto newCarry = operand & Bit7; operand <<= 1; oldCarry ? operand |= Bit0 : operand &= ~Bit0; setFlag(f, CF, newCarry); clearFlag(f, NF | HC); adjustXY(f, operand); return operand; } uint8_t& EightBit::Z80::rr(uint8_t& operand) { auto& f = F(); auto oldCarry = f & CF; auto newCarry = operand & Bit0; operand >>= 1; operand |= oldCarry << 7; setFlag(f, CF, newCarry); clearFlag(f, NF | HC); adjustXY(f, operand); return operand; } // uint8_t& EightBit::Z80::sla(uint8_t& operand) { auto& f = F(); auto newCarry = operand & Bit7; operand <<= 1; setFlag(f, CF, newCarry); clearFlag(f, NF | HC); adjustXY(f, operand); return operand; } uint8_t& EightBit::Z80::sra(uint8_t& operand) { auto& f = F(); auto new7 = operand & Bit7; auto newCarry = operand & Bit0; operand >>= 1; operand |= new7; setFlag(f, CF, newCarry); clearFlag(f, NF | HC); adjustXY(f, operand); return operand; } uint8_t& EightBit::Z80::sll(uint8_t& operand) { auto& f = F(); auto newCarry = operand & Bit7; operand <<= 1; operand |= 1; setFlag(f, CF, newCarry); clearFlag(f, NF | HC); adjustXY(f, operand); return operand; } uint8_t& EightBit::Z80::srl(uint8_t& operand) { auto& f = F(); auto newCarry = operand & Bit0; operand >>= 1; operand &= ~Bit7; // clear bit 7 setFlag(f, CF, newCarry); clearFlag(f, NF | HC); adjustXY(f, operand); setFlag(f, ZF, operand); return operand; } #pragma endregion Shift and rotate #pragma region BIT/SET/RES void EightBit::Z80::bit(int n, uint8_t& operand) { auto& f = F(); auto carry = f & CF; uint8_t discarded = operand; andr(discarded, 1 << n); clearFlag(f, PF, discarded); setFlag(f, CF, carry); } void EightBit::Z80::res(int n, uint8_t& operand) { auto bit = 1 << n; operand &= ~bit; } void EightBit::Z80::set(int n, uint8_t& operand) { auto bit = 1 << n; operand |= bit; } #pragma endregion BIT/SET/RES #pragma region Miscellaneous instructions void EightBit::Z80::neg() { auto& f = F(); auto original = A(); A() = 0; sub(A(), original); setFlag(f, PF, original == Bit7); setFlag(f, CF, original); } void EightBit::Z80::daa() { auto& f = F(); uint8_t a = A(); auto lowAdjust = (f & HC) | (lowNibble(A()) > 9); auto highAdjust = (f & CF) | (A() > 0x99); if (f & NF) { if (lowAdjust) a -= 6; if (highAdjust) a -= 0x60; } else { if (lowAdjust) a += 6; if (highAdjust) a += 0x60; } f = (f & (CF | NF)) | (A() > 0x99) | ((A() ^ a) & HC); adjustSZPXY(f, a); A() = a; } void EightBit::Z80::cpl() { auto& f = F(); A() = ~A(); adjustXY(f, A()); setFlag(f, HC | NF); } void EightBit::Z80::scf() { auto& f = F(); setFlag(f, CF); adjustXY(f, A()); clearFlag(f, HC | NF); } void EightBit::Z80::ccf() { auto& f = F(); auto carry = f & CF; setFlag(f, HC, carry); clearFlag(f, CF, carry); clearFlag(f, NF); adjustXY(f, A()); } void EightBit::Z80::xhtl(register16_t& operand) { m_memory.ADDRESS() = sp; MEMPTR().low = m_memory.reference(); m_memory.reference() = operand.low; operand.low = MEMPTR().low; m_memory.ADDRESS().word++; MEMPTR().high = m_memory.reference(); m_memory.reference() = operand.high; operand.high = MEMPTR().high; } void EightBit::Z80::xhtl() { xhtl(HL2()); } #pragma endregion Miscellaneous instructions #pragma region Block instructions #pragma region Block compare instructions void EightBit::Z80::blockCompare() { auto& f = F(); m_memory.ADDRESS() = HL(); auto value = m_memory.reference(); uint8_t result = A() - value; setFlag(f, PF, --BC().word); adjustSZ(f, result); adjustHalfCarrySub(f, A(), value, result); setFlag(f, NF); if (f & HC) result -= 1; setFlag(f, YF, result & Bit1); setFlag(f, XF, result & Bit3); } void EightBit::Z80::cpi() { blockCompare(); HL().word++; MEMPTR().word++; } void EightBit::Z80::cpd() { blockCompare(); HL().word--; MEMPTR().word--; } bool EightBit::Z80::cpir() { cpi(); MEMPTR().word = pc.word; auto again = (F() & PF) && !