/* auto-generated on 2021-09-07 14:34:40 -0400. Do not edit! */ /* begin file src/simdjson.cpp */ #include "simdjson.h" SIMDJSON_PUSH_DISABLE_WARNINGS SIMDJSON_DISABLE_UNDESIRED_WARNINGS /* begin file src/to_chars.cpp */ #include #include #include #include namespace simdjson { namespace internal { /*! implements the Grisu2 algorithm for binary to decimal floating-point conversion. Adapted from JSON for Modern C++ This implementation is a slightly modified version of the reference implementation which may be obtained from http://florian.loitsch.com/publications (bench.tar.gz). The code is distributed under the MIT license, Copyright (c) 2009 Florian Loitsch. For a detailed description of the algorithm see: [1] Loitsch, "Printing Floating-Point Numbers Quickly and Accurately with Integers", Proceedings of the ACM SIGPLAN 2010 Conference on Programming Language Design and Implementation, PLDI 2010 [2] Burger, Dybvig, "Printing Floating-Point Numbers Quickly and Accurately", Proceedings of the ACM SIGPLAN 1996 Conference on Programming Language Design and Implementation, PLDI 1996 */ namespace dtoa_impl { template Target reinterpret_bits(const Source source) { static_assert(sizeof(Target) == sizeof(Source), "size mismatch"); Target target; std::memcpy(&target, &source, sizeof(Source)); return target; } struct diyfp // f * 2^e { static constexpr int kPrecision = 64; // = q std::uint64_t f = 0; int e = 0; constexpr diyfp(std::uint64_t f_, int e_) noexcept : f(f_), e(e_) {} /*! @brief returns x - y @pre x.e == y.e and x.f >= y.f */ static diyfp sub(const diyfp &x, const diyfp &y) noexcept { return {x.f - y.f, x.e}; } /*! @brief returns x * y @note The result is rounded. (Only the upper q bits are returned.) */ static diyfp mul(const diyfp &x, const diyfp &y) noexcept { static_assert(kPrecision == 64, "internal error"); // Computes: // f = round((x.f * y.f) / 2^q) // e = x.e + y.e + q // Emulate the 64-bit * 64-bit multiplication: // // p = u * v // = (u_lo + 2^32 u_hi) (v_lo + 2^32 v_hi) // = (u_lo v_lo ) + 2^32 ((u_lo v_hi ) + (u_hi v_lo )) + // 2^64 (u_hi v_hi ) = (p0 ) + 2^32 ((p1 ) + (p2 )) // + 2^64 (p3 ) = (p0_lo + 2^32 p0_hi) + 2^32 ((p1_lo + // 2^32 p1_hi) + (p2_lo + 2^32 p2_hi)) + 2^64 (p3 ) = // (p0_lo ) + 2^32 (p0_hi + p1_lo + p2_lo ) + 2^64 (p1_hi + // p2_hi + p3) = (p0_lo ) + 2^32 (Q ) + 2^64 (H ) = (p0_lo ) + // 2^32 (Q_lo + 2^32 Q_hi ) + 2^64 (H ) // // (Since Q might be larger than 2^32 - 1) // // = (p0_lo + 2^32 Q_lo) + 2^64 (Q_hi + H) // // (Q_hi + H does not overflow a 64-bit int) // // = p_lo + 2^64 p_hi const std::uint64_t u_lo = x.f & 0xFFFFFFFFu; const std::uint64_t u_hi = x.f >> 32u; const std::uint64_t v_lo = y.f & 0xFFFFFFFFu; const std::uint64_t v_hi = y.f >> 32u; const std::uint64_t p0 = u_lo * v_lo; const std::uint64_t p1 = u_lo * v_hi; const std::uint64_t p2 = u_hi * v_lo; const std::uint64_t p3 = u_hi * v_hi; const std::uint64_t p0_hi = p0 >> 32u; const std::uint64_t p1_lo = p1 & 0xFFFFFFFFu; const std::uint64_t p1_hi = p1 >> 32u; const std::uint64_t p2_lo = p2 & 0xFFFFFFFFu; const std::uint64_t p2_hi = p2 >> 32u; std::uint64_t Q = p0_hi + p1_lo + p2_lo; // The full product might now be computed as // // p_hi = p3 + p2_hi + p1_hi + (Q >> 32) // p_lo = p0_lo + (Q << 32) // // But in this particular case here, the full p_lo is not required. // Effectively we only need to add the highest bit in p_lo to p_hi (and // Q_hi + 1 does not overflow). Q += std::uint64_t{1} << (64u - 32u - 1u); // round, ties up const std::uint64_t h = p3 + p2_hi + p1_hi + (Q >> 32u); return {h, x.e + y.e + 64}; } /*! @brief normalize x such that the significand is >= 2^(q-1) @pre x.f != 0 */ static diyfp normalize(diyfp x) noexcept { while ((x.f >> 63u) == 0) { x.f <<= 1u; x.e--; } return x; } /*! @brief normalize x such that the result has the exponent E @pre e >= x.e and the upper e - x.e bits of x.f must be zero. */ static diyfp normalize_to(const diyfp &x, const int target_exponent) noexcept { const int delta = x.e - target_exponent; return {x.f << delta, target_exponent}; } }; struct boundaries { diyfp w; diyfp minus; diyfp plus; }; /*! Compute the (normalized) diyfp representing the input number 'value' and its boundaries. @pre value must be finite and positive */ template boundaries compute_boundaries(FloatType value) { // Convert the IEEE representation into a diyfp. // // If v is denormal: // value = 0.F * 2^(1 - bias) = ( F) * 2^(1 - bias - (p-1)) // If v is normalized: // value = 1.F * 2^(E - bias) = (2^(p-1) + F) * 2^(E - bias - (p-1)) static_assert(std::numeric_limits::is_iec559, "internal error: dtoa_short requires an IEEE-754 " "floating-point implementation"); constexpr int kPrecision = std::numeric_limits::digits; // = p (includes the hidden bit) constexpr int kBias = std::numeric_limits::max_exponent - 1 + (kPrecision - 1); constexpr int kMinExp = 1 - kBias; constexpr std::uint64_t kHiddenBit = std::uint64_t{1} << (kPrecision - 1); // = 2^(p-1) using bits_type = typename std::conditional::type; const std::uint64_t bits = reinterpret_bits(value); const std::uint64_t E = bits >> (kPrecision - 1); const std::uint64_t F = bits & (kHiddenBit - 1); const bool is_denormal = E == 0; const diyfp v = is_denormal ? diyfp(F, kMinExp) : diyfp(F + kHiddenBit, static_cast(E) - kBias); // Compute the boundaries m- and m+ of the floating-point value // v = f * 2^e. // // Determine v- and v+, the floating-point predecessor and successor if v, // respectively. // // v- = v - 2^e if f != 2^(p-1) or e == e_min (A) // = v - 2^(e-1) if f == 2^(p-1) and e > e_min (B) // // v+ = v + 2^e // // Let m- = (v- + v) / 2 and m+ = (v + v+) / 2. All real numbers _strictly_ // between m- and m+ round to v, regardless of how the input rounding // algorithm breaks ties. // // ---+-------------+-------------+-------------+-------------+--- (A) // v- m- v m+ v+ // // -----------------+------+------+-------------+-------------+--- (B) // v- m- v m+ v+ const bool lower_boundary_is_closer = F == 0 && E > 1; const diyfp m_plus = diyfp(2 * v.f + 1, v.e - 1); const diyfp m_minus = lower_boundary_is_closer ? diyfp(4 * v.f - 1, v.e - 2) // (B) : diyfp(2 * v.f - 1, v.e - 1); // (A) // Determine the normalized w+ = m+. const diyfp w_plus = diyfp::normalize(m_plus); // Determine w- = m- such that e_(w-) = e_(w+). const diyfp w_minus = diyfp::normalize_to(m_minus, w_plus.e); return {diyfp::normalize(v), w_minus, w_plus}; } // Given normalized diyfp w, Grisu needs to find a (normalized) cached // power-of-ten c, such that the exponent of the product c * w = f * 2^e lies // within a certain range [alpha, gamma] (Definition 3.2 from [1]) // // alpha <= e = e_c + e_w + q <= gamma // // or // // f_c * f_w * 2^alpha <= f_c 2^(e_c) * f_w 2^(e_w) * 2^q // <= f_c * f_w * 2^gamma // // Since c and w are normalized, i.e. 2^(q-1) <= f < 2^q, this implies // // 2^(q-1) * 2^(q-1) * 2^alpha <= c * w * 2^q < 2^q * 2^q * 2^gamma // // or // // 2^(q - 2 + alpha) <= c * w < 2^(q + gamma) // // The choice of (alpha,gamma) determines the size of the table and the form of // the digit generation procedure. Using (alpha,gamma)=(-60,-32) works out well // in practice: // // The idea is to cut the number c * w = f * 2^e into two parts, which can be // processed independently: An integral part p1, and a fractional part p2: // // f * 2^e = ( (f div 2^-e) * 2^-e + (f mod 2^-e) ) * 2^e // = (f div 2^-e) + (f mod 2^-e) * 2^e // = p1 + p2 * 2^e // // The conversion of p1 into decimal form requires a series of divisions and // modulos by (a power of) 10. These operations are faster for 32-bit than for // 64-bit integers, so p1 should ideally fit into a 32-bit integer. This can be // achieved by choosing // // -e >= 32 or e <= -32 := gamma // // In order to convert the fractional part // // p2 * 2^e = p2 / 2^-e = d[-1] / 10^1 + d[-2] / 10^2 + ... // // into decimal form, the fraction is repeatedly multiplied by 10 and the digits // d[-i] are extracted in order: // // (10 * p2) div 2^-e = d[-1] // (10 * p2) mod 2^-e = d[-2] / 10^1 + ... // // The multiplication by 10 must not overflow. It is sufficient to choose // // 10 * p2 < 16 * p2 = 2^4 * p2 <= 2^64. // // Since p2 = f mod 2^-e < 2^-e, // // -e <= 60 or e >= -60 := alpha constexpr int kAlpha = -60; constexpr int kGamma = -32; struct cached_power // c = f * 2^e ~= 10^k { std::uint64_t f; int e; int k; }; /*! For a normalized diyfp w = f * 2^e, this function returns a (normalized) cached power-of-ten c = f_c * 2^e_c, such that the exponent of the product w * c satisfies (Definition 3.2 from [1]) alpha <= e_c + e + q <= gamma. */ inline cached_power get_cached_power_for_binary_exponent(int e) { // Now // // alpha <= e_c + e + q <= gamma (1) // ==> f_c * 2^alpha <= c * 2^e * 2^q // // and since the c's are normalized, 2^(q-1) <= f_c, // // ==> 2^(q - 1 + alpha) <= c * 2^(e + q) // ==> 2^(alpha - e - 1) <= c // // If c were an exact power of ten, i.e. c = 10^k, one may determine k as // // k = ceil( log_10( 2^(alpha - e - 1) ) ) // = ceil( (alpha - e - 1) * log_10(2) ) // // From the paper: // "In theory the result of the procedure could be wrong since c is rounded, // and the computation itself is approximated [...]. In practice, however, // this simple function is sufficient." // // For IEEE double precision floating-point numbers converted into // normalized diyfp's w = f * 2^e, with q = 64, // // e >= -1022 (min IEEE exponent) // -52 (p - 1) // -52 (p - 1, possibly normalize denormal IEEE numbers) // -11 (normalize the diyfp) // = -1137 // // and // // e <= +1023 (max IEEE exponent) // -52 (p - 1) // -11 (normalize the diyfp) // = 960 // // This binary exponent range [-1137,960] results in a decimal exponent // range [-307,324]. One does not need to store a cached power for each // k in this range. For each such k it suffices to find a cached power // such that the exponent of the product lies in [alpha,gamma]. // This implies that the difference of the decimal exponents of adjacent // table entries must be less than or equal to // // floor( (gamma - alpha) * log_10(2) ) = 8. // // (A smaller distance gamma-alpha would require a larger table.) // NB: // Actually this function returns c, such that -60 <= e_c + e + 64 <= -34. constexpr int kCachedPowersMinDecExp = -300; constexpr int kCachedPowersDecStep = 8; static constexpr std::array kCachedPowers = {{ {0xAB70FE17C79AC6CA, -1060, -300}, {0xFF77B1FCBEBCDC4F, -1034, -292}, {0xBE5691EF416BD60C, -1007, -284}, {0x8DD01FAD907FFC3C, -980, -276}, {0xD3515C2831559A83, -954, -268}, {0x9D71AC8FADA6C9B5, -927, -260}, {0xEA9C227723EE8BCB, -901, -252}, {0xAECC49914078536D, -874, -244}, {0x823C12795DB6CE57, -847, -236}, {0xC21094364DFB5637, -821, -228}, {0x9096EA6F3848984F, -794, -220}, {0xD77485CB25823AC7, -768, -212}, {0xA086CFCD97BF97F4, -741, -204}, {0xEF340A98172AACE5, -715, -196}, {0xB23867FB2A35B28E, -688, -188}, {0x84C8D4DFD2C63F3B, -661, -180}, {0xC5DD44271AD3CDBA, -635, -172}, {0x936B9FCEBB25C996, -608, -164}, {0xDBAC6C247D62A584, -582, -156}, {0xA3AB66580D5FDAF6, -555, -148}, {0xF3E2F893DEC3F126, -529, -140}, {0xB5B5ADA8AAFF80B8, -502, -132}, {0x87625F056C7C4A8B, -475, -124}, {0xC9BCFF6034C13053, -449, -116}, {0x964E858C91BA2655, -422, -108}, {0xDFF9772470297EBD, -396, -100}, {0xA6DFBD9FB8E5B88F, -369, -92}, {0xF8A95FCF88747D94, -343, -84}, {0xB94470938FA89BCF, -316, -76}, {0x8A08F0F8BF0F156B, -289, -68}, {0xCDB02555653131B6, -263, -60}, {0x993FE2C6D07B7FAC, -236, -52}, {0xE45C10C42A2B3B06, -210, -44}, {0xAA242499697392D3, -183, -36}, {0xFD87B5F28300CA0E, -157, -28}, {0xBCE5086492111AEB, -130, -20}, {0x8CBCCC096F5088CC, -103, -12}, {0xD1B71758E219652C, -77, -4}, {0x9C40000000000000, -50, 4}, {0xE8D4A51000000000, -24, 12}, {0xAD78EBC5AC620000, 3, 20}, {0x813F3978F8940984, 30, 28}, {0xC097CE7BC90715B3, 56, 36}, {0x8F7E32CE7BEA5C70, 83, 44}, {0xD5D238A4ABE98068, 109, 52}, {0x9F4F2726179A2245, 136, 60}, {0xED63A231D4C4FB27, 162, 68}, {0xB0DE65388CC8ADA8, 189, 76}, {0x83C7088E1AAB65DB, 216, 84}, {0xC45D1DF942711D9A, 242, 92}, {0x924D692CA61BE758, 269, 100}, {0xDA01EE641A708DEA, 295, 108}, {0xA26DA3999AEF774A, 322, 116}, {0xF209787BB47D6B85, 348, 124}, {0xB454E4A179DD1877, 375, 132}, {0x865B86925B9BC5C2, 402, 140}, {0xC83553C5C8965D3D, 428, 148}, {0x952AB45CFA97A0B3, 455, 156}, {0xDE469FBD99A05FE3, 481, 164}, {0xA59BC234DB398C25, 508, 172}, {0xF6C69A72A3989F5C, 534, 180}, {0xB7DCBF5354E9BECE, 561, 188}, {0x88FCF317F22241E2, 588, 196}, {0xCC20CE9BD35C78A5, 614, 204}, {0x98165AF37B2153DF, 641, 212}, {0xE2A0B5DC971F303A, 667, 220}, {0xA8D9D1535CE3B396, 694, 228}, {0xFB9B7CD9A4A7443C, 720, 236}, {0xBB764C4CA7A44410, 747, 244}, {0x8BAB8EEFB6409C1A, 774, 252}, {0xD01FEF10A657842C, 800, 260}, {0x9B10A4E5E9913129, 827, 268}, {0xE7109BFBA19C0C9D, 853, 276}, {0xAC2820D9623BF429, 880, 284}, {0x80444B5E7AA7CF85, 907, 292}, {0xBF21E44003ACDD2D, 933, 300}, {0x8E679C2F5E44FF8F, 960, 308}, {0xD433179D9C8CB841, 986, 316}, {0x9E19DB92B4E31BA9, 1013, 324}, }}; // This computation gives exactly the same results for k as // k = ceil((kAlpha - e - 1) * 0.30102999566398114) // for |e| <= 1500, but doesn't require floating-point operations. // NB: log_10(2) ~= 78913 / 2^18 const int f = kAlpha - e - 1; const int k = (f * 78913) / (1 << 18) + static_cast(f > 0); const int index = (-kCachedPowersMinDecExp + k + (kCachedPowersDecStep - 1)) / kCachedPowersDecStep; const cached_power cached = kCachedPowers[static_cast(index)]; return cached; } /*! For n != 0, returns k, such that pow10 := 10^(k-1) <= n < 10^k. For n == 0, returns 1 and sets pow10 := 1. */ inline int find_largest_pow10(const std::uint32_t n, std::uint32_t &pow10) { // LCOV_EXCL_START if (n >= 1000000000) { pow10 = 1000000000; return 10; } // LCOV_EXCL_STOP else if (n >= 100000000) { pow10 = 100000000; return 9; } else if (n >= 10000000) { pow10 = 10000000; return 8; } else if (n >= 1000000) { pow10 = 1000000; return 7; } else if (n >= 100000) { pow10 = 100000; return 6; } else if (n >= 10000) { pow10 = 10000; return 5; } else if (n >= 1000) { pow10 = 1000; return 4; } else if (n >= 100) { pow10 = 100; return 3; } else if (n >= 10) { pow10 = 10; return 2; } else { pow10 = 1; return 1; } } inline void grisu2_round(char *buf, int len, std::uint64_t dist, std::uint64_t delta, std::uint64_t rest, std::uint64_t ten_k) { // <--------------------------- delta ----> // <---- dist ---------> // --------------[------------------+-------------------]-------------- // M- w M+ // // ten_k // <------> // <---- rest ----> // --------------[------------------+----+--------------]-------------- // w V // = buf * 10^k // // ten_k represents a unit-in-the-last-place in the decimal representation // stored in buf. // Decrement buf by ten_k while this takes buf closer to w. // The tests are written in this order to avoid overflow in unsigned // integer arithmetic. while (rest < dist && delta - rest >= ten_k && (rest + ten_k < dist || dist - rest > rest + ten_k - dist)) { buf[len - 1]--; rest += ten_k; } } /*! Generates V = buffer * 10^decimal_exponent, such that M- <= V <= M+. M- and M+ must be normalized and share the same exponent -60 <= e <= -32. */ inline void grisu2_digit_gen(char *buffer, int &length, int &decimal_exponent, diyfp M_minus, diyfp w, diyfp M_plus) { static_assert(kAlpha >= -60, "internal error"); static_assert(kGamma <= -32, "internal error"); // Generates the digits (and the exponent) of a decimal floating-point // number V = buffer * 10^decimal_exponent in the range [M-, M+]. The diyfp's // w, M- and M+ share the same exponent e, which satisfies alpha <= e <= // gamma. // // <--------------------------- delta ----> // <---- dist ---------> // --------------[------------------+-------------------]-------------- // M- w M+ // // Grisu2 generates the digits of M+ from left to right and stops as soon as // V is in [M-,M+]. std::uint64_t delta = diyfp::sub(M_plus, M_minus) .f; // (significand of (M+ - M-), implicit exponent is e) std::uint64_t dist = diyfp::sub(M_plus, w) .f; // (significand of (M+ - w ), implicit exponent is e) // Split M+ = f * 2^e into two parts p1 and p2 (note: e < 0): // // M+ = f * 2^e // = ((f div 2^-e) * 2^-e + (f mod 2^-e)) * 2^e // = ((p1 ) * 2^-e + (p2 )) * 2^e // = p1 + p2 * 2^e const diyfp one(std::uint64_t{1} << -M_plus.e, M_plus.e); auto p1 = static_cast( M_plus.f >> -one.e); // p1 = f div 2^-e (Since -e >= 32, p1 fits into a 32-bit int.) std::uint64_t p2 = M_plus.f & (one.f - 1); // p2 = f mod 2^-e // 1) // // Generate the digits of the integral part p1 = d[n-1]...d[1]d[0] std::uint32_t pow10; const int k = find_largest_pow10(p1, pow10); // 10^(k-1) <= p1 < 10^k, pow10 = 10^(k-1) // // p1 = (p1 div 10^(k-1)) * 10^(k-1) + (p1 mod 10^(k-1)) // = (d[k-1] ) * 10^(k-1) + (p1 mod 10^(k-1)) // // M+ = p1 + p2 * 2^e // = d[k-1] * 10^(k-1) + (p1 mod 10^(k-1)) + p2 * 2^e // = d[k-1] * 10^(k-1) + ((p1 mod 10^(k-1)) * 2^-e + p2) * 2^e // = d[k-1] * 10^(k-1) + ( rest) * 2^e // // Now generate the digits d[n] of p1 from left to right (n = k-1,...,0) // // p1 = d[k-1]...d[n] * 10^n + d[n-1]...d[0] // // but stop as soon as // // rest * 2^e = (d[n-1]...d[0] * 2^-e + p2) * 2^e <= delta * 2^e int n = k; while (n > 0) { // Invariants: // M+ = buffer * 10^n + (p1 + p2 * 2^e) (buffer = 0 for n = k) // pow10 = 10^(n-1) <= p1 < 10^n // const std::uint32_t d = p1 / pow10; // d = p1 div 10^(n-1) const std::uint32_t r = p1 % pow10; // r = p1 mod 10^(n-1) // // M+ = buffer * 10^n + (d * 10^(n-1) + r) + p2 * 2^e // = (buffer * 10 + d) * 10^(n-1) + (r + p2 * 2^e) // buffer[length++] = static_cast('0' + d); // buffer := buffer * 10 + d // // M+ = buffer * 10^(n-1) + (r + p2 * 2^e) // p1 = r; n--; // // M+ = buffer * 10^n + (p1 + p2 * 2^e) // pow10 = 10^n // // Now check if enough digits have been generated. // Compute // // p1 + p2 * 2^e = (p1 * 2^-e + p2) * 2^e = rest * 2^e // // Note: // Since rest and delta share the same exponent e, it suffices to // compare the significands. const std::uint64_t rest = (std::uint64_t{p1} << -one.e) + p2; if (rest <= delta) { // V = buffer * 10^n, with M- <= V <= M+. decimal_exponent += n; // We may now just stop. But instead look if the buffer could be // decremented to bring V closer to w. // // pow10 = 10^n is now 1 ulp in the decimal representation V. // The rounding procedure works with diyfp's with an implicit // exponent of e. // // 10^n = (10^n * 2^-e) * 2^e = ulp * 2^e // const std::uint64_t ten_n = std::uint64_t{pow10} << -one.e; grisu2_round(buffer, length, dist, delta, rest, ten_n); return; } pow10 /= 10; // // pow10 = 10^(n-1) <= p1 < 10^n // Invariants restored. } // 2) // // The digits of the integral part have been generated: // // M+ = d[k-1]...d[1]d[0] + p2 * 2^e // = buffer + p2 * 2^e // // Now generate the digits of the fractional part p2 * 2^e. // // Note: // No decimal point is generated: the exponent is adjusted instead. // // p2 actually represents the fraction // // p2 * 2^e // = p2 / 2^-e // = d[-1] / 10^1 + d[-2] / 10^2 + ... // // Now generate the digits d[-m] of p1 from left to right (m = 1,2,...) // // p2 * 2^e = d[-1]d[-2]...d[-m] * 10^-m // + 10^-m * (d[-m-1] / 10^1 + d[-m-2] / 10^2 + ...) // // using // // 10^m * p2 = ((10^m * p2) div 2^-e) * 2^-e + ((10^m * p2) mod 2^-e) // = ( d) * 2^-e + ( r) // // or // 10^m * p2 * 2^e = d + r * 2^e // // i.e. // // M+ = buffer + p2 * 2^e // = buffer + 10^-m * (d + r * 2^e) // = (buffer * 10^m + d) * 10^-m + 10^-m * r * 2^e // // and stop as soon as 10^-m * r * 2^e <= delta * 2^e int m = 0; for (;;) { // Invariant: // M+ = buffer * 10^-m + 10^-m * (d[-m-1] / 10 + d[-m-2] / 10^2 + ...) // * 2^e // = buffer * 10^-m + 10^-m * (p2 ) // * 2^e = buffer * 10^-m + 10^-m * (1/10 * (10 * p2) ) * 2^e = // buffer * 10^-m + 10^-m * (1/10 * ((10*p2 div 2^-e) * 2^-e + // (10*p2 mod 2^-e)) * 2^e // p2 *= 10; const std::uint64_t d = p2 >> -one.e; // d = (10 * p2) div 2^-e const std::uint64_t r = p2 & (one.f - 1); // r = (10 * p2) mod 2^-e // // M+ = buffer * 10^-m + 10^-m * (1/10 * (d * 2^-e + r) * 2^e // = buffer * 10^-m + 10^-m * (1/10 * (d + r * 2^e)) // = (buffer * 10 + d) * 10^(-m-1) + 10^(-m-1) * r * 2^e // buffer[length++] = static_cast('0' + d); // buffer := buffer * 10 + d // // M+ = buffer * 10^(-m-1) + 10^(-m-1) * r * 2^e // p2 = r; m++; // // M+ = buffer * 10^-m + 10^-m * p2 * 2^e // Invariant restored. // Check if enough digits have been generated. // // 10^-m * p2 * 2^e <= delta * 2^e // p2 * 2^e <= 10^m * delta * 2^e // p2 <= 10^m * delta delta *= 10; dist *= 10; if (p2 <= delta) { break; } } // V = buffer * 10^-m, with M- <= V <= M+. decimal_exponent -= m; // 1 ulp in the decimal representation is now 10^-m. // Since delta and dist are now scaled by 10^m, we need to do the // same with ulp in order to keep the units in sync. // // 10^m * 10^-m = 1 = 2^-e * 2^e = ten_m * 2^e // const std::uint64_t ten_m = one.f; grisu2_round(buffer, length, dist, delta, p2, ten_m); // By construction this algorithm generates the shortest possible decimal // number (Loitsch, Theorem 6.2) which rounds back to w. // For an input number of precision p, at least // // N = 1 + ceil(p * log_10(2)) // // decimal digits are sufficient to identify all binary floating-point // numbers (Matula, "In-and-Out conversions"). // This implies that the algorithm does not produce more than N decimal // digits. // // N = 17 for p = 53 (IEEE double precision) // N = 9 for p = 24 (IEEE single precision) } /*! v = buf * 10^decimal_exponent len is the length of the buffer (number of decimal digits) The buffer must be large enough, i.e. >= max_digits10. */ inline void grisu2(char *buf, int &len, int &decimal_exponent, diyfp m_minus, diyfp v, diyfp m_plus) { // --------(-----------------------+-----------------------)-------- (A) // m- v m+ // // --------------------(-----------+-----------------------)-------- (B) // m- v m+ // // First scale v (and m- and m+) such that the exponent is in the range // [alpha, gamma]. const cached_power cached = get_cached_power_for_binary_exponent(m_plus.e); const diyfp c_minus_k(cached.f, cached.e); // = c ~= 10^-k // The exponent of the products is = v.e + c_minus_k.e + q and is in the range // [alpha,gamma] const diyfp w = diyfp::mul(v, c_minus_k); const diyfp w_minus = diyfp::mul(m_minus, c_minus_k); const diyfp w_plus = diyfp::mul(m_plus, c_minus_k); // ----(---+---)---------------(---+---)---------------(---+---)---- // w- w w+ // = c*m- = c*v = c*m+ // // diyfp::mul rounds its result and c_minus_k is approximated too. w, w- and // w+ are now off by a small amount. // In fact: // // w - v * 10^k < 1 ulp // // To account for this inaccuracy, add resp. subtract 1 ulp. // // --------+---[---------------(---+---)---------------]---+-------- // w- M- w M+ w+ // // Now any number in [M-, M+] (bounds included) will round to w when input, // regardless of how the input rounding algorithm breaks ties. // // And digit_gen generates the shortest possible such number in [M-, M+]. // Note that this does not mean that Grisu2 always generates the shortest // possible number in the interval (m-, m+). const diyfp M_minus(w_minus.f + 1, w_minus.e); const diyfp M_plus(w_plus.f - 1, w_plus.e); decimal_exponent = -cached.k; // = -(-k) = k grisu2_digit_gen(buf, len, decimal_exponent, M_minus, w, M_plus); } /*! v = buf * 10^decimal_exponent len is the length of the buffer (number of decimal digits) The buffer must be large enough, i.e. >= max_digits10. */ template void grisu2(char *buf, int &len, int &decimal_exponent, FloatType value) { static_assert(diyfp::kPrecision >= std::numeric_limits::digits + 3, "internal error: not enough precision"); // If the neighbors (and boundaries) of 'value' are always computed for // double-precision numbers, all float's can be recovered using strtod (and // strtof). However, the resulting decimal representations are not exactly // "short". // // The documentation for 'std::to_chars' // (https://en.cppreference.com/w/cpp/utility/to_chars) says "value is // converted to a string as if by std::sprintf in the default ("C") locale" // and since sprintf promotes float's to double's, I think this is exactly // what 'std::to_chars' does. On the other hand, the documentation for // 'std::to_chars' requires that "parsing the representation using the // corresponding std::from_chars function recovers value exactly". That // indicates that single precision floating-point numbers should be recovered // using 'std::strtof'. // // NB: If the neighbors are computed for single-precision numbers, there is a // single float // (7.0385307e-26f) which can't be recovered using strtod. The resulting // double precision value is off by 1 ulp. #if 0 const boundaries w = compute_boundaries(static_cast(value)); #else const boundaries w = compute_boundaries(value); #endif grisu2(buf, len, decimal_exponent, w.minus, w.w, w.plus); } /*! @brief appends a decimal representation of e to buf @return a pointer to the element following the exponent. @pre -1000 < e < 1000 */ inline char *append_exponent(char *buf, int e) { if (e < 0) { e = -e; *buf++ = '-'; } else { *buf++ = '+'; } auto k = static_cast(e); if (k < 10) { // Always print at least two digits in the exponent. // This is for compatibility with printf("%g"). *buf++ = '0'; *buf++ = static_cast('0' + k); } else if (k < 100) { *buf++ = static_cast('0' + k / 10); k %= 10; *buf++ = static_cast('0' + k); } else { *buf++ = static_cast('0' + k / 100); k %= 100; *buf++ = static_cast('0' + k / 10); k %= 10; *buf++ = static_cast('0' + k); } return buf; } /*! @brief prettify v = buf * 10^decimal_exponent If v is in the range [10^min_exp, 10^max_exp) it will be printed in fixed-point notation. Otherwise it will be printed in exponential notation. @pre min_exp < 0 @pre max_exp > 0 */ inline char *format_buffer(char *buf, int len, int decimal_exponent, int min_exp, int max_exp) { const int k = len; const int n = len + decimal_exponent; // v = buf * 10^(n-k) // k is the length of the buffer (number of decimal digits) // n is the position of the decimal point relative to the start of the buffer. if (k <= n && n <= max_exp) { // digits[000] // len <= max_exp + 2 std::memset(buf + k, '0', static_cast(n) - static_cast(k)); // Make it look like a floating-point number (#362, #378) // buf[n + 0] = '.'; // buf[n + 1] = '0'; return buf + (static_cast(n)); } if (0 < n && n <= max_exp) { // dig.its // len <= max_digits10 + 1 std::memmove(buf + (static_cast(n) + 1), buf + n, static_cast(k) - static_cast(n)); buf[n] = '.'; return buf + (static_cast(k) + 1U); } if (min_exp < n && n <= 0) { // 0.[000]digits // len <= 2 + (-min_exp - 1) + max_digits10 std::memmove(buf + (2 + static_cast(-n)), buf, static_cast(k)); buf[0] = '0'; buf[1] = '.'; std::memset(buf + 2, '0', static_cast(-n)); return buf + (2U + static_cast(-n) + static_cast(k)); } if (k == 1) { // dE+123 // len <= 1 + 5 buf += 1; } else { // d.igitsE+123 // len <= max_digits10 + 1 + 5 std::memmove(buf + 2, buf + 1, static_cast(k) - 1); buf[1] = '.'; buf += 1 + static_cast(k); } *buf++ = 'e'; return append_exponent(buf, n - 1); } } // namespace dtoa_impl /*! The format of the resulting decimal representation is similar to printf's %g format. Returns an iterator pointing past-the-end of the decimal representation. @note The input number must be finite, i.e. NaN's and Inf's are not supported. @note The buffer must be large enough. @note The result is NOT null-terminated. */ char *to_chars(char *first, const char *last, double value) { static_cast(last); // maybe unused - fix warning bool negative = std::signbit(value); if (negative) { value = -value; *first++ = '-'; } if (value == 0) // +-0 { *first++ = '0'; // Make it look like a floating-point number (#362, #378) if(negative) { *first++ = '.'; *first++ = '0'; } return first; } // Compute v = buffer * 10^decimal_exponent. // The decimal digits are stored in the buffer, which needs to be interpreted // as an unsigned decimal integer. // len is the length of the buffer, i.e. the number of decimal digits. int len = 0; int decimal_exponent = 0; dtoa_impl::grisu2(first, len, decimal_exponent, value); // Format the buffer like printf("%.*g", prec, value) constexpr int kMinExp = -4; constexpr int kMaxExp = std::numeric_limits::digits10; return dtoa_impl::format_buffer(first, len, decimal_exponent, kMinExp, kMaxExp); } } // namespace internal } // namespace simdjson /* end file src/to_chars.cpp */ /* begin file src/from_chars.cpp */ #include namespace simdjson { namespace internal { /** * The code in the internal::from_chars function is meant to handle the floating-point number parsing * when we have more than 19 digits in the decimal mantissa. This should only be seen * in adversarial scenarios: we do not expect production systems to even produce * such floating-point numbers. * * The parser is based on work by Nigel Tao (at https://github.com/google/wuffs/) * who credits Ken Thompson for the design (via a reference to the Go source * code). See * https://github.com/google/wuffs/blob/aa46859ea40c72516deffa1b146121952d6dfd3b/internal/cgen/base/floatconv-submodule-data.c * https://github.com/google/wuffs/blob/46cd8105f47ca07ae2ba8e6a7818ef9c0df6c152/internal/cgen/base/floatconv-submodule-code.c * It is probably not very fast but it is a fallback that should almost never be * called in real life. Google Wuffs is published under APL 2.0. **/ namespace { constexpr uint32_t max_digits = 768; constexpr int32_t decimal_point_range = 2047; } // namespace struct adjusted_mantissa { uint64_t mantissa; int power2; adjusted_mantissa() : mantissa(0), power2(0) {} }; struct decimal { uint32_t num_digits; int32_t decimal_point; bool negative; bool truncated; uint8_t digits[max_digits]; }; template struct binary_format { static constexpr int mantissa_explicit_bits(); static constexpr int minimum_exponent(); static constexpr int infinite_power(); static constexpr int sign_index(); }; template <> constexpr int binary_format::mantissa_explicit_bits() { return 52; } template <> constexpr int binary_format::minimum_exponent() { return -1023; } template <> constexpr int binary_format::infinite_power() { return 0x7FF; } template <> constexpr int binary_format::sign_index() { return 63; } bool is_integer(char c) noexcept { return (c >= '0' && c <= '9'); } // This should always succeed since it follows a call to parse_number. decimal parse_decimal(const char *&p) noexcept { decimal answer; answer.num_digits = 0; answer.decimal_point = 0; answer.truncated = false; answer.negative = (*p == '-'); if ((*p == '-') || (*p == '+')) { ++p; } while (*p == '0') { ++p; } while (is_integer(*p)) { if (answer.num_digits < max_digits) { answer.digits[answer.num_digits] = uint8_t(*p - '0'); } answer.num_digits++; ++p; } if (*p == '.') { ++p; const char *first_after_period = p; // if we have not yet encountered a zero, we have to skip it as well if (answer.num_digits == 0) { // skip zeros while (*p == '0') { ++p; } } while (is_integer(*p)) { if (answer.num_digits < max_digits) { answer.digits[answer.num_digits] = uint8_t(*p - '0'); } answer.num_digits++; ++p; } answer.decimal_point = int32_t(first_after_period - p); } if(answer.num_digits > 0) { const char *preverse = p - 1; int32_t trailing_zeros = 0; while ((*preverse == '0') || (*preverse == '.')) { if(*preverse == '0') { trailing_zeros++; }; --preverse; } answer.decimal_point += int32_t(answer.num_digits); answer.num_digits -= uint32_t(trailing_zeros); } if(answer.num_digits > max_digits ) { answer.num_digits = max_digits; answer.truncated = true; } if (('e' == *p) || ('E' == *p)) { ++p; bool neg_exp = false; if ('-' == *p) { neg_exp = true; ++p; } else if ('+' == *p) { ++p; } int32_t exp_number = 0; // exponential part while (is_integer(*p)) { uint8_t digit = uint8_t(*p - '0'); if (exp_number < 0x10000) { exp_number = 10 * exp_number + digit; } ++p; } answer.decimal_point += (neg_exp ? -exp_number : exp_number); } return answer; } // This should always succeed since it follows a call to parse_number. // Will not read at or beyond the "end" pointer. decimal parse_decimal(const char *&p, const char * end) noexcept { decimal answer; answer.num_digits = 0; answer.decimal_point = 0; answer.truncated = false; if(p == end) { return answer; } // should never happen answer.negative = (*p == '-'); if ((*p == '-') || (*p == '+')) { ++p; } while ((p != end) && (*p == '0')) { ++p; } while ((p != end) && is_integer(*p)) { if (answer.num_digits < max_digits) { answer.digits[answer.num_digits] = uint8_t(*p - '0'); } answer.num_digits++; ++p; } if ((p != end) && (*p == '.')) { ++p; if(p == end) { return answer; } // should never happen const char *first_after_period = p; // if we have not yet encountered a zero, we have to skip it as well if (answer.num_digits == 0) { // skip zeros while (*p == '0') { ++p; } } while ((p != end) && is_integer(*p)) { if (answer.num_digits < max_digits) { answer.digits[answer.num_digits] = uint8_t(*p - '0'); } answer.num_digits++; ++p; } answer.decimal_point = int32_t(first_after_period - p); } if(answer.num_digits > 0) { const char *preverse = p - 1; int32_t trailing_zeros = 0; while ((*preverse == '0') || (*preverse == '.')) { if(*preverse == '0') { trailing_zeros++; }; --preverse; } answer.decimal_point += int32_t(answer.num_digits); answer.num_digits -= uint32_t(trailing_zeros); } if(answer.num_digits > max_digits ) { answer.num_digits = max_digits; answer.truncated = true; } if ((p != end) && (('e' == *p) || ('E' == *p))) { ++p; if(p == end) { return answer; } // should never happen bool neg_exp = false; if ('-' == *p) { neg_exp = true; ++p; } else if ('+' == *p) { ++p; } int32_t exp_number = 0; // exponential part while ((p != end) && is_integer(*p)) { uint8_t digit = uint8_t(*p - '0'); if (exp_number < 0x10000) { exp_number = 10 * exp_number + digit; } ++p; } answer.decimal_point += (neg_exp ? -exp_number : exp_number); } return answer; } namespace { // remove all final zeroes inline void trim(decimal &h) { while ((h.num_digits > 0) && (h.digits[h.num_digits - 1] == 0)) { h.num_digits--; } } uint32_t number_of_digits_decimal_left_shift(decimal &h, uint32_t shift) { shift &= 63; const static uint16_t number_of_digits_decimal_left_shift_table[65] = { 0x0000, 0x0800, 0x0801, 0x0803, 0x1006, 0x1009, 0x100D, 0x1812, 0x1817, 0x181D, 0x2024, 0x202B, 0x2033, 0x203C, 0x2846, 0x2850, 0x285B, 0x3067, 0x3073, 0x3080, 0x388E, 0x389C, 0x38AB, 0x38BB, 0x40CC, 0x40DD, 0x40EF, 0x4902, 0x4915, 0x4929, 0x513E, 0x5153, 0x5169, 0x5180, 0x5998, 0x59B0, 0x59C9, 0x61E3, 0x61FD, 0x6218, 0x6A34, 0x6A50, 0x6A6D, 0x6A8B, 0x72AA, 0x72C9, 0x72E9, 0x7B0A, 0x7B2B, 0x7B4D, 0x8370, 0x8393, 0x83B7, 0x83DC, 0x8C02, 0x8C28, 0x8C4F, 0x9477, 0x949F, 0x94C8, 0x9CF2, 0x051C, 0x051C, 0x051C, 0x051C, }; uint32_t x_a = number_of_digits_decimal_left_shift_table[shift]; uint32_t x_b = number_of_digits_decimal_left_shift_table[shift + 1]; uint32_t num_new_digits = x_a >> 11; uint32_t pow5_a = 0x7FF & x_a; uint32_t pow5_b = 0x7FF & x_b; const static uint8_t number_of_digits_decimal_left_shift_table_powers_of_5[0x051C] = { 5, 2, 5, 1, 2, 5, 6, 2, 5, 3, 1, 2, 5, 1, 5, 6, 2, 5, 7, 8, 1, 2, 5, 3, 9, 0, 6, 2, 5, 1, 9, 5, 3, 1, 2, 5, 9, 7, 6, 5, 6, 2, 5, 4, 8, 8, 2, 8, 1, 2, 5, 2, 4, 4, 1, 4, 0, 6, 2, 5, 1, 2, 2, 0, 7, 0, 3, 1, 2, 5, 6, 1, 0, 3, 5, 1, 5, 6, 2, 5, 3, 0, 5, 1, 7, 5, 7, 8, 1, 2, 5, 1, 5, 2, 5, 8, 7, 8, 9, 0, 6, 2, 5, 7, 6, 2, 9, 3, 9, 4, 5, 3, 1, 2, 5, 3, 8, 1, 4, 6, 9, 7, 2, 6, 5, 6, 2, 5, 1, 9, 0, 7, 3, 4, 8, 6, 3, 2, 8, 1, 2, 5, 9, 5, 3, 6, 7, 4, 3, 1, 6, 4, 0, 6, 2, 5, 4, 7, 6, 8, 3, 7, 1, 5, 8, 2, 0, 3, 1, 2, 5, 2, 3, 8, 4, 1, 8, 5, 7, 9, 1, 0, 1, 5, 6, 2, 5, 1, 1, 9, 2, 0, 9, 2, 8, 9, 5, 5, 0, 7, 8, 1, 2, 5, 5, 9, 6, 0, 4, 6, 4, 4, 7, 7, 5, 3, 9, 0, 6, 2, 5, 2, 9, 8, 0, 2, 3, 2, 2, 3, 8, 7, 6, 9, 5, 3, 1, 2, 5, 1, 4, 9, 0, 1, 1, 6, 1, 1, 9, 3, 8, 4, 7, 6, 5, 6, 2, 5, 7, 4, 5, 0, 5, 8, 0, 5, 9, 6, 9, 2, 3, 8, 2, 8, 1, 2, 5, 3, 7, 2, 5, 2, 9, 0, 2, 9, 8, 4, 6, 1, 9, 1, 4, 0, 6, 2, 5, 1, 8, 6, 2, 6, 4, 5, 1, 4, 9, 2, 3, 0, 9, 5, 7, 0, 3, 1, 2, 5, 9, 3, 1, 3, 2, 2, 5, 7, 4, 6, 1, 5, 4, 7, 8, 5, 1, 5, 6, 2, 5, 4, 6, 5, 6, 6, 1, 2, 8, 7, 3, 0, 7, 7, 3, 9, 2, 5, 7, 8, 1, 2, 5, 2, 3, 2, 8, 3, 0, 6, 4, 3, 6, 5, 3, 8, 6, 9, 6, 2, 8, 9, 0, 6, 2, 5, 1, 1, 6, 4, 1, 5, 3, 2, 1, 8, 2, 6, 9, 3, 4, 8, 1, 4, 4, 5, 3, 1, 2, 5, 5, 8, 2, 0, 7, 6, 6, 0, 9, 1, 3, 4, 6, 7, 4, 0, 7, 2, 2, 6, 5, 6, 2, 5, 2, 9, 1, 0, 3, 8, 3, 0, 4, 5, 6, 7, 3, 3, 7, 0, 3, 6, 1, 3, 2, 8, 1, 2, 5, 1, 4, 5, 5, 1, 9, 1, 5, 2, 2, 8, 3, 6, 6, 8, 5, 1, 8, 0, 6, 6, 4, 0, 6, 2, 5, 7, 2, 7, 5, 9, 5, 7, 6, 1, 4, 1, 8, 3, 4, 2, 5, 9, 0, 3, 3, 2, 0, 3, 1, 2, 5, 3, 6, 3, 7, 9, 7, 8, 8, 0, 7, 0, 9, 1, 7, 1, 2, 9, 5, 1, 6, 6, 0, 1, 5, 6, 2, 5, 1, 8, 1, 8, 9, 8, 9, 4, 0, 3, 5, 4, 5, 8, 5, 6, 4, 7, 5, 8, 3, 0, 0, 7, 8, 1, 2, 5, 9, 0, 9, 4, 9, 4, 7, 0, 1, 7, 7, 2, 9, 2, 8, 2, 3, 7, 9, 1, 5, 0, 3, 9, 0, 6, 2, 5, 4, 5, 4, 7, 4, 7, 3, 5, 0, 8, 8, 6, 4, 6, 4, 1, 1, 8, 9, 5, 7, 5, 1, 9, 5, 3, 1, 2, 5, 2, 2, 7, 3, 7, 3, 6, 7, 5, 4, 4, 3, 2, 3, 2, 0, 5, 9, 4, 7, 8, 7, 5, 9, 7, 6, 5, 6, 2, 5, 1, 1, 3, 6, 8, 6, 8, 3, 7, 7, 2, 1, 6, 1, 6, 0, 2, 9, 7, 3, 9, 3, 7, 9, 8, 8, 2, 8, 1, 2, 5, 5, 6, 8, 4, 3, 4, 1, 8, 8, 6, 0, 8, 0, 8, 0, 1, 4, 8, 6, 9, 6, 8, 9, 9, 4, 1, 4, 0, 6, 2, 5, 2, 8, 4, 2, 1, 7, 0, 9, 4, 3, 0, 4, 0, 4, 0, 0, 7, 4, 3, 4, 8, 4, 4, 9, 7, 0, 7, 0, 3, 1, 2, 5, 1, 4, 2, 1, 0, 8, 5, 4, 7, 1, 5, 2, 0, 2, 0, 0, 3, 7, 1, 7, 4, 2, 2, 4, 8, 5, 3, 5, 1, 5, 6, 2, 5, 7, 1, 0, 5, 4, 2, 7, 3, 5, 7, 6, 0, 1, 0, 0, 1, 8, 5, 8, 7, 1, 1, 2, 4, 2, 6, 7, 5, 7, 8, 1, 2, 5, 3, 5, 5, 2, 7, 1, 3, 6, 7, 8, 8, 0, 0, 5, 0, 0, 9, 2, 9, 3, 5, 5, 6, 2, 1, 3, 3, 7, 8, 9, 0, 6, 2, 5, 1, 7, 7, 6, 3, 5, 6, 8, 3, 9, 4, 0, 0, 2, 5, 0, 4, 6, 4, 6, 7, 7, 8, 1, 0, 6, 6, 8, 9, 4, 5, 3, 1, 2, 5, 8, 8, 8, 1, 7, 8, 4, 1, 9, 7, 0, 0, 1, 2, 5, 2, 3, 2, 3, 3, 8, 9, 0, 5, 3, 3, 4, 4, 7, 2, 6, 5, 6, 2, 5, 4, 4, 4, 0, 8, 9, 2, 0, 9, 8, 5, 0, 0, 6, 2, 6, 1, 6, 1, 6, 9, 4, 5, 2, 6, 6, 7, 2, 3, 6, 3, 2, 8, 1, 2, 5, 2, 2, 2, 0, 4, 4, 6, 0, 4, 9, 2, 5, 0, 3, 1, 3, 0, 8, 0, 8, 4, 7, 2, 6, 3, 3, 3, 6, 1, 8, 1, 6, 4, 0, 6, 2, 5, 1, 1, 1, 0, 2, 2, 3, 0, 2, 4, 6, 2, 5, 1, 5, 6, 5, 4, 0, 4, 2, 3, 6, 3, 1, 6, 6, 8, 0, 9, 0, 8, 2, 0, 3, 1, 2, 5, 5, 5, 5, 1, 1, 1, 5, 1, 2, 3, 1, 2, 5, 7, 8, 2, 7, 0, 2, 1, 1, 8, 1, 5, 8, 3, 4, 0, 4, 5, 4, 1, 0, 1, 5, 6, 2, 5, 2, 7, 7, 5, 5, 5, 7, 5, 6, 1, 5, 6, 2, 8, 9, 1, 3, 5, 1, 0, 5, 9, 0, 7, 9, 1, 7, 0, 2, 2, 7, 0, 5, 0, 7, 8, 1, 2, 5, 1, 3, 8, 7, 7, 7, 8, 7, 8, 0, 7, 8, 1, 4, 4, 5, 6, 7, 5, 5, 2, 9, 5, 3, 9, 5, 8, 5, 1, 1, 3, 5, 2, 5, 3, 9, 0, 6, 2, 5, 6, 9, 3, 8, 8, 9, 3, 9, 0, 3, 9, 0, 7, 2, 2, 8, 3, 7, 7, 6, 4, 7, 6, 9, 7, 9, 2, 5, 5, 6, 7, 6, 2, 6, 9, 5, 3, 1, 2, 5, 3, 4, 6, 9, 4, 4, 6, 9, 5, 1, 9, 5, 3, 6, 1, 4, 1, 8, 8, 8, 2, 3, 8, 4, 8, 9, 6, 2, 7, 8, 3, 8, 1, 3, 4, 7, 6, 5, 6, 2, 5, 1, 7, 3, 4, 7, 2, 3, 4, 7, 5, 9, 7, 6, 8, 0, 7, 0, 9, 4, 4, 1, 1, 9, 2, 4, 4, 8, 1, 3, 9, 1, 9, 0, 6, 7, 3, 8, 2, 8, 1, 2, 5, 8, 6, 7, 3, 6, 1, 7, 3, 7, 9, 8, 8, 4, 0, 3, 5, 4, 7, 2, 0, 5, 9, 6, 2, 2, 4, 0, 6, 9, 5, 9, 5, 3, 3, 6, 9, 1, 4, 0, 6, 2, 5, }; const uint8_t *pow5 = &number_of_digits_decimal_left_shift_table_powers_of_5[pow5_a]; uint32_t i = 0; uint32_t n = pow5_b - pow5_a; for (; i < n; i++) { if (i >= h.num_digits) { return num_new_digits - 1; } else if (h.digits[i] == pow5[i]) { continue; } else if (h.digits[i] < pow5[i]) { return num_new_digits - 1; } else { return num_new_digits; } } return num_new_digits; } } // end of anonymous namespace uint64_t round(decimal &h) { if ((h.num_digits == 0) || (h.decimal_point < 0)) { return 0; } else if (h.decimal_point > 18) { return UINT64_MAX; } // at this point, we know that h.decimal_point >= 0 uint32_t dp = uint32_t(h.decimal_point); uint64_t n = 0; for (uint32_t i = 0; i < dp; i++) { n = (10 * n) + ((i < h.num_digits) ? h.digits[i] : 0); } bool round_up = false; if (dp < h.num_digits) { round_up = h.digits[dp] >= 5; // normally, we round up // but we may need to round to even! if ((h.digits[dp] == 5) && (dp + 1 == h.num_digits)) { round_up = h.truncated || ((dp > 0) && (1 & h.digits[dp - 1])); } } if (round_up) { n++; } return n; } // computes h * 2^-shift void decimal_left_shift(decimal &h, uint32_t shift) { if (h.num_digits == 0) { return; } uint32_t num_new_digits = number_of_digits_decimal_left_shift(h, shift); int32_t read_index = int32_t(h.num_digits - 1); uint32_t write_index = h.num_digits - 1 + num_new_digits; uint64_t n = 0; while (read_index >= 0) { n += uint64_t(h.digits[read_index]) << shift; uint64_t quotient = n / 10; uint64_t remainder = n - (10 * quotient); if (write_index < max_digits) { h.digits[write_index] = uint8_t(remainder); } else if (remainder > 0) { h.truncated = true; } n = quotient; write_index--; read_index--; } while (n > 0) { uint64_t quotient = n / 10; uint64_t remainder = n - (10 * quotient); if (write_index < max_digits) { h.digits[write_index] = uint8_t(remainder); } else if (remainder > 0) { h.truncated = true; } n = quotient; write_index--; } h.num_digits += num_new_digits; if (h.num_digits > max_digits) { h.num_digits = max_digits; } h.decimal_point += int32_t(num_new_digits); trim(h); } // computes h * 2^shift void decimal_right_shift(decimal &h, uint32_t shift) { uint32_t read_index = 0; uint32_t write_index = 0; uint64_t n = 0; while ((n >> shift) == 0) { if (read_index < h.num_digits) { n = (10 * n) + h.digits[read_index++]; } else if (n == 0) { return; } else { while ((n >> shift) == 0) { n = 10 * n; read_index++; } break; } } h.decimal_point -= int32_t(read_index - 1); if (h.decimal_point < -decimal_point_range) { // it is zero h.num_digits = 0; h.decimal_point = 0; h.negative = false; h.truncated = false; return; } uint64_t mask = (uint64_t(1) << shift) - 1; while (read_index < h.num_digits) { uint8_t new_digit = uint8_t(n >> shift); n = (10 * (n & mask)) + h.digits[read_index++]; h.digits[write_index++] = new_digit; } while (n > 0) { uint8_t new_digit = uint8_t(n >> shift); n = 10 * (n & mask); if (write_index < max_digits) { h.digits[write_index++] = new_digit; } else if (new_digit > 0) { h.truncated = true; } } h.num_digits = write_index; trim(h); } template adjusted_mantissa compute_float(decimal &d) { adjusted_mantissa answer; if (d.num_digits == 0) { // should be zero answer.power2 = 0; answer.mantissa = 0; return answer; } // At this point, going further, we can assume that d.num_digits > 0. // We want to guard against excessive decimal point values because // they can result in long running times. Indeed, we do // shifts by at most 60 bits. We have that log(10**400)/log(2**60) ~= 22 // which is fine, but log(10**299995)/log(2**60) ~= 16609 which is not // fine (runs for a long time). // if(d.decimal_point < -324) { // We have something smaller than 1e-324 which is always zero // in binary64 and binary32. // It should be zero. answer.power2 = 0; answer.mantissa = 0; return answer; } else if(d.decimal_point >= 310) { // We have something at least as large as 0.1e310 which is // always infinite. answer.power2 = binary::infinite_power(); answer.mantissa = 0; return answer; } static const uint32_t max_shift = 60; static const uint32_t num_powers = 19; static const uint8_t powers[19] = { 0, 3, 6, 9, 13, 16, 19, 23, 26, 29, // 33, 36, 39, 43, 46, 49, 53, 56, 59, // }; int32_t exp2 = 0; while (d.decimal_point > 0) { uint32_t n = uint32_t(d.decimal_point); uint32_t shift = (n < num_powers) ? powers[n] : max_shift; decimal_right_shift(d, shift); if (d.decimal_point < -decimal_point_range) { // should be zero answer.power2 = 0; answer.mantissa = 0; return answer; } exp2 += int32_t(shift); } // We shift left toward [1/2 ... 