#pragma once // Uses some information from: // http://www.cpu-world.com/Arch/6809.html #include #include #include #include #include namespace EightBit { class mc6809 : public BigEndianProcessor { public: enum StatusBits { // Entire flag: set if the complete machine state was saved in the stack. // If this bit is not set then only program counter and condition code // registers were saved in the stack. This bit is used by interrupt // handling routines only. // The bit is cleared by fast interrupts, and set by all other interrupts. EF = Bit7, // Fast interrupt mask: set if the FIRQ interrupt is disabled. FF = Bit6, // Half carry: set if there was a carry from bit 3 to bit 4 of the result // during the last add operation. HF = Bit5, // Interrupt mask: set if the IRQ interrupt is disabled. IF = Bit4, // Negative: set if the most significant bit of the result is set. // This bit can be set not only by arithmetic and logical operations, // but also by load / store operations. NF = Bit3, // Zero: set if the result is zero. Like the N bit, this bit can be // set not only by arithmetic and logical operations, but also // by load / store operations. ZF = Bit2, // Overflow: set if there was an overflow during last result calculation. // Logical, load and store operations clear this bit. VF = Bit1, // Carry: set if there was a carry from the bit 7 during last add // operation, or if there was a borrow from last subtract operation, // or if bit 7 of the A register was set during last MUL operation. CF = Bit0, }; mc6809(Bus& bus); Signal ExecutingInstruction; Signal ExecutedInstruction; virtual int execute(uint8_t opcode) final; virtual int step() final; virtual void powerOn() final; auto& D() { return m_d; } auto& A() { return D().high; } auto& B() { return D().low; } auto& X() { return m_x; } auto& Y() { return m_y; } auto& U() { return m_u; } auto& S() { return m_s; } auto& DP() { return m_dp; } auto& CC() { return m_cc; } const auto& CC() const { return m_cc; } auto& NMI() { return m_nmiLine; } // In auto& FIRQ() { return m_firqLine; } // In // |---------------|-----------------------------------| // | MPU State | | // |_______________| MPU State Definition | // | BA | BS | | // |_______|_______|___________________________________| // | 0 | 0 | Normal (running) | // | 0 | 1 | Interrupt or RESET Acknowledge | // | 1 | 0 | SYNC Acknowledge | // | 1 | 1 | HALT Acknowledge | // |-------|-------|-----------------------------------| auto& BA() { return m_baLine; } // Out auto& BS() { return m_bsLine; } // Out protected: // Default push/pop handlers virtual void push(uint8_t value) final; virtual uint8_t pop() final; // Interrupt (etc.) handlers virtual void handleRESET() final; virtual void handleIRQ() final; private: const uint8_t RESETvector = 0xfe; // RESET vector const uint8_t NMIvector = 0xfc; // NMI vector const uint8_t SWIvector = 0xfa; // SWI vector const uint8_t IRQvector = 0xf8; // IRQ vector const uint8_t FIRQvector = 0xf6; // FIRQ vector const uint8_t SWI2vector = 0xf4; // SWI2 vector const uint8_t SWI3vector = 0xf2; // SWI3 vector const uint8_t RESERVEDvector = 0xf0; // RESERVED vector // Stack manipulation void push(register16_t& stack, uint8_t value); void pushS(const uint8_t value) { push(S(), value); } void pushU(const uint8_t value) { push(U(), value); } void pushWord(register16_t& stack, const register16_t value) { push(stack, value.low); push(stack, value.high); } void pushWordS(const register16_t value) { pushWord(S(), value); } void pushWordU(const register16_t value) { pushWord(U(), value); } uint8_t pop(register16_t& stack); uint8_t popS() { return pop(S()); } uint8_t popU() { return pop(U()); } register16_t popWord(register16_t& stack) { const auto high = pop(stack); const auto low = pop(stack); return { low, high }; } auto popWordS() { return popWord(S()); } auto popWordU() { return popWord(U()); } // Interrupt (etc.) handlers void handleHALT(); void handleNMI(); void handleFIRQ(); // Execution helpers void executeUnprefixed(uint8_t opcode); void execute10(uint8_t opcode); void execute11(uint8_t opcode); // Register selection for "indexed" register16_t& RR(int which); // Register selection for 8-bit transfer/exchange uint8_t& referenceTransfer8(int specifier); // Register selection for 16-bit transfer/exchange register16_t& referenceTransfer16(int specifier); // Addressing modes register16_t Address_direct(); // DP + fetched offset register16_t Address_indexed(); // Indexed address, complicated! register16_t Address_extended(); // Fetched address register16_t Address_relative_byte(); // PC + fetched byte offset register16_t Address_relative_word(); // PC + fetched word offset // Addressing mode readers // Single byte readers uint8_t AM_immediate_byte(); uint8_t AM_direct_byte(); uint8_t AM_indexed_byte(); uint8_t AM_extended_byte(); // Word readers register16_t AM_immediate_word(); register16_t AM_direct_word(); register16_t AM_indexed_word(); register16_t AM_extended_word(); // Flag adjustment template void adjustZero(const T datum) { clearFlag(CC(), ZF, datum); } void adjustZero(const register16_t datum) { clearFlag(CC(), ZF, datum.word); } void adjustNegative(const uint8_t datum) { setFlag(CC(), NF, datum & Bit7); } void adjustNegative(const uint16_t datum) { setFlag(CC(), NF, datum & Bit15); } void adjustNegative(const register16_t datum) { adjustNegative(datum.word); } template void adjustNZ(const T datum) { adjustZero(datum); adjustNegative(datum); } void