(F() & ZF); // See CPI if (again) MEMPTR().word--; return again; } bool EightBit::Z80::cpdr() { cpd(); MEMPTR().word = pc.word - 1; auto again = (F() & PF) && !(F() & ZF); // See CPD if (!again) MEMPTR().word--; return again; } #pragma endregion Block compare instructions #pragma region Block load instructions void EightBit::Z80::blockLoad(register16_t source, register16_t destination) { auto& f = F(); m_memory.ADDRESS() = source; auto value = m_memory.reference(); m_memory.ADDRESS() = destination; m_memory.reference() = value; auto xy = A() + value; setFlag(f, XF, xy & 8); setFlag(f, YF, xy & 2); clearFlag(f, NF | HC); setFlag(f, PF, --BC().word); } void EightBit::Z80::ldd() { blockLoad(HL(), DE()); HL().word--; DE().word--; } void EightBit::Z80::ldi() { blockLoad(HL(), DE()); HL().word++; DE().word++; } bool EightBit::Z80::ldir() { ldi(); auto again = (F() & PF) != 0; if (again) // See LDI MEMPTR().word = pc.word - 1; return again; } bool EightBit::Z80::lddr() { ldd(); auto again = (F() & PF) != 0; if (again) // See LDR MEMPTR().word = pc.word - 1; return again; } #pragma endregion Block load instructions #pragma region Block input instructions void EightBit::Z80::ini() { auto& f = F(); MEMPTR() = m_memory.ADDRESS() = BC(); MEMPTR().word++; readPort(); auto value = m_memory.DATA(); m_memory.ADDRESS().word = HL().word++; m_memory.reference() = value; postDecrement(f, --B()); setFlag(f, NF); } void EightBit::Z80::ind() { auto& f = F(); MEMPTR() = m_memory.ADDRESS() = BC(); MEMPTR().word--; readPort(); auto value = m_memory.DATA(); m_memory.ADDRESS().word = HL().word--; m_memory.reference() = value; postDecrement(f, --B()); setFlag(f, NF); } bool EightBit::Z80::inir() { ini(); return !(F() & ZF); // See INI } bool EightBit::Z80::indr() { ind(); return !(F() & ZF); // See IND } #pragma endregion Block input instructions #pragma region Block output instructions void EightBit::Z80::blockOut() { auto& f = F(); auto value = m_memory.reference(); m_memory.ADDRESS().word = BC().word; writePort(); postDecrement(f, --B()); setFlag(f, NF, value & Bit7); setFlag(f, HC | CF, (L() + value) > 0xff); adjustParity(f, ((value + L()) & 7) ^ B()); } void EightBit::Z80::outi() { m_memory.ADDRESS().word = HL().word++; blockOut(); MEMPTR().word = BC().word + 1; } void EightBit::Z80::outd() { m_memory.ADDRESS().word = HL().word--; blockOut(); MEMPTR().word = BC().word - 1; } bool EightBit::Z80::otir() { outi(); return !(F() & ZF); // See OUTI } bool EightBit::Z80::otdr() { outd(); return !(F() & ZF); // See OUTD } #pragma endregion Block output instructions #pragma endregion Block instructions #pragma region Nibble rotation void EightBit::Z80::rrd() { auto& f = F(); MEMPTR() = HL(); auto memory = memptrReference(); m_memory.reference() = promoteNibble(A()) | highNibble(memory); A() = (A() & 0xf0) | lowNibble(memory); adjustSZPXY(f, A()); clearFlag(f, NF | HC); } void EightBit::Z80::rld() { auto& f = F(); MEMPTR() = HL(); auto memory = memptrReference(); m_memory.reference() = promoteNibble(memory) | lowNibble(A()); A() = (A() & 0xf0) | highNibble(memory); adjustSZPXY(f, A()); clearFlag(f, NF | HC); } #pragma endregion Nibble rotation int EightBit::Z80::step() { ExecutingInstruction.fire(*this); m_displaced = m_prefixCB = m_prefixDD = m_prefixED = m_prefixFD = false; cycles = 0; return fetchExecute(); } int EightBit::Z80::execute(uint8_t opcode) { if (!getM1()) throw std::logic_error("M1 cannot be high"); auto x = (opcode & 0b11000000) >> 6; auto y = (opcode & 0b111000) >> 3; auto z = (opcode & 0b111); auto p = (y & 0b110) >> 1; auto q = (y & 1); if (!