1]. while (d.decimal_point <= 0) { uint32_t shift; if (d.decimal_point == 0) { if (d.digits[0] >= 5) { break; } shift = (d.digits[0] < 2) ? 2 : 1; } else { uint32_t n = uint32_t(-d.decimal_point); shift = (n < num_powers) ? powers[n] : max_shift; } decimal_left_shift(d, shift); if (d.decimal_point > decimal_point_range) { // we want to get infinity: answer.power2 = 0xFF; answer.mantissa = 0; return answer; } exp2 -= int32_t(shift); } // We are now in the range [1/2 ... 1] but the binary format uses [1 ... 2]. exp2--; constexpr int32_t minimum_exponent = binary::minimum_exponent(); while ((minimum_exponent + 1) > exp2) { uint32_t n = uint32_t((minimum_exponent + 1) - exp2); if (n > max_shift) { n = max_shift; } decimal_right_shift(d, n); exp2 += int32_t(n); } if ((exp2 - minimum_exponent) >= binary::infinite_power()) { answer.power2 = binary::infinite_power(); answer.mantissa = 0; return answer; } const int mantissa_size_in_bits = binary::mantissa_explicit_bits() + 1; decimal_left_shift(d, mantissa_size_in_bits); uint64_t mantissa = round(d); // It is possible that we have an overflow, in which case we need // to shift back. if (mantissa >= (uint64_t(1) << mantissa_size_in_bits)) { decimal_right_shift(d, 1); exp2 += 1; mantissa = round(d); if ((exp2 - minimum_exponent) >= binary::infinite_power()) { answer.power2 = binary::infinite_power(); answer.mantissa = 0; return answer; } } answer.power2 = exp2 - binary::minimum_exponent(); if (mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) { answer.power2--; } answer.mantissa = mantissa & ((uint64_t(1) << binary::mantissa_explicit_bits()) - 1); return answer; } template adjusted_mantissa parse_long_mantissa(const char *first) { decimal d = parse_decimal(first); return compute_float(d); } template adjusted_mantissa parse_long_mantissa(const char *first, const char *end) { decimal d = parse_decimal(first, end); return compute_float(d); } double from_chars(const char *first) noexcept { bool negative = first[0] == '-'; if (negative) { first++; } adjusted_mantissa am = parse_long_mantissa>(first); uint64_t word = am.mantissa; word |= uint64_t(am.power2) << binary_format::mantissa_explicit_bits(); word = negative ? word | (uint64_t(1) << binary_format::sign_index()) : word; double value; std::memcpy(&value, &word, sizeof(double)); return value; } double from_chars(const char *first, const char *end) noexcept { bool negative = first[0] == '-'; if (negative) { first++; } adjusted_mantissa am = parse_long_mantissa>(first, end); uint64_t word = am.mantissa; word |= uint64_t(am.power2) << binary_format::mantissa_explicit_bits(); word = negative ? word | (uint64_t(1) << binary_format::sign_index()) : word; double value; std::memcpy(&value, &word, sizeof(double)); return value; } } // internal } // simdjson /* end file src/from_chars.cpp */ /* begin file src/internal/error_tables.cpp */ namespace simdjson { namespace internal { SIMDJSON_DLLIMPORTEXPORT const error_code_info error_codes[] { { SUCCESS, "No error" }, { CAPACITY, "This parser can't support a document that big" }, { MEMALLOC, "Error allocating memory, we're most likely out of memory" }, { TAPE_ERROR, "The JSON document has an improper structure: missing or superfluous commas, braces, missing keys, etc." }, { DEPTH_ERROR, "The JSON document was too deep (too many nested objects and arrays)" }, { STRING_ERROR, "Problem while parsing a string" }, { T_ATOM_ERROR, "Problem while parsing an atom starting with the letter 't'" }, { F_ATOM_ERROR, "Problem while parsing an atom starting with the letter 'f'" }, { N_ATOM_ERROR, "Problem while parsing an atom starting with the letter 'n'" }, { NUMBER_ERROR, "Problem while parsing a number" }, { UTF8_ERROR, "The input is not valid UTF-8" }, { UNINITIALIZED, "Uninitialized" }, { EMPTY, "Empty: no JSON found" }, { UNESCAPED_CHARS, "Within strings, some characters must be escaped, we found unescaped characters" }, { UNCLOSED_STRING, "A string is opened, but never closed." }, { UNSUPPORTED_ARCHITECTURE, "simdjson does not have an implementation supported by this CPU architecture (perhaps it's a non-SIMD CPU?)." }, { INCORRECT_TYPE, "The JSON element does not have the requested type." }, { NUMBER_OUT_OF_RANGE, "The JSON number is too large or too small to fit within the requested type." }, { INDEX_OUT_OF_BOUNDS, "Attempted to access an element of a JSON array that is beyond its length." }, { NO_SUCH_FIELD, "The JSON field referenced does not exist in this object." }, { IO_ERROR, "Error reading the file." }, { INVALID_JSON_POINTER, "Invalid JSON pointer syntax." }, { INVALID_URI_FRAGMENT, "Invalid URI fragment syntax." }, { UNEXPECTED_ERROR, "Unexpected error, consider reporting this problem as you may have found a bug in simdjson" }, { PARSER_IN_USE, "Cannot parse a new document while a document is still in use." }, { OUT_OF_ORDER_ITERATION, "Objects and arrays can only be iterated when they are first encountered." }, { INSUFFICIENT_PADDING, "simdjson requires the input JSON string to have at least SIMDJSON_PADDING extra bytes allocated, beyond the string's length. Consider using the simdjson::padded_string class if needed." }, { INCOMPLETE_ARRAY_OR_OBJECT, "JSON document ended early in the middle of an object or array." }, { SCALAR_DOCUMENT_AS_VALUE, "A JSON document made of a scalar (number, Boolean, null or string) is treated as a value. Use get_bool(), get_double(), etc. on the document instead. "}, { OUT_OF_BOUNDS, "Attempted to access location outside of document."} }; // error_messages[] } // namespace internal } // namespace simdjson /* end file src/internal/error_tables.cpp */ /* begin file src/internal/jsoncharutils_tables.cpp */ namespace simdjson { namespace internal { // structural chars here are // they are { 0x7b } 0x7d : 0x3a [ 0x5b ] 0x5d , 0x2c (and NULL) // we are also interested in the four whitespace characters // space 0x20, linefeed 0x0a, horizontal tab 0x09 and carriage return 0x0d SIMDJSON_DLLIMPORTEXPORT const bool structural_or_whitespace_negated[256] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; SIMDJSON_DLLIMPORTEXPORT const bool structural_or_whitespace[256] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; SIMDJSON_DLLIMPORTEXPORT const uint32_t digit_to_val32[886] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0, 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70, 0x80, 0x90, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xa0, 0xb0, 0xc0, 0xd0, 0xe0, 0xf0, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xa0, 0xb0, 0xc0, 0xd0, 0xe0, 0xf0, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0, 0x100, 0x200, 0x300, 0x400, 0x500, 0x600, 0x700, 0x800, 0x900, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xa00, 0xb00, 0xc00, 0xd00, 0xe00, 0xf00, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xa00, 0xb00, 0xc00, 0xd00, 0xe00, 0xf00, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0, 0x1000, 0x2000, 0x3000, 0x4000, 0x5000, 0x6000, 0x7000, 0x8000, 0x9000, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xa000, 0xb000, 0xc000, 0xd000, 0xe000, 0xf000, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xa000, 0xb000, 0xc000, 0xd000, 0xe000, 0xf000, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}; } // namespace internal } // namespace simdjson /* end file src/internal/jsoncharutils_tables.cpp */ /* begin file src/internal/numberparsing_tables.cpp */ namespace simdjson { namespace internal { // Precomputed powers of ten from 10^0 to 10^22. These // can be represented exactly using the double type. SIMDJSON_DLLIMPORTEXPORT const double power_of_ten[] = { 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22}; /** * When mapping numbers from decimal to binary, * we go from w * 10^q to m * 2^p but we have * 10^q = 5^q * 2^q, so effectively * we are trying to match * w * 2^q * 5^q to m * 2^p. Thus the powers of two * are not a concern since they can be represented * exactly using the binary notation, only the powers of five * affect the binary significand. */ // The truncated powers of five from 5^-342 all the way to 5^308 // The mantissa is truncated to 128 bits, and // never rounded up. Uses about 10KB. SIMDJSON_DLLIMPORTEXPORT const uint64_t power_of_five_128[]= { 0xeef453d6923bd65a,0x113faa2906a13b3f, 0x9558b4661b6565f8,0x4ac7ca59a424c507, 0xbaaee17fa23ebf76,0x5d79bcf00d2df649, 0xe95a99df8ace6f53,0xf4d82c2c107973dc, 0x91d8a02bb6c10594,0x79071b9b8a4be869, 0xb64ec836a47146f9,0x9748e2826cdee284, 0xe3e27a444d8d98b7,0xfd1b1b2308169b25, 0x8e6d8c6ab0787f72,0xfe30f0f5e50e20f7, 0xb208ef855c969f4f,0xbdbd2d335e51a935, 0xde8b2b66b3bc4723,0xad2c788035e61382, 0x8b16fb203055ac76,0x4c3bcb5021afcc31, 0xaddcb9e83c6b1793,0xdf4abe242a1bbf3d, 0xd953e8624b85dd78,0xd71d6dad34a2af0d, 0x87d4713d6f33aa6b,0x8672648c40e5ad68, 0xa9c98d8ccb009506,0x680efdaf511f18c2, 0xd43bf0effdc0ba48,0x212bd1b2566def2, 0x84a57695fe98746d,0x14bb630f7604b57, 0xa5ced43b7e3e9188,0x419ea3bd35385e2d, 0xcf42894a5dce35ea,0x52064cac828675b9, 0x818995ce7aa0e1b2,0x7343efebd1940993, 0xa1ebfb4219491a1f,0x1014ebe6c5f90bf8, 0xca66fa129f9b60a6,0xd41a26e077774ef6, 0xfd00b897478238d0,0x8920b098955522b4, 0x9e20735e8cb16382,0x55b46e5f5d5535b0, 0xc5a890362fddbc62,0xeb2189f734aa831d, 0xf712b443bbd52b7b,0xa5e9ec7501d523e4, 0x9a6bb0aa55653b2d,0x47b233c92125366e, 0xc1069cd4eabe89f8,0x999ec0bb696e840a, 0xf148440a256e2c76,0xc00670ea43ca250d, 0x96cd2a865764dbca,0x380406926a5e5728, 0xbc807527ed3e12bc,0xc605083704f5ecf2, 0xeba09271e88d976b,0xf7864a44c633682e, 0x93445b8731587ea3,0x7ab3ee6afbe0211d, 0xb8157268fdae9e4c,0x5960ea05bad82964, 0xe61acf033d1a45df,0x6fb92487298e33bd, 0x8fd0c16206306bab,0xa5d3b6d479f8e056, 0xb3c4f1ba87bc8696,0x8f48a4899877186c, 0xe0b62e2929aba83c,0x331acdabfe94de87, 0x8c71dcd9ba0b4925,0x9ff0c08b7f1d0b14, 0xaf8e5410288e1b6f,0x7ecf0ae5ee44dd9, 0xdb71e91432b1a24a,0xc9e82cd9f69d6150, 0x892731ac9faf056e,0xbe311c083a225cd2, 0xab70fe17c79ac6ca,0x6dbd630a48aaf406, 0xd64d3d9db981787d,0x92cbbccdad5b108, 0x85f0468293f0eb4e,0x25bbf56008c58ea5, 0xa76c582338ed2621,0xaf2af2b80af6f24e, 0xd1476e2c07286faa,0x1af5af660db4aee1, 0x82cca4db847945ca,0x50d98d9fc890ed4d, 0xa37fce126597973c,0xe50ff107bab528a0, 0xcc5fc196fefd7d0c,0x1e53ed49a96272c8, 0xff77b1fcbebcdc4f,0x25e8e89c13bb0f7a, 0x9faacf3df73609b1,0x77b191618c54e9ac, 0xc795830d75038c1d,0xd59df5b9ef6a2417, 0xf97ae3d0d2446f25,0x4b0573286b44ad1d, 0x9becce62836ac577,0x4ee367f9430aec32, 0xc2e801fb244576d5,0x229c41f793cda73f, 0xf3a20279ed56d48a,0x6b43527578c1110f, 0x9845418c345644d6,0x830a13896b78aaa9, 0xbe5691ef416bd60c,0x23cc986bc656d553, 0xedec366b11c6cb8f,0x2cbfbe86b7ec8aa8, 0x94b3a202eb1c3f39,0x7bf7d71432f3d6a9, 0xb9e08a83a5e34f07,0xdaf5ccd93fb0cc53, 0xe858ad248f5c22c9,0xd1b3400f8f9cff68, 0x91376c36d99995be,0x23100809b9c21fa1, 0xb58547448ffffb2d,0xabd40a0c2832a78a, 0xe2e69915b3fff9f9,0x16c90c8f323f516c, 0x8dd01fad907ffc3b,0xae3da7d97f6792e3, 0xb1442798f49ffb4a,0x99cd11cfdf41779c, 0xdd95317f31c7fa1d,0x40405643d711d583, 0x8a7d3eef7f1cfc52,0x482835ea666b2572, 0xad1c8eab5ee43b66,0xda3243650005eecf, 0xd863b256369d4a40,0x90bed43e40076a82, 0x873e4f75e2224e68,0x5a7744a6e804a291, 0xa90de3535aaae202,0x711515d0a205cb36, 0xd3515c2831559a83,0xd5a5b44ca873e03, 0x8412d9991ed58091,0xe858790afe9486c2, 0xa5178fff668ae0b6,0x626e974dbe39a872, 0xce5d73ff402d98e3,0xfb0a3d212dc8128f, 0x80fa687f881c7f8e,0x7ce66634bc9d0b99, 0xa139029f6a239f72,0x1c1fffc1ebc44e80, 0xc987434744ac874e,0xa327ffb266b56220, 0xfbe9141915d7a922,0x4bf1ff9f0062baa8, 0x9d71ac8fada6c9b5,0x6f773fc3603db4a9, 0xc4ce17b399107c22,0xcb550fb4384d21d3, 0xf6019da07f549b2b,0x7e2a53a146606a48, 0x99c102844f94e0fb,0x2eda7444cbfc426d, 0xc0314325637a1939,0xfa911155fefb5308, 0xf03d93eebc589f88,0x793555ab7eba27ca, 0x96267c7535b763b5,0x4bc1558b2f3458de, 0xbbb01b9283253ca2,0x9eb1aaedfb016f16, 0xea9c227723ee8bcb,0x465e15a979c1cadc, 0x92a1958a7675175f,0xbfacd89ec191ec9, 0xb749faed14125d36,0xcef980ec671f667b, 0xe51c79a85916f484,0x82b7e12780e7401a, 0x8f31cc0937ae58d2,0xd1b2ecb8b0908810, 0xb2fe3f0b8599ef07,0x861fa7e6dcb4aa15, 0xdfbdcece67006ac9,0x67a791e093e1d49a, 0x8bd6a141006042bd,0xe0c8bb2c5c6d24e0, 0xaecc49914078536d,0x58fae9f773886e18, 0xda7f5bf590966848,0xaf39a475506a899e, 0x888f99797a5e012d,0x6d8406c952429603, 0xaab37fd7d8f58178,0xc8e5087ba6d33b83, 0xd5605fcdcf32e1d6,0xfb1e4a9a90880a64, 0x855c3be0a17fcd26,0x5cf2eea09a55067f, 0xa6b34ad8c9dfc06f,0xf42faa48c0ea481e, 0xd0601d8efc57b08b,0xf13b94daf124da26, 0x823c12795db6ce57,0x76c53d08d6b70858, 0xa2cb1717b52481ed,0x54768c4b0c64ca6e, 0xcb7ddcdda26da268,0xa9942f5dcf7dfd09, 0xfe5d54150b090b02,0xd3f93b35435d7c4c, 0x9efa548d26e5a6e1,0xc47bc5014a1a6daf, 0xc6b8e9b0709f109a,0x359ab6419ca1091b, 0xf867241c8cc6d4c0,0xc30163d203c94b62, 0x9b407691d7fc44f8,0x79e0de63425dcf1d, 0xc21094364dfb5636,0x985915fc12f542e4, 0xf294b943e17a2bc4,0x3e6f5b7b17b2939d, 0x979cf3ca6cec5b5a,0xa705992ceecf9c42, 0xbd8430bd08277231,0x50c6ff782a838353, 0xece53cec4a314ebd,0xa4f8bf5635246428, 0x940f4613ae5ed136,0x871b7795e136be99, 0xb913179899f68584,0x28e2557b59846e3f, 0xe757dd7ec07426e5,0x331aeada2fe589cf, 0x9096ea6f3848984f,0x3ff0d2c85def7621, 0xb4bca50b065abe63,0xfed077a756b53a9, 0xe1ebce4dc7f16dfb,0xd3e8495912c62894, 0x8d3360f09cf6e4bd,0x64712dd7abbbd95c, 0xb080392cc4349dec,0xbd8d794d96aacfb3, 0xdca04777f541c567,0xecf0d7a0fc5583a0, 0x89e42caaf9491b60,0xf41686c49db57244, 0xac5d37d5b79b6239,0x311c2875c522ced5, 0xd77485cb25823ac7,0x7d633293366b828b, 0x86a8d39ef77164bc,0xae5dff9c02033197, 0xa8530886b54dbdeb,0xd9f57f830283fdfc, 0xd267caa862a12d66,0xd072df63c324fd7b, 0x8380dea93da4bc60,0x4247cb9e59f71e6d, 0xa46116538d0deb78,0x52d9be85f074e608, 0xcd795be870516656,0x67902e276c921f8b, 0x806bd9714632dff6,0xba1cd8a3db53b6, 0xa086cfcd97bf97f3,0x80e8a40eccd228a4, 0xc8a883c0fdaf7df0,0x6122cd128006b2cd, 0xfad2a4b13d1b5d6c,0x796b805720085f81, 0x9cc3a6eec6311a63,0xcbe3303674053bb0, 0xc3f490aa77bd60fc,0xbedbfc4411068a9c, 0xf4f1b4d515acb93b,0xee92fb5515482d44, 0x991711052d8bf3c5,0x751bdd152d4d1c4a, 0xbf5cd54678eef0b6,0xd262d45a78a0635d, 0xef340a98172aace4,0x86fb897116c87c34, 0x9580869f0e7aac0e,0xd45d35e6ae3d4da0, 0xbae0a846d2195712,0x8974836059cca109, 0xe998d258869facd7,0x2bd1a438703fc94b, 0x91ff83775423cc06,0x7b6306a34627ddcf, 0xb67f6455292cbf08,0x1a3bc84c17b1d542, 0xe41f3d6a7377eeca,0x20caba5f1d9e4a93, 0x8e938662882af53e,0x547eb47b7282ee9c, 0xb23867fb2a35b28d,0xe99e619a4f23aa43, 0xdec681f9f4c31f31,0x6405fa00e2ec94d4, 0x8b3c113c38f9f37e,0xde83bc408dd3dd04, 0xae0b158b4738705e,0x9624ab50b148d445, 0xd98ddaee19068c76,0x3badd624dd9b0957, 0x87f8a8d4cfa417c9,0xe54ca5d70a80e5d6, 0xa9f6d30a038d1dbc,0x5e9fcf4ccd211f4c, 0xd47487cc8470652b,0x7647c3200069671f, 0x84c8d4dfd2c63f3b,0x29ecd9f40041e073, 0xa5fb0a17c777cf09,0xf468107100525890, 0xcf79cc9db955c2cc,0x7182148d4066eeb4, 0x81ac1fe293d599bf,0xc6f14cd848405530, 0xa21727db38cb002f,0xb8ada00e5a506a7c, 0xca9cf1d206fdc03b,0xa6d90811f0e4851c, 0xfd442e4688bd304a,0x908f4a166d1da663, 0x9e4a9cec15763e2e,0x9a598e4e043287fe, 0xc5dd44271ad3cdba,0x40eff1e1853f29fd, 0xf7549530e188c128,0xd12bee59e68ef47c, 0x9a94dd3e8cf578b9,0x82bb74f8301958ce, 0xc13a148e3032d6e7,0xe36a52363c1faf01, 0xf18899b1bc3f8ca1,0xdc44e6c3cb279ac1, 0x96f5600f15a7b7e5,0x29ab103a5ef8c0b9, 0xbcb2b812db11a5de,0x7415d448f6b6f0e7, 0xebdf661791d60f56,0x111b495b3464ad21, 0x936b9fcebb25c995,0xcab10dd900beec34, 0xb84687c269ef3bfb,0x3d5d514f40eea742, 0xe65829b3046b0afa,0xcb4a5a3112a5112, 0x8ff71a0fe2c2e6dc,0x47f0e785eaba72ab, 0xb3f4e093db73a093,0x59ed216765690f56, 0xe0f218b8d25088b8,0x306869c13ec3532c, 0x8c974f7383725573,0x1e414218c73a13fb, 0xafbd2350644eeacf,0xe5d1929ef90898fa, 0xdbac6c247d62a583,0xdf45f746b74abf39, 0x894bc396ce5da772,0x6b8bba8c328eb783, 0xab9eb47c81f5114f,0x66ea92f3f326564, 0xd686619ba27255a2,0xc80a537b0efefebd, 0x8613fd0145877585,0xbd06742ce95f5f36, 0xa798fc4196e952e7,0x2c48113823b73704, 0xd17f3b51fca3a7a0,0xf75a15862ca504c5, 0x82ef85133de648c4,0x9a984d73dbe722fb, 0xa3ab66580d5fdaf5,0xc13e60d0d2e0ebba, 0xcc963fee10b7d1b3,0x318df905079926a8, 0xffbbcfe994e5c61f,0xfdf17746497f7052, 0x9fd561f1fd0f9bd3,0xfeb6ea8bedefa633, 0xc7caba6e7c5382c8,0xfe64a52ee96b8fc0, 0xf9bd690a1b68637b,0x3dfdce7aa3c673b0, 0x9c1661a651213e2d,0x6bea10ca65c084e, 0xc31bfa0fe5698db8,0x486e494fcff30a62, 0xf3e2f893dec3f126,0x5a89dba3c3efccfa, 0x986ddb5c6b3a76b7,0xf89629465a75e01c, 0xbe89523386091465,0xf6bbb397f1135823, 0xee2ba6c0678b597f,0x746aa07ded582e2c, 0x94db483840b717ef,0xa8c2a44eb4571cdc, 0xba121a4650e4ddeb,0x92f34d62616ce413, 0xe896a0d7e51e1566,0x77b020baf9c81d17, 0x915e2486ef32cd60,0xace1474dc1d122e, 0xb5b5ada8aaff80b8,0xd819992132456ba, 0xe3231912d5bf60e6,0x10e1fff697ed6c69, 0x8df5efabc5979c8f,0xca8d3ffa1ef463c1, 0xb1736b96b6fd83b3,0xbd308ff8a6b17cb2, 0xddd0467c64bce4a0,0xac7cb3f6d05ddbde, 0x8aa22c0dbef60ee4,0x6bcdf07a423aa96b, 0xad4ab7112eb3929d,0x86c16c98d2c953c6, 0xd89d64d57a607744,0xe871c7bf077ba8b7, 0x87625f056c7c4a8b,0x11471cd764ad4972, 0xa93af6c6c79b5d2d,0xd598e40d3dd89bcf, 0xd389b47879823479,0x4aff1d108d4ec2c3, 0x843610cb4bf160cb,0xcedf722a585139ba, 0xa54394fe1eedb8fe,0xc2974eb4ee658828, 0xce947a3da6a9273e,0x733d226229feea32, 0x811ccc668829b887,0x806357d5a3f525f, 0xa163ff802a3426a8,0xca07c2dcb0cf26f7, 0xc9bcff6034c13052,0xfc89b393dd02f0b5, 0xfc2c3f3841f17c67,0xbbac2078d443ace2, 0x9d9ba7832936edc0,0xd54b944b84aa4c0d, 0xc5029163f384a931,0xa9e795e65d4df11, 0xf64335bcf065d37d,0x4d4617b5ff4a16d5, 0x99ea0196163fa42e,0x504bced1bf8e4e45, 0xc06481fb9bcf8d39,0xe45ec2862f71e1d6, 0xf07da27a82c37088,0x5d767327bb4e5a4c, 0x964e858c91ba2655,0x3a6a07f8d510f86f, 0xbbe226efb628afea,0x890489f70a55368b, 0xeadab0aba3b2dbe5,0x2b45ac74ccea842e, 0x92c8ae6b464fc96f,0x3b0b8bc90012929d, 0xb77ada0617e3bbcb,0x9ce6ebb40173744, 0xe55990879ddcaabd,0xcc420a6a101d0515, 0x8f57fa54c2a9eab6,0x9fa946824a12232d, 0xb32df8e9f3546564,0x47939822dc96abf9, 0xdff9772470297ebd,0x59787e2b93bc56f7, 0x8bfbea76c619ef36,0x57eb4edb3c55b65a, 0xaefae51477a06b03,0xede622920b6b23f1, 0xdab99e59958885c4,0xe95fab368e45eced, 0x88b402f7fd75539b,0x11dbcb0218ebb414, 0xaae103b5fcd2a881,0xd652bdc29f26a119, 0xd59944a37c0752a2,0x4be76d3346f0495f, 0x857fcae62d8493a5,0x6f70a4400c562ddb, 0xa6dfbd9fb8e5b88e,0xcb4ccd500f6bb952, 0xd097ad07a71f26b2,0x7e2000a41346a7a7, 0x825ecc24c873782f,0x8ed400668c0c28c8, 0xa2f67f2dfa90563b,0x728900802f0f32fa, 0xcbb41ef979346bca,0x4f2b40a03ad2ffb9, 0xfea126b7d78186bc,0xe2f610c84987bfa8, 0x9f24b832e6b0f436,0xdd9ca7d2df4d7c9, 0xc6ede63fa05d3143,0x91503d1c79720dbb, 0xf8a95fcf88747d94,0x75a44c6397ce912a, 0x9b69dbe1b548ce7c,0xc986afbe3ee11aba, 0xc24452da229b021b,0xfbe85badce996168, 0xf2d56790ab41c2a2,0xfae27299423fb9c3, 0x97c560ba6b0919a5,0xdccd879fc967d41a, 0xbdb6b8e905cb600f,0x5400e987bbc1c920, 0xed246723473e3813,0x290123e9aab23b68, 0x9436c0760c86e30b,0xf9a0b6720aaf6521, 0xb94470938fa89bce,0xf808e40e8d5b3e69, 0xe7958cb87392c2c2,0xb60b1d1230b20e04, 0x90bd77f3483bb9b9,0xb1c6f22b5e6f48c2, 0xb4ecd5f01a4aa828,0x1e38aeb6360b1af3, 0xe2280b6c20dd5232,0x25c6da63c38de1b0, 0x8d590723948a535f,0x579c487e5a38ad0e, 0xb0af48ec79ace837,0x2d835a9df0c6d851, 0xdcdb1b2798182244,0xf8e431456cf88e65, 0x8a08f0f8bf0f156b,0x1b8e9ecb641b58ff, 0xac8b2d36eed2dac5,0xe272467e3d222f3f, 0xd7adf884aa879177,0x5b0ed81dcc6abb0f, 0x86ccbb52ea94baea,0x98e947129fc2b4e9, 0xa87fea27a539e9a5,0x3f2398d747b36224, 0xd29fe4b18e88640e,0x8eec7f0d19a03aad, 0x83a3eeeef9153e89,0x1953cf68300424ac, 0xa48ceaaab75a8e2b,0x5fa8c3423c052dd7, 0xcdb02555653131b6,0x3792f412cb06794d, 0x808e17555f3ebf11,0xe2bbd88bbee40bd0, 0xa0b19d2ab70e6ed6,0x5b6aceaeae9d0ec4, 0xc8de047564d20a8b,0xf245825a5a445275, 0xfb158592be068d2e,0xeed6e2f0f0d56712, 0x9ced737bb6c4183d,0x55464dd69685606b, 0xc428d05aa4751e4c,0xaa97e14c3c26b886, 0xf53304714d9265df,0xd53dd99f4b3066a8, 0x993fe2c6d07b7fab,0xe546a8038efe4029, 0xbf8fdb78849a5f96,0xde98520472bdd033, 0xef73d256a5c0f77c,0x963e66858f6d4440, 0x95a8637627989aad,0xdde7001379a44aa8, 0xbb127c53b17ec159,0x5560c018580d5d52, 0xe9d71b689dde71af,0xaab8f01e6e10b4a6, 0x9226712162ab070d,0xcab3961304ca70e8, 0xb6b00d69bb55c8d1,0x3d607b97c5fd0d22, 0xe45c10c42a2b3b05,0x8cb89a7db77c506a, 0x8eb98a7a9a5b04e3,0x77f3608e92adb242, 0xb267ed1940f1c61c,0x55f038b237591ed3, 0xdf01e85f912e37a3,0x6b6c46dec52f6688, 0x8b61313bbabce2c6,0x2323ac4b3b3da015, 0xae397d8aa96c1b77,0xabec975e0a0d081a, 0xd9c7dced53c72255,0x96e7bd358c904a21, 0x881cea14545c7575,0x7e50d64177da2e54, 0xaa242499697392d2,0xdde50bd1d5d0b9e9, 0xd4ad2dbfc3d07787,0x955e4ec64b44e864, 0x84ec3c97da624ab4,0xbd5af13bef0b113e, 0xa6274bbdd0fadd61,0xecb1ad8aeacdd58e, 0xcfb11ead453994ba,0x67de18eda5814af2, 0x81ceb32c4b43fcf4,0x80eacf948770ced7, 0xa2425ff75e14fc31,0xa1258379a94d028d, 0xcad2f7f5359a3b3e,0x96ee45813a04330, 0xfd87b5f28300ca0d,0x8bca9d6e188853fc, 0x9e74d1b791e07e48,0x775ea264cf55347e, 0xc612062576589dda,0x95364afe032a81a0, 0xf79687aed3eec551,0x3a83ddbd83f52210, 0x9abe14cd44753b52,0xc4926a9672793580, 0xc16d9a0095928a27,0x75b7053c0f178400, 0xf1c90080baf72cb1,0x5324c68b12dd6800, 0x971da05074da7bee,0xd3f6fc16ebca8000, 0xbce5086492111aea,0x88f4bb1ca6bd0000, 0xec1e4a7db69561a5,0x2b31e9e3d0700000, 0x9392ee8e921d5d07,0x3aff322e62600000, 0xb877aa3236a4b449,0x9befeb9fad487c3, 0xe69594bec44de15b,0x4c2ebe687989a9b4, 0x901d7cf73ab0acd9,0xf9d37014bf60a11, 0xb424dc35095cd80f,0x538484c19ef38c95, 0xe12e13424bb40e13,0x2865a5f206b06fba, 0x8cbccc096f5088cb,0xf93f87b7442e45d4, 0xafebff0bcb24aafe,0xf78f69a51539d749, 0xdbe6fecebdedd5be,0xb573440e5a884d1c, 0x89705f4136b4a597,0x31680a88f8953031, 0xabcc77118461cefc,0xfdc20d2b36ba7c3e, 0xd6bf94d5e57a42bc,0x3d32907604691b4d, 0x8637bd05af6c69b5,0xa63f9a49c2c1b110, 0xa7c5ac471b478423,0xfcf80dc33721d54, 0xd1b71758e219652b,0xd3c36113404ea4a9, 0x83126e978d4fdf3b,0x645a1cac083126ea, 0xa3d70a3d70a3d70a,0x3d70a3d70a3d70a4, 0xcccccccccccccccc,0xcccccccccccccccd, 0x8000000000000000,0x0, 0xa000000000000000,0x0, 0xc800000000000000,0x0, 0xfa00000000000000,0x0, 0x9c40000000000000,0x0, 0xc350000000000000,0x0, 0xf424000000000000,0x0, 0x9896800000000000,0x0, 0xbebc200000000000,0x0, 0xee6b280000000000,0x0, 0x9502f90000000000,0x0, 0xba43b74000000000,0x0, 0xe8d4a51000000000,0x0, 0x9184e72a00000000,0x0, 0xb5e620f480000000,0x0, 0xe35fa931a0000000,0x0, 0x8e1bc9bf04000000,0x0, 0xb1a2bc2ec5000000,0x0, 0xde0b6b3a76400000,0x0, 0x8ac7230489e80000,0x0, 0xad78ebc5ac620000,0x0, 0xd8d726b7177a8000,0x0, 0x878678326eac9000,0x0, 0xa968163f0a57b400,0x0, 0xd3c21bcecceda100,0x0, 0x84595161401484a0,0x0, 0xa56fa5b99019a5c8,0x0, 0xcecb8f27f4200f3a,0x0, 0x813f3978f8940984,0x4000000000000000, 0xa18f07d736b90be5,0x5000000000000000, 0xc9f2c9cd04674ede,0xa400000000000000, 0xfc6f7c4045812296,0x4d00000000000000, 0x9dc5ada82b70b59d,0xf020000000000000, 0xc5371912364ce305,0x6c28000000000000, 0xf684df56c3e01bc6,0xc732000000000000, 0x9a130b963a6c115c,0x3c7f400000000000, 0xc097ce7bc90715b3,0x4b9f100000000000, 0xf0bdc21abb48db20,0x1e86d40000000000, 0x96769950b50d88f4,0x1314448000000000, 0xbc143fa4e250eb31,0x17d955a000000000, 0xeb194f8e1ae525fd,0x5dcfab0800000000, 0x92efd1b8d0cf37be,0x5aa1cae500000000, 0xb7abc627050305ad,0xf14a3d9e40000000, 0xe596b7b0c643c719,0x6d9ccd05d0000000, 0x8f7e32ce7bea5c6f,0xe4820023a2000000, 0xb35dbf821ae4f38b,0xdda2802c8a800000, 0xe0352f62a19e306e,0xd50b2037ad200000, 0x8c213d9da502de45,0x4526f422cc340000, 0xaf298d050e4395d6,0x9670b12b7f410000, 0xdaf3f04651d47b4c,0x3c0cdd765f114000, 0x88d8762bf324cd0f,0xa5880a69fb6ac800, 0xab0e93b6efee0053,0x8eea0d047a457a00, 0xd5d238a4abe98068,0x72a4904598d6d880, 0x85a36366eb71f041,0x47a6da2b7f864750, 0xa70c3c40a64e6c51,0x999090b65f67d924, 0xd0cf4b50cfe20765,0xfff4b4e3f741cf6d, 0x82818f1281ed449f,0xbff8f10e7a8921a4, 0xa321f2d7226895c7,0xaff72d52192b6a0d, 0xcbea6f8ceb02bb39,0x9bf4f8a69f764490, 0xfee50b7025c36a08,0x2f236d04753d5b4, 0x9f4f2726179a2245,0x1d762422c946590, 0xc722f0ef9d80aad6,0x424d3ad2b7b97ef5, 0xf8ebad2b84e0d58b,0xd2e0898765a7deb2, 0x9b934c3b330c8577,0x63cc55f49f88eb2f, 0xc2781f49ffcfa6d5,0x3cbf6b71c76b25fb, 0xf316271c7fc3908a,0x8bef464e3945ef7a, 0x97edd871cfda3a56,0x97758bf0e3cbb5ac, 0xbde94e8e43d0c8ec,0x3d52eeed1cbea317, 0xed63a231d4c4fb27,0x4ca7aaa863ee4bdd, 0x945e455f24fb1cf8,0x8fe8caa93e74ef6a, 0xb975d6b6ee39e436,0xb3e2fd538e122b44, 0xe7d34c64a9c85d44,0x60dbbca87196b616, 0x90e40fbeea1d3a4a,0xbc8955e946fe31cd, 0xb51d13aea4a488dd,0x6babab6398bdbe41, 0xe264589a4dcdab14,0xc696963c7eed2dd1, 0x8d7eb76070a08aec,0xfc1e1de5cf543ca2, 0xb0de65388cc8ada8,0x3b25a55f43294bcb, 0xdd15fe86affad912,0x49ef0eb713f39ebe, 0x8a2dbf142dfcc7ab,0x6e3569326c784337, 0xacb92ed9397bf996,0x49c2c37f07965404, 0xd7e77a8f87daf7fb,0xdc33745ec97be906, 0x86f0ac99b4e8dafd,0x69a028bb3ded71a3, 0xa8acd7c0222311bc,0xc40832ea0d68ce0c, 0xd2d80db02aabd62b,0xf50a3fa490c30190, 0x83c7088e1aab65db,0x792667c6da79e0fa, 0xa4b8cab1a1563f52,0x577001b891185938, 0xcde6fd5e09abcf26,0xed4c0226b55e6f86, 0x80b05e5ac60b6178,0x544f8158315b05b4, 0xa0dc75f1778e39d6,0x696361ae3db1c721, 0xc913936dd571c84c,0x3bc3a19cd1e38e9, 0xfb5878494ace3a5f,0x4ab48a04065c723, 0x9d174b2dcec0e47b,0x62eb0d64283f9c76, 0xc45d1df942711d9a,0x3ba5d0bd324f8394, 0xf5746577930d6500,0xca8f44ec7ee36479, 0x9968bf6abbe85f20,0x7e998b13cf4e1ecb, 0xbfc2ef456ae276e8,0x9e3fedd8c321a67e, 0xefb3ab16c59b14a2,0xc5cfe94ef3ea101e, 0x95d04aee3b80ece5,0xbba1f1d158724a12, 0xbb445da9ca61281f,0x2a8a6e45ae8edc97, 0xea1575143cf97226,0xf52d09d71a3293bd, 0x924d692ca61be758,0x593c2626705f9c56, 0xb6e0c377cfa2e12e,0x6f8b2fb00c77836c, 0xe498f455c38b997a,0xb6dfb9c0f956447, 0x8edf98b59a373fec,0x4724bd4189bd5eac, 0xb2977ee300c50fe7,0x58edec91ec2cb657, 0xdf3d5e9bc0f653e1,0x2f2967b66737e3ed, 0x8b865b215899f46c,0xbd79e0d20082ee74, 0xae67f1e9aec07187,0xecd8590680a3aa11, 0xda01ee641a708de9,0xe80e6f4820cc9495, 0x884134fe908658b2,0x3109058d147fdcdd, 0xaa51823e34a7eede,0xbd4b46f0599fd415, 0xd4e5e2cdc1d1ea96,0x6c9e18ac7007c91a, 0x850fadc09923329e,0x3e2cf6bc604ddb0, 0xa6539930bf6bff45,0x84db8346b786151c, 0xcfe87f7cef46ff16,0xe612641865679a63, 0x81f14fae158c5f6e,0x4fcb7e8f3f60c07e, 0xa26da3999aef7749,0xe3be5e330f38f09d, 0xcb090c8001ab551c,0x5cadf5bfd3072cc5, 0xfdcb4fa002162a63,0x73d9732fc7c8f7f6, 0x9e9f11c4014dda7e,0x2867e7fddcdd9afa, 0xc646d63501a1511d,0xb281e1fd541501b8, 0xf7d88bc24209a565,0x1f225a7ca91a4226, 0x9ae757596946075f,0x3375788de9b06958, 0xc1a12d2fc3978937,0x52d6b1641c83ae, 0xf209787bb47d6b84,0xc0678c5dbd23a49a, 0x9745eb4d50ce6332,0xf840b7ba963646e0, 0xbd176620a501fbff,0xb650e5a93bc3d898, 0xec5d3fa8ce427aff,0xa3e51f138ab4cebe, 0x93ba47c980e98cdf,0xc66f336c36b10137, 0xb8a8d9bbe123f017,0xb80b0047445d4184, 0xe6d3102ad96cec1d,0xa60dc059157491e5, 0x9043ea1ac7e41392,0x87c89837ad68db2f, 0xb454e4a179dd1877,0x29babe4598c311fb, 0xe16a1dc9d8545e94,0xf4296dd6fef3d67a, 0x8ce2529e2734bb1d,0x1899e4a65f58660c, 0xb01ae745b101e9e4,0x5ec05dcff72e7f8f, 0xdc21a1171d42645d,0x76707543f4fa1f73, 0x899504ae72497eba,0x6a06494a791c53a8, 0xabfa45da0edbde69,0x487db9d17636892, 0xd6f8d7509292d603,0x45a9d2845d3c42b6, 0x865b86925b9bc5c2,0xb8a2392ba45a9b2, 0xa7f26836f282b732,0x8e6cac7768d7141e, 0xd1ef0244af2364ff,0x3207d795430cd926, 0x8335616aed761f1f,0x7f44e6bd49e807b8, 0xa402b9c5a8d3a6e7,0x5f16206c9c6209a6, 0xcd036837130890a1,0x36dba887c37a8c0f, 0x802221226be55a64,0xc2494954da2c9789, 0xa02aa96b06deb0fd,0xf2db9baa10b7bd6c, 0xc83553c5c8965d3d,0x6f92829494e5acc7, 0xfa42a8b73abbf48c,0xcb772339ba1f17f9, 0x9c69a97284b578d7,0xff2a760414536efb, 0xc38413cf25e2d70d,0xfef5138519684aba, 0xf46518c2ef5b8cd1,0x7eb258665fc25d69, 0x98bf2f79d5993802,0xef2f773ffbd97a61, 0xbeeefb584aff8603,0xaafb550ffacfd8fa, 0xeeaaba2e5dbf6784,0x95ba2a53f983cf38, 0x952ab45cfa97a0b2,0xdd945a747bf26183, 0xba756174393d88df,0x94f971119aeef9e4, 0xe912b9d1478ceb17,0x7a37cd5601aab85d, 0x91abb422ccb812ee,0xac62e055c10ab33a, 0xb616a12b7fe617aa,0x577b986b314d6009, 0xe39c49765fdf9d94,0xed5a7e85fda0b80b, 0x8e41ade9fbebc27d,0x14588f13be847307, 0xb1d219647ae6b31c,0x596eb2d8ae258fc8, 0xde469fbd99a05fe3,0x6fca5f8ed9aef3bb, 0x8aec23d680043bee,0x25de7bb9480d5854, 0xada72ccc20054ae9,0xaf561aa79a10ae6a, 0xd910f7ff28069da4,0x1b2ba1518094da04, 0x87aa9aff79042286,0x90fb44d2f05d0842, 0xa99541bf57452b28,0x353a1607ac744a53, 0xd3fa922f2d1675f2,0x42889b8997915ce8, 0x847c9b5d7c2e09b7,0x69956135febada11, 0xa59bc234db398c25,0x43fab9837e699095, 0xcf02b2c21207ef2e,0x94f967e45e03f4bb, 0x8161afb94b44f57d,0x1d1be0eebac278f5, 0xa1ba1ba79e1632dc,0x6462d92a69731732, 0xca28a291859bbf93,0x7d7b8f7503cfdcfe, 0xfcb2cb35e702af78,0x5cda735244c3d43e, 0x9defbf01b061adab,0x3a0888136afa64a7, 0xc56baec21c7a1916,0x88aaa1845b8fdd0, 0xf6c69a72a3989f5b,0x8aad549e57273d45, 0x9a3c2087a63f6399,0x36ac54e2f678864b, 0xc0cb28a98fcf3c7f,0x84576a1bb416a7dd, 0xf0fdf2d3f3c30b9f,0x656d44a2a11c51d5, 0x969eb7c47859e743,0x9f644ae5a4b1b325, 0xbc4665b596706114,0x873d5d9f0dde1fee, 0xeb57ff22fc0c7959,0xa90cb506d155a7ea, 0x9316ff75dd87cbd8,0x9a7f12442d588f2, 0xb7dcbf5354e9bece,0xc11ed6d538aeb2f, 0xe5d3ef282a242e81,0x8f1668c8a86da5fa, 0x8fa475791a569d10,0xf96e017d694487bc, 0xb38d92d760ec4455,0x37c981dcc395a9ac, 0xe070f78d3927556a,0x85bbe253f47b1417, 0x8c469ab843b89562,0x93956d7478ccec8e, 0xaf58416654a6babb,0x387ac8d1970027b2, 0xdb2e51bfe9d0696a,0x6997b05fcc0319e, 0x88fcf317f22241e2,0x441fece3bdf81f03, 0xab3c2fddeeaad25a,0xd527e81cad7626c3, 0xd60b3bd56a5586f1,0x8a71e223d8d3b074, 0x85c7056562757456,0xf6872d5667844e49, 0xa738c6bebb12d16c,0xb428f8ac016561db, 0xd106f86e69d785c7,0xe13336d701beba52, 0x82a45b450226b39c,0xecc0024661173473, 0xa34d721642b06084,0x27f002d7f95d0190, 0xcc20ce9bd35c78a5,0x31ec038df7b441f4, 0xff290242c83396ce,0x7e67047175a15271, 0x9f79a169bd203e41,0xf0062c6e984d386, 0xc75809c42c684dd1,0x52c07b78a3e60868, 0xf92e0c3537826145,0xa7709a56ccdf8a82, 0x9bbcc7a142b17ccb,0x88a66076400bb691, 0xc2abf989935ddbfe,0x6acff893d00ea435, 0xf356f7ebf83552fe,0x583f6b8c4124d43, 0x98165af37b2153de,0xc3727a337a8b704a, 0xbe1bf1b059e9a8d6,0x744f18c0592e4c5c, 0xeda2ee1c7064130c,0x1162def06f79df73, 0x9485d4d1c63e8be7,0x8addcb5645ac2ba8, 0xb9a74a0637ce2ee1,0x6d953e2bd7173692, 0xe8111c87c5c1ba99,0xc8fa8db6ccdd0437, 0x910ab1d4db9914a0,0x1d9c9892400a22a2, 0xb54d5e4a127f59c8,0x2503beb6d00cab4b, 0xe2a0b5dc971f303a,0x2e44ae64840fd61d, 0x8da471a9de737e24,0x5ceaecfed289e5d2, 0xb10d8e1456105dad,0x7425a83e872c5f47, 0xdd50f1996b947518,0xd12f124e28f77719, 0x8a5296ffe33cc92f,0x82bd6b70d99aaa6f, 0xace73cbfdc0bfb7b,0x636cc64d1001550b, 0xd8210befd30efa5a,0x3c47f7e05401aa4e, 0x8714a775e3e95c78,0x65acfaec34810a71, 0xa8d9d1535ce3b396,0x7f1839a741a14d0d, 0xd31045a8341ca07c,0x1ede48111209a050, 0x83ea2b892091e44d,0x934aed0aab460432, 0xa4e4b66b68b65d60,0xf81da84d5617853f, 0xce1de40642e3f4b9,0x36251260ab9d668e, 0x80d2ae83e9ce78f3,0xc1d72b7c6b426019, 0xa1075a24e4421730,0xb24cf65b8612f81f, 0xc94930ae1d529cfc,0xdee033f26797b627, 0xfb9b7cd9a4a7443c,0x169840ef017da3b1, 0x9d412e0806e88aa5,0x8e1f289560ee864e, 0xc491798a08a2ad4e,0xf1a6f2bab92a27e2, 0xf5b5d7ec8acb58a2,0xae10af696774b1db, 0x9991a6f3d6bf1765,0xacca6da1e0a8ef29, 0xbff610b0cc6edd3f,0x17fd090a58d32af3, 0xeff394dcff8a948e,0xddfc4b4cef07f5b0, 0x95f83d0a1fb69cd9,0x4abdaf101564f98e, 0xbb764c4ca7a4440f,0x9d6d1ad41abe37f1, 0xea53df5fd18d5513,0x84c86189216dc5ed, 0x92746b9be2f8552c,0x32fd3cf5b4e49bb4, 0xb7118682dbb66a77,0x3fbc8c33221dc2a1, 0xe4d5e82392a40515,0xfabaf3feaa5334a, 0x8f05b1163ba6832d,0x29cb4d87f2a7400e, 0xb2c71d5bca9023f8,0x743e20e9ef511012, 0xdf78e4b2bd342cf6,0x914da9246b255416, 0x8bab8eefb6409c1a,0x1ad089b6c2f7548e, 0xae9672aba3d0c320,0xa184ac2473b529b1, 0xda3c0f568cc4f3e8,0xc9e5d72d90a2741e, 0x8865899617fb1871,0x7e2fa67c7a658892, 0xaa7eebfb9df9de8d,0xddbb901b98feeab7, 0xd51ea6fa85785631,0x552a74227f3ea565, 0x8533285c936b35de,0xd53a88958f87275f, 0xa67ff273b8460356,0x8a892abaf368f137, 0xd01fef10a657842c,0x2d2b7569b0432d85, 0x8213f56a67f6b29b,0x9c3b29620e29fc73, 0xa298f2c501f45f42,0x8349f3ba91b47b8f, 0xcb3f2f7642717713,0x241c70a936219a73, 0xfe0efb53d30dd4d7,0xed238cd383aa0110, 0x9ec95d1463e8a506,0xf4363804324a40aa, 0xc67bb4597ce2ce48,0xb143c6053edcd0d5, 0xf81aa16fdc1b81da,0xdd94b7868e94050a, 0x9b10a4e5e9913128,0xca7cf2b4191c8326, 0xc1d4ce1f63f57d72,0xfd1c2f611f63a3f0, 0xf24a01a73cf2dccf,0xbc633b39673c8cec, 0x976e41088617ca01,0xd5be0503e085d813, 0xbd49d14aa79dbc82,0x4b2d8644d8a74e18, 0xec9c459d51852ba2,0xddf8e7d60ed1219e, 0x93e1ab8252f33b45,0xcabb90e5c942b503, 0xb8da1662e7b00a17,0x3d6a751f3b936243, 0xe7109bfba19c0c9d,0xcc512670a783ad4, 0x906a617d450187e2,0x27fb2b80668b24c5, 0xb484f9dc9641e9da,0xb1f9f660802dedf6, 0xe1a63853bbd26451,0x5e7873f8a0396973, 0x8d07e33455637eb2,0xdb0b487b6423e1e8, 0xb049dc016abc5e5f,0x91ce1a9a3d2cda62, 0xdc5c5301c56b75f7,0x7641a140cc7810fb, 0x89b9b3e11b6329ba,0xa9e904c87fcb0a9d, 0xac2820d9623bf429,0x546345fa9fbdcd44, 0xd732290fbacaf133,0xa97c177947ad4095, 0x867f59a9d4bed6c0,0x49ed8eabcccc485d, 0xa81f301449ee8c70,0x5c68f256bfff5a74, 0xd226fc195c6a2f8c,0x73832eec6fff3111, 0x83585d8fd9c25db7,0xc831fd53c5ff7eab, 0xa42e74f3d032f525,0xba3e7ca8b77f5e55, 0xcd3a1230c43fb26f,0x28ce1bd2e55f35eb, 0x80444b5e7aa7cf85,0x7980d163cf5b81b3, 0xa0555e361951c366,0xd7e105bcc332621f, 0xc86ab5c39fa63440,0x8dd9472bf3fefaa7, 0xfa856334878fc150,0xb14f98f6f0feb951, 0x9c935e00d4b9d8d2,0x6ed1bf9a569f33d3, 0xc3b8358109e84f07,0xa862f80ec4700c8, 0xf4a642e14c6262c8,0xcd27bb612758c0fa, 0x98e7e9cccfbd7dbd,0x8038d51cb897789c, 0xbf21e44003acdd2c,0xe0470a63e6bd56c3, 0xeeea5d5004981478,0x1858ccfce06cac74, 0x95527a5202df0ccb,0xf37801e0c43ebc8, 0xbaa718e68396cffd,0xd30560258f54e6ba, 0xe950df20247c83fd,0x47c6b82ef32a2069, 0x91d28b7416cdd27e,0x4cdc331d57fa5441, 0xb6472e511c81471d,0xe0133fe4adf8e952, 0xe3d8f9e563a198e5,0x58180fddd97723a6, 0x8e679c2f5e44ff8f,0x570f09eaa7ea7648,}; } // namespace internal } // namespace simdjson /* end file src/internal/numberparsing_tables.cpp */ /* begin file src/internal/simdprune_tables.cpp */ #if SIMDJSON_IMPLEMENTATION_ARM64 || SIMDJSON_IMPLEMENTATION_HASWELL || SIMDJSON_IMPLEMENTATION_WESTMERE || SIMDJSON_IMPLEMENTATION_PPC64 #include namespace simdjson { // table modified and copied from namespace internal { // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetTable SIMDJSON_DLLIMPORTEXPORT const unsigned char BitsSetTable256mul2[256] = { 0, 2, 2, 4, 2, 4, 4, 6, 2, 4, 4, 6, 4, 6, 