adjustCarry(const uint16_t datum) { setFlag(CC(), CF, datum & Bit8); } // 8-bit addition void adjustCarry(const uint32_t datum) { setFlag(CC(), CF, datum & Bit16); } // 16-bit addition void adjustCarry(const register16_t datum) { adjustCarry(datum.word); } void adjustBorrow(const uint16_t datum) { clearFlag(CC(), CF, datum & Bit8); } // 8-bit subtraction void adjustBorrow(const uint32_t datum) { clearFlag(CC(), CF, datum & Bit16); } // 16-bit subtraction void adjustBorrow(const register16_t datum) { adjustBorrow(datum.word); } void adjustOverflow(const uint8_t before, const uint8_t data, const register16_t after) { const uint8_t lowAfter = after.low; const uint8_t highAfter = after.high; setFlag(CC(), VF, (before ^ data ^ lowAfter ^ (highAfter << 7)) & Bit7); } void adjustOverflow(const uint16_t before, const uint16_t data, const uint32_t after) { const uint16_t lowAfter = after & Mask16; const uint16_t highAfter = after >> 16; setFlag(CC(), VF, (before ^ data ^ lowAfter ^ (highAfter << 15)) & Bit15); } void adjustOverflow(const register16_t before, const register16_t data, const register16_t after) { adjustOverflow(before.word, data.word, after.word); } void adjustHalfCarry(const uint8_t before, const uint8_t data, const uint8_t after) { setFlag(CC(), HF, (before ^ data ^ after) & Bit4); } void adjustAddition(const uint8_t before, const uint8_t data, const register16_t after) { const auto result = after.low; adjustNZ(result); adjustCarry(after); adjustOverflow(before, data, after); adjustHalfCarry(before, data, result); } void adjustAddition(const uint16_t before, const uint16_t data, const uint32_t after) { const register16_t result = after & Mask16; adjustNZ(result); adjustCarry(after); adjustOverflow(before, data, after); } void adjustAddition(const register16_t before, const register16_t data, const uint32_t after) { adjustAddition(before.word, data.word, after); } void adjustSubtraction(const uint8_t before, const uint8_t data, const register16_t after) { const auto result = after.low; adjustNZ(result); adjustCarry(after); adjustOverflow(before, data, after); } void adjustSubtraction(const uint16_t before, const uint16_t data, const uint32_t after) { const register16_t result = after & Mask16; adjustNZ(result); adjustCarry(after); adjustOverflow(before, data, after); } void adjustSubtraction(const register16_t before, const register16_t data, const uint32_t after) { adjustSubtraction(before.word, data.word, after); } // Flag checking auto fastInterruptMasked() const { return CC() & FF; } auto interruptMasked() const { return CC() & IF; } auto negative() const { return CC() & NF; } auto zero() const { return CC() & ZF; } auto overflow() const { return CC() & VF; } auto carry() const { return CC() & CF; } auto halfCarry() const { return CC() & HF; } auto LS() const { return carry() || zero(); } // (C OR Z) auto HI() const { return !LS(); } // !(C OR Z) auto LT() const { return (negative() >> 3) ^ (overflow() >> 1); } // (N XOR V) auto GE() const { return !LT(); } // !(N XOR V) auto LE() const { return zero() || LT(); } // (Z OR (N XOR V)) auto GT() const { return !LE(); } // !(Z OR (N XOR V)) // Branching auto branch(const register16_t destination, const int condition) { if (condition) jump(destination); return !!condition; } void branchShort(const int condition) { branch(Address_relative_byte(), condition); } void branchLong(const int condition) { if (branch(Address_relative_word(), condition)) addCycle(); } // Miscellaneous void saveEntireRegisterState(); void savePartialRegisterState(); void saveRegisterState(); void restoreRegisterState(); template T through(const T data) { clearFlag(CC(), VF); adjustNZ(data); return data; } // Instruction implementations template T ld(const T data) { return through(data); } template T st(const T data) { return through(data); } uint8_t adc(uint8_t operand, uint8_t data); uint8_t add(uint8_t operand, uint8_t data, uint8_t carry = 0); register16_t add(register16_t operand, register16_t data); uint8_t andr(uint8_t operand, uint8_t data); uint8_t asl(uint8_t operand); uint8_t asr(uint8_t operand); void bit(uint8_t operand, uint8_t data); uint8_t clr(); void cmp(uint8_t operand, uint8_t data); void cmp(register16_t operand, register16_t data); uint8_t com(uint8_t operand); void cwai(uint8_t data); uint8_t da(uint8_t operand); uint8_t dec(uint8_t operand); uint8_t eorr(uint8_t operand, uint8_t data); void exg(uint8_t data); uint8_t inc(uint8_t operand); void jsr(register16_t address); uint8_t lsr(uint8_t operand); register16_t mul(uint8_t first, uint8_t second); uint8_t neg(uint8_t operand); uint8_t orr(uint8_t operand, uint8_t data); void psh(register16_t& stack, uint8_t data); void pul(register16_t& stack, uint8_t data); uint8_t rol(uint8_t operand); uint8_t ror(uint8_t operand); void rti(); void rts(); uint8_t sbc(uint8_t operand, uint8_t data); uint8_t sub(uint8_t operand, uint8_t data, uint8_t carry = 0); register16_t sub(register16_t operand, register16_t data); uint8_t sex(uint8_t from); void swi(); void swi2(); void swi3(); void tfr(uint8_t data); void tst(uint8_t data); register16_t m_d; register16_t m_x; register16_t m_y; register16_t m_u; register16_t m_s; uint8_t m_dp = 0; uint8_t m_cc = 0; PinLevel m_nmiLine = PinLevel::Low; PinLevel m_firqLine = PinLevel::Low; PinLevel m_baLine = PinLevel::Low; PinLevel m_bsLine = PinLevel::Low; bool m_prefix10 = false; bool m_prefix11 = false; }; }