(m_prefixCB && m_displaced)) { incrementRefresh(); M1() = false; } if (m_prefixCB) executeCB(x, y, z, p, q); else if (m_prefixED) executeED(x, y, z, p, q); else executeOther(x, y, z, p, q); if (cycles == 0) throw std::logic_error("Unhandled opcode"); return cycles; } void EightBit::Z80::executeCB(int x, int y, int z, int p, int q) { auto& f = F(); switch (x) { case 0: // rot[y] r[z] switch (y) { case 0: adjustSZP(f, m_displaced ? R2(z) = rlc(DISPLACED()) : rlc(R(z))); break; case 1: adjustSZP(f, m_displaced ? R2(z) = rrc(DISPLACED()) : rrc(R(z))); break; case 2: adjustSZP(f, m_displaced ? R2(z) = rl(DISPLACED()) : rl(R(z))); break; case 3: adjustSZP(f, m_displaced ? R2(z) = rr(DISPLACED()) : rr(R(z))); break; case 4: adjustSZP(f, m_displaced ? R2(z) = sla(DISPLACED()) : sla(R(z))); break; case 5: adjustSZP(f, m_displaced ? R2(z) = sra(DISPLACED()) : sra(R(z))); break; case 6: adjustSZP(f, m_displaced ? R2(z) = sll(DISPLACED()) : sll(R(z))); break; case 7: adjustSZP(f, m_displaced ? R2(z) = srl(DISPLACED()) : srl(R(z))); break; } if (m_displaced) { cycles += 23; } else { cycles += 8; if (z == 6) cycles += 7; } break; case 1: // BIT y, r[z] if (m_displaced) { bit(y, DISPLACED()); adjustXY(f, MEMPTR().high); cycles += 20; } else { auto operand = R(z); bit(y, operand); cycles += 8; if (z == 6) { adjustXY(f, MEMPTR().high); cycles += 4; } else { adjustXY(f, operand); } } break; case 2: // RES y, r[z] if (m_displaced) { res(y, DISPLACED()); R2(z) = DISPLACED(); cycles += 23; } else { res(y, R(z)); cycles += 8; if (z == 6) cycles += 7; } break; case 3: // SET y, r[z] if (m_displaced) { set(y, DISPLACED()); R2(z) = DISPLACED(); cycles += 23; } else { set(y, R(z)); cycles += 8; if (z == 6) cycles += 7; } break; } } void EightBit::Z80::executeED(int x, int y, int z, int p, int q) { auto& f = F(); switch (x) { case 0: case 3: // Invalid instruction, equivalent to NONI followed by NOP cycles += 8; break; case 1: switch (z) { case 0: // Input from port with 16-bit address MEMPTR() = m_memory.ADDRESS() = BC(); MEMPTR().word++; readPort(); if (y != 6) // IN r[y],(C) R(y) = m_memory.DATA(); adjustSZPXY(f, m_memory.DATA()); clearFlag(f, NF | HC); cycles += 12; break; case 1: // Output to port with 16-bit address MEMPTR() = m_memory.ADDRESS() = BC(); MEMPTR().word++; if (y == 6) // OUT (C),0 m_memory.placeDATA(0); else // OUT (C),r[y] m_memory.placeDATA(R(y)); writePort(); cycles += 12; break; case 2: // 16-bit add/subtract with carry switch (q) { case 0: // SBC HL, rp[p] sbcViaMemptr(HL2(), RP(p)); break; case 1: // ADC HL, rp[p] adcViaMemptr(HL2(), RP(p)); break; } cycles += 15; break; case 3: // Retrieve/store register pair from/to immediate address switch (q) { case 0: // LD (nn), rp[p] fetchWord(); setWordViaMemptr(RP(p)); break; case 1: // LD rp[p], (nn) fetchWord(); getWordViaMemptr(RP(p)); break; } cycles += 20; break; case 4: // Negate accumulator neg(); cycles += 8; break; case 5: // Return from interrupt switch (y) { case 1: reti(); // RETI break; default: retn(); // RETN break; } cycles += 14; break; case 6: // Set interrupt mode switch (y) { case 0: case 4: IM() = 0; break; case 2: case 6: IM() = 1; break; case 3: case 7: IM() = 2; break; case 1: case 