6, 8, 2, 4, 4, 6, 4, 6, 6, 8, 4, 6, 6, 8, 6, 8, 8, 10, 2, 4, 4, 6, 4, 6, 6, 8, 4, 6, 6, 8, 6, 8, 8, 10, 4, 6, 6, 8, 6, 8, 8, 10, 6, 8, 8, 10, 8, 10, 10, 12, 2, 4, 4, 6, 4, 6, 6, 8, 4, 6, 6, 8, 6, 8, 8, 10, 4, 6, 6, 8, 6, 8, 8, 10, 6, 8, 8, 10, 8, 10, 10, 12, 4, 6, 6, 8, 6, 8, 8, 10, 6, 8, 8, 10, 8, 10, 10, 12, 6, 8, 8, 10, 8, 10, 10, 12, 8, 10, 10, 12, 10, 12, 12, 14, 2, 4, 4, 6, 4, 6, 6, 8, 4, 6, 6, 8, 6, 8, 8, 10, 4, 6, 6, 8, 6, 8, 8, 10, 6, 8, 8, 10, 8, 10, 10, 12, 4, 6, 6, 8, 6, 8, 8, 10, 6, 8, 8, 10, 8, 10, 10, 12, 6, 8, 8, 10, 8, 10, 10, 12, 8, 10, 10, 12, 10, 12, 12, 14, 4, 6, 6, 8, 6, 8, 8, 10, 6, 8, 8, 10, 8, 10, 10, 12, 6, 8, 8, 10, 8, 10, 10, 12, 8, 10, 10, 12, 10, 12, 12, 14, 6, 8, 8, 10, 8, 10, 10, 12, 8, 10, 10, 12, 10, 12, 12, 14, 8, 10, 10, 12, 10, 12, 12, 14, 10, 12, 12, 14, 12, 14, 14, 16}; SIMDJSON_DLLIMPORTEXPORT const uint8_t pshufb_combine_table[272] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xff, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xff, 0xff, 0x00, 0x01, 0x02, 0x03, 0x04, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xff, 0xff, 0xff, 0x00, 0x01, 0x02, 0x03, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xff, 0xff, 0xff, 0xff, 0x00, 0x01, 0x02, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x01, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, }; // 256 * 8 bytes = 2kB, easily fits in cache. SIMDJSON_DLLIMPORTEXPORT const uint64_t thintable_epi8[256] = { 0x0706050403020100, 0x0007060504030201, 0x0007060504030200, 0x0000070605040302, 0x0007060504030100, 0x0000070605040301, 0x0000070605040300, 0x0000000706050403, 0x0007060504020100, 0x0000070605040201, 0x0000070605040200, 0x0000000706050402, 0x0000070605040100, 0x0000000706050401, 0x0000000706050400, 0x0000000007060504, 0x0007060503020100, 0x0000070605030201, 0x0000070605030200, 0x0000000706050302, 0x0000070605030100, 0x0000000706050301, 0x0000000706050300, 0x0000000007060503, 0x0000070605020100, 0x0000000706050201, 0x0000000706050200, 0x0000000007060502, 0x0000000706050100, 0x0000000007060501, 0x0000000007060500, 0x0000000000070605, 0x0007060403020100, 0x0000070604030201, 0x0000070604030200, 0x0000000706040302, 0x0000070604030100, 0x0000000706040301, 0x0000000706040300, 0x0000000007060403, 0x0000070604020100, 0x0000000706040201, 0x0000000706040200, 0x0000000007060402, 0x0000000706040100, 0x0000000007060401, 0x0000000007060400, 0x0000000000070604, 0x0000070603020100, 0x0000000706030201, 0x0000000706030200, 0x0000000007060302, 0x0000000706030100, 0x0000000007060301, 0x0000000007060300, 0x0000000000070603, 0x0000000706020100, 0x0000000007060201, 0x0000000007060200, 0x0000000000070602, 0x0000000007060100, 0x0000000000070601, 0x0000000000070600, 0x0000000000000706, 0x0007050403020100, 0x0000070504030201, 0x0000070504030200, 0x0000000705040302, 0x0000070504030100, 0x0000000705040301, 0x0000000705040300, 0x0000000007050403, 0x0000070504020100, 0x0000000705040201, 0x0000000705040200, 0x0000000007050402, 0x0000000705040100, 0x0000000007050401, 0x0000000007050400, 0x0000000000070504, 0x0000070503020100, 0x0000000705030201, 0x0000000705030200, 0x0000000007050302, 0x0000000705030100, 0x0000000007050301, 0x0000000007050300, 0x0000000000070503, 0x0000000705020100, 0x0000000007050201, 0x0000000007050200, 0x0000000000070502, 0x0000000007050100, 0x0000000000070501, 0x0000000000070500, 0x0000000000000705, 0x0000070403020100, 0x0000000704030201, 0x0000000704030200, 0x0000000007040302, 0x0000000704030100, 0x0000000007040301, 0x0000000007040300, 0x0000000000070403, 0x0000000704020100, 0x0000000007040201, 0x0000000007040200, 0x0000000000070402, 0x0000000007040100, 0x0000000000070401, 0x0000000000070400, 0x0000000000000704, 0x0000000703020100, 0x0000000007030201, 0x0000000007030200, 0x0000000000070302, 0x0000000007030100, 0x0000000000070301, 0x0000000000070300, 0x0000000000000703, 0x0000000007020100, 0x0000000000070201, 0x0000000000070200, 0x0000000000000702, 0x0000000000070100, 0x0000000000000701, 0x0000000000000700, 0x0000000000000007, 0x0006050403020100, 0x0000060504030201, 0x0000060504030200, 0x0000000605040302, 0x0000060504030100, 0x0000000605040301, 0x0000000605040300, 0x0000000006050403, 0x0000060504020100, 0x0000000605040201, 0x0000000605040200, 0x0000000006050402, 0x0000000605040100, 0x0000000006050401, 0x0000000006050400, 0x0000000000060504, 0x0000060503020100, 0x0000000605030201, 0x0000000605030200, 0x0000000006050302, 0x0000000605030100, 0x0000000006050301, 0x0000000006050300, 0x0000000000060503, 0x0000000605020100, 0x0000000006050201, 0x0000000006050200, 0x0000000000060502, 0x0000000006050100, 0x0000000000060501, 0x0000000000060500, 0x0000000000000605, 0x0000060403020100, 0x0000000604030201, 0x0000000604030200, 0x0000000006040302, 0x0000000604030100, 0x0000000006040301, 0x0000000006040300, 0x0000000000060403, 0x0000000604020100, 0x0000000006040201, 0x0000000006040200, 0x0000000000060402, 0x0000000006040100, 0x0000000000060401, 0x0000000000060400, 0x0000000000000604, 0x0000000603020100, 0x0000000006030201, 0x0000000006030200, 0x0000000000060302, 0x0000000006030100, 0x0000000000060301, 0x0000000000060300, 0x0000000000000603, 0x0000000006020100, 0x0000000000060201, 0x0000000000060200, 0x0000000000000602, 0x0000000000060100, 0x0000000000000601, 0x0000000000000600, 0x0000000000000006, 0x0000050403020100, 0x0000000504030201, 0x0000000504030200, 0x0000000005040302, 0x0000000504030100, 0x0000000005040301, 0x0000000005040300, 0x0000000000050403, 0x0000000504020100, 0x0000000005040201, 0x0000000005040200, 0x0000000000050402, 0x0000000005040100, 0x0000000000050401, 0x0000000000050400, 0x0000000000000504, 0x0000000503020100, 0x0000000005030201, 0x0000000005030200, 0x0000000000050302, 0x0000000005030100, 0x0000000000050301, 0x0000000000050300, 0x0000000000000503, 0x0000000005020100, 0x0000000000050201, 0x0000000000050200, 0x0000000000000502, 0x0000000000050100, 0x0000000000000501, 0x0000000000000500, 0x0000000000000005, 0x0000000403020100, 0x0000000004030201, 0x0000000004030200, 0x0000000000040302, 0x0000000004030100, 0x0000000000040301, 0x0000000000040300, 0x0000000000000403, 0x0000000004020100, 0x0000000000040201, 0x0000000000040200, 0x0000000000000402, 0x0000000000040100, 0x0000000000000401, 0x0000000000000400, 0x0000000000000004, 0x0000000003020100, 0x0000000000030201, 0x0000000000030200, 0x0000000000000302, 0x0000000000030100, 0x0000000000000301, 0x0000000000000300, 0x0000000000000003, 0x0000000000020100, 0x0000000000000201, 0x0000000000000200, 0x0000000000000002, 0x0000000000000100, 0x0000000000000001, 0x0000000000000000, 0x0000000000000000, }; //static uint64_t thintable_epi8[256] } // namespace internal } // namespace simdjson #endif // SIMDJSON_IMPLEMENTATION_ARM64 || SIMDJSON_IMPLEMENTATION_HASWELL || SIMDJSON_IMPLEMENTATION_WESTMERE || SIMDJSON_IMPLEMENTATION_PPC64 /* end file src/internal/simdprune_tables.cpp */ /* begin file src/implementation.cpp */ #include namespace simdjson { bool implementation::supported_by_runtime_system() const { uint32_t required_instruction_sets = this->required_instruction_sets(); uint32_t supported_instruction_sets = internal::detect_supported_architectures(); return ((supported_instruction_sets & required_instruction_sets) == required_instruction_sets); } namespace internal { // Static array of known implementations. We're hoping these get baked into the executable // without requiring a static initializer. #if SIMDJSON_IMPLEMENTATION_HASWELL const haswell::implementation haswell_singleton{}; #endif #if SIMDJSON_IMPLEMENTATION_WESTMERE const westmere::implementation westmere_singleton{}; #endif // SIMDJSON_IMPLEMENTATION_WESTMERE #if SIMDJSON_IMPLEMENTATION_ARM64 const arm64::implementation arm64_singleton{}; #endif // SIMDJSON_IMPLEMENTATION_ARM64 #if SIMDJSON_IMPLEMENTATION_PPC64 const ppc64::implementation ppc64_singleton{}; #endif // SIMDJSON_IMPLEMENTATION_PPC64 #if SIMDJSON_IMPLEMENTATION_FALLBACK const fallback::implementation fallback_singleton{}; #endif // SIMDJSON_IMPLEMENTATION_FALLBACK /** * @private Detects best supported implementation on first use, and sets it */ class detect_best_supported_implementation_on_first_use final : public implementation { public: const std::string &name() const noexcept final { return set_best()->name(); } const std::string &description() const noexcept final { return set_best()->description(); } uint32_t required_instruction_sets() const noexcept final { return set_best()->required_instruction_sets(); } simdjson_warn_unused error_code create_dom_parser_implementation( size_t capacity, size_t max_length, std::unique_ptr& dst ) const noexcept final { return set_best()->create_dom_parser_implementation(capacity, max_length, dst); } simdjson_warn_unused error_code minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) const noexcept final { return set_best()->minify(buf, len, dst, dst_len); } simdjson_warn_unused bool validate_utf8(const char * buf, size_t len) const noexcept final override { return set_best()->validate_utf8(buf, len); } simdjson_really_inline detect_best_supported_implementation_on_first_use() noexcept : implementation("best_supported_detector", "Detects the best supported implementation and sets it", 0) {} private: const implementation *set_best() const noexcept; }; const detect_best_supported_implementation_on_first_use detect_best_supported_implementation_on_first_use_singleton; const std::initializer_list available_implementation_pointers { #if SIMDJSON_IMPLEMENTATION_HASWELL &haswell_singleton, #endif #if SIMDJSON_IMPLEMENTATION_WESTMERE &westmere_singleton, #endif #if SIMDJSON_IMPLEMENTATION_ARM64 &arm64_singleton, #endif #if SIMDJSON_IMPLEMENTATION_PPC64 &ppc64_singleton, #endif #if SIMDJSON_IMPLEMENTATION_FALLBACK &fallback_singleton, #endif }; // available_implementation_pointers // So we can return UNSUPPORTED_ARCHITECTURE from the parser when there is no support class unsupported_implementation final : public implementation { public: simdjson_warn_unused error_code create_dom_parser_implementation( size_t, size_t, std::unique_ptr& ) const noexcept final { return UNSUPPORTED_ARCHITECTURE; } simdjson_warn_unused error_code minify(const uint8_t *, size_t, uint8_t *, size_t &) const noexcept final override { return UNSUPPORTED_ARCHITECTURE; } simdjson_warn_unused bool validate_utf8(const char *, size_t) const noexcept final override { return false; // Just refuse to validate. Given that we have a fallback implementation // it seems unlikely that unsupported_implementation will ever be used. If it is used, // then it will flag all strings as invalid. The alternative is to return an error_code // from which the user has to figure out whether the string is valid UTF-8... which seems // like a lot of work just to handle the very unlikely case that we have an unsupported // implementation. And, when it does happen (that we have an unsupported implementation), // what are the chances that the programmer has a fallback? Given that *we* provide the // fallback, it implies that the programmer would need a fallback for our fallback. } unsupported_implementation() : implementation("unsupported", "Unsupported CPU (no detected SIMD instructions)", 0) {} }; const unsupported_implementation unsupported_singleton{}; size_t available_implementation_list::size() const noexcept { return internal::available_implementation_pointers.size(); } const implementation * const *available_implementation_list::begin() const noexcept { return internal::available_implementation_pointers.begin(); } const implementation * const *available_implementation_list::end() const noexcept { return internal::available_implementation_pointers.end(); } const implementation *available_implementation_list::detect_best_supported() const noexcept { // They are prelisted in priority order, so we just go down the list uint32_t supported_instruction_sets = internal::detect_supported_architectures(); for (const implementation *impl : internal::available_implementation_pointers) { uint32_t required_instruction_sets = impl->required_instruction_sets(); if ((supported_instruction_sets & required_instruction_sets) == required_instruction_sets) { return impl; } } return &unsupported_singleton; // this should never happen? } const implementation *detect_best_supported_implementation_on_first_use::set_best() const noexcept { SIMDJSON_PUSH_DISABLE_WARNINGS SIMDJSON_DISABLE_DEPRECATED_WARNING // Disable CRT_SECURE warning on MSVC: manually verified this is safe char *force_implementation_name = getenv("SIMDJSON_FORCE_IMPLEMENTATION"); SIMDJSON_POP_DISABLE_WARNINGS if (force_implementation_name) { auto force_implementation = available_implementations[force_implementation_name]; if (force_implementation) { return active_implementation = force_implementation; } else { // Note: abort() and stderr usage within the library is forbidden. return active_implementation = &unsupported_singleton; } } return active_implementation = available_implementations.detect_best_supported(); } } // namespace internal SIMDJSON_DLLIMPORTEXPORT const internal::available_implementation_list available_implementations{}; SIMDJSON_DLLIMPORTEXPORT internal::atomic_ptr active_implementation{&internal::detect_best_supported_implementation_on_first_use_singleton}; simdjson_warn_unused error_code minify(const char *buf, size_t len, char *dst, size_t &dst_len) noexcept { return active_implementation->minify(reinterpret_cast(buf), len, reinterpret_cast(dst), dst_len); } simdjson_warn_unused bool validate_utf8(const char *buf, size_t len) noexcept { return active_implementation->validate_utf8(buf, len); } const implementation * builtin_implementation() { static const implementation * builtin_impl = available_implementations[STRINGIFY(SIMDJSON_BUILTIN_IMPLEMENTATION)]; assert(builtin_impl); return builtin_impl; } } // namespace simdjson /* end file src/implementation.cpp */ #if SIMDJSON_IMPLEMENTATION_ARM64 /* begin file src/arm64/implementation.cpp */ /* begin file include/simdjson/arm64/begin.h */ // redefining SIMDJSON_IMPLEMENTATION to "arm64" // #define SIMDJSON_IMPLEMENTATION arm64 /* end file include/simdjson/arm64/begin.h */ namespace simdjson { namespace arm64 { simdjson_warn_unused error_code implementation::create_dom_parser_implementation( size_t capacity, size_t max_depth, std::unique_ptr& dst ) const noexcept { dst.reset( new (std::nothrow) dom_parser_implementation() ); if (!dst) { return MEMALLOC; } if (auto err = dst->set_capacity(capacity)) return err; if (auto err = dst->set_max_depth(max_depth)) return err; return SUCCESS; } } // namespace arm64 } // namespace simdjson /* begin file include/simdjson/arm64/end.h */ /* end file include/simdjson/arm64/end.h */ /* end file src/arm64/implementation.cpp */ /* begin file src/arm64/dom_parser_implementation.cpp */ /* begin file include/simdjson/arm64/begin.h */ // redefining SIMDJSON_IMPLEMENTATION to "arm64" // #define SIMDJSON_IMPLEMENTATION arm64 /* end file include/simdjson/arm64/begin.h */ // // Stage 1 // namespace simdjson { namespace arm64 { namespace { using namespace simd; struct json_character_block { static simdjson_really_inline json_character_block classify(const simd::simd8x64& in); simdjson_really_inline uint64_t whitespace() const noexcept { return _whitespace; } simdjson_really_inline uint64_t op() const noexcept { return _op; } simdjson_really_inline uint64_t scalar() const noexcept { return ~(op() | whitespace()); } uint64_t _whitespace; uint64_t _op; }; simdjson_really_inline json_character_block json_character_block::classify(const simd::simd8x64& in) { // Functional programming causes trouble with Visual Studio. // Keeping this version in comments since it is much nicer: // auto v = in.map([&](simd8 chunk) { // auto nib_lo = chunk & 0xf; // auto nib_hi = chunk.shr<4>(); // auto shuf_lo = nib_lo.lookup_16(16, 0, 0, 0, 0, 0, 0, 0, 0, 8, 12, 1, 2, 9, 0, 0); // auto shuf_hi = nib_hi.lookup_16(8, 0, 18, 4, 0, 1, 0, 1, 0, 0, 0, 3, 2, 1, 0, 0); // return shuf_lo & shuf_hi; // }); const simd8 table1(16, 0, 0, 0, 0, 0, 0, 0, 0, 8, 12, 1, 2, 9, 0, 0); const simd8 table2(8, 0, 18, 4, 0, 1, 0, 1, 0, 0, 0, 3, 2, 1, 0, 0); simd8x64 v( (in.chunks[0] & 0xf).lookup_16(table1) & (in.chunks[0].shr<4>()).lookup_16(table2), (in.chunks[1] & 0xf).lookup_16(table1) & (in.chunks[1].shr<4>()).lookup_16(table2), (in.chunks[2] & 0xf).lookup_16(table1) & (in.chunks[2].shr<4>()).lookup_16(table2), (in.chunks[3] & 0xf).lookup_16(table1) & (in.chunks[3].shr<4>()).lookup_16(table2) ); // We compute whitespace and op separately. If the code later only use one or the // other, given the fact that all functions are aggressively inlined, we can // hope that useless computations will be omitted. This is namely case when // minifying (we only need whitespace). *However* if we only need spaces, // it is likely that we will still compute 'v' above with two lookup_16: one // could do it a bit cheaper. This is in contrast with the x64 implementations // where we can, efficiently, do the white space and structural matching // separately. One reason for this difference is that on ARM NEON, the table // lookups either zero or leave unchanged the characters exceeding 0xF whereas // on x64, the equivalent instruction (pshufb) automatically applies a mask, // ignoring the 4 most significant bits. Thus the x64 implementation is // optimized differently. This being said, if you use this code strictly // just for minification (or just to identify the structural characters), // there is a small untaken optimization opportunity here. We deliberately // do not pick it up. uint64_t op = simd8x64( v.chunks[0].any_bits_set(0x7), v.chunks[1].any_bits_set(0x7), v.chunks[2].any_bits_set(0x7), v.chunks[3].any_bits_set(0x7) ).to_bitmask(); uint64_t whitespace = simd8x64( v.chunks[0].any_bits_set(0x18), v.chunks[1].any_bits_set(0x18), v.chunks[2].any_bits_set(0x18), v.chunks[3].any_bits_set(0x18) ).to_bitmask(); return { whitespace, op }; } simdjson_really_inline bool is_ascii(const simd8x64& input) { simd8 bits = input.reduce_or(); return bits.max_val() < 0b10000000u; } simdjson_unused simdjson_really_inline simd8 must_be_continuation(const simd8 prev1, const simd8 prev2, const simd8 prev3) { simd8 is_second_byte = prev1 >= uint8_t(0b11000000u); simd8 is_third_byte = prev2 >= uint8_t(0b11100000u); simd8 is_fourth_byte = prev3 >= uint8_t(0b11110000u); // Use ^ instead of | for is_*_byte, because ^ is commutative, and the caller is using ^ as well. // This will work fine because we only have to report errors for cases with 0-1 lead bytes. // Multiple lead bytes implies 2 overlapping multibyte characters, and if that happens, there is // guaranteed to be at least *one* lead byte that is part of only 1 other multibyte character. // The error will be detected there. return is_second_byte ^ is_third_byte ^ is_fourth_byte; } simdjson_really_inline simd8 must_be_2_3_continuation(const simd8 prev2, const simd8 prev3) { simd8 is_third_byte = prev2 >= uint8_t(0b11100000u); simd8 is_fourth_byte = prev3 >= uint8_t(0b11110000u); return is_third_byte ^ is_fourth_byte; } } // unnamed namespace } // namespace arm64 } // namespace simdjson /* begin file src/generic/stage1/utf8_lookup4_algorithm.h */ namespace simdjson { namespace arm64 { namespace { namespace utf8_validation { using namespace simd; simdjson_really_inline simd8 check_special_cases(const simd8 input, const simd8 prev1) { // Bit 0 = Too Short (lead byte/ASCII followed by lead byte/ASCII) // Bit 1 = Too Long (ASCII followed by continuation) // Bit 2 = Overlong 3-byte // Bit 4 = Surrogate // Bit 5 = Overlong 2-byte // Bit 7 = Two Continuations constexpr const uint8_t TOO_SHORT = 1<<0; // 11______ 0_______ // 11______ 11______ constexpr const uint8_t TOO_LONG = 1<<1; // 0_______ 10______ constexpr const uint8_t OVERLONG_3 = 1<<2; // 11100000 100_____ constexpr const uint8_t SURROGATE = 1<<4; // 11101101 101_____ constexpr const uint8_t OVERLONG_2 = 1<<5; // 1100000_ 10______ constexpr const uint8_t TWO_CONTS = 1<<7; // 10______ 10______ constexpr const uint8_t TOO_LARGE = 1<<3; // 11110100 1001____ // 11110100 101_____ // 11110101 1001____ // 11110101 101_____ // 1111011_ 1001____ // 1111011_ 101_____ // 11111___ 1001____ // 11111___ 101_____ constexpr const uint8_t TOO_LARGE_1000 = 1<<6; // 11110101 1000____ // 1111011_ 1000____ // 11111___ 1000____ constexpr const uint8_t OVERLONG_4 = 1<<6; // 11110000 1000____ const simd8 byte_1_high = prev1.shr<4>().lookup_16( // 0_______ ________ TOO_LONG, TOO_LONG, TOO_LONG, TOO_LONG, TOO_LONG, TOO_LONG, TOO_LONG, TOO_LONG, // 10______ ________ TWO_CONTS, TWO_CONTS, TWO_CONTS, TWO_CONTS, // 1100____ ________ TOO_SHORT | OVERLONG_2, // 1101____ ________ TOO_SHORT, // 1110____ ________ TOO_SHORT | OVERLONG_3 | SURROGATE, // 1111____ ________ TOO_SHORT | TOO_LARGE | TOO_LARGE_1000 | OVERLONG_4 ); constexpr const uint8_t CARRY = TOO_SHORT | TOO_LONG | TWO_CONTS; // These all have ____ in byte 1 . const simd8 byte_1_low = (prev1 & 0x0F).lookup_16( // ____0000 ________ CARRY | OVERLONG_3 | OVERLONG_2 | OVERLONG_4, // ____0001 ________ CARRY | OVERLONG_2, // ____001_ ________ CARRY, CARRY, // ____0100 ________ CARRY | TOO_LARGE, // ____0101 ________ CARRY | TOO_LARGE | TOO_LARGE_1000, // ____011_ ________ CARRY | TOO_LARGE | TOO_LARGE_1000, CARRY | TOO_LARGE | TOO_LARGE_1000, // ____1___ ________ CARRY | TOO_LARGE | TOO_LARGE_1000, CARRY | TOO_LARGE | TOO_LARGE_1000, CARRY | TOO_LARGE | TOO_LARGE_1000, CARRY | TOO_LARGE | TOO_LARGE_1000, CARRY | TOO_LARGE | TOO_LARGE_1000, // ____1101 ________ CARRY | TOO_LARGE | TOO_LARGE_1000 | SURROGATE, CARRY | TOO_LARGE | TOO_LARGE_1000, CARRY | TOO_LARGE | TOO_LARGE_1000 ); const simd8 byte_2_high = input.shr<4>().lookup_16( // ________ 0_______ TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT, // ________ 1000____ TOO_LONG | OVERLONG_2 | TWO_CONTS | OVERLONG_3 | TOO_LARGE_1000 | OVERLONG_4, // ________ 1001____ TOO_LONG | OVERLONG_2 | TWO_CONTS | OVERLONG_3 | TOO_LARGE, // ________ 101_____ TOO_LONG | OVERLONG_2 | TWO_CONTS | SURROGATE | TOO_LARGE, TOO_LONG | OVERLONG_2 | TWO_CONTS | SURROGATE | TOO_LARGE, // ________ 11______ TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT ); return (byte_1_high & byte_1_low & byte_2_high); } simdjson_really_inline simd8 check_multibyte_lengths(const simd8 input, const simd8 prev_input, const simd8 sc) { simd8 prev2 = input.prev<2>(prev_input); simd8 prev3 = input.prev<3>(prev_input); simd8 must23 = simd8(must_be_2_3_continuation(prev2, prev3)); simd8 must23_80 = must23 & uint8_t(0x80); return must23_80 ^ sc; } // // Return nonzero if there are incomplete multibyte characters at the end of the block: // e.g. if there is a 4-byte character, but it's 3 bytes from the end. // simdjson_really_inline simd8 is_incomplete(const simd8 input) { // If the previous input's last 3 bytes match this, they're too short (they ended at EOF): // ... 1111____ 111_____ 11______ static const uint8_t max_array[32] = { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0b11110000u-1, 0b11100000u-1, 0b11000000u-1 }; const simd8 max_value(&max_array[sizeof(max_array)-sizeof(simd8)]); return input.gt_bits(max_value); } struct utf8_checker { // If this is nonzero, there has been a UTF-8 error. simd8 error; // The last input we received simd8 prev_input_block; // Whether the last input we received was incomplete (used for ASCII fast path) simd8 prev_incomplete; // // Check whether the current bytes are valid UTF-8. // simdjson_really_inline void check_utf8_bytes(const simd8 input, const simd8 prev_input) { // Flip prev1...prev3 so we can easily determine if they are 2+, 3+ or 4+ lead bytes // (2, 3, 4-byte leads become large positive numbers instead of small negative numbers) simd8 prev1 = input.prev<1>(prev_input); simd8 sc = check_special_cases(input, prev1); this->error |= check_multibyte_lengths(input, prev_input, sc); } // The only problem that can happen at EOF is that a multibyte character is too short // or a byte value too large in the last bytes: check_special_cases only checks for bytes // too large in the first of two bytes. simdjson_really_inline void check_eof() { // If the previous block had incomplete UTF-8 characters at the end, an ASCII block can't // possibly finish them. this->error |= this->prev_incomplete; } simdjson_really_inline void check_next_input(const simd8x64& input) { if(simdjson_likely(is_ascii(input))) { this->error |= this->prev_incomplete; } else { // you might think that a for-loop would work, but under Visual Studio, it is not good enough. static_assert((simd8x64::NUM_CHUNKS == 2) || (simd8x64::NUM_CHUNKS == 4), "We support either two or four chunks per 64-byte block."); if(simd8x64::NUM_CHUNKS == 2) { this->check_utf8_bytes(input.chunks[0], this->prev_input_block); this->check_utf8_bytes(input.chunks[1], input.chunks[0]); } else if(simd8x64::NUM_CHUNKS == 4) { this->check_utf8_bytes(input.chunks[0], this->prev_input_block); this->check_utf8_bytes(input.chunks[1], input.chunks[0]); this->check_utf8_bytes(input.chunks[2], input.chunks[1]); this->check_utf8_bytes(input.chunks[3], input.chunks[2]); } this->prev_incomplete = is_incomplete(input.chunks[simd8x64::NUM_CHUNKS-1]); this->prev_input_block = input.chunks[simd8x64::NUM_CHUNKS-1]; } } // do not forget to call check_eof! simdjson_really_inline error_code errors() { return this->error.any_bits_set_anywhere() ? error_code::UTF8_ERROR : error_code::SUCCESS; } }; // struct utf8_checker } // namespace utf8_validation using utf8_validation::utf8_checker; } // unnamed namespace } // namespace arm64 } // namespace simdjson /* end file src/generic/stage1/utf8_lookup4_algorithm.h */ /* begin file src/generic/stage1/json_structural_indexer.h */ // This file contains the common code every implementation uses in stage1 // It is intended to be included multiple times and compiled multiple times // We assume the file in which it is included already includes // "simdjson/stage1.h" (this simplifies amalgation) /* begin file src/generic/stage1/buf_block_reader.h */ namespace simdjson { namespace arm64 { namespace { // Walks through a buffer in block-sized increments, loading the last part with spaces template struct buf_block_reader { public: simdjson_really_inline buf_block_reader(const uint8_t *_buf, size_t _len); simdjson_really_inline size_t block_index(); simdjson_really_inline bool has_full_block() const; simdjson_really_inline const uint8_t *full_block() const; /** * Get the last block, padded with spaces. * * There will always be a last block, with at least 1 byte, unless len == 0 (in which case this * function fills the buffer with spaces and returns 0. In particular, if len == STEP_SIZE there * will be 0 full_blocks and 1 remainder block with STEP_SIZE bytes and no spaces for padding. * * @return the number of effective characters in the last block. */ simdjson_really_inline size_t get_remainder(uint8_t *dst) const; simdjson_really_inline void advance(); private: const uint8_t *buf; const size_t len; const size_t lenminusstep; size_t idx; }; // Routines to print masks and text for debugging bitmask operations simdjson_unused static char * format_input_text_64(const uint8_t *text) { static char buf[sizeof(simd8x64) + 1]; for (size_t i=0; i); i++) { buf[i] = int8_t(text[i]) < ' ' ? '_' : int8_t(text[i]); } buf[sizeof(simd8x64)] = '\0'; return buf; } // Routines to print masks and text for debugging bitmask operations simdjson_unused static char * format_input_text(const simd8x64& in) { static char buf[sizeof(simd8x64) + 1]; in.store(reinterpret_cast(buf)); for (size_t i=0; i); i++) { if (buf[i] < ' ') { buf[i] = '_'; } } buf[sizeof(simd8x64)] = '\0'; return buf; } simdjson_unused static char * format_mask(uint64_t mask) { static char buf[sizeof(simd8x64) + 1]; for (size_t i=0; i<64; i++) { buf[i] = (mask & (size_t(1) << i)) ? 'X' : ' '; } buf[64] = '\0'; return buf; } template simdjson_really_inline buf_block_reader::buf_block_reader(const uint8_t *_buf, size_t _len) : buf{_buf}, len{_len}, lenminusstep{len < STEP_SIZE ? 0 : len - STEP_SIZE}, idx{0} {} template simdjson_really_inline size_t buf_block_reader::block_index() { return idx; } template simdjson_really_inline bool buf_block_reader::has_full_block() const { return idx < lenminusstep; } template simdjson_really_inline const uint8_t *buf_block_reader::full_block() const { return &buf[idx]; } template simdjson_really_inline size_t buf_block_reader::get_remainder(uint8_t *dst) const { if(len == idx) { return 0; } // memcpy(dst, null, 0) will trigger an error with some sanitizers std::memset(dst, 0x20, STEP_SIZE); // std::memset STEP_SIZE because it's more efficient to write out 8 or 16 bytes at once. std::memcpy(dst, buf + idx, len - idx); return len - idx; } template simdjson_really_inline void buf_block_reader::advance() { idx += STEP_SIZE; } } // unnamed namespace } // namespace arm64 } // namespace simdjson /* end file src/generic/stage1/buf_block_reader.h */ /* begin file src/generic/stage1/json_string_scanner.h */ namespace simdjson { namespace arm64 { namespace { namespace stage1 { struct json_string_block { // We spell out the constructors in the hope of resolving inlining issues with Visual Studio 2017 simdjson_really_inline json_string_block(uint64_t backslash, uint64_t escaped, uint64_t quote, uint64_t in_string) : _backslash(backslash), _escaped(escaped), _quote(quote), _in_string(in_string) {} // Escaped characters (characters following an escape() character) simdjson_really_inline uint64_t escaped() const { return _escaped; } // Escape characters (backslashes that are not escaped--i.e. in \\, includes only the first \) simdjson_really_inline uint64_t escape() const { return _backslash & ~_escaped; } // Real (non-backslashed) quotes simdjson_really_inline uint64_t quote() const { return _quote; } // Start quotes of strings simdjson_really_inline uint64_t string_start() const { return _quote & _in_string; } // End quotes of strings simdjson_really_inline uint64_t string_end() const { return _quote & ~_in_string; } // Only characters inside the string (not including the quotes) simdjson_really_inline uint64_t string_content() const { return _in_string & ~_quote; } // Return a mask of whether the given characters are inside a string (only works on non-quotes) simdjson_really_inline uint64_t non_quote_inside_string(uint64_t mask) const { return mask & _in_string; } // Return a mask of whether the given characters are inside a string (only works on non-quotes) simdjson_really_inline uint64_t non_quote_outside_string(uint64_t mask) const { return mask & ~_in_string; } // Tail of string (everything except the start quote) simdjson_really_inline uint64_t string_tail() const { return _in_string ^ _quote; } // backslash characters uint64_t _backslash; // escaped characters (backslashed--does not include the hex characters after \u) uint64_t _escaped; // real quotes (non-backslashed ones) uint64_t _quote; // string characters (includes start quote but not end quote) uint64_t _in_string; }; // Scans blocks for string characters, storing the state necessary to do so class json_string_scanner { public: simdjson_really_inline json_string_block next(const simd::simd8x64& in); // Returns either UNCLOSED_STRING or SUCCESS simdjson_really_inline error_code finish(); private: // Intended to be defined by the implementation simdjson_really_inline uint64_t find_escaped(uint64_t escape); simdjson_really_inline uint64_t find_escaped_branchless(uint64_t escape); // Whether the last iteration was still inside a string (all 1's = true, all 0's = false). uint64_t prev_in_string = 0ULL; // Whether the first character of the next iteration is escaped. uint64_t prev_escaped = 0ULL; }; // // Finds escaped characters (characters following \). // // Handles runs of backslashes like \\\" and \\\\" correctly (yielding 0101 and 01010, respectively). // // Does this by: // - Shift the escape mask to get potentially escaped characters (characters after backslashes). // - Mask escaped sequences that start on *even* bits with 1010101010 (odd bits are escaped, even bits are not) // - Mask escaped sequences that start on *odd* bits with 0101010101 (even bits are escaped, odd bits are not) // // To distinguish between escaped sequences starting on even/odd bits, it finds the start of all // escape sequences, filters out the ones that start on even bits, and adds that to the mask of // escape sequences. This causes the addition to clear out the sequences starting on odd bits (since // the start bit causes a carry), and leaves even-bit sequences alone. // // Example: // // text | \\\ | \\\"\\\" \\\" \\"\\" | // escape | xxx | xx xxx xxx xx xx | Removed overflow backslash; will | it into follows_escape // odd_starts | x | x x x | escape & ~even_bits & ~follows_escape // even_seq | c| cxxx c xx c | c = carry bit -- will be masked out later // invert_mask | | cxxx c xx c| even_seq << 1 // follows_escape | xx | x xx xxx xxx xx xx | Includes overflow bit // escaped | x | x x x x x x x x | // desired | x | x x x x x x x x | // text | \\\ | \\\"\\\" \\\" \\"\\" | // simdjson_really_inline uint64_t json_string_scanner::find_escaped_branchless(uint64_t backslash) { // If there was overflow, pretend the first character isn't a backslash backslash &= ~prev_escaped; uint64_t follows_escape = backslash << 1 | prev_escaped; // Get sequences starting on even bits by clearing out the odd series using + const uint64_t even_bits = 0x5555555555555555ULL; uint64_t odd_sequence_starts = backslash & ~even_bits & ~follows_escape; uint64_t sequences_starting_on_even_bits; prev_escaped = add_overflow(odd_sequence_starts, backslash, &sequences_starting_on_even_bits); uint64_t invert_mask = sequences_starting_on_even_bits << 1; // The mask we want to return is the *escaped* bits, not escapes. // Mask every other backslashed character as an escaped character // Flip the mask for sequences that start on even bits, to correct them return (even_bits ^ invert_mask) & follows_escape; } // // Return a mask of all string characters plus end quotes. // // prev_escaped is overflow saying whether the next character is escaped. // prev_in_string is overflow saying whether we're still in a string. // // Backslash sequences outside of quotes will be detected in stage 2. // simdjson_really_inline json_string_block json_string_scanner::next(const simd::simd8x64& in) { const uint64_t backslash = in.eq('\\'); const uint64_t escaped = find_escaped(backslash); const uint64_t quote = in.eq('"') & ~escaped; // // prefix_xor flips on bits inside the string (and flips off the end quote). // // Then we xor with prev_in_string: if we were in a string already, its effect is flipped // (characters inside strings are outside, and characters outside strings are inside). // const uint64_t in_string = prefix_xor(quote) ^ prev_in_string; // // Check if we're still in a string at the end of the box so the next block will know // // right shift of a signed value expected to be well-defined and standard // compliant as of C++20, John Regher from Utah U. says this is fine code // prev_in_string = uint64_t(static_cast(in_string) >> 63); // Use ^ to turn the beginning quote off, and the end quote on. // We are returning a function-local object so either we get a move constructor // or we get copy elision. return json_string_block( backslash, escaped, quote, in_string ); } simdjson_really_inline error_code json_string_scanner::finish() { if (prev_in_string) { return UNCLOSED_STRING; } return SUCCESS; } } // namespace stage1 } // unnamed namespace } // namespace arm64 } // namespace simdjson /* end file src/generic/stage1/json_string_scanner.h */ /* begin file src/generic/stage1/json_scanner.h */ namespace simdjson { namespace arm64 { namespace { namespace stage1 { /** * A block of scanned json, with information on operators and scalars. * * We seek to identify pseudo-structural characters. Anything that is inside * a string must be omitted (hence & ~_string.string_tail()). * Otherwise, pseudo-structural characters come in two forms. * 1. We have the structural characters ([,],{,},:, comma). The * term 'structural character' is from the JSON RFC. * 2. We have the 'scalar pseudo-structural characters'. * Scalars are quotes, and any character except structural characters and white space. * * To identify the scalar pseudo-structural characters, we must look at what comes * before them: it must be a space, a quote or a structural characters. * Starting with simdjson v0.3, we identify them by * negation: we identify everything that is followed by a non-quote scalar, * and we negate that. Whatever remains must be a 'scalar pseudo-structural character'. */ struct json_block { public: // We spell out the constructors in the hope of resolving inlining issues with Visual Studio 2017 simdjson_really_inline json_block(json_string_block&& string, json_character_block characters, uint64_t follows_potential_nonquote_scalar) : _string(std::move(string)), _characters(characters), _follows_potential_nonquote_scalar(follows_potential_nonquote_scalar) {} simdjson_really_inline json_block(json_string_block string, json_character_block characters, uint64_t follows_potential_nonquote_scalar) : _string(string), _characters(characters), _follows_potential_nonquote_scalar(follows_potential_nonquote_scalar) {} /** * The start of structurals. * In simdjson prior to v0.3, these were called the pseudo-structural characters. **/ simdjson_really_inline uint64_t structural_start() const noexcept { return potential_structural_start() & ~_string.string_tail(); } /** All JSON whitespace (i.e. not in a string) */ simdjson_really_inline uint64_t whitespace() const noexcept { return non_quote_outside_string(_characters.whitespace()); } // Helpers /** Whether the given characters are inside a string (only works on non-quotes) */ simdjson_really_inline uint64_t non_quote_inside_string(uint64_t mask) const noexcept { return _string.non_quote_inside_string(mask); } /** Whether the given characters are outside a string (only works on non-quotes) */ simdjson_really_inline uint64_t non_quote_outside_string(uint64_t mask) const noexcept { return _string.non_quote_outside_string(mask); } // string and escape characters json_string_block _string; // whitespace, structural characters ('operators'), scalars json_character_block _characters; // whether the previous character was a scalar uint64_t _follows_potential_nonquote_scalar; private: // Potential structurals (i.e. disregarding strings) /** * structural elements ([,],{,},:, comma) plus scalar starts like 123, true and "abc". * They may reside inside a string. **/ simdjson_really_inline uint64_t potential_structural_start() const noexcept { return _characters.op() | potential_scalar_start(); } /** * The start of non-operator runs, like 123, true and "abc". * It main reside inside a string. **/ simdjson_really_inline uint64_t potential_scalar_start() const noexcept { // The term "scalar" refers to anything except structural characters and white space // (so letters, numbers, quotes). // Whenever it is preceded by something that is not a structural element ({,},[,],:, ") nor a white-space // then we know that it is irrelevant structurally. return _characters.scalar() & ~follows_potential_scalar(); } /** * Whether the given character is immediately after a non-operator like 123, true. * The characters following a quote are not included. */ simdjson_really_inline uint64_t follows_potential_scalar() const noexcept { // _follows_potential_nonquote_scalar: is defined as marking any character that follows a character // that is not a structural element ({,},[,],:, comma) nor a quote (") and that is not a // white space. // It is understood that within quoted region, anything at all could be marked (irrelevant). return _follows_potential_nonquote_scalar; } }; /** * Scans JSON for important bits: structural characters or 'operators', strings, and scalars. * * The scanner starts by calculating two distinct things: * - string characters (taking \" into account) * - structural characters or 'operators' ([]{},:, comma) * and scalars (runs of non-operators like 123, true and "abc") * * To minimize data dependency (a key component of the scanner's speed), it finds these in parallel: * in particular, the operator/scalar bit will find plenty of things that are actually part of * strings. When we're done, json_block will fuse the two together by masking out tokens that are * part of a string. */ class json_scanner { public: json_scanner() {} simdjson_really_inline json_block next(const simd::simd8x64& in); // Returns either UNCLOSED_STRING or SUCCESS simdjson_really_inline error_code finish(); private: // Whether the last character of the previous iteration is part of a scalar token // (anything except whitespace or a structural character/'operator'). uint64_t prev_scalar = 0ULL; json_string_scanner string_scanner{}; }; // // Check if the current character immediately follows a matching character. // // For example, this checks for quotes with backslashes in front of them: // // const uint64_t backslashed_quote = in.eq('"') & immediately_follows(in.eq('\'), prev_backslash); // simdjson_really_inline uint64_t follows(const uint64_t match, uint64_t &overflow) { const uint64_t result = match << 1 | overflow; overflow = match >> 63; return result; } simdjson_really_inline json_block json_scanner::next(const simd::simd8x64& in) { json_string_block strings = string_scanner.next(in); // identifies the white-space and the structurat characters json_character_block characters = json_character_block::classify(in); // The term "scalar" refers to anything except structural characters and white space // (so letters, numbers, quotes). // We want follows_scalar to mark anything that follows a non-quote scalar (so letters and numbers). // // A terminal quote should either be followed by a structural character (comma, brace, bracket, colon) // or nothing. However, we still want ' "a string"true ' to mark the 't' of 'true' as a potential // pseudo-structural character just like we would if we had ' "a string" true '; otherwise we // may need to add an extra check when parsing strings. // // Performance: there are many ways to skin this cat. const uint64_t nonquote_scalar = characters.scalar() & ~strings.quote(); uint64_t follows_nonquote_scalar = follows(nonquote_scalar, prev_scalar); // We are returning a function-local object so either we get a move constructor // or we get copy elision. return json_block( strings,// strings is a function-local object so either it moves or the copy is elided. characters, follows_nonquote_scalar ); } simdjson_really_inline error_code json_scanner::finish() { return string_scanner.finish(); } } // namespace stage1 } // unnamed namespace } // namespace arm64 } // namespace simdjson /* end file src/generic/stage1/json_scanner.h */ /* begin file src/generic/stage1/json_minifier.h */ // This file contains the common code every implementation uses in stage1 // It is intended to be included multiple times and compiled multiple times // We assume the file in which it is included already includes // "simdjson/stage1.h" (this simplifies amalgation) namespace simdjson { namespace arm64 { namespace { namespace stage1 { class json_minifier { public: template static error_code minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) noexcept; private: simdjson_really_inline json_minifier(uint8_t *_dst) : dst{_dst} {} template simdjson_really_inline void step(const uint8_t *block_buf, buf_block_reader &reader) noexcept; simdjson_really_inline void next(const simd::simd8x64& in, const json_block& block); simdjson_really_inline error_code finish(uint8_t *dst_start, size_t &dst_len); json_scanner scanner{}; uint8_t *dst; }; simdjson_really_inline void json_minifier::next(const simd::simd8x64& in, const json_block& block) { uint64_t mask = block.whitespace(); dst += in.compress(mask, dst); } simdjson_really_inline error_code json_minifier::finish(uint8_t *dst_start, size_t &dst_len) { error_code error = scanner.finish(); if (error) { dst_len = 0; return error; } dst_len = dst - dst_start; return SUCCESS; } template<> simdjson_really_inline void json_minifier::step<128>(const uint8_t *block_buf, buf_block_reader<128> &reader) noexcept { simd::simd8x64 in_1(block_buf); simd::simd8x64 in_2(block_buf+64); json_block block_1 = scanner.next(in_1); json_block block_2 = scanner.next(in_2); this->next(in_1, block_1); this->next(in_2, block_2); reader.advance(); } template<> simdjson_really_inline void json_minifier::step<64>(const uint8_t *block_buf, buf_block_reader<64> &reader) noexcept { simd::simd8x64 in_1(block_buf); json_block block_1 = scanner.next(in_1); this->next(block_buf, block_1); reader.advance(); } template error_code json_minifier::minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) noexcept { buf_block_reader reader(buf, len); json_minifier minifier(dst); // Index the first n-1 blocks while (reader.has_full_block()) { minifier.step(reader.full_block(), reader); } // Index the last (remainder) block, padded with spaces uint8_t block[STEP_SIZE]; size_t remaining_bytes = reader.get_remainder(block); if (remaining_bytes > 0) { // We do not want to write directly to the output stream. Rather, we write // to a local buffer (for safety). uint8_t out_block[STEP_SIZE]; uint8_t * const guarded_dst{minifier.dst}; minifier.dst = out_block; minifier.step(block, reader); size_t to_write = minifier.dst - out_block; // In some cases, we could be enticed to consider the padded spaces // as part of the string. This is fine as long as we do not write more // than we consumed. if(to_write > remaining_bytes) { to_write = remaining_bytes; } memcpy(guarded_dst, out_block, to_write); minifier.dst = guarded_dst + to_write; } return minifier.finish(dst, dst_len); } } // namespace stage1 } // unnamed namespace } // namespace arm64 } // namespace simdjson /* end file src/generic/stage1/json_minifier.h */ /* begin file src/generic/stage1/find_next_document_index.h */ namespace simdjson { namespace arm64 { namespace { /** * This algorithm is used to quickly identify the last structural position that * makes up a complete document. * * It does this by going backwards and finding the last *document boundary* (a * place where one value follows another without a comma between them). If the * last document (the characters after the boundary) has an equal number of * start and end brackets, it is considered complete. * * Simply put, we iterate over the structural characters, starting from * the end. We consider that we found the end of a JSON document when the * first element of the pair is NOT one of these characters: '{' '[' ':' ',' * and when the second element is NOT one of these characters: '}' ']' ':' ','. * * This simple comparison works most of the time, but it does not cover cases * where the batch's structural indexes contain a perfect amount of documents. * In such a case, we do not have access to the structural index which follows * the last document, therefore, we do not have access to the second element in * the pair, and that means we cannot identify the last document. To fix this * issue, we keep a count of the open and closed curly/square braces we found * while searching for the pair. When we find a pair AND the count of open and * closed curly/square braces is the same, we know that we just passed a * complete document, therefore the last json buffer location is the end of the * batch. */ simdjson_really_inline uint32_t find_next_document_index(dom_parser_implementation &parser) { // Variant: do not count separately, just figure out depth if(parser.n_structural_indexes == 0) { return 0; } auto arr_cnt = 0; auto obj_cnt = 0; for (auto i = parser.n_structural_indexes - 1; i > 0; i--) { auto idxb = parser.structural_indexes[i]; switch (parser.buf[idxb]) { case ':': case ',': continue; case '}': obj_cnt--; continue; case ']': arr_cnt--; continue; case '{': obj_cnt++; break; case '[': arr_cnt++; break; } auto idxa = parser.structural_indexes[i - 1]; switch (parser.buf[idxa]) { case '{': case '[': case ':': case ',': continue; } // Last document is complete, so the next document will appear after! if (!arr_cnt && !obj_cnt) { return parser.n_structural_indexes; } // Last document is incomplete; mark the document at i + 1 as the next one return i; } // If we made it to the end, we want to finish counting to see if we have a full document. switch (parser.buf[parser.structural_indexes[0]]) { case '}': obj_cnt--; break; case ']': arr_cnt--; break; case '{': obj_cnt++; break; case '[': arr_cnt++; break; } if (!arr_cnt && !obj_cnt) { // We have a complete document. return parser.n_structural_indexes; } return 0; } } // unnamed namespace } // namespace arm64 } // namespace simdjson /* end file src/generic/stage1/find_next_document_index.h */ namespace simdjson { namespace arm64 { namespace { namespace stage1 { class bit_indexer { public: uint32_t *tail; simdjson_really_inline bit_indexer(uint32_t *index_buf) : tail(index_buf) {} // flatten out values in 'bits' assuming that they are are to have values of idx // plus their position in the bitvector, and store these indexes at // base_ptr[base] incrementing base as we go // will potentially store extra values beyond end of valid bits, so base_ptr // needs to be large enough to handle this simdjson_really_inline void write(uint32_t idx, uint64_t bits) { // In some instances, the next branch is expensive because it is mispredicted. // Unfortunately, in other cases, // it helps tremendously. if (bits == 0) return; #if defined(SIMDJSON_PREFER_REVERSE_BITS) /** * ARM lacks a fast trailing zero instruction, but it has a fast * bit reversal instruction and a fast leading zero instruction. * Thus it may be profitable to reverse the bits (once) and then * to rely on a sequence of instructions that call the leading * zero instruction. * * Performance notes: * The chosen routine is not optimal in terms of data dependency * since zero_leading_bit might require two instructions. However, * it tends to minimize the total number of instructions which is * beneficial. */ uint64_t rev_bits = reverse_bits(bits); int cnt = static_cast(count_ones(bits)); int i = 0; // Do the first 8 all together for (; i<8; i++) { int lz = leading_zeroes(rev_bits); this->tail[i] = static_cast(idx) + lz; rev_bits = zero_leading_bit(rev_bits, lz); } // Do the next 8 all together (we hope in most cases it won't happen at all // and the branch is easily predicted). if (simdjson_unlikely(cnt > 8)) { i = 8; for (; i<16; i++) { int lz = leading_zeroes(rev_bits); this->tail[i] = static_cast(idx) + lz; rev_bits = zero_leading_bit(rev_bits, lz); } // Most files don't have 16+ structurals per block, so we take several basically guaranteed // branch mispredictions here. 16+ structurals per block means either punctuation ({} [] , :) // or the start of a value ("abc" true 123) every four characters. if (simdjson_unlikely(cnt > 16)) { i = 16; while (rev_bits != 0) { int lz = leading_zeroes(rev_bits); this->tail[i++] = static_cast(idx) + lz; rev_bits = zero_leading_bit(rev_bits, lz); } } } this->tail += cnt; #else // SIMDJSON_PREFER_REVERSE_BITS /** * Under recent x64 systems, we often have both a fast trailing zero * instruction and a fast 'clear-lower-bit' instruction so the following * algorithm can be competitive. */ int cnt = static_cast(count_ones(bits)); // Do the first 8 all together for (int i=0; i<8; i++) { this->tail[i] = idx + trailing_zeroes(bits); bits = clear_lowest_bit(bits); } // Do the next 8 all together (we hope in most cases it won't happen at all // and the branch is easily predicted). if (simdjson_unlikely(cnt > 8)) { for (int i=8; i<16; i++) { this->tail[i] = idx + trailing_zeroes(bits); bits = clear_lowest_bit(bits); } // Most files don't have 16+ structurals per block, so we take several basically guaranteed // branch mispredictions here. 16+ structurals per block means either punctuation ({} [] , :) // or the start of a value ("abc" true 123) every four characters. if (simdjson_unlikely(cnt > 16)) { int i = 16; do { this->tail[i] = idx + trailing_zeroes(bits); bits = clear_lowest_bit(bits); i++; } while (i < cnt); } } this->tail += cnt; #endif } }; class json_structural_indexer { public: /** * Find the important bits of JSON in a 128-byte chunk, and add them to structural_indexes. * * @param partial Setting the partial parameter to true allows the find_structural_bits to * tolerate unclosed strings. The caller should still ensure that the input is valid UTF-8. If * you are processing substrings, you may want to call on a function like trimmed_length_safe_utf8. */ template static error_code index(const uint8_t *buf, size_t len, dom_parser_implementation &parser, stage1_mode partial) noexcept; private: simdjson_really_inline json_structural_indexer(uint32_t *structural_indexes); template simdjson_really_inline void step(const uint8_t *block, buf_block_reader &reader) noexcept; simdjson_really_inline void next(const simd::simd8x64& in, const json_block& block, size_t idx); simdjson_really_inline error_code finish(dom_parser_implementation &parser, size_t idx, size_t len, stage1_mode partial); json_scanner scanner{}; utf8_checker checker{}; bit_indexer indexer; uint64_t prev_structurals = 0; uint64_t unescaped_chars_error = 0; }; simdjson_really_inline json_structural_indexer::json_structural_indexer(uint32_t *structural_indexes) : indexer{structural_indexes} {} // Skip the last character if it is partial simdjson_really_inline size_t trim_partial_utf8(const uint8_t *buf, size_t len) { if (simdjson_unlikely(len < 3)) { switch (len) { case 2: if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left if (buf[len-2] >= 0b11100000) { return len-2; } // 3- and 4-byte characters with only 2 bytes left return len; case 1: if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left return len; case 0: return len; } } if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left if (buf[len-2] >= 0b11100000) { return len-2; } // 3- and 4-byte characters with only 1 byte left if (buf[len-3] >= 0b11110000) { return len-3; } // 4-byte characters with only 3 bytes left return len; } // // PERF NOTES: // We pipe 2 inputs through these stages: // 1. Load JSON into registers. This takes a long time and is highly parallelizable, so we load // 2 inputs' worth at once so that by the time step 2 is looking for them input, it's available. // 2. Scan the JSON for critical data: strings, scalars and operators. This is the critical path. // The output of step 1 depends entirely on this information. These functions don't quite use // up enough CPU: the second half of the functions is highly serial, only using 1 execution core // at a time. The second input's scans has some dependency on the first ones finishing it, but // they can make a lot of progress before they need that information. // 3. Step 1 doesn't use enough capacity, so we run some extra stuff while we're waiting for that // to finish: utf-8 checks and generating the output from the last iteration. // // The reason we run 2 inputs at a time, is steps 2 and 3 are *still* not enough to soak up all // available capacity with just one input. Running 2 at a time seems to give the CPU a good enough // workout. // template error_code json_structural_indexer::index(const uint8_t *buf, size_t len, dom_parser_implementation &parser, stage1_mode partial) noexcept { if (simdjson_unlikely(len > parser.capacity())) { return CAPACITY; } // We guard the rest of the code so that we can assume that len > 0 throughout. if (len == 0) { return EMPTY; } if (is_streaming(partial)) { len = trim_partial_utf8(buf, len); // If you end up with an empty window after trimming // the partial UTF-8 bytes, then chances are good that you // have an UTF-8 formatting error. if(len == 0) { return UTF8_ERROR; } } buf_block_reader reader(buf, len); json_structural_indexer indexer(parser.structural_indexes.get()); // Read all but the last block while (reader.has_full_block()) { indexer.step(reader.full_block(), reader); } // Take care of the last block (will always be there unless file is empty which is // not supposed to happen.) uint8_t block[STEP_SIZE]; if (simdjson_unlikely(reader.get_remainder(block) == 0)) { return UNEXPECTED_ERROR; } indexer.step(block, reader); return indexer.finish(parser, reader.block_index(), len, partial); } template<> simdjson_really_inline void json_structural_indexer::step<128>(const uint8_t *block, buf_block_reader<128> &reader) noexcept { simd::simd8x64 in_1(block); simd::simd8x64 in_2(block+64); json_block block_1 = scanner.next(in_1); json_block block_2 = scanner.next(in_2); this->next(in_1, block_1, reader.block_index()); this->next(in_2, block_2, reader.block_index()+64); reader.advance(); } template<> simdjson_really_inline void json_structural_indexer::step<64>(const uint8_t *block, buf_block_reader<64> &reader) noexcept { simd::simd8x64 in_1(block); json_block block_1 = scanner.next(in_1); this->next(in_1, block_1, reader.block_index()); reader.advance(); } simdjson_really_inline void json_structural_indexer::next(const simd::simd8x64& in, const json_block& block, size_t idx) { uint64_t unescaped = in.lteq(0x1F); checker.check_next_input(in); indexer.write(uint32_t(idx-64), prev_structurals); // Output *last* iteration's structurals to the parser prev_structurals = block.structural_start(); unescaped_chars_error |= block.non_quote_inside_string(unescaped); } simdjson_really_inline error_code json_structural_indexer::finish(dom_parser_implementation &parser, size_t idx, size_t len, stage1_mode partial) { // Write out the final iteration's structurals indexer.write(uint32_t(idx-64), prev_structurals); error_code error = scanner.finish(); // We deliberately break down the next expression so that it is // human readable. const bool should_we_exit = is_streaming(partial) ? ((error != SUCCESS) && (error != UNCLOSED_STRING)) // when partial we tolerate UNCLOSED_STRING : (error != SUCCESS); // if partial is false, we must have SUCCESS const bool have_unclosed_string = (error == UNCLOSED_STRING); if (simdjson_unlikely(should_we_exit)) { return error; } if (unescaped_chars_error) { return UNESCAPED_CHARS; } parser.n_structural_indexes = uint32_t(indexer.tail - parser.structural_indexes.get()); /*** * The On Demand API requires special padding. * * This is related to https://github.com/simdjson/simdjson/issues/906 * Basically, we want to make sure that if the parsing continues beyond the last (valid) * structural character, it quickly stops. * Only three structural characters can be repeated without triggering an error in JSON: [,] and }. * We repeat the padding character (at 'len'). We don't know what it is, but if the parsing * continues, then it must be [,] or }. * Suppose it is ] or }. We backtrack to the first character, what could it be that would * not trigger an error? It could be ] or } but no, because you can't start a document that way. * It can't be a comma, a colon or any simple value. So the only way we could continue is * if the repeated character is [. But if so, the document must start with [. But if the document * starts with [, it should end with ]. If we enforce that rule, then we would get * ][[ which is invalid. * * This is illustrated with the test array_iterate_unclosed_error() on the following input: * R"({ "a": [,,)" **/ parser.structural_indexes[parser.n_structural_indexes] = uint32_t(len); // used later in partial == stage1_mode::streaming_final parser.structural_indexes[parser.n_structural_indexes + 1] = uint32_t(len); parser.structural_indexes[parser.n_structural_indexes + 2] = 0; parser.next_structural_index = 0; // a valid JSON file cannot have zero structural indexes - we should have found something if (simdjson_unlikely(parser.n_structural_indexes == 0u)) { return EMPTY; } if (simdjson_unlikely(parser.structural_indexes[parser.n_structural_indexes - 1] > len)) { return UNEXPECTED_ERROR; } if (partial == stage1_mode::streaming_partial) { // If we have an unclosed string, then the last structural // will be the quote and we want to make sure to omit it. if(have_unclosed_string) { parser.n_structural_indexes--; // a valid JSON file cannot have zero structural indexes - we should have found something if (simdjson_unlikely(parser.n_structural_indexes == 0u)) { return CAPACITY; } } // We truncate the input to the end of the last complete document (or zero). auto new_structural_indexes = find_next_document_index(parser); if (new_structural_indexes == 0 && parser.n_structural_indexes > 0) { if(parser.structural_indexes[0] == 0) { // If the buffer is partial and we started at index 0 but the document is // incomplete, it's too big to parse. return CAPACITY; } else { // It is possible that the document could be parsed, we just had a lot // of white space. parser.n_structural_indexes = 0; return EMPTY; } } parser.n_structural_indexes = new_structural_indexes; } else if (partial == stage1_mode::streaming_final) { if(have_unclosed_string) { parser.n_structural_indexes--; } // We truncate the input to the end of the last complete document (or zero). // Because partial == stage1_mode::streaming_final, it means that we may // silently ignore trailing garbage. Though it sounds bad, we do it // deliberately because many people who have streams of JSON documents // will truncate them for processing. E.g., imagine that you are uncompressing // the data from a size file or receiving it in chunks from the network. You // may not know where exactly the last document will be. Meanwhile the // document_stream instances allow people to know the JSON documents they are // parsing (see the iterator.source() method). parser.n_structural_indexes = find_next_document_index(parser); // We store the initial n_structural_indexes so that the client can see // whether we used truncation. If initial_n_structural_indexes == parser.n_structural_indexes, // then this will query parser.structural_indexes[parser.n_structural_indexes] which is len, // otherwise, it will copy some prior index. parser.structural_indexes[parser.n_structural_indexes + 1] = parser.structural_indexes[parser.n_structural_indexes]; // This next line is critical, do not change it unless you understand what you are // doing. parser.structural_indexes[parser.n_structural_indexes] = uint32_t(len); if (simdjson_unlikely(parser.n_structural_indexes == 0u)) { // We tolerate an unclosed string at the very end of the stream. Indeed, users // often load their data in bulk without being careful and they want us to ignore // the trailing garbage. return EMPTY; } } checker.check_eof(); return checker.errors(); } } // namespace stage1 } // unnamed namespace } // namespace arm64 } // namespace simdjson /* end file src/generic/stage1/json_structural_indexer.h */ /* begin file src/generic/stage1/utf8_validator.h */ namespace simdjson { namespace arm64 { namespace { namespace stage1 { /** * Validates that the string is actual UTF-8. */ template bool generic_validate_utf8(const uint8_t * input, size_t length) { checker c{}; buf_block_reader<64> reader(input, length); while (reader.has_full_block()) { simd::simd8x64 in(reader.full_block()); c.check_next_input(in); reader.advance(); } uint8_t block[64]{}; reader.get_remainder(block); simd::simd8x64 in(block); c.check_next_input(in); reader.advance(); c.check_eof(); return c.errors() == error_code::SUCCESS; } bool generic_validate_utf8(const char * input, size_t length) { return generic_validate_utf8(reinterpret_cast(input),length); } } // namespace stage1 } // unnamed namespace } // namespace arm64 } // namespace simdjson /* end file src/generic/stage1/utf8_validator.h */ // // Stage 2 // /* begin file src/generic/stage2/tape_builder.h */ /* begin file src/generic/stage2/json_iterator.h */ /* begin file src/generic/stage2/logger.h */ // This is for an internal-only stage 2 specific logger. // Set LOG_ENABLED = true to log what stage 2 is doing! namespace simdjson { namespace arm64 { namespace { namespace logger { static constexpr const char * DASHES = "----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------"; #if SIMDJSON_VERBOSE_LOGGING static constexpr const bool LOG_ENABLED = true; #else static constexpr const bool LOG_ENABLED = false; #endif static constexpr const int LOG_EVENT_LEN = 20; static constexpr const int LOG_BUFFER_LEN = 30; static constexpr const int LOG_SMALL_BUFFER_LEN = 10; static constexpr const int LOG_INDEX_LEN = 5; static int log_depth; // Not threadsafe. Log only. // Helper to turn unprintable or newline characters into spaces static simdjson_really_inline char printable_char(char c) { if (c >= 0x20) { return c; } else { return ' '; } } // Print the header and set up log_start static simdjson_really_inline void log_start() { if (LOG_ENABLED) { log_depth = 0; printf("\n"); printf("| %-*s | %-*s | %-*s | %-*s | Detail |\n", LOG_EVENT_LEN, "Event", LOG_BUFFER_LEN, "Buffer", LOG_SMALL_BUFFER_LEN, "Next", 5, "Next#"); printf("|%.*s|%.*s|%.*s|%.*s|--------|\n", LOG_EVENT_LEN+2, DASHES, LOG_BUFFER_LEN+2, DASHES, LOG_SMALL_BUFFER_LEN+2, DASHES, 5+2, DASHES); } } simdjson_unused static simdjson_really_inline void log_string(const char *message) { if (LOG_ENABLED) { printf("%s\n", message); } } // Logs a single line from the stage 2 DOM parser template static simdjson_really_inline void log_line(S &structurals, const char *title_prefix, const char *title, const char *detail) { if (LOG_ENABLED) { printf("| %*s%s%-*s ", log_depth*2, "", title_prefix, LOG_EVENT_LEN - log_depth*2 - int(strlen(title_prefix)), title); auto current_index = structurals.at_beginning() ? nullptr : structurals.next_structural-1; auto next_index = structurals.next_structural; auto current = current_index ? &structurals.buf[*current_index] : reinterpret_cast(" "); auto next = &structurals.buf[*next_index]; { // Print the next N characters in the buffer. printf("| "); // Otherwise, print the characters starting from the buffer position. // Print spaces for unprintable or newline characters. for (int i=0;i simdjson_warn_unused simdjson_really_inline error_code walk_document(V &visitor) noexcept; /** * Create an iterator capable of walking a JSON document. * * The document must have already passed through stage 1. */ simdjson_really_inline json_iterator(dom_parser_implementation &_dom_parser, size_t start_structural_index); /** * Look at the next token. * * Tokens can be strings, numbers, booleans, null, or operators (`[{]},:`)). * * They may include invalid JSON as well (such as `1.2.3` or `ture`). */ simdjson_really_inline const uint8_t *peek() const noexcept; /** * Advance to the next token. * * Tokens can be strings, numbers, booleans, null, or operators (`[{]},:`)). * * They may include invalid JSON as well (such as `1.2.3` or `ture`). */ simdjson_really_inline const uint8_t *advance() noexcept; /** * Get the remaining length of the document, from the start of the current token. */ simdjson_really_inline size_t remaining_len() const noexcept; /** * Check if we are at the end of the document. * * If this is true, there are no more tokens. */ simdjson_really_inline bool at_eof() const noexcept; /** * Check if we are at the beginning of the document. */ simdjson_really_inline bool at_beginning() const noexcept; simdjson_really_inline uint8_t last_structural() const noexcept; /** * Log that a value has been found. * * Set ENABLE_LOGGING=true in logger.h to see logging. */ simdjson_really_inline void log_value(const char *type) const noexcept; /** * Log the start of a multipart value. * * Set ENABLE_LOGGING=true in logger.h to see logging. */ simdjson_really_inline void log_start_value(const char *type) const noexcept; /** * Log the end of a multipart value. * * Set ENABLE_LOGGING=true in logger.h to see logging. */ simdjson_really_inline void log_end_value(const char *type) const noexcept; /** * Log an error. * * Set ENABLE_LOGGING=true in logger.h to see logging. */ simdjson_really_inline void log_error(const char *error) const noexcept; template simdjson_warn_unused simdjson_really_inline error_code visit_root_primitive(V &visitor, const uint8_t *value) noexcept; template simdjson_warn_unused simdjson_really_inline error_code visit_primitive(V &visitor, const uint8_t *value) noexcept; }; template simdjson_warn_unused simdjson_really_inline error_code json_iterator::walk_document(V &visitor) noexcept { logger::log_start(); // // Start the document // if (at_eof()) { return EMPTY; } log_start_value("document"); SIMDJSON_TRY( visitor.visit_document_start(*this) ); // // Read first value // { auto value = advance(); // Make sure the outer object or array is closed before continuing; otherwise, there are ways we // could get into memory corruption. See https://github.com/simdjson/simdjson/issues/906 if (!STREAMING) { switch (*value) { case '{': if (last_structural() != '}') { log_value("starting brace unmatched"); return TAPE_ERROR; }; break; case '[': if (last_structural() != ']') { log_value("starting bracket unmatched"); return TAPE_ERROR; }; break; } } switch (*value) { case '{': if (*peek() == '}') { advance(); log_value("empty object"); SIMDJSON_TRY( visitor.visit_empty_object(*this) ); break; } goto object_begin; case '[': if (*peek() == ']') { advance(); log_value("empty array"); SIMDJSON_TRY( visitor.visit_empty_array(*this) ); break; } goto array_begin; default: SIMDJSON_TRY( visitor.visit_root_primitive(*this, value) ); break; } } goto document_end; // // Object parser states // object_begin: log_start_value("object"); depth++; if (depth >= dom_parser.max_depth()) { log_error("Exceeded max depth!"); return DEPTH_ERROR; } dom_parser.is_array[depth] = false; SIMDJSON_TRY( visitor.visit_object_start(*this) ); { auto key = advance(); if (*key != '"') { log_error("Object does not start with a key"); return TAPE_ERROR; } SIMDJSON_TRY( visitor.increment_count(*this) ); SIMDJSON_TRY( visitor.visit_key(*this, key) ); } object_field: if (simdjson_unlikely( *advance() != ':' )) { log_error("Missing colon after key in object"); return TAPE_ERROR; } { auto value = advance(); switch (*value) { case '{': if (*peek() == '}') { advance(); log_value("empty object"); SIMDJSON_TRY( visitor.visit_empty_object(*this) ); break; } goto object_begin; case '[': if (*peek() == ']') { advance(); log_value("empty array"); SIMDJSON_TRY( visitor.visit_empty_array(*this) ); break; } goto array_begin; default: SIMDJSON_TRY( visitor.visit_primitive(*this, value) ); break; } } object_continue: switch (*advance()) { case ',': SIMDJSON_TRY( visitor.increment_count(*this) ); { auto key = advance(); if (simdjson_unlikely( *key != '"' )) { log_error("Key string missing at beginning of field in object"); return TAPE_ERROR; } SIMDJSON_TRY( visitor.visit_key(*this, key) ); } goto object_field; case '}': log_end_value("object"); SIMDJSON_TRY( visitor.visit_object_end(*this) ); goto scope_end; default: log_error("No comma between object fields"); return TAPE_ERROR; } scope_end: depth--; if (depth == 0) { goto document_end; } if (dom_parser.is_array[depth]) { goto array_continue; } goto object_continue; // // Array parser states // array_begin: log_start_value("array"); depth++; if (depth >= dom_parser.max_depth()) { log_error("Exceeded max depth!"); return DEPTH_ERROR; } dom_parser.is_array[depth] = true; SIMDJSON_TRY( visitor.visit_array_start(*this) ); SIMDJSON_TRY( visitor.increment_count(*this) ); array_value: { auto value = advance(); switch (*value) { case '{': if (*peek() == '}') { advance(); log_value("empty object"); SIMDJSON_TRY( visitor.visit_empty_object(*this) ); break; } goto object_begin; case '[': if (*peek() == ']') { advance(); log_value("empty array"); SIMDJSON_TRY( visitor.visit_empty_array(*this) ); break; } goto array_begin; default: SIMDJSON_TRY( visitor.visit_primitive(*this, value) ); break; } } array_continue: switch (*advance()) { case ',': SIMDJSON_TRY( visitor.increment_count(*this) ); goto array_value; case ']': log_end_value("array"); SIMDJSON_TRY( visitor.visit_array_end(*this) ); goto scope_end; default: log_error("Missing comma between array values"); return TAPE_ERROR; } document_end: log_end_value("document"); SIMDJSON_TRY( visitor.visit_document_end(*this) ); dom_parser.next_structural_index = uint32_t(next_structural - &dom_parser.structural_indexes[0]); // If we didn't make it to the end, it's an error if ( !STREAMING && dom_parser.next_structural_index != dom_parser.n_structural_indexes ) { log_error("More than one JSON value at the root of the document, or extra characters at the end of the JSON!"); return TAPE_ERROR; } return SUCCESS; } // walk_document() simdjson_really_inline json_iterator::json_iterator(dom_parser_implementation &_dom_parser, size_t start_structural_index) : buf{_dom_parser.buf}, next_structural{&_dom_parser.structural_indexes[start_structural_index]}, dom_parser{_dom_parser} { } simdjson_really_inline const uint8_t *json_iterator::peek() const noexcept { return &buf[*(next_structural)]; } simdjson_really_inline const uint8_t *json_iterator::advance() noexcept { return &buf[*(next_structural++)]; } simdjson_really_inline size_t json_iterator::remaining_len() const noexcept { return dom_parser.len - *(next_structural-1); } simdjson_really_inline bool json_iterator::at_eof() const noexcept { return next_structural == &dom_parser.structural_indexes[dom_parser.n_structural_indexes]; } simdjson_really_inline bool json_iterator::at_beginning() const noexcept { return next_structural == dom_parser.structural_indexes.get(); } simdjson_really_inline uint8_t json_iterator::last_structural() const noexcept { return buf[dom_parser.structural_indexes[dom_parser.n_structural_indexes - 1]]; } simdjson_really_inline void json_iterator::log_value(const char *type) const noexcept { logger::log_line(*this, "", type, ""); } simdjson_really_inline void json_iterator::log_start_value(const char *type) const noexcept { logger::log_line(*this, "+", type, ""); if (logger::LOG_ENABLED) { logger::log_depth++; } } simdjson_really_inline void json_iterator::log_end_value(const char *type) const noexcept { if (logger::LOG_ENABLED) { logger::log_depth--; } logger::log_line(*this, "-", type, ""); } simdjson_really_inline void json_iterator::log_error(const char *error) const noexcept { logger::log_line(*this, "", "ERROR", error); } template simdjson_warn_unused simdjson_really_inline error_code json_iterator::visit_root_primitive(V &visitor, const uint8_t *value) noexcept { switch (*value) { case '"': return visitor.visit_root_string(*this, value); case 't': return visitor.visit_root_true_atom(*this, value); case 'f': return visitor.visit_root_false_atom(*this, value); case 'n': return visitor.visit_root_null_atom(*this, value); case '-': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': return visitor.visit_root_number(*this, value); default: log_error("Document starts with a non-value character"); return TAPE_ERROR; } } template simdjson_warn_unused simdjson_really_inline error_code json_iterator::visit_primitive(V &visitor, const uint8_t *value) noexcept { switch (*value) { case '"': return visitor.visit_string(*this, value); case 't': return visitor.visit_true_atom(*this, value); case 'f': return visitor.visit_false_atom(*this, value); case 'n': return visitor.visit_null_atom(*this, value); case '-': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': return visitor.visit_number(*this, value); default: log_error("Non-value found when value was expected!"); return TAPE_ERROR; } } } // namespace stage2 } // unnamed namespace } // namespace arm64 } // namespace simdjson /* end file src/generic/stage2/json_iterator.h */ /* begin file src/generic/stage2/tape_writer.h */ namespace simdjson { namespace arm64 { namespace { namespace stage2 { struct tape_writer { /** The next place to write to tape */ uint64_t *next_tape_loc; /** Write a signed 64-bit value to tape. */ simdjson_really_inline void append_s64(int64_t value) noexcept; /** Write an unsigned 64-bit value to tape. */ simdjson_really_inline void append_u64(uint64_t value) noexcept; /** Write a double value to tape. */ simdjson_really_inline void append_double(double value) noexcept; /** * Append a tape entry (an 8-bit type,and 56 bits worth of value). */ simdjson_really_inline void append(uint64_t val, internal::tape_type t) noexcept; /** * Skip the current tape entry without writing. * * Used to skip the start of the container, since we'll come back later to fill it in when the * container ends. */ simdjson_really_inline void skip() noexcept; /** * Skip the number of tape entries necessary to write a large u64 or i64. */ simdjson_really_inline void skip_large_integer() noexcept; /** * Skip the number of tape entries necessary to write a double. */ simdjson_really_inline void skip_double() noexcept; /** * Write a value to a known location on tape. * * Used to go back and write out the start of a container after the container ends. */ simdjson_really_inline static void write(uint64_t &tape_loc, uint64_t val, internal::tape_type t) noexcept; private: /** * Append both the tape entry, and a