#pragma once #include #include "IntelProcessor.h" #include "Bus.h" #include "Signal.h" namespace EightBit { class LR35902 : public IntelProcessor { public: enum StatusBits { ZF = Bit7, NF = Bit6, HC = Bit5, CF = Bit4, }; LR35902(Bus& memory); Signal ExecutingInstruction; void stop() { m_stopped = true; } void start() { m_stopped = false; } bool stopped() const { return m_stopped; } bool& IME() { return m_ime; } void di(); void ei(); int interrupt(uint8_t value); int execute(uint8_t opcode); int step(); // Mutable access to processor!! virtual register16_t& AF() override { m_accumulatorFlag.low &= 0xf0; return m_accumulatorFlag; } virtual register16_t& BC() override { return m_registers[BC_IDX]; } virtual register16_t& DE() override { return m_registers[DE_IDX]; } virtual register16_t& HL() override { return m_registers[HL_IDX]; } virtual void reset(); virtual void initialise(); private: enum { BC_IDX, DE_IDX, HL_IDX }; std::array m_registers; register16_t m_accumulatorFlag; bool m_ime; bool m_prefixCB; bool m_stopped; std::array m_halfCarryTableAdd = { { false, false, true, false, true, false, true, true } }; std::array m_halfCarryTableSub = { { false, true, true, true, false, false, false, true } }; int fetchExecute() { return execute(fetchByte()); } uint8_t& R(int r) { switch (r) { case 0: return B(); case 1: return C(); case 2: return D(); case 3: return E(); case 4: return H(); case 5: return L(); case 6: m_memory.ADDRESS() = HL(); return m_memory.reference(); case 7: return A(); } throw std::logic_error("Unhandled registry mechanism"); } register16_t& RP(int rp) { switch (rp) { case 3: return sp; default: return m_registers[rp]; } } register16_t& RP2(int rp) { switch (rp) { case 3: return AF(); default: return m_registers[rp]; } } void adjustHalfCarryAdd(uint8_t before, uint8_t value, int calculation) { setFlag(HC, calculateHalfCarryAdd(before, value, calculation)); } void adjustHalfCarrySub(uint8_t before, uint8_t value, int calculation) { setFlag(HC, calculateHalfCarrySub(before, value, calculation)); } void executeCB(int x, int y, int z, int p, int q); void executeOther(int x, int y, int z, int p, int q); void adjustZero(uint8_t value); void postIncrement(uint8_t value); void postDecrement(uint8_t value); void reti(); bool jrConditionalFlag(int flag); bool returnConditionalFlag(int flag); bool jumpConditionalFlag(int flag); bool callConditionalFlag(int flag); void sbc(register16_t& operand, register16_t value); void adc(register16_t& operand, register16_t value); void add(register16_t& operand, register16_t value); void add(uint8_t& operand, uint8_t value, int carry = 0); void adc(uint8_t& operand, uint8_t value); void sub(uint8_t& operand, uint8_t value, int carry = 0); void sbc(uint8_t& operand, uint8_t value); void andr(uint8_t& operand, uint8_t value); void xorr(uint8_t& operand, uint8_t value); void orr(uint8_t& operand, uint8_t value); void compare(uint8_t value); void rlc(uint8_t& operand); void rrc(uint8_t& operand); void rl(uint8_t& operand); void rr(uint8_t& operand); void sla(uint8_t& operand); void sra(uint8_t& operand); void srl(uint8_t& operand); void bit(int n, uint8_t& operand); void res(int n, uint8_t& operand); void set(int nit, uint8_t& operand); void daa(); void scf(); void ccf(); void cpl(); void swap(uint8_t& operand); }; }