5: IM() = 0; } cycles += 8; break; case 7: // Assorted ops switch (y) { case 0: // LD I,A IV() = A(); cycles += 9; break; case 1: // LD R,A REFRESH() = A(); cycles += 9; break; case 2: // LD A,I A() = IV(); adjustSZXY(f, A()); setFlag(f, PF, IFF2()); clearFlag(f, NF | HC); cycles += 9; break; case 3: // LD A,R A() = REFRESH(); adjustSZXY(f, A()); clearFlag(f, NF | HC); setFlag(f, PF, IFF2()); cycles += 9; break; case 4: // RRD rrd(); cycles += 18; break; case 5: // RLD rld(); cycles += 18; break; case 6: // NOP case 7: // NOP cycles += 4; break; } break; } break; case 2: switch (z) { case 0: // LD switch (y) { case 4: // LDI ldi(); break; case 5: // LDD ldd(); break; case 6: // LDIR if (ldir()) { pc.word -= 2; cycles += 5; } break; case 7: // LDDR if (lddr()) { pc.word -= 2; cycles += 5; } break; } break; case 1: // CP switch (y) { case 4: // CPI cpi(); break; case 5: // CPD cpd(); break; case 6: // CPIR if (cpir()) { pc.word -= 2; cycles += 5; } break; case 7: // CPDR if (cpdr()) { pc.word -= 2; cycles += 5; } break; } break; case 2: // IN switch (y) { case 4: // INI ini(); break; case 5: // IND ind(); break; case 6: // INIR if (inir()) { pc.word -= 2; cycles += 5; } break; case 7: // INDR if (indr()) { pc.word -= 2; cycles += 5; } break; } break; case 3: // OUT switch (y) { case 4: // OUTI outi(); break; case 5: // OUTD outd(); break; case 6: // OTIR if (otir()) { pc.word -= 2; cycles += 5; } break; case 7: // OTDR if (otdr()) { pc.word -= 2; cycles += 5; } break; } break; } cycles += 16; break; } } void EightBit::Z80::executeOther(int x, int y, int z, int p, int q) { auto& f = F(); switch (x) { case 0: switch (z) { case 0: // Relative jumps and assorted ops switch (y) { case 0: // NOP cycles += 4; break; case 1: // EX AF AF' exxAF(); cycles += 4; break; case 2: // DJNZ d if (jrConditional(--B())) cycles += 5; cycles += 8; break; case 3: // JR d jr(fetchByte()); cycles += 12; break; default: // JR cc,d if (jrConditionalFlag(y - 4)) cycles += 5; cycles += 5; break; } break; case 1: // 16-bit load immediate/add switch (q) { case 0: // LD rp,nn Processor::fetchWord(RP(p)); cycles += 10; break; case 1: // ADD HL,rp addViaMemptr(HL2(), RP(p)); cycles += 11; break; } break; case 2: // Indirect loading switch (q) { case 0: switch (p) { case 0: // LD (BC),A MEMPTR() = BC(); MEMPTR().high = memptrReference() = A(); cycles += 7; break; case 1: // LD (DE),A MEMPTR() = DE(); MEMPTR().high = memptrReference() = A(); cycles += 7; break; case 2: // LD (nn),HL fetchWord(); setWordViaMemptr(HL2()); cycles += 16; break; case 3: // LD (nn),A fetchWord(); MEMPTR().high = memptrReference() = A(); cycles += 13; break; } break; case 1: switch (p) { case 0: // LD A,(BC) MEMPTR() = BC(); A() = memptrReference(); cycles += 7; break; case 1: // LD A,(DE) MEMPTR() = DE(); A() = memptrReference(); cycles += 7; break; case 2: // LD HL,(nn) fetchWord(); getWordViaMemptr(HL2()); cycles += 16; break; case 3: // LD A,(nn) fetchWord(); A() = memptrReference(); cycles += 13; break; } break; } break; case 3: // 16-bit INC/DEC switch (q) { case 0: // INC rp ++RP(p).word; break; case 1: // DEC rp --RP(p).word; break; } cycles += 6; break; case 4: // 8-bit INC postIncrement(f, ++R(y)); // INC r cycles += 4; break; case 5: // 8-bit DEC postDecrement(f, --R(y)); // DEC r cycles += 4; if (y == 6) cycles += 7; break; case 6: // 8-bit load immediate R(y) = fetchByte(); // LD r,n cycles += 7; if (y == 6) cycles += 3; break; case 7: // Assorted operations on accumulator/flags switch (y) { case 0: rlc(A()); break; case 1: rrc(A()); break; case 2: rl(A()); break; case 3: rr(A()); break; case 4: daa(); break; case 5: cpl(); break; case 6: scf(); break; case 7: ccf(); break; } cycles += 4; break; } break; case 1: // 8-bit loading if (z == 6 && y == 6) { // Exception (replaces LD (HL), (HL)) halt(); } else { bool normal = true; if (m_displaced) { if (z == 6) { switch (y) { case 4: H() = R(z); normal = false; break; case 5: L() = R(z); normal = false; break; } } if (y == 6) { switch (z) { case 4: R(y) = H(); normal = false; break; case 5: R(y) = L(); normal = false; break; } } } if (normal) R(y) = R(z); if ((y == 6) || (z == 6)) // M operations cycles += 3; } cycles += 4; break; case 2: // Operate on accumulator and register/memory location switch (y) { case 0: // ADD A,r add(A(), R(z)); break; case 1: // ADC A,r adc(A(), R(z)); break; case 2: // SUB r sub(A(), R(z)); break; case 3: // SBC A,r sbc(A(), R(z)); break; case 4: // AND r andr(A(), R(z)); break; case 5: // XOR r xorr(A(), R(z)); break; case 6: // OR r orr(A(), R(z)); break; case 7: // CP r compare(R(z)); break; } cycles += 4; if (z == 6) cycles += 3; break; case 3: switch (z) { case 0: // Conditional return if (returnConditionalFlag(y)) cycles += 6; cycles += 5; break; case 1: // POP & various ops switch (q) { case 0: // POP rp2[p] popWord(RP2(p)); cycles += 10; break; case 1: switch (p) { case 0: // RET ret(); cycles += 10; break; case 1: // EXX exx(); cycles += 4; break; case 2: // JP HL pc = HL2(); cycles += 4; break; case 3: // LD SP,HL sp = HL2(); cycles += 4; break; } } break; case 2: // Conditional jump jumpConditionalFlag(y); cycles += 10; break; case 3: // Assorted operations switch (y) { case 0: // JP nn fetchWord(); jump(); cycles += 10; break; case 1: // CB prefix m_prefixCB = true; if (m_displaced) m_displacement = fetchByte(); fetchExecute(); break; case 2: // OUT (n),A m_memory.ADDRESS().low = fetchByte(); m_memory.ADDRESS().high = A(); MEMPTR() = m_memory.ADDRESS(); m_memory.placeDATA(A()); writePort(); MEMPTR().low++; cycles += 11; break; case 3: // IN A,(n) m_memory.ADDRESS().low = fetchByte(); m_memory.ADDRESS().high = A(); MEMPTR() = m_memory.ADDRESS(); readPort(); A() = m_memory.DATA(); MEMPTR().low++; cycles += 11; break; case 4: // EX (SP),HL xhtl(); cycles += 19; break; case 5: // EX DE,HL std::swap(DE(), HL()); cycles += 4; break; case 6: // DI di(); cycles += 4; break; case 7: // EI ei(); cycles += 4; break; } break; case 4: // Conditional call: CALL cc[y], nn if (callConditionalFlag(y)) cycles += 7; cycles += 10; break; case 5: // PUSH & various ops switch (q) { case 0: // PUSH rp2[p] pushWord(RP2(p)); cycles += 11; break; case 1: switch (p) { case 0: // CALL nn fetchWord(); call(); cycles += 17; break; case 1: // DD prefix m_displaced = m_prefixDD = true; fetchExecute(); break; case 2: // ED prefix m_prefixED = true; fetchExecute(); break; case 3: // FD prefix m_displaced = m_prefixFD = true; fetchExecute(); break; } } break; case 6: // Operate on accumulator and immediate operand: alu[y] n switch (y) { case 0: // ADD A,n add(A(), fetchByte()); break; case 1: // ADC A,n adc(A(), fetchByte()); break; case 2: // SUB n sub(A(), fetchByte()); break; case 3: // SBC A,n sbc(A(), fetchByte()); break; case 4: // AND n andr(A(), fetchByte()); break; case 5: // XOR n xorr(A(), fetchByte()); break; case 6: // OR n orr(A(), fetchByte()); break; case 7: // CP n compare(fetchByte()); break; } cycles += 7; break; case 7: // Restart: RST y * 8 restart(y << 3); cycles += 11; break; } break; } }