supplementary value following it. Used for types that need * all 64 bits, such as double and uint64_t. */ template simdjson_really_inline void append2(uint64_t val, T val2, internal::tape_type t) noexcept; }; // struct number_writer simdjson_really_inline void tape_writer::append_s64(int64_t value) noexcept { append2(0, value, internal::tape_type::INT64); } simdjson_really_inline void tape_writer::append_u64(uint64_t value) noexcept { append(0, internal::tape_type::UINT64); *next_tape_loc = value; next_tape_loc++; } /** Write a double value to tape. */ simdjson_really_inline void tape_writer::append_double(double value) noexcept { append2(0, value, internal::tape_type::DOUBLE); } simdjson_really_inline void tape_writer::skip() noexcept { next_tape_loc++; } simdjson_really_inline void tape_writer::skip_large_integer() noexcept { next_tape_loc += 2; } simdjson_really_inline void tape_writer::skip_double() noexcept { next_tape_loc += 2; } simdjson_really_inline void tape_writer::append(uint64_t val, internal::tape_type t) noexcept { *next_tape_loc = val | ((uint64_t(char(t))) << 56); next_tape_loc++; } template simdjson_really_inline void tape_writer::append2(uint64_t val, T val2, internal::tape_type t) noexcept { append(val, t); static_assert(sizeof(val2) == sizeof(*next_tape_loc), "Type is not 64 bits!"); memcpy(next_tape_loc, &val2, sizeof(val2)); next_tape_loc++; } simdjson_really_inline void tape_writer::write(uint64_t &tape_loc, uint64_t val, internal::tape_type t) noexcept { tape_loc = val | ((uint64_t(char(t))) << 56); } } // namespace stage2 } // unnamed namespace } // namespace arm64 } // namespace simdjson /* end file src/generic/stage2/tape_writer.h */ namespace simdjson { namespace arm64 { namespace { namespace stage2 { struct tape_builder { template simdjson_warn_unused static simdjson_really_inline error_code parse_document( dom_parser_implementation &dom_parser, dom::document &doc) noexcept; /** Called when a non-empty document starts. */ simdjson_warn_unused simdjson_really_inline error_code visit_document_start(json_iterator &iter) noexcept; /** Called when a non-empty document ends without error. */ simdjson_warn_unused simdjson_really_inline error_code visit_document_end(json_iterator &iter) noexcept; /** Called when a non-empty array starts. */ simdjson_warn_unused simdjson_really_inline error_code visit_array_start(json_iterator &iter) noexcept; /** Called when a non-empty array ends. */ simdjson_warn_unused simdjson_really_inline error_code visit_array_end(json_iterator &iter) noexcept; /** Called when an empty array is found. */ simdjson_warn_unused simdjson_really_inline error_code visit_empty_array(json_iterator &iter) noexcept; /** Called when a non-empty object starts. */ simdjson_warn_unused simdjson_really_inline error_code visit_object_start(json_iterator &iter) noexcept; /** * Called when a key in a field is encountered. * * primitive, visit_object_start, visit_empty_object, visit_array_start, or visit_empty_array * will be called after this with the field value. */ simdjson_warn_unused simdjson_really_inline error_code visit_key(json_iterator &iter, const uint8_t *key) noexcept; /** Called when a non-empty object ends. */ simdjson_warn_unused simdjson_really_inline error_code visit_object_end(json_iterator &iter) noexcept; /** Called when an empty object is found. */ simdjson_warn_unused simdjson_really_inline error_code visit_empty_object(json_iterator &iter) noexcept; /** * Called when a string, number, boolean or null is found. */ simdjson_warn_unused simdjson_really_inline error_code visit_primitive(json_iterator &iter, const uint8_t *value) noexcept; /** * Called when a string, number, boolean or null is found at the top level of a document (i.e. * when there is no array or object and the entire document is a single string, number, boolean or * null. * * This is separate from primitive() because simdjson's normal primitive parsing routines assume * there is at least one more token after the value, which is only true in an array or object. */ simdjson_warn_unused simdjson_really_inline error_code visit_root_primitive(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_string(json_iterator &iter, const uint8_t *value, bool key = false) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_number(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_true_atom(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_false_atom(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_null_atom(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_root_string(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_root_number(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_root_true_atom(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_root_false_atom(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_root_null_atom(json_iterator &iter, const uint8_t *value) noexcept; /** Called each time a new field or element in an array or object is found. */ simdjson_warn_unused simdjson_really_inline error_code increment_count(json_iterator &iter) noexcept; /** Next location to write to tape */ tape_writer tape; private: /** Next write location in the string buf for stage 2 parsing */ uint8_t *current_string_buf_loc; simdjson_really_inline tape_builder(dom::document &doc) noexcept; simdjson_really_inline uint32_t next_tape_index(json_iterator &iter) const noexcept; simdjson_really_inline void start_container(json_iterator &iter) noexcept; simdjson_warn_unused simdjson_really_inline error_code end_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept; simdjson_warn_unused simdjson_really_inline error_code empty_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept; simdjson_really_inline uint8_t *on_start_string(json_iterator &iter) noexcept; simdjson_really_inline void on_end_string(uint8_t *dst) noexcept; }; // class tape_builder template simdjson_warn_unused simdjson_really_inline error_code tape_builder::parse_document( dom_parser_implementation &dom_parser, dom::document &doc) noexcept { dom_parser.doc = &doc; json_iterator iter(dom_parser, STREAMING ? dom_parser.next_structural_index : 0); tape_builder builder(doc); return iter.walk_document(builder); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_primitive(json_iterator &iter, const uint8_t *value) noexcept { return iter.visit_root_primitive(*this, value); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_primitive(json_iterator &iter, const uint8_t *value) noexcept { return iter.visit_primitive(*this, value); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_empty_object(json_iterator &iter) noexcept { return empty_container(iter, internal::tape_type::START_OBJECT, internal::tape_type::END_OBJECT); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_empty_array(json_iterator &iter) noexcept { return empty_container(iter, internal::tape_type::START_ARRAY, internal::tape_type::END_ARRAY); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_document_start(json_iterator &iter) noexcept { start_container(iter); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_object_start(json_iterator &iter) noexcept { start_container(iter); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_array_start(json_iterator &iter) noexcept { start_container(iter); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_object_end(json_iterator &iter) noexcept { return end_container(iter, internal::tape_type::START_OBJECT, internal::tape_type::END_OBJECT); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_array_end(json_iterator &iter) noexcept { return end_container(iter, internal::tape_type::START_ARRAY, internal::tape_type::END_ARRAY); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_document_end(json_iterator &iter) noexcept { constexpr uint32_t start_tape_index = 0; tape.append(start_tape_index, internal::tape_type::ROOT); tape_writer::write(iter.dom_parser.doc->tape[start_tape_index], next_tape_index(iter), internal::tape_type::ROOT); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_key(json_iterator &iter, const uint8_t *key) noexcept { return visit_string(iter, key, true); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::increment_count(json_iterator &iter) noexcept { iter.dom_parser.open_containers[iter.depth].count++; // we have a key value pair in the object at parser.dom_parser.depth - 1 return SUCCESS; } simdjson_really_inline tape_builder::tape_builder(dom::document &doc) noexcept : tape{doc.tape.get()}, current_string_buf_loc{doc.string_buf.get()} {} simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_string(json_iterator &iter, const uint8_t *value, bool key) noexcept { iter.log_value(key ? "key" : "string"); uint8_t *dst = on_start_string(iter); dst = stringparsing::parse_string(value+1, dst); if (dst == nullptr) { iter.log_error("Invalid escape in string"); return STRING_ERROR; } on_end_string(dst); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_string(json_iterator &iter, const uint8_t *value) noexcept { return visit_string(iter, value); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_number(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("number"); return numberparsing::parse_number(value, tape); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_number(json_iterator &iter, const uint8_t *value) noexcept { // // We need to make a copy to make sure that the string is space terminated. // This is not about padding the input, which should already padded up // to len + SIMDJSON_PADDING. However, we have no control at this stage // on how the padding was done. What if the input string was padded with nulls? // It is quite common for an input string to have an extra null character (C string). // We do not want to allow 9\0 (where \0 is the null character) inside a JSON // document, but the string "9\0" by itself is fine. So we make a copy and // pad the input with spaces when we know that there is just one input element. // This copy is relatively expensive, but it will almost never be called in // practice unless you are in the strange scenario where you have many JSON // documents made of single atoms. // std::unique_ptrcopy(new (std::nothrow) uint8_t[iter.remaining_len() + SIMDJSON_PADDING]); if (copy.get() == nullptr) { return MEMALLOC; } std::memcpy(copy.get(), value, iter.remaining_len()); std::memset(copy.get() + iter.remaining_len(), ' ', SIMDJSON_PADDING); error_code error = visit_number(iter, copy.get()); return error; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_true_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("true"); if (!atomparsing::is_valid_true_atom(value)) { return T_ATOM_ERROR; } tape.append(0, internal::tape_type::TRUE_VALUE); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_true_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("true"); if (!atomparsing::is_valid_true_atom(value, iter.remaining_len())) { return T_ATOM_ERROR; } tape.append(0, internal::tape_type::TRUE_VALUE); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_false_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("false"); if (!atomparsing::is_valid_false_atom(value)) { return F_ATOM_ERROR; } tape.append(0, internal::tape_type::FALSE_VALUE); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_false_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("false"); if (!atomparsing::is_valid_false_atom(value, iter.remaining_len())) { return F_ATOM_ERROR; } tape.append(0, internal::tape_type::FALSE_VALUE); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_null_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("null"); if (!atomparsing::is_valid_null_atom(value)) { return N_ATOM_ERROR; } tape.append(0, internal::tape_type::NULL_VALUE); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_null_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("null"); if (!atomparsing::is_valid_null_atom(value, iter.remaining_len())) { return N_ATOM_ERROR; } tape.append(0, internal::tape_type::NULL_VALUE); return SUCCESS; } // private: simdjson_really_inline uint32_t tape_builder::next_tape_index(json_iterator &iter) const noexcept { return uint32_t(tape.next_tape_loc - iter.dom_parser.doc->tape.get()); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::empty_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept { auto start_index = next_tape_index(iter); tape.append(start_index+2, start); tape.append(start_index, end); return SUCCESS; } simdjson_really_inline void tape_builder::start_container(json_iterator &iter) noexcept { iter.dom_parser.open_containers[iter.depth].tape_index = next_tape_index(iter); iter.dom_parser.open_containers[iter.depth].count = 0; tape.skip(); // We don't actually *write* the start element until the end. } simdjson_warn_unused simdjson_really_inline error_code tape_builder::end_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept { // Write the ending tape element, pointing at the start location const uint32_t start_tape_index = iter.dom_parser.open_containers[iter.depth].tape_index; tape.append(start_tape_index, end); // Write the start tape element, pointing at the end location (and including count) // count can overflow if it exceeds 24 bits... so we saturate // the convention being that a cnt of 0xffffff or more is undetermined in value (>= 0xffffff). const uint32_t count = iter.dom_parser.open_containers[iter.depth].count; const uint32_t cntsat = count > 0xFFFFFF ? 0xFFFFFF : count; tape_writer::write(iter.dom_parser.doc->tape[start_tape_index], next_tape_index(iter) | (uint64_t(cntsat) << 32), start); return SUCCESS; } simdjson_really_inline uint8_t *tape_builder::on_start_string(json_iterator &iter) noexcept { // we advance the point, accounting for the fact that we have a NULL termination tape.append(current_string_buf_loc - iter.dom_parser.doc->string_buf.get(), internal::tape_type::STRING); return current_string_buf_loc + sizeof(uint32_t); } simdjson_really_inline void tape_builder::on_end_string(uint8_t *dst) noexcept { uint32_t str_length = uint32_t(dst - (current_string_buf_loc + sizeof(uint32_t))); // TODO check for overflow in case someone has a crazy string (>=4GB?) // But only add the overflow check when the document itself exceeds 4GB // Currently unneeded because we refuse to parse docs larger or equal to 4GB. memcpy(current_string_buf_loc, &str_length, sizeof(uint32_t)); // NULL termination is still handy if you expect all your strings to // be NULL terminated? It comes at a small cost *dst = 0; current_string_buf_loc = dst + 1; } } // namespace stage2 } // unnamed namespace } // namespace arm64 } // namespace simdjson /* end file src/generic/stage2/tape_builder.h */ // // Implementation-specific overrides // namespace simdjson { namespace arm64 { namespace { namespace stage1 { simdjson_really_inline uint64_t json_string_scanner::find_escaped(uint64_t backslash) { // On ARM, we don't short-circuit this if there are no backslashes, because the branch gives us no // benefit and therefore makes things worse. // if (!backslash) { uint64_t escaped = prev_escaped; prev_escaped = 0; return escaped; } return find_escaped_branchless(backslash); } } // namespace stage1 } // unnamed namespace simdjson_warn_unused error_code implementation::minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) const noexcept { return arm64::stage1::json_minifier::minify<64>(buf, len, dst, dst_len); } simdjson_warn_unused error_code dom_parser_implementation::stage1(const uint8_t *_buf, size_t _len, stage1_mode streaming) noexcept { this->buf = _buf; this->len = _len; return arm64::stage1::json_structural_indexer::index<64>(buf, len, *this, streaming); } simdjson_warn_unused bool implementation::validate_utf8(const char *buf, size_t len) const noexcept { return arm64::stage1::generic_validate_utf8(buf,len); } simdjson_warn_unused error_code dom_parser_implementation::stage2(dom::document &_doc) noexcept { return stage2::tape_builder::parse_document(*this, _doc); } simdjson_warn_unused error_code dom_parser_implementation::stage2_next(dom::document &_doc) noexcept { return stage2::tape_builder::parse_document(*this, _doc); } simdjson_warn_unused error_code dom_parser_implementation::parse(const uint8_t *_buf, size_t _len, dom::document &_doc) noexcept { auto error = stage1(_buf, _len, stage1_mode::regular); if (error) { return error; } return stage2(_doc); } } // namespace arm64 } // namespace simdjson /* begin file include/simdjson/arm64/end.h */ /* end file include/simdjson/arm64/end.h */ /* end file src/arm64/dom_parser_implementation.cpp */ #endif #if SIMDJSON_IMPLEMENTATION_FALLBACK /* begin file src/fallback/implementation.cpp */ /* begin file include/simdjson/fallback/begin.h */ // redefining SIMDJSON_IMPLEMENTATION to "fallback" // #define SIMDJSON_IMPLEMENTATION fallback /* end file include/simdjson/fallback/begin.h */ namespace simdjson { namespace fallback { simdjson_warn_unused error_code implementation::create_dom_parser_implementation( size_t capacity, size_t max_depth, std::unique_ptr& dst ) const noexcept { dst.reset( new (std::nothrow) dom_parser_implementation() ); if (!dst) { return MEMALLOC; } if (auto err = dst->set_capacity(capacity)) return err; if (auto err = dst->set_max_depth(max_depth)) return err; return SUCCESS; } } // namespace fallback } // namespace simdjson /* begin file include/simdjson/fallback/end.h */ /* end file include/simdjson/fallback/end.h */ /* end file src/fallback/implementation.cpp */ /* begin file src/fallback/dom_parser_implementation.cpp */ /* begin file include/simdjson/fallback/begin.h */ // redefining SIMDJSON_IMPLEMENTATION to "fallback" // #define SIMDJSON_IMPLEMENTATION fallback /* end file include/simdjson/fallback/begin.h */ // // Stage 1 // /* begin file src/generic/stage1/find_next_document_index.h */ namespace simdjson { namespace fallback { namespace { /** * This algorithm is used to quickly identify the last structural position that * makes up a complete document. * * It does this by going backwards and finding the last *document boundary* (a * place where one value follows another without a comma between them). If the * last document (the characters after the boundary) has an equal number of * start and end brackets, it is considered complete. * * Simply put, we iterate over the structural characters, starting from * the end. We consider that we found the end of a JSON document when the * first element of the pair is NOT one of these characters: '{' '[' ':' ',' * and when the second element is NOT one of these characters: '}' ']' ':' ','. * * This simple comparison works most of the time, but it does not cover cases * where the batch's structural indexes contain a perfect amount of documents. * In such a case, we do not have access to the structural index which follows * the last document, therefore, we do not have access to the second element in * the pair, and that means we cannot identify the last document. To fix this * issue, we keep a count of the open and closed curly/square braces we found * while searching for the pair. When we find a pair AND the count of open and * closed curly/square braces is the same, we know that we just passed a * complete document, therefore the last json buffer location is the end of the * batch. */ simdjson_really_inline uint32_t find_next_document_index(dom_parser_implementation &parser) { // Variant: do not count separately, just figure out depth if(parser.n_structural_indexes == 0) { return 0; } auto arr_cnt = 0; auto obj_cnt = 0; for (auto i = parser.n_structural_indexes - 1; i > 0; i--) { auto idxb = parser.structural_indexes[i]; switch (parser.buf[idxb]) { case ':': case ',': continue; case '}': obj_cnt--; continue; case ']': arr_cnt--; continue; case '{': obj_cnt++; break; case '[': arr_cnt++; break; } auto idxa = parser.structural_indexes[i - 1]; switch (parser.buf[idxa]) { case '{': case '[': case ':': case ',': continue; } // Last document is complete, so the next document will appear after! if (!arr_cnt && !obj_cnt) { return parser.n_structural_indexes; } // Last document is incomplete; mark the document at i + 1 as the next one return i; } // If we made it to the end, we want to finish counting to see if we have a full document. switch (parser.buf[parser.structural_indexes[0]]) { case '}': obj_cnt--; break; case ']': arr_cnt--; break; case '{': obj_cnt++; break; case '[': arr_cnt++; break; } if (!arr_cnt && !obj_cnt) { // We have a complete document. return parser.n_structural_indexes; } return 0; } } // unnamed namespace } // namespace fallback } // namespace simdjson /* end file src/generic/stage1/find_next_document_index.h */ namespace simdjson { namespace fallback { namespace { namespace stage1 { class structural_scanner { public: simdjson_really_inline structural_scanner(dom_parser_implementation &_parser, stage1_mode _partial) : buf{_parser.buf}, next_structural_index{_parser.structural_indexes.get()}, parser{_parser}, len{static_cast(_parser.len)}, partial{_partial} { } simdjson_really_inline void add_structural() { *next_structural_index = idx; next_structural_index++; } simdjson_really_inline bool is_continuation(uint8_t c) { return (c & 0b11000000) == 0b10000000; } simdjson_really_inline void validate_utf8_character() { // Continuation if (simdjson_unlikely((buf[idx] & 0b01000000) == 0)) { // extra continuation error = UTF8_ERROR; idx++; return; } // 2-byte if ((buf[idx] & 0b00100000) == 0) { // missing continuation if (simdjson_unlikely(idx+1 > len || !is_continuation(buf[idx+1]))) { if (idx+1 > len && is_streaming(partial)) { idx = len; return; } error = UTF8_ERROR; idx++; return; } // overlong: 1100000_ 10______ if (buf[idx] <= 0b11000001) { error = UTF8_ERROR; } idx += 2; return; } // 3-byte if ((buf[idx] & 0b00010000) == 0) { // missing continuation if (simdjson_unlikely(idx+2 > len || !is_continuation(buf[idx+1]) || !is_continuation(buf[idx+2]))) { if (idx+2 > len && is_streaming(partial)) { idx = len; return; } error = UTF8_ERROR; idx++; return; } // overlong: 11100000 100_____ ________ if (buf[idx] == 0b11100000 && buf[idx+1] <= 0b10011111) { error = UTF8_ERROR; } // surrogates: U+D800-U+DFFF 11101101 101_____ if (buf[idx] == 0b11101101 && buf[idx+1] >= 0b10100000) { error = UTF8_ERROR; } idx += 3; return; } // 4-byte // missing continuation if (simdjson_unlikely(idx+3 > len || !is_continuation(buf[idx+1]) || !is_continuation(buf[idx+2]) || !is_continuation(buf[idx+3]))) { if (idx+2 > len && is_streaming(partial)) { idx = len; return; } error = UTF8_ERROR; idx++; return; } // overlong: 11110000 1000____ ________ ________ if (buf[idx] == 0b11110000 && buf[idx+1] <= 0b10001111) { error = UTF8_ERROR; } // too large: > U+10FFFF: // 11110100 (1001|101_)____ // 1111(1___|011_|0101) 10______ // also includes 5, 6, 7 and 8 byte characters: // 11111___ if (buf[idx] == 0b11110100 && buf[idx+1] >= 0b10010000) { error = UTF8_ERROR; } if (buf[idx] >= 0b11110101) { error = UTF8_ERROR; } idx += 4; } // Returns true if the string is unclosed. simdjson_really_inline bool validate_string() { idx++; // skip first quote while (idx < len && buf[idx] != '"') { if (buf[idx] == '\\') { idx += 2; } else if (simdjson_unlikely(buf[idx] & 0b10000000)) { validate_utf8_character(); } else { if (buf[idx] < 0x20) { error = UNESCAPED_CHARS; } idx++; } } if (idx >= len) { return true; } return false; } simdjson_really_inline bool is_whitespace_or_operator(uint8_t c) { switch (c) { case '{': case '}': case '[': case ']': case ',': case ':': case ' ': case '\r': case '\n': case '\t': return true; default: return false; } } // // Parse the entire input in STEP_SIZE-byte chunks. // simdjson_really_inline error_code scan() { bool unclosed_string = false; for (;idx 0) { if(parser.structural_indexes[0] == 0) { // If the buffer is partial and we started at index 0 but the document is // incomplete, it's too big to parse. return CAPACITY; } else { // It is possible that the document could be parsed, we just had a lot // of white space. parser.n_structural_indexes = 0; return EMPTY; } } parser.n_structural_indexes = new_structural_indexes; } else if(partial == stage1_mode::streaming_final) { if(unclosed_string) { parser.n_structural_indexes--; } // We truncate the input to the end of the last complete document (or zero). // Because partial == stage1_mode::streaming_final, it means that we may // silently ignore trailing garbage. Though it sounds bad, we do it // deliberately because many people who have streams of JSON documents // will truncate them for processing. E.g., imagine that you are uncompressing // the data from a size file or receiving it in chunks from the network. You // may not know where exactly the last document will be. Meanwhile the // document_stream instances allow people to know the JSON documents they are // parsing (see the iterator.source() method). parser.n_structural_indexes = find_next_document_index(parser); // We store the initial n_structural_indexes so that the client can see // whether we used truncation. If initial_n_structural_indexes == parser.n_structural_indexes, // then this will query parser.structural_indexes[parser.n_structural_indexes] which is len, // otherwise, it will copy some prior index. parser.structural_indexes[parser.n_structural_indexes + 1] = parser.structural_indexes[parser.n_structural_indexes]; // This next line is critical, do not change it unless you understand what you are // doing. parser.structural_indexes[parser.n_structural_indexes] = uint32_t(len); if (parser.n_structural_indexes == 0) { return EMPTY; } } else if(unclosed_string) { error = UNCLOSED_STRING; } return error; } private: const uint8_t *buf; uint32_t *next_structural_index; dom_parser_implementation &parser; uint32_t len; uint32_t idx{0}; error_code error{SUCCESS}; stage1_mode partial; }; // structural_scanner } // namespace stage1 } // unnamed namespace simdjson_warn_unused error_code dom_parser_implementation::stage1(const uint8_t *_buf, size_t _len, stage1_mode partial) noexcept { this->buf = _buf; this->len = _len; stage1::structural_scanner scanner(*this, partial); return scanner.scan(); } // big table for the minifier static uint8_t jump_table[256 * 3] = { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, }; simdjson_warn_unused error_code implementation::minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) const noexcept { size_t i = 0, pos = 0; uint8_t quote = 0; uint8_t nonescape = 1; while (i < len) { unsigned char c = buf[i]; uint8_t *meta = jump_table + 3 * c; quote = quote ^ (meta[0] & nonescape); dst[pos] = c; pos += meta[2] | quote; i += 1; nonescape = uint8_t(~nonescape) | (meta[1]); } dst_len = pos; // we intentionally do not work with a reference // for fear of aliasing return quote ? UNCLOSED_STRING : SUCCESS; } // credit: based on code from Google Fuchsia (Apache Licensed) simdjson_warn_unused bool implementation::validate_utf8(const char *buf, size_t len) const noexcept { const uint8_t *data = reinterpret_cast(buf); uint64_t pos = 0; uint32_t code_point = 0; while (pos < len) { // check of the next 8 bytes are ascii. uint64_t next_pos = pos + 16; if (next_pos <= len) { // if it is safe to read 8 more bytes, check that they are ascii uint64_t v1; memcpy(&v1, data + pos, sizeof(uint64_t)); uint64_t v2; memcpy(&v2, data + pos + sizeof(uint64_t), sizeof(uint64_t)); uint64_t v{v1 | v2}; if ((v & 0x8080808080808080) == 0) { pos = next_pos; continue; } } unsigned char byte = data[pos]; if (byte < 0b10000000) { pos++; continue; } else if ((byte & 0b11100000) == 0b11000000) { next_pos = pos + 2; if (next_pos > len) { return false; } if ((data[pos + 1] & 0b11000000) != 0b10000000) { return false; } // range check code_point = (byte & 0b00011111) << 6 | (data[pos + 1] & 0b00111111); if (code_point < 0x80 || 0x7ff < code_point) { return false; } } else if ((byte & 0b11110000) == 0b11100000) { next_pos = pos + 3; if (next_pos > len) { return false; } if ((data[pos + 1] & 0b11000000) != 0b10000000) { return false; } if ((data[pos + 2] & 0b11000000) != 0b10000000) { return false; } // range check code_point = (byte & 0b00001111) << 12 | (data[pos + 1] & 0b00111111) << 6 | (data[pos + 2] & 0b00111111); if (code_point < 0x800 || 0xffff < code_point || (0xd7ff < code_point && code_point < 0xe000)) { return false; } } else if ((byte & 0b11111000) == 0b11110000) { // 0b11110000 next_pos = pos + 4; if (next_pos > len) { return false; } if ((data[pos + 1] & 0b11000000) != 0b10000000) { return false; } if ((data[pos + 2] & 0b11000000) != 0b10000000) { return false; } if ((data[pos + 3] & 0b11000000) != 0b10000000) { return false; } // range check code_point = (byte & 0b00000111) << 18 | (data[pos + 1] & 0b00111111) << 12 | (data[pos + 2] & 0b00111111) << 6 | (data[pos + 3] & 0b00111111); if (code_point <= 0xffff || 0x10ffff < code_point) { return false; } } else { // we may have a continuation return false; } pos = next_pos; } return true; } } // namespace fallback } // namespace simdjson // // Stage 2 // /* begin file src/generic/stage2/tape_builder.h */ /* begin file src/generic/stage2/json_iterator.h */ /* begin file src/generic/stage2/logger.h */ // This is for an internal-only stage 2 specific logger. // Set LOG_ENABLED = true to log what stage 2 is doing! namespace simdjson { namespace fallback { namespace { namespace logger { static constexpr const char * DASHES = "----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------"; #if SIMDJSON_VERBOSE_LOGGING static constexpr const bool LOG_ENABLED = true; #else static constexpr const bool LOG_ENABLED = false; #endif static constexpr const int LOG_EVENT_LEN = 20; static constexpr const int LOG_BUFFER_LEN = 30; static constexpr const int LOG_SMALL_BUFFER_LEN = 10; static constexpr const int LOG_INDEX_LEN = 5; static int log_depth; // Not threadsafe. Log only. // Helper to turn unprintable or newline characters into spaces static simdjson_really_inline char printable_char(char c) { if (c >= 0x20) { return c; } else { return ' '; } } // Print the header and set up log_start static simdjson_really_inline void log_start() { if (LOG_ENABLED) { log_depth = 0; printf("\n"); printf("| %-*s | %-*s | %-*s | %-*s | Detail |\n", LOG_EVENT_LEN, "Event", LOG_BUFFER_LEN, "Buffer", LOG_SMALL_BUFFER_LEN, "Next", 5, "Next#"); printf("|%.*s|%.*s|%.*s|%.*s|--------|\n", LOG_EVENT_LEN+2, DASHES, LOG_BUFFER_LEN+2, DASHES, LOG_SMALL_BUFFER_LEN+2, DASHES, 5+2, DASHES); } } simdjson_unused static simdjson_really_inline void log_string(const char *message) { if (LOG_ENABLED) { printf("%s\n", message); } } // Logs a single line from the stage 2 DOM parser template static simdjson_really_inline void log_line(S &structurals, const char *title_prefix, const char *title, const char *detail) { if (LOG_ENABLED) { printf("| %*s%s%-*s ", log_depth*2, "", title_prefix, LOG_EVENT_LEN - log_depth*2 - int(strlen(title_prefix)), title); auto current_index = structurals.at_beginning() ? nullptr : structurals.next_structural-1; auto next_index = structurals.next_structural; auto current = current_index ? &structurals.buf[*current_index] : reinterpret_cast(" "); auto next = &structurals.buf[*next_index]; { // Print the next N characters in the buffer. printf("| "); // Otherwise, print the characters starting from the buffer position. // Print spaces for unprintable or newline characters. for (int i=0;i simdjson_warn_unused simdjson_really_inline error_code walk_document(V &visitor) noexcept; /** * Create an iterator capable of walking a JSON document. * * The document must have already passed through stage 1. */ simdjson_really_inline json_iterator(dom_parser_implementation &_dom_parser, size_t start_structural_index); /** * Look at the next token. * * Tokens can be strings, numbers, booleans, null, or operators (`[{]},:`)). * * They may include invalid JSON as well (such as `1.2.3` or `ture`). */ simdjson_really_inline const uint8_t *peek() const noexcept; /** * Advance to the next token. * * Tokens can be strings, numbers, booleans, null, or operators (`[{]},:`)). * * They may include invalid JSON as well (such as `1.2.3` or `ture`). */ simdjson_really_inline const uint8_t *advance() noexcept; /** * Get the remaining length of the document, from the start of the current token. */ simdjson_really_inline size_t remaining_len() const noexcept; /** * Check if we are at the end of the document. * * If this is true, there are no more tokens. */ simdjson_really_inline bool at_eof() const noexcept; /** * Check if we are at the beginning of the document. */ simdjson_really_inline bool at_beginning() const noexcept; simdjson_really_inline uint8_t last_structural() const noexcept; /** * Log that a value has been found. * * Set ENABLE_LOGGING=true in logger.h to see logging. */ simdjson_really_inline void log_value(const char *type) const noexcept; /** * Log the start of a multipart value. * * Set ENABLE_LOGGING=true in logger.h to see logging. */ simdjson_really_inline void log_start_value(const char *type) const noexcept; /** * Log the end of a multipart value. * * Set ENABLE_LOGGING=true in logger.h to see logging. */ simdjson_really_inline void log_end_value(const char *type) const noexcept; /** * Log an error. * * Set ENABLE_LOGGING=true in logger.h to see logging. */ simdjson_really_inline void log_error(const char *error) const noexcept; template simdjson_warn_unused simdjson_really_inline error_code visit_root_primitive(V &visitor, const uint8_t *value) noexcept; template simdjson_warn_unused simdjson_really_inline error_code visit_primitive(V &visitor, const uint8_t *value) noexcept; }; template simdjson_warn_unused simdjson_really_inline error_code json_iterator::walk_document(V &visitor) noexcept { logger::log_start(); // // Start the document // if (at_eof()) { return EMPTY; } log_start_value("document"); SIMDJSON_TRY( visitor.visit_document_start(*this) ); // // Read first value // { auto value = advance(); // Make sure the outer object or array is closed before continuing; otherwise, there are ways we // could get into memory corruption. See https://github.com/simdjson/simdjson/issues/906 if (!STREAMING) { switch (*value) { case '{': if (last_structural() != '}') { log_value("starting brace unmatched"); return TAPE_ERROR; }; break; case '[': if (last_structural() != ']') { log_value("starting bracket unmatched"); return TAPE_ERROR; }; break; } } switch (*value) { case '{': if (*peek() == '}') { advance(); log_value("empty object"); SIMDJSON_TRY( visitor.visit_empty_object(*this) ); break; } goto object_begin; case '[': if (*peek() == ']') { advance(); log_value("empty array"); SIMDJSON_TRY( visitor.visit_empty_array(*this) ); break; } goto array_begin; default: SIMDJSON_TRY( visitor.visit_root_primitive(*this, value) ); break; } } goto document_end; // // Object parser states // object_begin: log_start_value("object"); depth++; if (depth >= dom_parser.max_depth()) { log_error("Exceeded max depth!"); return DEPTH_ERROR; } dom_parser.is_array[depth] = false; SIMDJSON_TRY( visitor.visit_object_start(*this) ); { auto key = advance(); if (*key != '"') { log_error("Object does not start with a key"); return TAPE_ERROR; } SIMDJSON_TRY( visitor.increment_count(*this) ); SIMDJSON_TRY( visitor.visit_key(*this, key) ); } object_field: if (simdjson_unlikely( *advance() != ':' )) { log_error("Missing colon after key in object"); return TAPE_ERROR; } { auto value = advance(); switch (*value) { case '{': if (*peek() == '}') { advance(); log_value("empty object"); SIMDJSON_TRY( visitor.visit_empty_object(*this) ); break; } goto object_begin; case '[': if (*peek() == ']') { advance(); log_value("empty array"); SIMDJSON_TRY( visitor.visit_empty_array(*this) ); break; } goto array_begin; default: SIMDJSON_TRY( visitor.visit_primitive(*this, value) ); break; } } object_continue: switch (*advance()) { case ',': SIMDJSON_TRY( visitor.increment_count(*this) ); { auto key = advance(); if (simdjson_unlikely( *key != '"' )) { log_error("Key string missing at beginning of field in object"); return TAPE_ERROR; } SIMDJSON_TRY( visitor.visit_key(*this, key) ); } goto object_field; case '}': log_end_value("object"); SIMDJSON_TRY( visitor.visit_object_end(*this) ); goto scope_end; default: log_error("No comma between object fields"); return TAPE_ERROR; } scope_end: depth--; if (depth == 0) { goto document_end; } if (dom_parser.is_array[depth]) { goto array_continue; } goto object_continue; // // Array parser states // array_begin: log_start_value("array"); depth++; if (depth >= dom_parser.max_depth()) { log_error("Exceeded max depth!"); return DEPTH_ERROR; } dom_parser.is_array[depth] = true; SIMDJSON_TRY( visitor.visit_array_start(*this) ); SIMDJSON_TRY( visitor.increment_count(*this) ); array_value: { auto value = advance(); switch (*value) { case '{': if (*peek() == '}') { advance(); log_value("empty object"); SIMDJSON_TRY( visitor.visit_empty_object(*this) ); break; } goto object_begin; case '[': if (*peek() == ']') { advance(); log_value("empty array"); SIMDJSON_TRY( visitor.visit_empty_array(*this) ); break; } goto array_begin; default: SIMDJSON_TRY( visitor.visit_primitive(*this, value) ); break; } } array_continue: switch (*advance()) { case ',': SIMDJSON_TRY( visitor.increment_count(*this) ); goto array_value; case ']': log_end_value("array"); SIMDJSON_TRY( visitor.visit_array_end(*this) ); goto scope_end; default: log_error("Missing comma between array values"); return TAPE_ERROR; } document_end: log_end_value("document"); SIMDJSON_TRY( visitor.visit_document_end(*this) ); dom_parser.next_structural_index = uint32_t(next_structural - &dom_parser.structural_indexes[0]); // If we didn't make it to the end, it's an error if ( !STREAMING && dom_parser.next_structural_index != dom_parser.n_structural_indexes ) { log_error("More than one JSON value at the root of the document, or extra characters at the end of the JSON!"); return TAPE_ERROR; } return SUCCESS; } // walk_document() simdjson_really_inline json_iterator::json_iterator(dom_parser_implementation &_dom_parser, size_t start_structural_index) : buf{_dom_parser.buf}, next_structural{&_dom_parser.structural_indexes[start_structural_index]}, dom_parser{_dom_parser} { } simdjson_really_inline const uint8_t *json_iterator::peek() const noexcept { return &buf[*(next_structural)]; } simdjson_really_inline const uint8_t *json_iterator::advance() noexcept { return &buf[*(next_structural++)]; } simdjson_really_inline size_t json_iterator::remaining_len() const noexcept { return dom_parser.len - *(next_structural-1); } simdjson_really_inline bool json_iterator::at_eof() const noexcept { return next_structural == &dom_parser.structural_indexes[dom_parser.n_structural_indexes]; } simdjson_really_inline bool json_iterator::at_beginning() const noexcept { return next_structural == dom_parser.structural_indexes.get(); } simdjson_really_inline uint8_t json_iterator::last_structural() const noexcept { return buf[dom_parser.structural_indexes[dom_parser.n_structural_indexes - 1]]; } simdjson_really_inline void json_iterator::log_value(const char *type) const noexcept { logger::log_line(*this, "", type, ""); } simdjson_really_inline void json_iterator::log_start_value(const char *type) const noexcept { logger::log_line(*this, "+", type, ""); if (logger::LOG_ENABLED) { logger::log_depth++; } } simdjson_really_inline void json_iterator::log_end_value(const char *type) const noexcept { if (logger::LOG_ENABLED) { logger::log_depth--; } logger::log_line(*this, "-", type, ""); } simdjson_really_inline void json_iterator::log_error(const char *error) const noexcept { logger::log_line(*this, "", "ERROR", error); } template simdjson_warn_unused simdjson_really_inline error_code json_iterator::visit_root_primitive(V &visitor, const uint8_t *value) noexcept { switch (*value) { case '"': return visitor.visit_root_string(*this, value); case 't': return visitor.visit_root_true_atom(*this, value); case 'f': return visitor.visit_root_false_atom(*this, value); case 'n': return visitor.visit_root_null_atom(*this, value); case '-': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': return visitor.visit_root_number(*this, value); default: log_error("Document starts with a non-value character"); return TAPE_ERROR; } } template simdjson_warn_unused simdjson_really_inline error_code json_iterator::visit_primitive(V &visitor, const uint8_t *value) noexcept { switch (*value) { case '"': return visitor.visit_string(*this, value); case 't': return visitor.visit_true_atom(*this, value); case 'f': return visitor.visit_false_atom(*this, value); case 'n': return visitor.visit_null_atom(*this, value); case '-': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': return visitor.visit_number(*this, value); default: log_error("Non-value found when value was expected!"); return TAPE_ERROR; } } } // namespace stage2 } // unnamed namespace } // namespace fallback } // namespace simdjson /* end file src/generic/stage2/json_iterator.h */ /* begin file src/generic/stage2/tape_writer.h */ namespace simdjson { namespace fallback { namespace { namespace stage2 { struct tape_writer { /** The next place to write to tape */ uint64_t *next_tape_loc; /** Write a signed 64-bit value to tape. */ simdjson_really_inline void append_s64(int64_t value) noexcept; /** Write an unsigned 64-bit value to tape. */ simdjson_really_inline void append_u64(uint64_t value) noexcept; /** Write a double value to tape. */ simdjson_really_inline void append_double(double value) noexcept; /** * Append a tape entry (an 8-bit type,and 56 bits worth of value). */ simdjson_really_inline void append(uint64_t val, internal::tape_type t) noexcept; /** * Skip the current tape entry without writing. * * Used to skip the start of the container, since we'll come back later to fill it in when the * container ends. */ simdjson_really_inline void skip() noexcept; /** * Skip the number of tape entries necessary to write a large u64 or i64. */ simdjson_really_inline void skip_large_integer() noexcept; /** * Skip the number of tape entries necessary to write a double. */ simdjson_really_inline void skip_double() noexcept; /** * Write a value to a known location on tape. * * Used to go back and write out the start of a container after the container ends. */ simdjson_really_inline static void write(uint64_t &tape_loc, uint64_t val, internal::tape_type t) noexcept; private: /** * Append both the tape entry, and a supplementary value following it. Used for types that need * all 64 bits, such as double and uint64_t. */ template simdjson_really_inline void append2(uint64_t val, T val2, internal::tape_type t) noexcept; }; // struct number_writer simdjson_really_inline void tape_writer::append_s64(int64_t value) noexcept { append2(0, value, internal::tape_type::INT64); } simdjson_really_inline void tape_writer::append_u64(uint64_t value) noexcept { append(0, internal::tape_type::UINT64); *next_tape_loc = value; next_tape_loc++; } /** Write a double value to tape. */ simdjson_really_inline void tape_writer::append_double(double value) noexcept { append2(0, value, internal::tape_type::DOUBLE); } simdjson_really_inline void tape_writer::skip() noexcept { next_tape_loc++; } simdjson_really_inline void tape_writer::skip_large_integer() noexcept { next_tape_loc += 2; } simdjson_really_inline void tape_writer::skip_double() noexcept { next_tape_loc += 2; } simdjson_really_inline void tape_writer::append(uint64_t val, internal::tape_type t) noexcept { *next_tape_loc = val | ((uint64_t(char(t))) << 56); next_tape_loc++; } template simdjson_really_inline void tape_writer::append2(uint64_t val, T val2, internal::tape_type t) noexcept { append(val, t); static_assert(sizeof(val2) == sizeof(*next_tape_loc), "Type is not 64 bits!"); memcpy(next_tape_loc, &val2, sizeof(val2)); next_tape_loc++; } simdjson_really_inline void tape_writer::write(uint64_t &tape_loc, uint64_t val, internal::tape_type t) noexcept { tape_loc = val | ((uint64_t(char(t))) << 56); } } // namespace stage2 } // unnamed namespace } // namespace fallback } // namespace simdjson /* end file src/generic/stage2/tape_writer.h */ namespace simdjson { namespace fallback { namespace { namespace stage2 { struct tape_builder { template simdjson_warn_unused static simdjson_really_inline error_code parse_document( dom_parser_implementation &dom_parser, dom::document &doc) noexcept; /** Called when a non-empty document starts. */ simdjson_warn_unused simdjson_really_inline error_code visit_document_start(json_iterator &iter) noexcept; /** Called when a non-empty document ends without error. */ simdjson_warn_unused simdjson_really_inline error_code visit_document_end(json_iterator &iter) noexcept; /** Called when a non-empty array starts. */ simdjson_warn_unused simdjson_really_inline error_code visit_array_start(json_iterator &iter) noexcept; /** Called when a non-empty array ends. */ simdjson_warn_unused simdjson_really_inline error_code visit_array_end(json_iterator &iter) noexcept; /** Called when an empty array is found. */ simdjson_warn_unused simdjson_really_inline error_code visit_empty_array(json_iterator &iter) noexcept; /** Called when a non-empty object starts. */ simdjson_warn_unused simdjson_really_inline error_code visit_object_start(json_iterator &iter) noexcept; /** * Called when a key in a field is encountered. * * primitive, visit_object_start, visit_empty_object, visit_array_start, or visit_empty_array * will be called after this with the field value. */ simdjson_warn_unused simdjson_really_inline error_code visit_key(json_iterator &iter, const uint8_t *key) noexcept; /** Called when a non-empty object ends. */ simdjson_warn_unused simdjson_really_inline error_code visit_object_end(json_iterator &iter) noexcept; /** Called when an empty object is found. */ simdjson_warn_unused simdjson_really_inline error_code visit_empty_object(json_iterator &iter) noexcept; /** * Called when a string, number, boolean or null is found. */ simdjson_warn_unused simdjson_really_inline error_code visit_primitive(json_iterator &iter, const uint8_t *value) noexcept; /** * Called when a string, number, boolean or null is found at the top level of a document (i.e. * when there is no array or object and the entire document is a single string, number, boolean or * null. * * This is separate from primitive() because simdjson's normal primitive parsing routines assume * there is at least one more token after the value, which is only true in an array or object. */ simdjson_warn_unused simdjson_really_inline error_code visit_root_primitive(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_string(json_iterator &iter, const uint8_t *value, bool key = false) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_number(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_true_atom(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_false_atom(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_null_atom(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_root_string(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_root_number(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_root_true_atom(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_root_false_atom(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_root_null_atom(json_iterator &iter, const uint8_t *value) noexcept; /** Called each time a new field or element in an array or object is found. */ simdjson_warn_unused simdjson_really_inline error_code increment_count(json_iterator &iter) noexcept; /** Next location to write to tape */ tape_writer tape; private: /** Next write location in the string buf for stage 2 parsing */ uint8_t *current_string_buf_loc; simdjson_really_inline tape_builder(dom::document &doc) noexcept; simdjson_really_inline uint32_t next_tape_index(json_iterator &iter) const noexcept; simdjson_really_inline void start_container(json_iterator &iter) noexcept; simdjson_warn_unused simdjson_really_inline error_code end_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept; simdjson_warn_unused simdjson_really_inline error_code empty_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept; simdjson_really_inline uint8_t *on_start_string(json_iterator &iter) noexcept; simdjson_really_inline void on_end_string(uint8_t *dst) noexcept; }; // class tape_builder template simdjson_warn_unused simdjson_really_inline error_code tape_builder::parse_document( dom_parser_implementation &dom_parser, dom::document &doc) noexcept { dom_parser.doc = &doc; json_iterator iter(dom_parser, STREAMING ? dom_parser.next_structural_index : 0); tape_builder builder(doc); return iter.walk_document(builder); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_primitive(json_iterator &iter, const uint8_t *value) noexcept { return iter.visit_root_primitive(*this, value); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_primitive(json_iterator &iter, const uint8_t *value) noexcept { return iter.visit_primitive(*this, value); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_empty_object(json_iterator &iter) noexcept { return empty_container(iter, internal::tape_type::START_OBJECT, internal::tape_type::END_OBJECT); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_empty_array(json_iterator &iter) noexcept { return empty_container(iter, internal::tape_type::START_ARRAY, internal::tape_type::END_ARRAY); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_document_start(json_iterator &iter) noexcept { start_container(iter); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_object_start(json_iterator &iter) noexcept { start_container(iter); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_array_start(json_iterator &iter) noexcept { start_container(iter); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_object_end(json_iterator &iter) noexcept { return end_container(iter, internal::tape_type::START_OBJECT, internal::tape_type::END_OBJECT); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_array_end(json_iterator &iter) noexcept { return end_container(iter, internal::tape_type::START_ARRAY, internal::tape_type::END_ARRAY); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_document_end(json_iterator &iter) noexcept { constexpr uint32_t start_tape_index = 0; tape.append(start_tape_index, internal::tape_type::ROOT); tape_writer::write(iter.dom_parser.doc->tape[start_tape_index], next_tape_index(iter), internal::tape_type::ROOT); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_key(json_iterator &iter, const uint8_t *key) noexcept { return visit_string(iter, key, true); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::increment_count(json_iterator &iter) noexcept { iter.dom_parser.open_containers[iter.depth].count++; // we have a key value pair in the object at parser.dom_parser.depth - 1 return SUCCESS; } simdjson_really_inline tape_builder::tape_builder(dom::document &doc) noexcept : tape{doc.tape.get()}, current_string_buf_loc{doc.string_buf.get()} {} simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_string(json_iterator &iter, const uint8_t *value, bool key) noexcept { iter.log_value(key ? "key" : "string"); uint8_t *dst = on_start_string(iter); dst = stringparsing::parse_string(value+1, dst); if (dst == nullptr) { iter.log_error("Invalid escape in string"); return STRING_ERROR; } on_end_string(dst); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_string(json_iterator &iter, const uint8_t *value) noexcept { return visit_string(iter, value); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_number(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("number"); return numberparsing::parse_number(value, tape); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_number(json_iterator &iter, const uint8_t *value) noexcept { // // We need to make a copy to make sure that the string is space terminated. // This is not about padding the input, which should already padded up // to len + SIMDJSON_PADDING. However, we have no control at this stage // on how the padding was done. What if the input string was padded with nulls? // It is quite common for an input string to have an extra null character (C string). // We do not want to allow 9\0 (where \0 is the null character) inside a JSON // document, but the string "9\0" by itself is fine. So we make a copy and // pad the input with spaces when we know that there is just one input element. // This copy is relatively expensive, but it will almost never be called in // practice unless you are in the strange scenario where you have many JSON // documents made of single atoms. // std::unique_ptrcopy(new (std::nothrow) uint8_t[iter.remaining_len() + SIMDJSON_PADDING]); if (copy.get() == nullptr) { return MEMALLOC; } std::memcpy(copy.get(), value, iter.remaining_len()); std::memset(copy.get() + iter.remaining_len(), ' ', SIMDJSON_PADDING); error_code error = visit_number(iter, copy.get()); return error; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_true_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("true"); if (!atomparsing::is_valid_true_atom(value)) { return T_ATOM_ERROR; } tape.append(0, internal::tape_type::TRUE_VALUE); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_true_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("true"); if (!atomparsing::is_valid_true_atom(value, iter.remaining_len())) { return T_ATOM_ERROR; } tape.append(0, internal::tape_type::TRUE_VALUE); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_false_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("false"); if (!atomparsing::is_valid_false_atom(value)) { return F_ATOM_ERROR; } tape.append(0, internal::tape_type::FALSE_VALUE); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_false_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("false"); if (!atomparsing::is_valid_false_atom(value, iter.remaining_len())) { return F_ATOM_ERROR; } tape.append(0, internal::tape_type::FALSE_VALUE); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_null_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("null"); if (!atomparsing::is_valid_null_atom(value)) { return N_ATOM_ERROR; } tape.append(0, internal::tape_type::NULL_VALUE); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_null_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("null"); if (!atomparsing::is_valid_null_atom(value, iter.remaining_len())) { return N_ATOM_ERROR; } tape.append(0, internal::tape_type::NULL_VALUE); return SUCCESS; } // private: simdjson_really_inline uint32_t tape_builder::next_tape_index(json_iterator &iter) const noexcept { return uint32_t(tape.next_tape_loc - iter.dom_parser.doc->tape.get()); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::empty_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept { auto start_index = next_tape_index(iter); tape.append(start_index+2, start); tape.append(start_index, end); return SUCCESS; } simdjson_really_inline void tape_builder::start_container(json_iterator &iter) noexcept { iter.dom_parser.open_containers[iter.depth].tape_index = next_tape_index(iter); iter.dom_parser.open_containers[iter.depth].count = 0; tape.skip(); // We don't actually *write* the start element until the end. } simdjson_warn_unused simdjson_really_inline error_code tape_builder::end_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept { // Write the ending tape element, pointing at the start location const uint32_t start_tape_index = iter.dom_parser.open_containers[iter.depth].tape_index; tape.append(start_tape_index, end); // Write the start tape element, pointing at the end location (and including count) // count can overflow if it exceeds 24 bits... so we saturate // the convention being that a cnt of 0xffffff or more is undetermined in value (>= 0xffffff). const uint32_t count = iter.dom_parser.open_containers[iter.depth].count; const uint32_t cntsat = count > 0xFFFFFF ? 0xFFFFFF : count; tape_writer::write(iter.dom_parser.doc->tape[start_tape_index], next_tape_index(iter) | (uint64_t(cntsat) << 32), start); return SUCCESS; } simdjson_really_inline uint8_t *tape_builder::on_start_string(json_iterator &iter) noexcept { // we advance the point, accounting for the fact that we have a NULL termination tape.append(current_string_buf_loc - iter.dom_parser.doc->string_buf.get(), internal::tape_type::STRING); return current_string_buf_loc + sizeof(uint32_t); } simdjson_really_inline void tape_builder::on_end_string(uint8_t *dst) noexcept { uint32_t str_length = uint32_t(dst - (current_string_buf_loc + sizeof(uint32_t))); // TODO check for overflow in case someone has a crazy string (>=4GB?) // But only add the overflow check when the document itself exceeds 4GB // Currently unneeded because we refuse to parse docs larger or equal to 4GB. memcpy(current_string_buf_loc, &str_length, sizeof(uint32_t)); // NULL termination is still handy if you expect all your strings to // be NULL terminated? It comes at a small cost *dst = 0; current_string_buf_loc = dst + 1; } } // namespace stage2 } // unnamed namespace } // namespace fallback } // namespace simdjson /* end file src/generic/stage2/tape_builder.h */ namespace simdjson { namespace fallback { simdjson_warn_unused error_code dom_parser_implementation::stage2(dom::document &_doc) noexcept { return stage2::tape_builder::parse_document(*this, _doc); } simdjson_warn_unused error_code dom_parser_implementation::stage2_next(dom::document &_doc) noexcept { return stage2::tape_builder::parse_document(*this, _doc); } simdjson_warn_unused error_code dom_parser_implementation::parse(const uint8_t *_buf, size_t _len, dom::document &_doc) noexcept { auto error = stage1(_buf, _len, stage1_mode::regular); if (error) { return error; } return stage2(_doc); } } // namespace fallback } // namespace simdjson /* begin file include/simdjson/fallback/end.h */ /* end file include/simdjson/fallback/end.h */ /* end file src/fallback/dom_parser_implementation.cpp */ #endif #if SIMDJSON_IMPLEMENTATION_HASWELL /* begin file src/haswell/implementation.cpp */ /* begin file include/simdjson/haswell/begin.h */ // redefining SIMDJSON_IMPLEMENTATION to "haswell" // #define SIMDJSON_IMPLEMENTATION haswell SIMDJSON_TARGET_HASWELL /* end file include/simdjson/haswell/begin.h */ namespace simdjson { namespace haswell { simdjson_warn_unused error_code implementation::create_dom_parser_implementation( size_t capacity, size_t max_depth, std::unique_ptr& dst ) const noexcept { dst.reset( new (std::nothrow) dom_parser_implementation() ); if (!dst) { return MEMALLOC; } if (auto err = dst->set_capacity(capacity)) return err; if (auto err = dst->set_max_depth(max_depth)) return err; return SUCCESS; } } // namespace haswell } // namespace simdjson /* begin file include/simdjson/haswell/end.h */ SIMDJSON_UNTARGET_HASWELL /* end file include/simdjson/haswell/end.h */ /* end file src/haswell/implementation.cpp */ /* begin file src/haswell/dom_parser_implementation.cpp */ /* begin file include/simdjson/haswell/begin.h */ // redefining SIMDJSON_IMPLEMENTATION to "haswell" // #define SIMDJSON_IMPLEMENTATION haswell SIMDJSON_TARGET_HASWELL /* end file include/simdjson/haswell/begin.h */ // // Stage 1 // namespace simdjson { namespace haswell { namespace { using namespace simd; struct json_character_block { static simdjson_really_inline json_character_block classify(const simd::simd8x64& in); // ASCII white-space ('\r','\n','\t',' ') simdjson_really_inline uint64_t whitespace() const noexcept; // non-quote structural characters (comma, colon, braces, brackets) simdjson_really_inline uint64_t op() const noexcept; // neither a structural character nor a white-space, so letters, numbers and quotes simdjson_really_inline uint64_t scalar() const noexcept; uint64_t _whitespace; // ASCII white-space ('\r','\n','\t',' ') uint64_t _op; // structural characters (comma, colon, braces, brackets but not quotes) }; simdjson_really_inline uint64_t json_character_block::whitespace() const noexcept { return _whitespace; } simdjson_really_inline uint64_t json_character_block::op() const noexcept { return _op; } simdjson_really_inline uint64_t json_character_block::scalar() const noexcept { return ~(op() | whitespace()); } // This identifies structural characters (comma, colon, braces, brackets), // and ASCII white-space ('\r','\n','\t',' '). simdjson_really_inline json_character_block json_character_block::classify(const simd::simd8x64& in) { // These lookups rely on the fact that anything < 127 will match the lower 4 bits, which is why // we can't use the generic lookup_16. const auto whitespace_table = simd8::repeat_16(' ', 100, 100, 100, 17, 100, 113, 2, 100, '\t', '\n', 112, 100, '\r', 100, 100); // The 6 operators (:,[]{}) have these values: // // , 2C // : 3A // [ 5B // { 7B // ] 5D // } 7D // // If you use | 0x20 to turn [ and ] into { and }, the lower 4 bits of each character is unique. // We exploit this, using a simd 4-bit lookup to tell us which character match against, and then // match it (against | 0x20). // // To prevent recognizing other characters, everything else gets compared with 0, which cannot // match due to the | 0x20. // // NOTE: Due to the | 0x20, this ALSO treats and (control characters 0C and 1A) like , // and :. This gets caught in stage 2, which checks the actual character to ensure the right // operators are in the right places. const auto op_table = simd8::repeat_16( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ':', '{', // : = 3A, [ = 5B, { = 7B ',', '}', 0, 0 // , = 2C, ] = 5D, } = 7D ); // We compute whitespace and op separately. If later code only uses one or the // other, given the fact that all functions are aggressively inlined, we can // hope that useless computations will be omitted. This is namely case when // minifying (we only need whitespace). const uint64_t whitespace = in.eq({ _mm256_shuffle_epi8(whitespace_table, in.chunks[0]), _mm256_shuffle_epi8(whitespace_table, in.chunks[1]) }); // Turn [ and ] into { and } const simd8x64 curlified{ in.chunks[0] | 0x20, in.chunks[1] | 0x20 }; const uint64_t op = curlified.eq({ _mm256_shuffle_epi8(op_table, in.chunks[0]), _mm256_shuffle_epi8(op_table, in.chunks[1]) }); return { whitespace, op }; } simdjson_really_inline bool is_ascii(const simd8x64& input) { return input.reduce_or().is_ascii(); } simdjson_unused simdjson_really_inline simd8 must_be_continuation(const simd8 prev1, const simd8 prev2, const simd8 prev3) { simd8 is_second_byte = prev1.saturating_sub(0b11000000u-1); // Only 11______ will be > 0 simd8 is_third_byte = prev2.saturating_sub(0b11100000u-1); // Only 111_____ will be > 0 simd8 is_fourth_byte = prev3.saturating_sub(0b11110000u-1); // Only 1111____ will be > 0 // Caller requires a bool (all 1's). All values resulting from the subtraction will be <= 64, so signed comparison is fine. return simd8(is_second_byte | is_third_byte | is_fourth_byte) > int8_t(0); } simdjson_really_inline simd8 must_be_2_3_continuation(const simd8 prev2, const simd8 prev3) { simd8 is_third_byte = prev2.saturating_sub(0b11100000u-1); // Only 111_____ will be > 0 simd8 is_fourth_byte = prev3.saturating_sub(0b11110000u-1); // Only 1111____ will be > 0 // Caller requires a bool (all 1's). All values resulting from the subtraction will be <= 64, so signed comparison is fine. return simd8(is_third_byte | is_fourth_byte) > int8_t(0); } } // unnamed namespace } // namespace haswell } // namespace simdjson /* begin file src/generic/stage1/utf8_lookup4_algorithm.h */ namespace simdjson { namespace haswell { namespace { namespace utf8_validation { using namespace simd; simdjson_really_inline simd8 check_special_cases(const simd8 input, const simd8 prev1) { // Bit 0 = Too Short (lead byte/ASCII followed by lead byte/ASCII) // Bit 1 = Too Long (ASCII followed by continuation) // Bit 2 = Overlong 3-byte // Bit 4 = Surrogate // Bit 5 = Overlong 2-byte // Bit 7 = Two Continuations constexpr const uint8_t TOO_SHORT = 1<<0; // 11______ 0_______ // 11______ 11______ constexpr const uint8_t TOO_LONG = 1<<1; // 0_______ 10______ constexpr const uint8_t OVERLONG_3 = 1<<2; // 11100000 100_____ constexpr const uint8_t SURROGATE = 1<<4; // 11101101 101_____ constexpr const uint8_t OVERLONG_2 = 1<<5; // 1100000_ 10______ constexpr const uint8_t TWO_CONTS = 1<<7; // 10______ 10______ constexpr const uint8_t TOO_LARGE = 1<<3; // 11110100 1001____ // 11110100 101_____ // 11110101 1001____ // 11110101 101_____ // 1111011_ 1001____ // 1111011_ 101_____ // 11111___ 1001____ // 11111___ 101_____ constexpr const uint8_t TOO_LARGE_1000 = 1<<6; // 11110101 1000____ // 1111011_ 1000____ // 11111___ 1000____ constexpr const uint8_t OVERLONG_4 = 1<<6; // 11110000 1000____ const simd8 byte_1_high = prev1.shr<4>().lookup_16( // 0_______ ________ TOO_LONG, TOO_LONG, TOO_LONG, TOO_LONG, TOO_LONG, TOO_LONG, TOO_LONG, TOO_LONG, // 10______ ________ TWO_CONTS, TWO_CONTS, TWO_CONTS, TWO_CONTS, // 1100____ ________ TOO_SHORT | OVERLONG_2, // 1101____ ________ TOO_SHORT, // 1110____ ________ TOO_SHORT | OVERLONG_3 | SURROGATE, // 1111____ ________ TOO_SHORT | TOO_LARGE | TOO_LARGE_1000 | OVERLONG_4 ); constexpr const uint8_t CARRY = TOO_SHORT | TOO_LONG | TWO_CONTS; // These all have ____ in byte 1 . const simd8 byte_1_low = (prev1 & 0x0F).lookup_16( // ____0000 ________ CARRY | OVERLONG_3 | OVERLONG_2 | OVERLONG_4, // ____0001 ________ CARRY | OVERLONG_2, // ____001_ ________ CARRY, CARRY, // ____0100 ________ CARRY | TOO_LARGE, // ____0101 ________ CARRY | TOO_LARGE | TOO_LARGE_1000, // ____011_ ________ CARRY | TOO_LARGE | TOO_LARGE_1000, CARRY | TOO_LARGE | TOO_LARGE_1000, // ____1___ ________ CARRY | TOO_LARGE | TOO_LARGE_1000, CARRY | TOO_LARGE | TOO_LARGE_1000, CARRY | TOO_LARGE | TOO_LARGE_1000, CARRY | TOO_LARGE | TOO_LARGE_1000, CARRY | TOO_LARGE | TOO_LARGE_1000, // ____1101 ________ CARRY | TOO_LARGE | TOO_LARGE_1000 | SURROGATE, CARRY | TOO_LARGE | TOO_LARGE_1000, CARRY | TOO_LARGE | TOO_LARGE_1000 ); const simd8 byte_2_high = input.shr<4>().lookup_16( // ________ 0_______ TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT, // ________ 1000____ TOO_LONG | OVERLONG_2 | TWO_CONTS | OVERLONG_3 | TOO_LARGE_1000 | OVERLONG_4, // ________ 1001____ TOO_LONG | OVERLONG_2 | TWO_CONTS | OVERLONG_3 | TOO_LARGE, // ________ 101_____ TOO_LONG | OVERLONG_2 | TWO_CONTS | SURROGATE | TOO_LARGE, TOO_LONG | OVERLONG_2 | TWO_CONTS | SURROGATE | TOO_LARGE, // ________ 11______ TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT ); return (byte_1_high & byte_1_low & byte_2_high); } simdjson_really_inline simd8 check_multibyte_lengths(const simd8 input, const simd8 prev_input, const simd8 sc) { simd8 prev2 = input.prev<2>(prev_input); simd8 prev3 = input.prev<3>(prev_input); simd8 must23 = simd8(must_be_2_3_continuation(prev2, prev3)); simd8 must23_80 = must23 & uint8_t(0x80); return must23_80 ^ sc; } // // Return nonzero if there are incomplete multibyte characters at the end of the block: // e.g. if there is a 4-byte character, but it's 3 bytes from the end. // simdjson_really_inline simd8 is_incomplete(const simd8 input) { // If the previous input's last 3 bytes match this, they're too short (they ended at EOF): // ... 1111____ 111_____ 11______ static const uint8_t max_array[32] = { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0b11110000u-1, 0b11100000u-1, 0b11000000u-1 }; const simd8 max_value(&max_array[sizeof(max_array)-sizeof(simd8)]); return input.gt_bits(max_value); } struct utf8_checker { // If this is nonzero, there has been a UTF-8 error. simd8 error; // The last input we received simd8 prev_input_block; // Whether the last input we received was incomplete (used for ASCII fast path) simd8 prev_incomplete; // // Check whether the current bytes are valid UTF-8. // simdjson_really_inline void check_utf8_bytes(const simd8 input, const simd8 prev_input) { // Flip prev1...prev3 so we can easily determine if they are 2+, 3+ or 4+ lead bytes // (2, 3, 4-byte leads become large positive numbers instead of small negative numbers) simd8 prev1 = input.prev<1>(prev_input); simd8 sc = check_special_cases(input, prev1); this->error |= check_multibyte_lengths(input, prev_input, sc); } // The only problem that can happen at EOF is that a multibyte character is too short // or a byte value too large in the last bytes: check_special_cases only checks for bytes // too large in the first of two bytes. simdjson_really_inline void check_eof() { // If the previous block had incomplete UTF-8 characters at the end, an ASCII block can't // possibly finish them. this->error |= this->prev_incomplete; } simdjson_really_inline void check_next_input(const simd8x64& input) { if(simdjson_likely(is_ascii(input))) { this->error |= this->prev_incomplete; } else { // you might think that a for-loop would work, but under Visual Studio, it is not good enough. static_assert((simd8x64::NUM_CHUNKS == 2) || (simd8x64::NUM_CHUNKS == 4), "We support either two or four chunks per 64-byte block."); if(simd8x64::NUM_CHUNKS == 2) { this->check_utf8_bytes(input.chunks[0], this->prev_input_block); this->check_utf8_bytes(input.chunks[1], input.chunks[0]); } else if(simd8x64::NUM_CHUNKS == 4) { this->check_utf8_bytes(input.chunks[0], this->prev_input_block); this->check_utf8_bytes(input.chunks[1], input.chunks[0]); this->check_utf8_bytes(input.chunks[2], input.chunks[1]); this->check_utf8_bytes(input.chunks[3], input.chunks[2]); } this->prev_incomplete = is_incomplete(input.chunks[simd8x64::NUM_CHUNKS-1]); this->prev_input_block = input.chunks[simd8x64::NUM_CHUNKS-1]; } } // do not forget to call check_eof! simdjson_really_inline error_code errors() { return this->error.any_bits_set_anywhere() ? error_code::UTF8_ERROR : error_code::SUCCESS; } }; // struct utf8_checker } // namespace utf8_validation using utf8_validation::utf8_checker; } // unnamed namespace } // namespace haswell } // namespace simdjson /* end file src/generic/stage1/utf8_lookup4_algorithm.h */ /* begin file src/generic/stage1/json_structural_indexer.h */ // This file contains the common code every implementation uses in stage1 // It is intended to be included multiple times and compiled multiple times // We assume the file in which it is included already includes // "simdjson/stage1.h" (this simplifies amalgation) /* begin file src/generic/stage1/buf_block_reader.h */ namespace simdjson { namespace haswell { namespace { // Walks through a buffer in block-sized increments, loading the last part with spaces template struct buf_block_reader { public: simdjson_really_inline buf_block_reader(const uint8_t *_buf, size_t _len); simdjson_really_inline size_t block_index(); simdjson_really_inline bool has_full_block() const; simdjson_really_inline const uint8_t *full_block() const; /** * Get the last block, padded with spaces. * * There will always be a last block, with at least 1 byte, unless len == 0 (in which case this * function fills the buffer with spaces and returns 0. In particular, if len == STEP_SIZE there * will be 0 full_blocks and 1 remainder block with STEP_SIZE bytes and no spaces for padding. * * @return the number of effective characters in the last block. */ simdjson_really_inline size_t get_remainder(uint8_t *dst) const; simdjson_really_inline void advance(); private: const uint8_t *buf; const size_t len; const size_t lenminusstep; size_t idx; }; // Routines to print masks and text for debugging bitmask operations simdjson_unused static char * format_input_text_64(const uint8_t *text) { static char buf[sizeof(simd8x64) + 1]; for (size_t i=0; i); i++) { buf[i] = int8_t(text[i]) < ' ' ? '_' : int8_t(text[i]); } buf[sizeof(simd8x64)] = '\0'; return buf; } // Routines to print masks and text for debugging bitmask operations simdjson_unused static char * format_input_text(const simd8x64& in) { static char buf[sizeof(simd8x64) + 1]; in.store(reinterpret_cast(buf)); for (size_t i=0; i); i++) { if (buf[i] < ' ') { buf[i] = '_'; } } buf[sizeof(simd8x64)] = '\0'; return buf; } simdjson_unused static char * format_mask(uint64_t mask) { static char buf[sizeof(simd8x64) + 1]; for (size_t i=0; i<64; i++) { buf[i] = (mask & (size_t(1) << i)) ? 'X' : ' '; } buf[64] = '\0'; return buf; } template simdjson_really_inline buf_block_reader::buf_block_reader(const uint8_t *_buf, size_t _len) : buf{_buf}, len{_len}, lenminusstep{len < STEP_SIZE ? 0 : len - STEP_SIZE}, idx{0} {} template simdjson_really_inline size_t buf_block_reader::block_index() { return idx; } template simdjson_really_inline bool buf_block_reader::has_full_block() const { return idx < lenminusstep; } template simdjson_really_inline const uint8_t *buf_block_reader::full_block() const { return &buf[idx]; } template simdjson_really_inline size_t buf_block_reader::get_remainder(uint8_t *dst) const { if(len == idx) { return 0; } // memcpy(dst, null, 0) will trigger an error with some sanitizers std::memset(dst, 0x20, STEP_SIZE); // std::memset STEP_SIZE because it's more efficient to write out 8 or 16 bytes at once. std::memcpy(dst, buf + idx, len - idx); return len - idx; } template simdjson_really_inline void buf_block_reader::advance() { idx += STEP_SIZE; } } // unnamed namespace } // namespace haswell } // namespace simdjson /* end file src/generic/stage1/buf_block_reader.h */ /* begin file src/generic/stage1/json_string_scanner.h */ namespace simdjson { namespace haswell { namespace { namespace stage1 { struct json_string_block { // We spell out the constructors in the hope of resolving inlining issues with Visual Studio 2017 simdjson_really_inline json_string_block(uint64_t backslash, uint64_t escaped, uint64_t quote, uint64_t in_string) : _backslash(backslash), _escaped(escaped), _quote(quote), _in_string(in_string) {} // Escaped characters (characters following an escape() character) simdjson_really_inline uint64_t escaped() const { return _escaped; } // Escape characters (backslashes that are not escaped--i.e. in \\, includes only the first \) simdjson_really_inline uint64_t escape() const { return _backslash & ~_escaped; } // Real (non-backslashed) quotes simdjson_really_inline uint64_t quote() const { return _quote; } // Start quotes of strings simdjson_really_inline uint64_t string_start() const { return _quote & _in_string; } // End quotes of strings simdjson_really_inline uint64_t string_end() const { return _quote & ~_in_string; } // Only characters inside the string (not including the quotes) simdjson_really_inline uint64_t string_content() const { return _in_string & ~_quote; } // Return a mask of whether the given characters are inside a string (only works on non-quotes) simdjson_really_inline uint64_t non_quote_inside_string(uint64_t mask) const { return mask & _in_string; } // Return a mask of whether the given characters are inside a string (only works on non-quotes) simdjson_really_inline uint64_t non_quote_outside_string(uint64_t mask) const { return mask & ~_in_string; } // Tail of string (everything except the start quote) simdjson_really_inline uint64_t string_tail() const { return _in_string ^ _quote; } // backslash characters uint64_t _backslash; // escaped characters (backslashed--does not include the hex characters after \u) uint64_t _escaped; // real quotes (non-backslashed ones) uint64_t _quote; // string characters (includes start quote but not end quote) uint64_t _in_string; }; // Scans blocks for string characters, storing the state necessary to do so class json_string_scanner { public: simdjson_really_inline json_string_block next(const simd::simd8x64& in); // Returns either UNCLOSED_STRING or SUCCESS simdjson_really_inline error_code finish(); private: // Intended to be defined by the implementation simdjson_really_inline uint64_t find_escaped(uint64_t escape); simdjson_really_inline uint64_t find_escaped_branchless(uint64_t escape); // Whether the last iteration was still inside a string (all 1's = true, all 0's = false). uint64_t prev_in_string = 0ULL; // Whether the first character of the next iteration is escaped. uint64_t prev_escaped = 0ULL; }; // // Finds escaped characters (characters following \). // // Handles runs of backslashes like \\\" and \\\\" correctly (yielding 0101 and 01010, respectively). // // Does this by: // - Shift the escape mask to get potentially escaped characters (characters after backslashes). // - Mask escaped sequences that start on *even* bits with 1010101010 (odd bits are escaped, even bits are not) // - Mask escaped sequences that start on *odd* bits with 0101010101 (even bits are escaped, odd bits are not) // // To distinguish between escaped sequences starting on even/odd bits, it finds the start of all // escape sequences, filters out the ones that start on even bits, and adds that to the mask of // escape sequences. This causes the addition to clear out the sequences starting on odd bits (since // the start bit causes a carry), and leaves even-bit sequences alone. // // Example: // // text | \\\ | \\\"\\\" \\\" \\"\\" | // escape | xxx | xx xxx xxx xx xx | Removed overflow backslash; will | it into follows_escape // odd_starts | x | x x x | escape & ~even_bits & ~follows_escape // even_seq | c| cxxx c xx c | c = carry bit -- will be masked out later // invert_mask | | cxxx c xx c| even_seq << 1 // follows_escape | xx | x xx xxx xxx xx xx | Includes overflow bit // escaped | x | x x x x x x x x | // desired | x | x x x x x x x x | // text | \\\ | \\\"\\\" \\\" \\"\\" | // simdjson_really_inline uint64_t json_string_scanner::find_escaped_branchless(uint64_t backslash) { // If there was overflow, pretend the first character isn't a backslash backslash &= ~prev_escaped; uint64_t follows_escape = backslash << 1 | prev_escaped; // Get sequences starting on even bits by clearing out the odd series using + const uint64_t even_bits = 0x5555555555555555ULL; uint64_t odd_sequence_starts = backslash & ~even_bits & ~follows_escape; uint64_t sequences_starting_on_even_bits; prev_escaped = add_overflow(odd_sequence_starts, backslash, &sequences_starting_on_even_bits); uint64_t invert_mask = sequences_starting_on_even_bits << 1; // The mask we want to return is the *escaped* bits, not escapes. // Mask every other backslashed character as an escaped character // Flip the mask for sequences that start on even bits, to correct them return (even_bits ^ invert_mask) & follows_escape; } // // Return a mask of all string characters plus end quotes. // // prev_escaped is overflow saying whether the next character is escaped. // prev_in_string is overflow saying whether we're still in a string. // // Backslash sequences outside of quotes will be detected in stage 2. // simdjson_really_inline json_string_block json_string_scanner::next(const simd::simd8x64& in) { const uint64_t backslash = in.eq('\\'); const uint64_t escaped = find_escaped(backslash); const uint64_t quote = in.eq('"') & ~escaped; // // prefix_xor flips on bits inside the string (and flips off the end quote). // // Then we xor with prev_in_string: if we were in a string already, its effect is flipped // (characters inside strings are outside, and characters outside strings are inside). // const uint64_t in_string = prefix_xor(quote) ^ prev_in_string; // // Check if we're still in a string at the end of the box so the next block will know // // right shift of a signed value expected to be well-defined and standard // compliant as of C++20, John Regher from Utah U. says this is fine code // prev_in_string = uint64_t(static_cast(in_string) >> 63); // Use ^ to turn the beginning quote off, and the end quote on. // We are returning a function-local object so either we get a move constructor // or we get copy elision. return json_string_block( backslash, escaped, quote, in_string ); } simdjson_really_inline error_code json_string_scanner::finish() { if (prev_in_string) { return UNCLOSED_STRING; } return SUCCESS; } } // namespace stage1 } // unnamed namespace } // namespace haswell } // namespace simdjson /* end file src/generic/stage1/json_string_scanner.h */ /* begin file src/generic/stage1/json_scanner.h */ namespace simdjson { namespace haswell { namespace { namespace stage1 { /** * A block of scanned json, with information on operators and scalars. * * We seek to identify pseudo-structural characters. Anything that is inside * a string must be omitted (hence & ~_string.string_tail()). * Otherwise, pseudo-structural characters come in two forms. * 1. We have the structural characters ([,],{,},:, comma). The * term 'structural character' is from the JSON RFC. * 2. We have the 'scalar pseudo-structural characters'. * Scalars are quotes, and any character except structural characters and white space. * * To identify the scalar pseudo-structural characters, we must look at what comes * before them: it must be a space, a quote or a structural characters. * Starting with simdjson v0.3, we identify them by * negation: we identify everything that is followed by a non-quote scalar, * and we negate that. Whatever remains must be a 'scalar pseudo-structural character'. */ struct json_block { public: // We spell out the constructors in the hope of resolving inlining issues with Visual Studio 2017 simdjson_really_inline json_block(json_string_block&& string, json_character_block characters, uint64_t follows_potential_nonquote_scalar) : _string(std::move(string)), _characters(characters), _follows_potential_nonquote_scalar(follows_potential_nonquote_scalar) {} simdjson_really_inline json_block(json_string_block string, json_character_block characters, uint64_t follows_potential_nonquote_scalar) : _string(string), _characters(characters), _follows_potential_nonquote_scalar(follows_potential_nonquote_scalar) {} /** * The start of structurals. * In simdjson prior to v0.3, these were called the pseudo-structural characters. **/ simdjson_really_inline uint64_t structural_start() const noexcept { return potential_structural_start() & ~_string.string_tail(); } /** All JSON whitespace (i.e. not in a string) */ simdjson_really_inline uint64_t whitespace() const noexcept { return non_quote_outside_string(_characters.whitespace()); } // Helpers /** Whether the given characters are inside a string (only works on non-quotes) */ simdjson_really_inline uint64_t non_quote_inside_string(uint64_t mask) const noexcept { return _string.non_quote_inside_string(mask); } /** Whether the given characters are outside a string (only works on non-quotes) */ simdjson_really_inline uint64_t non_quote_outside_string(uint64_t mask) const noexcept { return _string.non_quote_outside_string(mask); } // string and escape characters json_string_block _string; // whitespace, structural characters ('operators'), scalars json_character_block _characters; // whether the previous character was a scalar uint64_t _follows_potential_nonquote_scalar; private: // Potential structurals (i.e. disregarding strings) /** * structural elements ([,],{,},:, comma) plus scalar starts like 123, true and "abc". * They may reside inside a string. **/ simdjson_really_inline uint64_t potential_structural_start() const noexcept { return _characters.op() | potential_scalar_start(); } /** * The start of non-operator runs, like 123, true and "abc". * It main reside inside a string. **/ simdjson_really_inline uint64_t potential_scalar_start() const noexcept { // The term "scalar" refers to anything except structural characters and white space // (so letters, numbers, quotes). // Whenever it is preceded by something that is not a structural element ({,},[,],:, ") nor a white-space // then we know that it is irrelevant structurally. return _characters.scalar() & ~follows_potential_scalar(); } /** * Whether the given character is immediately after a non-operator like 123, true. * The characters following a quote are not included. */ simdjson_really_inline uint64_t follows_potential_scalar() const noexcept { // _follows_potential_nonquote_scalar: is defined as marking any character that follows a character // that is not a structural element ({,},[,],:, comma) nor a quote (") and that is not a // white space. // It is understood that within quoted region, anything at all could be marked (irrelevant). return _follows_potential_nonquote_scalar; } }; /** * Scans JSON for important bits: structural characters or 'operators', strings, and scalars. * * The scanner starts by calculating two distinct things: * - string characters (taking \" into account) * - structural characters or 'operators' ([]{},:, comma) * and scalars (runs of non-operators like 123, true and "abc") * * To minimize data dependency (a key component of the scanner's speed), it finds these in parallel: * in particular, the operator/scalar bit will find plenty of things that are actually part of * strings. When we're done, json_block will fuse the two together by masking out tokens that are * part of a string. */ class json_scanner { public: json_scanner() {} simdjson_really_inline json_block next(const simd::simd8x64& in); // Returns either UNCLOSED_STRING or SUCCESS simdjson_really_inline error_code finish(); private: // Whether the last character of the previous iteration is part of a scalar token // (anything except whitespace or a structural character/'operator'). uint64_t prev_scalar = 0ULL; json_string_scanner string_scanner{}; }; // // Check if the current character immediately follows a matching character. // // For example, this checks for quotes with backslashes in front of them: // // const uint64_t backslashed_quote = in.eq('"') & immediately_follows(in.eq('\'), prev_backslash); // simdjson_really_inline uint64_t follows(const uint64_t match, uint64_t &overflow) { const uint64_t result = match << 1 | overflow; overflow = match >> 63; return result; } simdjson_really_inline json_block json_scanner::next(const simd::simd8x64& in) { json_string_block strings = string_scanner.next(in); // identifies the white-space and the structurat characters json_character_block characters = json_character_block::classify(in); // The term "scalar" refers to anything except structural characters and white space // (so letters, numbers, quotes). // We want follows_scalar to mark anything that follows a non-quote scalar (so letters and numbers). // // A terminal quote should either be followed by a structural character (comma, brace, bracket, colon) // or nothing. However, we still want ' "a string"true ' to mark the 't' of 'true' as a potential // pseudo-structural character just like we would if we had ' "a string" true '; otherwise we // may need to add an extra check when parsing strings. // // Performance: there are many ways to skin this cat. const uint64_t nonquote_scalar = characters.scalar() & ~strings.quote(); uint64_t follows_nonquote_scalar = follows(nonquote_scalar, prev_scalar); // We are returning a function-local object so either we get a move constructor // or we get copy elision. return json_block( strings,// strings is a function-local object so either it moves or the copy is elided. characters, follows_nonquote_scalar ); } simdjson_really_inline error_code json_scanner::finish() { return string_scanner.finish(); } } // namespace stage1 } // unnamed namespace } // namespace haswell } // namespace simdjson /* end file src/generic/stage1/json_scanner.h */ /* begin file src/generic/stage1/json_minifier.h */ // This file contains the common code every implementation uses in stage1 // It is intended to be included multiple times and compiled multiple times // We assume the file in which it is included already includes // "simdjson/stage1.h" (this simplifies amalgation) namespace simdjson { namespace haswell { namespace { namespace stage1 { class json_minifier { public: template static error_code minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) noexcept; private: simdjson_really_inline json_minifier(uint8_t *_dst) : dst{_dst} {} template simdjson_really_inline void step(const uint8_t *block_buf, buf_block_reader &reader) noexcept; simdjson_really_inline void next(const simd::simd8x64& in, const json_block& block); simdjson_really_inline error_code finish(uint8_t *dst_start, size_t &dst_len); json_scanner scanner{}; uint8_t *dst; }; simdjson_really_inline void json_minifier::next(const simd::simd8x64& in, const json_block& block) { uint64_t mask = block.whitespace(); dst += in.compress(mask, dst); } simdjson_really_inline error_code json_minifier::finish(uint8_t *dst_start, size_t &dst_len) { error_code error = scanner.finish(); if (error) { dst_len = 0; return error; } dst_len = dst - dst_start; return SUCCESS; } template<> simdjson_really_inline void json_minifier::step<128>(const uint8_t *block_buf, buf_block_reader<128> &reader) noexcept { simd::simd8x64 in_1(block_buf); simd::simd8x64 in_2(block_buf+64); json_block block_1 = scanner.next(in_1); json_block block_2 = scanner.next(in_2); this->next(in_1, block_1); this->next(in_2, block_2); reader.advance(); } template<> simdjson_really_inline void json_minifier::step<64>(const uint8_t *block_buf, buf_block_reader<64> &reader) noexcept { simd::simd8x64 in_1(block_buf); json_block block_1 = scanner.next(in_1); this->next(block_buf, block_1); reader.advance(); } template error_code json_minifier::minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) noexcept { buf_block_reader reader(buf, len); json_minifier minifier(dst); // Index the first n-1 blocks while (reader.has_full_block()) { minifier.step(reader.full_block(), reader); } // Index the last (remainder) block, padded with spaces uint8_t block[STEP_SIZE]; size_t remaining_bytes = reader.get_remainder(block); if (remaining_bytes > 0) { // We do not want to write directly to the output stream. Rather, we write // to a local buffer (for safety). uint8_t out_block[STEP_SIZE]; uint8_t * const guarded_dst{minifier.dst}; minifier.dst = out_block; minifier.step(block, reader); size_t to_write = minifier.dst - out_block; // In some cases, we could be enticed to consider the padded spaces // as part of the string. This is fine as long as we do not write more // than we consumed. if(to_write > remaining_bytes) { to_write = remaining_bytes; } memcpy(guarded_dst, out_block, to_write); minifier.dst = guarded_dst + to_write; } return minifier.finish(dst, dst_len); } } // namespace stage1 } // unnamed namespace } // namespace haswell } // namespace simdjson /* end file src/generic/stage1/json_minifier.h */ /* begin file src/generic/stage1/find_next_document_index.h */ namespace simdjson { namespace haswell { namespace { /** * This algorithm is used to quickly identify the last structural position that * makes up a complete document. * * It does this by going backwards and finding the last *document boundary* (a * place where one value follows another without a comma between them). If the * last document (the characters after the boundary) has an equal number of * start and end brackets, it is considered complete. * * Simply put, we iterate over the structural characters, starting from * the end. We consider that we found the end of a JSON document when the * first element of the pair is NOT one of these characters: '{' '[' ':' ',' * and when the second element is NOT one of these characters: '}' ']' ':' ','. * * This simple comparison works most of the time, but it does not cover cases * where the batch's structural indexes contain a perfect amount of documents. * In such a case, we do not have access to the structural index which follows * the last document, therefore, we do not have access to the second element in * the pair, and that means we cannot identify the last document. To fix this * issue, we keep a count of the open and closed curly/square braces we found * while searching for the pair. When we find a pair AND the count of open and * closed curly/square braces is the same, we know that we just passed a * complete document, therefore the last json buffer location is the end of the * batch. */ simdjson_really_inline uint32_t find_next_document_index(dom_parser_implementation &parser) { // Variant: do not count separately, just figure out depth if(parser.n_structural_indexes == 0) { return 0; } auto arr_cnt = 0; auto obj_cnt = 0; for (auto i = parser.n_structural_indexes - 1; i > 0; i--) { auto idxb = parser.structural_indexes[i]; switch (parser.buf[idxb]) { case ':': case ',': continue; case '}': obj_cnt--; continue; case ']': arr_cnt--; continue; case '{': obj_cnt++; break; case '[': arr_cnt++; break; } auto idxa = parser.structural_indexes[i - 1]; switch (parser.buf[idxa]) { case '{': case '[': case ':': case ',': continue; } // Last document is complete, so the next document will appear after! if (!arr_cnt && !obj_cnt) { return parser.n_structural_indexes; } // Last document is incomplete; mark the document at i + 1 as the next one return i; } // If we made it to the end, we want to finish counting to see if we have a full document. switch (parser.buf[parser.structural_indexes[0]]) { case '}': obj_cnt--; break; case ']': arr_cnt--; break; case '{': obj_cnt++; break; case '[': arr_cnt++; break; } if (!arr_cnt && !obj_cnt) { // We have a complete document. return parser.n_structural_indexes; } return 0; } } // unnamed namespace } // namespace haswell } // namespace simdjson /* end file src/generic/stage1/find_next_document_index.h */ namespace simdjson { namespace haswell { namespace { namespace stage1 { class bit_indexer { public: uint32_t *tail; simdjson_really_inline bit_indexer(uint32_t *index_buf) : tail(index_buf) {} // flatten out values in 'bits' assuming that they are are to have values of idx // plus their position in the bitvector, and store these indexes at // base_ptr[base] incrementing base as we go // will potentially store extra values beyond end of valid bits, so base_ptr // needs to be large enough to handle this simdjson_really_inline void write(uint32_t idx, uint64_t bits) { // In some instances, the next branch is expensive because it is mispredicted. // Unfortunately, in other cases, // it helps tremendously. if (bits == 0) return; #if defined(SIMDJSON_PREFER_REVERSE_BITS) /** * ARM lacks a fast trailing zero instruction, but it has a fast * bit reversal instruction and a fast leading zero instruction. * Thus it may be profitable to reverse the bits (once) and then * to rely on a sequence of instructions that call the leading * zero instruction. * * Performance notes: * The chosen routine is not optimal in terms of data dependency * since zero_leading_bit might require two instructions. However, * it tends to minimize the total number of instructions which is * beneficial. */ uint64_t rev_bits = reverse_bits(bits); int cnt = static_cast(count_ones(bits)); int i = 0; // Do the first 8 all together for (; i<8; i++) { int lz = leading_zeroes(rev_bits); this->tail[i] = static_cast(idx) + lz; rev_bits = zero_leading_bit(rev_bits, lz); } // Do the next 8 all together (we hope in most cases it won't happen at all // and the branch is easily predicted). if (simdjson_unlikely(cnt > 8)) { i = 8; for (; i<16; i++) { int lz = leading_zeroes(rev_bits); this->tail[i] = static_cast(idx) + lz; rev_bits = zero_leading_bit(rev_bits, lz); } // Most files don't have 16+ structurals per block, so we take several basically guaranteed // branch mispredictions here. 16+ structurals per block means either punctuation ({} [] , :) // or the start of a value ("abc" true 123) every four characters. if (simdjson_unlikely(cnt > 16)) { i = 16; while (rev_bits != 0) { int lz = leading_zeroes(rev_bits); this->tail[i++] = static_cast(idx) + lz; rev_bits = zero_leading_bit(rev_bits, lz); } } } this->tail += cnt; #else // SIMDJSON_PREFER_REVERSE_BITS /** * Under recent x64 systems, we often have both a fast trailing zero * instruction and a fast 'clear-lower-bit' instruction so the following * algorithm can be competitive. */ int cnt = static_cast(count_ones(bits)); // Do the first 8 all together for (int i=0; i<8; i++) { this->tail[i] = idx + trailing_zeroes(bits); bits = clear_lowest_bit(bits); } // Do the next 8 all together (we hope in most cases it won't happen at all // and the branch is easily predicted). if (simdjson_unlikely(cnt > 8)) { for (int i=8; i<16; i++) { this->tail[i] = idx + trailing_zeroes(bits); bits = clear_lowest_bit(bits); } // Most files don't have 16+ structurals per block, so we take several basically guaranteed // branch mispredictions here. 16+ structurals per block means either punctuation ({} [] , :) // or the start of a value ("abc" true 123) every four characters. if (simdjson_unlikely(cnt > 16)) { int i = 16; do { this->tail[i] = idx + trailing_zeroes(bits); bits = clear_lowest_bit(bits); i++; } while (i < cnt); } } this->tail += cnt; #endif } }; class json_structural_indexer { public: /** * Find the important bits of JSON in a 128-byte chunk, and add them to structural_indexes. * * @param partial Setting the partial parameter to true allows the find_structural_bits to * tolerate unclosed strings. The caller should still ensure that the input is valid UTF-8. If * you are processing substrings, you may want to call on a function like trimmed_length_safe_utf8. */ template static error_code index(const uint8_t *buf, size_t len, dom_parser_implementation &parser, stage1_mode partial) noexcept; private: simdjson_really_inline json_structural_indexer(uint32_t *structural_indexes); template simdjson_really_inline void step(const uint8_t *block, buf_block_reader &reader) noexcept; simdjson_really_inline void next(const simd::simd8x64& in, const json_block& block, size_t idx); simdjson_really_inline error_code finish(dom_parser_implementation &parser, size_t idx, size_t len, stage1_mode partial); json_scanner scanner{}; utf8_checker checker{}; bit_indexer indexer; uint64_t prev_structurals = 0; uint64_t unescaped_chars_error = 0; }; simdjson_really_inline json_structural_indexer::json_structural_indexer(uint32_t *structural_indexes) : indexer{structural_indexes} {} // Skip the last character if it is partial simdjson_really_inline size_t trim_partial_utf8(const uint8_t *buf, size_t len) { if (simdjson_unlikely(len < 3)) { switch (len) { case 2: if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left if (buf[len-2] >= 0b11100000) { return len-2; } // 3- and 4-byte characters with only 2 bytes left return len; case 1: if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left return len; case 0: return len; } } if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left if (buf[len-2] >= 0b11100000) { return len-2; } // 3- and 4-byte characters with only 1 byte left if (buf[len-3] >= 0b11110000) { return len-3; } // 4-byte characters with only 3 bytes left return len; } // // PERF NOTES: // We pipe 2 inputs through these stages: // 1. Load JSON into registers. This takes a long time and is highly parallelizable, so we load // 2 inputs' worth at once so that by the time step 2 is looking for them input, it's available. // 2. Scan the JSON for critical data: strings, scalars and operators. This is the critical path. // The output of step 1 depends entirely on this information. These functions don't quite use // up enough CPU: the second half of the functions is highly serial, only using 1 execution core // at a time. The second input's scans has some dependency on the first ones finishing it, but // they can make a lot of progress before they need that information. // 3. Step 1 doesn't use enough capacity, so we run some extra stuff while we're waiting for that // to finish: utf-8 checks and generating the output from the last iteration. // // The reason we run 2 inputs at a time, is steps 2 and 3 are *still* not enough to soak up all // available capacity with just one input. Running 2 at a time seems to give the CPU a good enough // workout. // template error_code json_structural_indexer::index(const uint8_t *buf, size_t len, dom_parser_implementation &parser, stage1_mode partial) noexcept { if (simdjson_unlikely(len > parser.capacity())) { return CAPACITY; } // We guard the rest of the code so that we can assume that len > 0 throughout. if (len == 0) { return EMPTY; } if (is_streaming(partial)) { len = trim_partial_utf8(buf, len); // If you end up with an empty window after trimming // the partial UTF-8 bytes, then chances are good that you // have an UTF-8 formatting error. if(len == 0) { return UTF8_ERROR; } } buf_block_reader reader(buf, len); json_structural_indexer indexer(parser.structural_indexes.get()); // Read all but the last block while (reader.has_full_block()) { indexer.step(reader.full_block(), reader); } // Take care of the last block (will always be there unless file is empty which is // not supposed to happen.) uint8_t block[STEP_SIZE]; if (simdjson_unlikely(reader.get_remainder(block) == 0)) { return UNEXPECTED_ERROR; } indexer.step(block, reader); return indexer.finish(parser, reader.block_index(), len, partial); } template<> simdjson_really_inline void json_structural_indexer::step<128>(const uint8_t *block, buf_block_reader<128> &reader) noexcept { simd::simd8x64 in_1(block); simd::simd8x64 in_2(block+64); json_block block_1 = scanner.next(in_1); json_block block_2 = scanner.next(in_2); this->next(in_1, block_1, reader.block_index()); this->next(in_2, block_2, reader.block_index()+64); reader.advance(); } template<> simdjson_really_inline void json_structural_indexer::step<64>(const uint8_t *block, buf_block_reader<64> &reader) noexcept { simd::simd8x64 in_1(block); json_block block_1 = scanner.next(in_1); this->next(in_1, block_1, reader.block_index()); reader.advance(); } simdjson_really_inline void json_structural_indexer::next(const simd::simd8x64& in, const json_block& block, size_t idx) { uint64_t unescaped = in.lteq(0x1F); checker.check_next_input(in); indexer.write(uint32_t(idx-64), prev_structurals); // Output *last* iteration's structurals to the parser prev_structurals = block.structural_start(); unescaped_chars_error |= block.non_quote_inside_string(unescaped); } simdjson_really_inline error_code json_structural_indexer::finish(dom_parser_implementation &parser, size_t idx, size_t len, stage1_mode partial) { // Write out the final iteration's structurals indexer.write(uint32_t(idx-64), prev_structurals); error_code error = scanner.finish(); // We deliberately break down the next expression so that it is // human readable. const bool should_we_exit = is_streaming(partial) ? ((error != SUCCESS) && (error != UNCLOSED_STRING)) // when partial we tolerate UNCLOSED_STRING : (error != SUCCESS); // if partial is false, we must have SUCCESS const bool have_unclosed_string = (error == UNCLOSED_STRING); if (simdjson_unlikely(should_we_exit)) { return error; } if (unescaped_chars_error) { return UNESCAPED_CHARS; } parser.n_structural_indexes = uint32_t(indexer.tail - parser.structural_indexes.get()); /*** * The On Demand API requires special padding. * * This is related to https://github.com/simdjson/simdjson/issues/906 * Basically, we want to make sure that if the parsing continues beyond the last (valid) * structural character, it quickly stops. * Only three structural characters can be repeated without triggering an error in JSON: [,] and }. * We repeat the padding character (at 'len'). We don't know what it is, but if the parsing * continues, then it must be [,] or }. * Suppose it is ] or }. We backtrack to the first character, what could it be that would * not trigger an error? It could be ] or } but no, because you can't start a document that way. * It can't be a comma, a colon or any simple value. So the only way we could continue is * if the repeated character is [. But if so, the document must start with [. But if the document * starts with [, it should end with ]. If we enforce that rule, then we would get * ][[ which is invalid. * * This is illustrated with the test array_iterate_unclosed_error() on the following input: * R"({ "a": [,,)" **/ parser.structural_indexes[parser.n_structural_indexes] = uint32_t(len); // used later in partial == stage1_mode::streaming_final parser.structural_indexes[parser.n_structural_indexes + 1] = uint32_t(len); parser.structural_indexes[parser.n_structural_indexes + 2] = 0; parser.next_structural_index = 0; // a valid JSON file cannot have zero structural indexes - we should have found something if (simdjson_unlikely(parser.n_structural_indexes == 0u)) { return EMPTY; } if (simdjson_unlikely(parser.structural_indexes[parser.n_structural_indexes - 1] > len)) { return UNEXPECTED_ERROR; } if (partial == stage1_mode::streaming_partial) { // If we have an unclosed string, then the last structural // will be the quote and we want to make sure to omit it. if(have_unclosed_string) { parser.n_structural_indexes--; // a valid JSON file cannot have zero structural indexes - we should have found something if (simdjson_unlikely(parser.n_structural_indexes == 0u)) { return CAPACITY; } } // We truncate the input to the end of the last complete document (or zero). auto new_structural_indexes = find_next_document_index(parser); if (new_structural_indexes == 0 && parser.n_structural_indexes > 0) { if(parser.structural_indexes[0] == 0) { // If the buffer is partial and we started at index 0 but the document is // incomplete, it's too big to parse. return CAPACITY; } else { // It is possible that the document could be parsed, we just had a lot // of white space. parser.n_structural_indexes = 0; return EMPTY; } } parser.n_structural_indexes = new_structural_indexes; } else if (partial == stage1_mode::streaming_final) { if(have_unclosed_string) { parser.n_structural_indexes--; } // We truncate the input to the end of the last complete document (or zero). // Because partial == stage1_mode::streaming_final, it means that we may // silently ignore trailing garbage. Though it sounds bad, we do it // deliberately because many people who have streams of JSON documents // will truncate them for processing. E.g., imagine that you are uncompressing // the data from a size file or receiving it in chunks from the network. You // may not know where exactly the last document will be. Meanwhile the // document_stream instances allow people to know the JSON documents they are // parsing (see the iterator.source() method). parser.n_structural_indexes = find_next_document_index(parser); // We store the initial n_structural_indexes so that the client can see // whether we used truncation. If initial_n_structural_indexes == parser.n_structural_indexes, // then this will query parser.structural_indexes[parser.n_structural_indexes] which is len, // otherwise, it will copy some prior index. parser.structural_indexes[parser.n_structural_indexes + 1] = parser.structural_indexes[parser.n_structural_indexes]; // This next line is critical, do not change it unless you understand what you are // doing. parser.structural_indexes[parser.n_structural_indexes] = uint32_t(len); if (simdjson_unlikely(parser.n_structural_indexes == 0u)) { // We tolerate an unclosed string at the very end of the stream. Indeed, users // often load their data in bulk without being careful and they want us to ignore // the trailing garbage. return EMPTY; } } checker.check_eof(); return checker.errors(); } } // namespace stage1 } // unnamed namespace } // namespace haswell } // namespace simdjson /* end file src/generic/stage1/json_structural_indexer.h */ /* begin file src/generic/stage1/utf8_validator.h */ namespace simdjson { namespace haswell { namespace { namespace stage1 { /** * Validates that the string is actual UTF-8. */ template bool generic_validate_utf8(const uint8_t * input, size_t length) { checker c{}; buf_block_reader<64> reader(input, length); while (reader.has_full_block()) { simd::simd8x64 in(reader.full_block()); c.check_next_input(in); reader.advance(); } uint8_t block[64]{}; reader.get_remainder(block); simd::simd8x64 in(block); c.check_next_input(in); reader.advance(); c.check_eof(); return c.errors() == error_code::SUCCESS; } bool generic_validate_utf8(const char * input, size_t length) { return generic_validate_utf8(reinterpret_cast(input),length); } } // namespace stage1 } // unnamed namespace } // namespace haswell } // namespace simdjson /* end file src/generic/stage1/utf8_validator.h */ // // Stage 2 // /* begin file src/generic/stage2/tape_builder.h */ /* begin file src/generic/stage2/json_iterator.h */ /* begin file src/generic/stage2/logger.h */ // This is for an internal-only stage 2 specific logger. // Set LOG_ENABLED = true to log what stage 2 is doing! namespace simdjson { namespace haswell { namespace { namespace logger { static constexpr const char * DASHES = "----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------"; #if SIMDJSON_VERBOSE_LOGGING static constexpr const bool LOG_ENABLED = true; #else static constexpr const bool LOG_ENABLED = false; #endif static constexpr const int LOG_EVENT_LEN = 20; static constexpr const int LOG_BUFFER_LEN = 30; static constexpr const int LOG_SMALL_BUFFER_LEN = 10; static constexpr const int LOG_INDEX_LEN = 5; static int log_depth; // Not threadsafe. Log only. // Helper to turn unprintable or newline characters into spaces static simdjson_really_inline char printable_char(char c) { if (c >= 0x20) { return c; } else { return ' '; } } // Print the header and set up log_start static simdjson_really_inline void log_start() { if (LOG_ENABLED) { log_depth = 0; printf("\n"); printf("| %-*s | %-*s | %-*s | %-*s | Detail |\n", LOG_EVENT_LEN, "Event", LOG_BUFFER_LEN, "Buffer", LOG_SMALL_BUFFER_LEN, "Next", 5, "Next#"); printf("|%.*s|%.*s|%.*s|%.*s|--------|\n", LOG_EVENT_LEN+2, DASHES, LOG_BUFFER_LEN+2, DASHES, LOG_SMALL_BUFFER_LEN+2, DASHES, 5+2, DASHES); } } simdjson_unused static simdjson_really_inline void log_string(const char *message) { if (LOG_ENABLED) { printf("%s\n", message); } } // Logs a single line from the stage 2 DOM parser template static simdjson_really_inline void log_line(S &structurals, const char *title_prefix, const char *title, const char *detail) { if (LOG_ENABLED) { printf("| %*s%s%-*s ", log_depth*2, "", title_prefix, LOG_EVENT_LEN - log_depth*2 - int(strlen(title_prefix)), title); auto current_index = structurals.at_beginning() ? nullptr : structurals.next_structural-1; auto next_index = structurals.next_structural; auto current = current_index ? &structurals.buf[*current_index] : reinterpret_cast(" "); auto next = &structurals.buf[*next_index]; { // Print the next N characters in the buffer. printf("| "); // Otherwise, print the characters starting from the buffer position. // Print spaces for unprintable or newline characters. for (int i=0;i simdjson_warn_unused simdjson_really_inline error_code walk_document(V &visitor) noexcept; /** * Create an iterator capable of walking a JSON document. * * The document must have already passed through stage 1. */ simdjson_really_inline json_iterator(dom_parser_implementation &_dom_parser, size_t start_structural_index); /** * Look at the next token. * * Tokens can be strings, numbers, booleans, null, or operators (`[{]},:`)). * * They may include invalid JSON as well (such as `1.2.3` or `ture`). */ simdjson_really_inline const uint8_t *peek() const noexcept; /** * Advance to the next token. * * Tokens can be strings, numbers, booleans, null, or operators (`[{]},:`)). * * They may include invalid JSON as well (such as `1.2.3` or `ture`). */ simdjson_really_inline const uint8_t *advance() noexcept; /** * Get the remaining length of the document, from the start of the current token. */ simdjson_really_inline size_t remaining_len() const noexcept; /** * Check if we are at the end of the document. * * If this is true, there are no more tokens. */ simdjson_really_inline bool at_eof() const noexcept; /** * Check if we are at the beginning of the document. */ simdjson_really_inline bool at_beginning() const noexcept; simdjson_really_inline uint8_t last_structural() const noexcept; /** * Log that a value has been found. * * Set ENABLE_LOGGING=true in logger.h to see logging. */ simdjson_really_inline void log_value(const char *type) const noexcept; /** * Log the start of a multipart value. * * Set ENABLE_LOGGING=true in logger.h to see logging. */ simdjson_really_inline void log_start_value(const char *type) const noexcept; /** * Log the end of a multipart value. * * Set ENABLE_LOGGING=true in logger.h to see logging. */ simdjson_really_inline void log_end_value(const char *type) const noexcept; /** * Log an error. * * Set ENABLE_LOGGING=true in logger.h to see logging. */ simdjson_really_inline void log_error(const char *error) const noexcept; template simdjson_warn_unused simdjson_really_inline error_code visit_root_primitive(V &visitor, const uint8_t *value) noexcept; template simdjson_warn_unused simdjson_really_inline error_code visit_primitive(V &visitor, const uint8_t *value) noexcept; }; template simdjson_warn_unused simdjson_really_inline error_code json_iterator::walk_document(V &visitor) noexcept { logger::log_start(); // // Start the document // if (at_eof()) { return EMPTY; } log_start_value("document"); SIMDJSON_TRY( visitor.visit_document_start(*this) ); // // Read first value // { auto value = advance(); // Make sure the outer object or array is closed before continuing; otherwise, there are ways we // could get into memory corruption. See https://github.com/simdjson/simdjson/issues/906 if (!STREAMING) { switch (*value) { case '{': if (last_structural() != '}') { log_value("starting brace unmatched"); return TAPE_ERROR; }; break; case '[': if (last_structural() != ']') { log_value("starting bracket unmatched"); return TAPE_ERROR; }; break; } } switch (*value) { case '{': if (*peek() == '}') { advance(); log_value("empty object"); SIMDJSON_TRY( visitor.visit_empty_object(*this) ); break; } goto object_begin; case '[': if (*peek() == ']') { advance(); log_value("empty array"); SIMDJSON_TRY( visitor.visit_empty_array(*this) ); break; } goto array_begin; default: SIMDJSON_TRY( visitor.visit_root_primitive(*this, value) ); break; } } goto document_end; // // Object parser states // object_begin: log_start_value("object"); depth++; if (depth >= dom_parser.max_depth()) { log_error("Exceeded max depth!"); return DEPTH_ERROR; } dom_parser.is_array[depth] = false; SIMDJSON_TRY( visitor.visit_object_start(*this) ); { auto key = advance(); if (*key != '"') { log_error("Object does not start with a key"); return TAPE_ERROR; } SIMDJSON_TRY( visitor.increment_count(*this) ); SIMDJSON_TRY( visitor.visit_key(*this, key) ); } object_field: if (simdjson_unlikely( *advance() != ':' )) { log_error("Missing colon after key in object"); return TAPE_ERROR; } { auto value = advance(); switch (*value) { case '{': if (*peek() == '}') { advance(); log_value("empty object"); SIMDJSON_TRY( visitor.visit_empty_object(*this) ); break; } goto object_begin; case '[': if (*peek() == ']') { advance(); log_value("empty array"); SIMDJSON_TRY( visitor.visit_empty_array(*this) ); break; } goto array_begin; default: SIMDJSON_TRY( visitor.visit_primitive(*this, value) ); break; } } object_continue: switch (*advance()) { case ',': SIMDJSON_TRY( visitor.increment_count(*this) ); { auto key = advance(); if (simdjson_unlikely( *key != '"' )) { log_error("Key string missing at beginning of field in object"); return TAPE_ERROR; } SIMDJSON_TRY( visitor.visit_key(*this, key) ); } goto object_field; case '}': log_end_value("object"); SIMDJSON_TRY( visitor.visit_object_end(*this) ); goto scope_end; default: log_error("No comma between object fields"); return TAPE_ERROR; } scope_end: depth--; if (depth == 0) { goto document_end; } if (dom_parser.is_array[depth]) { goto array_continue; } goto object_continue; // // Array parser states // array_begin: log_start_value("array"); depth++; if (depth >= dom_parser.max_depth()) { log_error("Exceeded max depth!"); return DEPTH_ERROR; } dom_parser.is_array[depth] = true; SIMDJSON_TRY( visitor.visit_array_start(*this) ); SIMDJSON_TRY( visitor.increment_count(*this) ); array_value: { auto value = advance(); switch (*value) { case '{': if (*peek() == '}') { advance(); log_value("empty object"); SIMDJSON_TRY( visitor.visit_empty_object(*this) ); break; } goto object_begin; case '[': if (*peek() == ']') { advance(); log_value("empty array"); SIMDJSON_TRY( visitor.visit_empty_array(*this) ); break; } goto array_begin; default: SIMDJSON_TRY( visitor.visit_primitive(*this, value) ); break; } } array_continue: switch (*advance()) { case ',': SIMDJSON_TRY( visitor.increment_count(*this) ); goto array_value; case ']': log_end_value("array"); SIMDJSON_TRY( visitor.visit_array_end(*this) ); goto scope_end; default: log_error("Missing comma between array values"); return TAPE_ERROR; } document_end: log_end_value("document"); SIMDJSON_TRY( visitor.visit_document_end(*this) ); dom_parser.next_structural_index = uint32_t(next_structural - &dom_parser.structural_indexes[0]); // If we didn't make it to the end, it's an error if ( !STREAMING && dom_parser.next_structural_index != dom_parser.n_structural_indexes ) { log_error("More than one JSON value at the root of the document, or extra characters at the end of the JSON!"); return TAPE_ERROR; } return SUCCESS; } // walk_document() simdjson_really_inline json_iterator::json_iterator(dom_parser_implementation &_dom_parser, size_t start_structural_index) : buf{_dom_parser.buf}, next_structural{&_dom_parser.structural_indexes[start_structural_index]}, dom_parser{_dom_parser} { } simdjson_really_inline const uint8_t *json_iterator::peek() const noexcept { return &buf[*(next_structural)]; } simdjson_really_inline const uint8_t *json_iterator::advance() noexcept { return &buf[*(next_structural++)]; } simdjson_really_inline size_t json_iterator::remaining_len() const noexcept { return dom_parser.len - *(next_structural-1); } simdjson_really_inline bool json_iterator::at_eof() const noexcept { return next_structural == &dom_parser.structural_indexes[dom_parser.n_structural_indexes]; } simdjson_really_inline bool json_iterator::at_beginning() const noexcept { return next_structural == dom_parser.structural_indexes.get(); } simdjson_really_inline uint8_t json_iterator::last_structural() const noexcept { return buf[dom_parser.structural_indexes[dom_parser.n_structural_indexes - 1]]; } simdjson_really_inline void json_iterator::log_value(const char *type) const noexcept { logger::log_line(*this, "", type, ""); } simdjson_really_inline void json_iterator::log_start_value(const char *type) const noexcept { logger::log_line(*this, "+", type, ""); if (logger::LOG_ENABLED) { logger::log_depth++; } } simdjson_really_inline void json_iterator::log_end_value(const char *type) const noexcept { if (logger::LOG_ENABLED) { logger::log_depth--; } logger::log_line(*this, "-", type, ""); } simdjson_really_inline void json_iterator::log_error(const char *error) const noexcept { logger::log_line(*this, "", "ERROR", error); } template simdjson_warn_unused simdjson_really_inline error_code json_iterator::visit_root_primitive(V &visitor, const uint8_t *value) noexcept { switch (*value) { case '"': return visitor.visit_root_string(*this, value); case 't': return visitor.visit_root_true_atom(*this, value); case 'f': return visitor.visit_root_false_atom(*this, value); case 'n': return visitor.visit_root_null_atom(*this, value); case '-': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': return visitor.visit_root_number(*this, value); default: log_error("Document starts with a non-value character"); return TAPE_ERROR; } } template simdjson_warn_unused simdjson_really_inline error_code json_iterator::visit_primitive(V &visitor, const uint8_t *value) noexcept { switch (*value) { case '"': return visitor.visit_string(*this, value); case 't': return visitor.visit_true_atom(*this, value); case 'f': return visitor.visit_false_atom(*this, value); case 'n': return visitor.visit_null_atom(*this, value); case '-': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': return visitor.visit_number(*this, value); default: log_error("Non-value found when value was expected!"); return TAPE_ERROR; } } } // namespace stage2 } // unnamed namespace } // namespace haswell } // namespace simdjson /* end file src/generic/stage2/json_iterator.h */ /* begin file src/generic/stage2/tape_writer.h */ namespace simdjson { namespace haswell { namespace { namespace stage2 { struct tape_writer { /** The next place to write to tape */ uint64_t *next_tape_loc; /** Write a signed 64-bit value to tape. */ simdjson_really_inline void append_s64(int64_t value) noexcept; /** Write an unsigned 64-bit value to tape. */ simdjson_really_inline void append_u64(uint64_t value) noexcept; /** Write a double value to tape. */ simdjson_really_inline void append_double(double value) noexcept; /** * Append a tape entry (an 8-bit type,and 56 bits worth of value). */ simdjson_really_inline void append(uint64_t val, internal::tape_type t) noexcept; /** * Skip the current tape entry without writing. * * Used to skip the start of the container, since we'll come back later to fill it in when the * container ends. */ simdjson_really_inline void skip() noexcept; /** * Skip the number of tape entries necessary to write a large u64 or i64. */ simdjson_really_inline void skip_large_integer() noexcept; /** * Skip the number of tape entries necessary to write a double. */ simdjson_really_inline void skip_double() noexcept; /** * Write a value to a known location on tape. * * Used to go back and write out the start of a container after the container ends. */ simdjson_really_inline static void write(uint64_t &tape_loc, uint64_t val, internal::tape_type t) noexcept; private: /** * Append both the tape entry, and a supplementary value following it. Used for types that need * all 64 bits, such as double and uint64_t. */ template simdjson_really_inline void append2(uint64_t val, T val2, internal::tape_type t) noexcept; }; // struct number_writer simdjson_really_inline void tape_writer::append_s64(int64_t value) noexcept { append2(0, value, internal::tape_type::INT64); } simdjson_really_inline void tape_writer::append_u64(uint64_t value) noexcept { append(0, internal::tape_type::UINT64); *next_tape_loc = value; next_tape_loc++; } /** Write a double value to tape. */ simdjson_really_inline void tape_writer::append_double(double value) noexcept { append2(0, value, internal::tape_type::DOUBLE); } simdjson_really_inline void tape_writer::skip() noexcept { next_tape_loc++; } simdjson_really_inline void tape_writer::skip_large_integer() noexcept { next_tape_loc += 2; } simdjson_really_inline void tape_writer::skip_double() noexcept { next_tape_loc += 2; } simdjson_really_inline void tape_writer::append(uint64_t val, internal::tape_type t) noexcept { *next_tape_loc = val | ((uint64_t(char(t))) << 56); next_tape_loc++; } template simdjson_really_inline void tape_writer::append2(uint64_t val, T val2, internal::tape_type t) noexcept { append(val, t); static_assert(sizeof(val2) == sizeof(*next_tape_loc), "Type is not 64 bits!"); memcpy(next_tape_loc, &val2, sizeof(val2)); next_tape_loc++; } simdjson_really_inline void tape_writer::write(uint64_t &tape_loc, uint64_t val, internal::tape_type t) noexcept { tape_loc = val | ((uint64_t(char(t))) << 56); } } // namespace stage2 } // unnamed namespace } // namespace haswell } // namespace simdjson /* end file src/generic/stage2/tape_writer.h */ namespace simdjson { namespace haswell { namespace { namespace stage2 { struct tape_builder { template simdjson_warn_unused static simdjson_really_inline error_code parse_document( dom_parser_implementation &dom_parser, dom::document &doc) noexcept; /** Called when a non-empty document starts. */ simdjson_warn_unused simdjson_really_inline error_code visit_document_start(json_iterator &iter) noexcept; /** Called when a non-empty document ends without error. */ simdjson_warn_unused simdjson_really_inline error_code visit_document_end(json_iterator &iter) noexcept; /** Called when a non-empty array starts. */ simdjson_warn_unused simdjson_really_inline error_code visit_array_start(json_iterator &iter) noexcept; /** Called when a non-empty array ends. */ simdjson_warn_unused simdjson_really_inline error_code visit_array_end(json_iterator &iter) noexcept; /** Called when an empty array is found. */ simdjson_warn_unused simdjson_really_inline error_code visit_empty_array(json_iterator &iter) noexcept; /** Called when a non-empty object starts. */ simdjson_warn_unused simdjson_really_inline error_code visit_object_start(json_iterator &iter) noexcept; /** * Called when a key in a field is encountered. * * primitive, visit_object_start, visit_empty_object, visit_array_start, or visit_empty_array * will be called after this with the field value. */ simdjson_warn_unused simdjson_really_inline error_code visit_key(json_iterator &iter, const uint8_t *key) noexcept; /** Called when a non-empty object ends. */ simdjson_warn_unused simdjson_really_inline error_code visit_object_end(json_iterator &iter) noexcept; /** Called when an empty object is found. */ simdjson_warn_unused simdjson_really_inline error_code visit_empty_object(json_iterator &iter) noexcept; /** * Called when a string, number, boolean or null is found. */ simdjson_warn_unused simdjson_really_inline error_code visit_primitive(json_iterator &iter, const uint8_t *value) noexcept; /** * Called when a string, number, boolean or null is found at the top level of a document (i.e. * when there is no array or object and the entire document is a single string, number, boolean or * null. * * This is separate from primitive() because simdjson's normal primitive parsing routines assume * there is at least one more token after the value, which is only true in an array or object. */ simdjson_warn_unused simdjson_really_inline error_code visit_root_primitive(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_string(json_iterator &iter, const uint8_t *value, bool key = false) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_number(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_true_atom(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_false_atom(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_null_atom(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_root_string(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_root_number(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_root_true_atom(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_root_false_atom(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_root_null_atom(json_iterator &iter, const uint8_t *value) noexcept; /** Called each time a new field or element in an array or object is found. */ simdjson_warn_unused simdjson_really_inline error_code increment_count(json_iterator &iter) noexcept; /** Next location to write to tape */ tape_writer tape; private: /** Next write location in the string buf for stage 2 parsing */ uint8_t *current_string_buf_loc; simdjson_really_inline tape_builder(dom::document &doc) noexcept; simdjson_really_inline uint32_t next_tape_index(json_iterator &iter) const noexcept; simdjson_really_inline void start_container(json_iterator &iter) noexcept; simdjson_warn_unused simdjson_really_inline error_code end_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept; simdjson_warn_unused simdjson_really_inline error_code empty_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept; simdjson_really_inline uint8_t *on_start_string(json_iterator &iter) noexcept; simdjson_really_inline void on_end_string(uint8_t *dst) noexcept; }; // class tape_builder template simdjson_warn_unused simdjson_really_inline error_code tape_builder::parse_document( dom_parser_implementation &dom_parser, dom::document &doc) noexcept { dom_parser.doc = &doc; json_iterator iter(dom_parser, STREAMING ? dom_parser.next_structural_index : 0); tape_builder builder(doc); return iter.walk_document(builder); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_primitive(json_iterator &iter, const uint8_t *value) noexcept { return iter.visit_root_primitive(*this, value); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_primitive(json_iterator &iter, const uint8_t *value) noexcept { return iter.visit_primitive(*this, value); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_empty_object(json_iterator &iter) noexcept { return empty_container(iter, internal::tape_type::START_OBJECT, internal::tape_type::END_OBJECT); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_empty_array(json_iterator &iter) noexcept { return empty_container(iter, internal::tape_type::START_ARRAY, internal::tape_type::END_ARRAY); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_document_start(json_iterator &iter) noexcept { start_container(iter); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_object_start(json_iterator &iter) noexcept { start_container(iter); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_array_start(json_iterator &iter) noexcept { start_container(iter); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_object_end(json_iterator &iter) noexcept { return end_container(iter, internal::tape_type::START_OBJECT, internal::tape_type::END_OBJECT); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_array_end(json_iterator &iter) noexcept { return end_container(iter, internal::tape_type::START_ARRAY, internal::tape_type::END_ARRAY); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_document_end(json_iterator &iter) noexcept { constexpr uint32_t start_tape_index = 0; tape.append(start_tape_index, internal::tape_type::ROOT); tape_writer::write(iter.dom_parser.doc->tape[start_tape_index], next_tape_index(iter), internal::tape_type::ROOT); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_key(json_iterator &iter, const uint8_t *key) noexcept { return visit_string(iter, key, true); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::increment_count(json_iterator &iter) noexcept { iter.dom_parser.open_containers[iter.depth].count++; // we have a key value pair in the object at parser.dom_parser.depth - 1 return SUCCESS; } simdjson_really_inline tape_builder::tape_builder(dom::document &doc) noexcept : tape{doc.tape.get()}, current_string_buf_loc{doc.string_buf.get()} {} simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_string(json_iterator &iter, const uint8_t *value, bool key) noexcept { iter.log_value(key ? "key" : "string"); uint8_t *dst = on_start_string(iter); dst = stringparsing::parse_string(value+1, dst); if (dst == nullptr) { iter.log_error("Invalid escape in string"); return STRING_ERROR; } on_end_string(dst); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_string(json_iterator &iter, const uint8_t *value) noexcept { return visit_string(iter, value); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_number(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("number"); return numberparsing::parse_number(value, tape); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_number(json_iterator &iter, const uint8_t *value) noexcept { // // We need to make a copy to make sure that the string is space terminated. // This is not about padding the input, which should already padded up // to len + SIMDJSON_PADDING. However, we have no control at this stage // on how the padding was done. What if the input string was padded with nulls? // It is quite common for an input string to have an extra null character (C string). // We do not want to allow 9\0 (where \0 is the null character) inside a JSON // document, but the string "9\0" by itself is fine. So we make a copy and // pad the input with spaces when we know that there is just one input element. // This copy is relatively expensive, but it will almost never be called in // practice unless you are in the strange scenario where you have many JSON // documents made of single atoms. // std::unique_ptrcopy(new (std::nothrow) uint8_t[iter.remaining_len() + SIMDJSON_PADDING]); if (copy.get() == nullptr) { return MEMALLOC; } std::memcpy(copy.get(), value, iter.remaining_len()); std::memset(copy.get() + iter.remaining_len(), ' ', SIMDJSON_PADDING); error_code error = visit_number(iter, copy.get()); return error; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_true_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("true"); if (!atomparsing::is_valid_true_atom(value)) { return T_ATOM_ERROR; } tape.append(0, internal::tape_type::TRUE_VALUE); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_true_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("true"); if (!atomparsing::is_valid_true_atom(value, iter.remaining_len())) { return T_ATOM_ERROR; } tape.append(0, internal::tape_type::TRUE_VALUE); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_false_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("false"); if (!atomparsing::is_valid_false_atom(value)) { return F_ATOM_ERROR; } tape.append(0, internal::tape_type::FALSE_VALUE); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_false_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("false"); if (!atomparsing::is_valid_false_atom(value, iter.remaining_len())) { return F_ATOM_ERROR; } tape.append(0, internal::tape_type::FALSE_VALUE); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_null_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("null"); if (!atomparsing::is_valid_null_atom(value)) { return N_ATOM_ERROR; } tape.append(0, internal::tape_type::NULL_VALUE); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_null_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("null"); if (!atomparsing::is_valid_null_atom(value, iter.remaining_len())) { return N_ATOM_ERROR; } tape.append(0, internal::tape_type::NULL_VALUE); return SUCCESS; } // private: simdjson_really_inline uint32_t tape_builder::next_tape_index(json_iterator &iter) const noexcept { return uint32_t(tape.next_tape_loc - iter.dom_parser.doc->tape.get()); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::empty_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept { auto start_index = next_tape_index(iter); tape.append(start_index+2, start); tape.append(start_index, end); return SUCCESS; } simdjson_really_inline void tape_builder::start_container(json_iterator &iter) noexcept { iter.dom_parser.open_containers[iter.depth].tape_index = next_tape_index(iter); iter.dom_parser.open_containers[iter.depth].count = 0; tape.skip(); // We don't actually *write* the start element until the end. } simdjson_warn_unused simdjson_really_inline error_code tape_builder::end_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept { // Write the ending tape element, pointing at the start location const uint32_t start_tape_index = iter.dom_parser.open_containers[iter.depth].tape_index; tape.append(start_tape_index, end); // Write the start tape element, pointing at the end location (and including count) // count can overflow if it exceeds 24 bits... so we saturate // the convention being that a cnt of 0xffffff or more is undetermined in value (>= 0xffffff). const uint32_t count = iter.dom_parser.open_containers[iter.depth].count; const uint32_t cntsat = count > 0xFFFFFF ? 0xFFFFFF : count; tape_writer::write(iter.dom_parser.doc->tape[start_tape_index], next_tape_index(iter) | (uint64_t(cntsat) << 32), start); return SUCCESS; } simdjson_really_inline uint8_t *tape_builder::on_start_string(json_iterator &iter) noexcept { // we advance the point, accounting for the fact that we have a NULL termination tape.append(current_string_buf_loc - iter.dom_parser.doc->string_buf.get(), internal::tape_type::STRING); return current_string_buf_loc + sizeof(uint32_t); } simdjson_really_inline void tape_builder::on_end_string(uint8_t *dst) noexcept { uint32_t str_length = uint32_t(dst - (current_string_buf_loc + sizeof(uint32_t))); // TODO check for overflow in case someone has a crazy string (>=4GB?) // But only add the overflow check when the document itself exceeds 4GB // Currently unneeded because we refuse to parse docs larger or equal to 4GB. memcpy(current_string_buf_loc, &str_length, sizeof(uint32_t)); // NULL termination is still handy if you expect all your strings to // be NULL terminated? It comes at a small cost *dst = 0; current_string_buf_loc = dst + 1; } } // namespace stage2 } // unnamed namespace } // namespace haswell } // namespace simdjson /* end file src/generic/stage2/tape_builder.h */ // // Implementation-specific overrides // namespace simdjson { namespace haswell { namespace { namespace stage1 { simdjson_really_inline uint64_t json_string_scanner::find_escaped(uint64_t backslash) { if (!backslash) { uint64_t escaped = prev_escaped; prev_escaped = 0; return escaped; } return find_escaped_branchless(backslash); } } // namespace stage1 } // unnamed namespace simdjson_warn_unused error_code implementation::minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) const noexcept { return haswell::stage1::json_minifier::minify<128>(buf, len, dst, dst_len); } simdjson_warn_unused error_code dom_parser_implementation::stage1(const uint8_t *_buf, size_t _len, stage1_mode streaming) noexcept { this->buf = _buf; this->len = _len; return haswell::stage1::json_structural_indexer::index<128>(_buf, _len, *this, streaming); } simdjson_warn_unused bool implementation::validate_utf8(const char *buf, size_t len) const noexcept { return haswell::stage1::generic_validate_utf8(buf,len); } simdjson_warn_unused error_code dom_parser_implementation::stage2(dom::document &_doc) noexcept { return stage2::tape_builder::parse_document(*this, _doc); } simdjson_warn_unused error_code dom_parser_implementation::stage2_next(dom::document &_doc) noexcept { return stage2::tape_builder::parse_document(*this, _doc); } simdjson_warn_unused error_code dom_parser_implementation::parse(const uint8_t *_buf, size_t _len, dom::document &_doc) noexcept { auto error = stage1(_buf, _len, stage1_mode::regular); if (error) { return error; } return stage2(_doc); } } // namespace haswell } // namespace simdjson /* begin file include/simdjson/haswell/end.h */ SIMDJSON_UNTARGET_HASWELL /* end file include/simdjson/haswell/end.h */ /* end file src/haswell/dom_parser_implementation.cpp */ #endif #if SIMDJSON_IMPLEMENTATION_PPC64 /* begin file src/ppc64/implementation.cpp */ /* begin file include/simdjson/ppc64/begin.h */ // redefining SIMDJSON_IMPLEMENTATION to "ppc64" // #define SIMDJSON_IMPLEMENTATION ppc64 /* end file include/simdjson/ppc64/begin.h */ namespace simdjson { namespace ppc64 { simdjson_warn_unused error_code implementation::create_dom_parser_implementation( size_t capacity, size_t max_depth, std::unique_ptr& dst ) const noexcept { dst.reset( new (std::nothrow) dom_parser_implementation() ); if (!dst) { return MEMALLOC; } if (auto err = dst->set_capacity(capacity)) return err; if (auto err = dst->set_max_depth(max_depth)) return err; return SUCCESS; } } // namespace ppc64 } // namespace simdjson /* begin file include/simdjson/ppc64/end.h */ /* end file include/simdjson/ppc64/end.h */ /* end file src/ppc64/implementation.cpp */ /* begin file src/ppc64/dom_parser_implementation.cpp */ /* begin file include/simdjson/ppc64/begin.h */ // redefining SIMDJSON_IMPLEMENTATION to "ppc64" // #define SIMDJSON_IMPLEMENTATION ppc64 /* end file include/simdjson/ppc64/begin.h */ // // Stage 1 // namespace simdjson { namespace ppc64 { namespace { using namespace simd; struct json_character_block { static simdjson_really_inline json_character_block classify(const simd::simd8x64& in); simdjson_really_inline uint64_t whitespace() const noexcept { return _whitespace; } simdjson_really_inline uint64_t op() const noexcept { return _op; } simdjson_really_inline uint64_t scalar() const noexcept { return ~(op() | whitespace()); } uint64_t _whitespace; uint64_t _op; }; simdjson_really_inline json_character_block json_character_block::classify(const simd::simd8x64& in) { const simd8 table1(16, 0, 0, 0, 0, 0, 0, 0, 0, 8, 12, 1, 2, 9, 0, 0); const simd8 table2(8, 0, 18, 4, 0, 1, 0, 1, 0, 0, 0, 3, 2, 1, 0, 0); simd8x64 v( (in.chunks[0] & 0xf).lookup_16(table1) & (in.chunks[0].shr<4>()).lookup_16(table2), (in.chunks[1] & 0xf).lookup_16(table1) & (in.chunks[1].shr<4>()).lookup_16(table2), (in.chunks[2] & 0xf).lookup_16(table1) & (in.chunks[2].shr<4>()).lookup_16(table2), (in.chunks[3] & 0xf).lookup_16(table1) & (in.chunks[3].shr<4>()).lookup_16(table2) ); uint64_t op = simd8x64( v.chunks[0].any_bits_set(0x7), v.chunks[1].any_bits_set(0x7), v.chunks[2].any_bits_set(0x7), v.chunks[3].any_bits_set(0x7) ).to_bitmask(); uint64_t whitespace = simd8x64( v.chunks[0].any_bits_set(0x18), v.chunks[1].any_bits_set(0x18), v.chunks[2].any_bits_set(0x18), v.chunks[3].any_bits_set(0x18) ).to_bitmask(); return { whitespace, op }; } simdjson_really_inline bool is_ascii(const simd8x64& input) { // careful: 0x80 is not ascii. return input.reduce_or().saturating_sub(0b01111111u).bits_not_set_anywhere(); } simdjson_unused simdjson_really_inline simd8 must_be_continuation(const simd8 prev1, const simd8 prev2, const simd8 prev3) { simd8 is_second_byte = prev1.saturating_sub(0b11000000u-1); // Only 11______ will be > 0 simd8 is_third_byte = prev2.saturating_sub(0b11100000u-1); // Only 111_____ will be > 0 simd8 is_fourth_byte = prev3.saturating_sub(0b11110000u-1); // Only 1111____ will be > 0 // Caller requires a bool (all 1's). All values resulting from the subtraction will be <= 64, so signed comparison is fine. return simd8(is_second_byte | is_third_byte | is_fourth_byte) > int8_t(0); } simdjson_really_inline simd8 must_be_2_3_continuation(const simd8 prev2, const simd8 prev3) { simd8 is_third_byte = prev2.saturating_sub(0b11100000u-1); // Only 111_____ will be > 0 simd8 is_fourth_byte = prev3.saturating_sub(0b11110000u-1); // Only 1111____ will be > 0 // Caller requires a bool (all 1's). All values resulting from the subtraction will be <= 64, so signed comparison is fine. return simd8(is_third_byte | is_fourth_byte) > int8_t(0); } } // unnamed namespace } // namespace ppc64 } // namespace simdjson /* begin file src/generic/stage1/utf8_lookup4_algorithm.h */ namespace simdjson { namespace ppc64 { namespace { namespace utf8_validation { using namespace simd; simdjson_really_inline simd8 check_special_cases(const simd8 input, const simd8 prev1) { // Bit 0 = Too Short (lead byte/ASCII followed by lead byte/ASCII) // Bit 1 = Too Long (ASCII followed by continuation) // Bit 2 = Overlong 3-byte // Bit 4 = Surrogate // Bit 5 = Overlong 2-byte // Bit 7 = Two Continuations constexpr const uint8_t TOO_SHORT = 1<<0; // 11______ 0_______ // 11______ 11______ constexpr const uint8_t TOO_LONG = 1<<1; // 0_______ 10______ constexpr const uint8_t OVERLONG_3 = 1<<2; // 11100000 100_____ constexpr const uint8_t SURROGATE = 1<<4; // 11101101 101_____ constexpr const uint8_t OVERLONG_2 = 1<<5; // 1100000_ 10______ constexpr const uint8_t TWO_CONTS = 1<<7; // 10______ 10______ constexpr const uint8_t TOO_LARGE = 1<<3; // 11110100 1001____ // 11110100 101_____ // 11110101 1001____ // 11110101 101_____ // 1111011_ 1001____ // 1111011_ 101_____ // 11111___ 1001____ // 11111___ 101_____ constexpr const uint8_t TOO_LARGE_1000 = 1<<6; // 11110101 1000____ // 1111011_ 1000____ // 11111___ 1000____ constexpr const uint8_t OVERLONG_4 = 1<<6; // 11110000 1000____ const simd8 byte_1_high = prev1.shr<4>().lookup_16( // 0_______ ________ TOO_LONG, TOO_LONG, TOO_LONG, TOO_LONG, TOO_LONG, TOO_LONG, TOO_LONG, TOO_LONG, // 10______ ________ TWO_CONTS, TWO_CONTS, TWO_CONTS, TWO_CONTS, // 1100____ ________ TOO_SHORT | OVERLONG_2, // 1101____ ________ TOO_SHORT, // 1110____ ________ TOO_SHORT | OVERLONG_3 | SURROGATE, // 1111____ ________ TOO_SHORT | TOO_LARGE | TOO_LARGE_1000 | OVERLONG_4 ); constexpr const uint8_t CARRY = TOO_SHORT | TOO_LONG | TWO_CONTS; // These all have ____ in byte 1 . const simd8 byte_1_low = (prev1 & 0x0F).lookup_16( // ____0000 ________ CARRY | OVERLONG_3 | OVERLONG_2 | OVERLONG_4, // ____0001 ________ CARRY | OVERLONG_2, // ____001_ ________ CARRY, CARRY, // ____0100 ________ CARRY | TOO_LARGE, // ____0101 ________ CARRY | TOO_LARGE | TOO_LARGE_1000, // ____011_ ________ CARRY | TOO_LARGE | TOO_LARGE_1000, CARRY | TOO_LARGE | TOO_LARGE_1000, // ____1___ ________ CARRY | TOO_LARGE | TOO_LARGE_1000, CARRY | TOO_LARGE | TOO_LARGE_1000, CARRY | TOO_LARGE | TOO_LARGE_1000, CARRY | TOO_LARGE | TOO_LARGE_1000, CARRY | TOO_LARGE | TOO_LARGE_1000, // ____1101 ________ CARRY | TOO_LARGE | TOO_LARGE_1000 | SURROGATE, CARRY | TOO_LARGE | TOO_LARGE_1000, CARRY | TOO_LARGE | TOO_LARGE_1000 ); const simd8 byte_2_high = input.shr<4>().lookup_16( // ________ 0_______ TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT, // ________ 1000____ TOO_LONG | OVERLONG_2 | TWO_CONTS | OVERLONG_3 | TOO_LARGE_1000 | OVERLONG_4, // ________ 1001____ TOO_LONG | OVERLONG_2 | TWO_CONTS | OVERLONG_3 | TOO_LARGE, // ________ 101_____ TOO_LONG | OVERLONG_2 | TWO_CONTS | SURROGATE | TOO_LARGE, TOO_LONG | OVERLONG_2 | TWO_CONTS | SURROGATE | TOO_LARGE, // ________ 11______ TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT ); return (byte_1_high & byte_1_low & byte_2_high); } simdjson_really_inline simd8 check_multibyte_lengths(const simd8 input, const simd8 prev_input, const simd8 sc) { simd8 prev2 = input.prev<2>(prev_input); simd8 prev3 = input.prev<3>(prev_input); simd8 must23 = simd8(must_be_2_3_continuation(prev2, prev3)); simd8 must23_80 = must23 & uint8_t(0x80); return must23_80 ^ sc; } // // Return nonzero if there are incomplete multibyte characters at the end of the block: // e.g. if there is a 4-byte character, but it's 3 bytes from the end. // simdjson_really_inline simd8 is_incomplete(const simd8 input) { // If the previous input's last 3 bytes match this, they're too short (they ended at EOF): // ... 1111____ 111_____ 11______ static const uint8_t max_array[32] = { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0b11110000u-1, 0b11100000u-1, 0b11000000u-1 }; const simd8 max_value(&max_array[sizeof(max_array)-sizeof(simd8)]); return input.gt_bits(max_value); } struct utf8_checker { // If this is nonzero, there has been a UTF-8 error. simd8 error; // The last input we received simd8 prev_input_block; // Whether the last input we received was incomplete (used for ASCII fast path) simd8 prev_incomplete; // // Check whether the current bytes are valid UTF-8. // simdjson_really_inline void check_utf8_bytes(const simd8 input, const simd8 prev_input) { // Flip prev1...prev3 so we can easily determine if they are 2+, 3+ or 4+ lead bytes // (2, 3, 4-byte leads become large positive numbers instead of small negative numbers) simd8 prev1 = input.prev<1>(prev_input); simd8 sc = check_special_cases(input, prev1); this->error |= check_multibyte_lengths(input, prev_input, sc); } // The only problem that can happen at EOF is that a multibyte character is too short // or a byte value too large in the last bytes: check_special_cases only checks for bytes // too large in the first of two bytes. simdjson_really_inline void check_eof() { // If the previous block had incomplete UTF-8 characters at the end, an ASCII block can't // possibly finish them. this->error |= this->prev_incomplete; } simdjson_really_inline void check_next_input(const simd8x64& input) { if(simdjson_likely(is_ascii(input))) { this->error |= this->prev_incomplete; } else { // you might think that a for-loop would work, but under Visual Studio, it is not good enough. static_assert((simd8x64::NUM_CHUNKS == 2) || (simd8x64::NUM_CHUNKS == 4), "We support either two or four chunks per 64-byte block."); if(simd8x64::NUM_CHUNKS == 2) { this->check_utf8_bytes(input.chunks[0], this->prev_input_block); this->check_utf8_bytes(input.chunks[1], input.chunks[0]); } else if(simd8x64::NUM_CHUNKS == 4) { this->check_utf8_bytes(input.chunks[0], this->prev_input_block); this->check_utf8_bytes(input.chunks[1], input.chunks[0]); this->check_utf8_bytes(input.chunks[2], input.chunks[1]); this->check_utf8_bytes(input.chunks[3], input.chunks[2]); } this->prev_incomplete = is_incomplete(input.chunks[simd8x64::NUM_CHUNKS-1]); this->prev_input_block = input.chunks[simd8x64::NUM_CHUNKS-1]; } } // do not forget to call check_eof! simdjson_really_inline error_code errors() { return this->error.any_bits_set_anywhere() ? error_code::UTF8_ERROR : error_code::SUCCESS; } }; // struct utf8_checker } // namespace utf8_validation using utf8_validation::utf8_checker; } // unnamed namespace } // namespace ppc64 } // namespace simdjson /* end file src/generic/stage1/utf8_lookup4_algorithm.h */ /* begin file src/generic/stage1/json_structural_indexer.h */ // This file contains the common code every implementation uses in stage1 // It is intended to be included multiple times and compiled multiple times // We assume the file in which it is included already includes // "simdjson/stage1.h" (this simplifies amalgation) /* begin file src/generic/stage1/buf_block_reader.h */ namespace simdjson { namespace ppc64 { namespace { // Walks through a buffer in block-sized increments, loading the last part with spaces template struct buf_block_reader { public: simdjson_really_inline buf_block_reader(const uint8_t *_buf, size_t _len); simdjson_really_inline size_t block_index(); simdjson_really_inline bool has_full_block() const; simdjson_really_inline const uint8_t *full_block() const; /** * Get the last block, padded with spaces. * * There will always be a last block, with at least 1 byte, unless len == 0 (in which case this * function fills the buffer with spaces and returns 0. In particular, if len == STEP_SIZE there * will be 0 full_blocks and 1 remainder block with STEP_SIZE bytes and no spaces for padding. * * @return the number of effective characters in the last block. */ simdjson_really_inline size_t get_remainder(uint8_t *dst) const; simdjson_really_inline void advance(); private: const uint8_t *buf; const size_t len; const size_t lenminusstep; size_t idx; }; // Routines to print masks and text for debugging bitmask operations simdjson_unused static char * format_input_text_64(const uint8_t *text) { static char buf[sizeof(simd8x64) + 1]; for (size_t i=0; i); i++) { buf[i] = int8_t(text[i]) < ' ' ? '_' : int8_t(text[i]); } buf[sizeof(simd8x64)] = '\0'; return buf; } // Routines to print masks and text for debugging bitmask operations simdjson_unused static char * format_input_text(const simd8x64& in) { static char buf[sizeof(simd8x64) + 1]; in.store(reinterpret_cast(buf)); for (size_t i=0; i); i++) { if (buf[i] < ' ') { buf[i] = '_'; } } buf[sizeof(simd8x64)] = '\0'; return buf; } simdjson_unused static char * format_mask(uint64_t mask) { static char buf[sizeof(simd8x64) + 1]; for (size_t i=0; i<64; i++) { buf[i] = (mask & (size_t(1) << i)) ? 'X' : ' '; } buf[64] = '\0'; return buf; } template simdjson_really_inline buf_block_reader::buf_block_reader(const uint8_t *_buf, size_t _len) : buf{_buf}, len{_len}, lenminusstep{len < STEP_SIZE ? 0 : len - STEP_SIZE}, idx{0} {} template simdjson_really_inline size_t buf_block_reader::block_index() { return idx; } template simdjson_really_inline bool buf_block_reader::has_full_block() const { return idx < lenminusstep; } template simdjson_really_inline const uint8_t *buf_block_reader::full_block() const { return &buf[idx]; } template simdjson_really_inline size_t buf_block_reader::get_remainder(uint8_t *dst) const { if(len == idx) { return 0; } // memcpy(dst, null, 0) will trigger an error with some sanitizers std::memset(dst, 0x20, STEP_SIZE); // std::memset STEP_SIZE because it's more efficient to write out 8 or 16 bytes at once. std::memcpy(dst, buf + idx, len - idx); return len - idx; } template simdjson_really_inline void buf_block_reader::advance() { idx += STEP_SIZE; } } // unnamed namespace } // namespace ppc64 } // namespace simdjson /* end file src/generic/stage1/buf_block_reader.h */ /* begin file src/generic/stage1/json_string_scanner.h */ namespace simdjson { namespace ppc64 { namespace { namespace stage1 { struct json_string_block { // We spell out the constructors in the hope of resolving inlining issues with Visual Studio 2017 simdjson_really_inline json_string_block(uint64_t backslash, uint64_t escaped, uint64_t quote, uint64_t in_string) : _backslash(backslash), _escaped(escaped), _quote(quote), _in_string(in_string) {} // Escaped characters (characters following an escape() character) simdjson_really_inline uint64_t escaped() const { return _escaped; } // Escape characters (backslashes that are not escaped--i.e. in \\, includes only the first \) simdjson_really_inline uint64_t escape() const { return _backslash & ~_escaped; } // Real (non-backslashed) quotes simdjson_really_inline uint64_t quote() const { return _quote; } // Start quotes of strings simdjson_really_inline uint64_t string_start() const { return _quote & _in_string; } // End quotes of strings simdjson_really_inline uint64_t string_end() const { return _quote & ~_in_string; } // Only characters inside the string (not including the quotes) simdjson_really_inline uint64_t string_content() const { return _in_string & ~_quote; } // Return a mask of whether the given characters are inside a string (only works on non-quotes) simdjson_really_inline uint64_t non_quote_inside_string(uint64_t mask) const { return mask & _in_string; } // Return a mask of whether the given characters are inside a string (only works on non-quotes) simdjson_really_inline uint64_t non_quote_outside_string(uint64_t mask) const { return mask & ~_in_string; } // Tail of string (everything except the start quote) simdjson_really_inline uint64_t string_tail() const { return _in_string ^ _quote; } // backslash characters uint64_t _backslash; // escaped characters (backslashed--does not include the hex characters after \u) uint64_t _escaped; // real quotes (non-backslashed ones) uint64_t _quote; // string characters (includes start quote but not end quote) uint64_t _in_string; }; // Scans blocks for string characters, storing the state necessary to do so class json_string_scanner { public: simdjson_really_inline json_string_block next(const simd::simd8x64& in); // Returns either UNCLOSED_STRING or SUCCESS simdjson_really_inline error_code finish(); private: // Intended to be defined by the implementation simdjson_really_inline uint64_t find_escaped(uint64_t escape); simdjson_really_inline uint64_t find_escaped_branchless(uint64_t escape); // Whether the last iteration was still inside a string (all 1's = true, all 0's = false). uint64_t prev_in_string = 0ULL; // Whether the first character of the next iteration is escaped. uint64_t prev_escaped = 0ULL; }; // // Finds escaped characters (characters following \). // // Handles runs of backslashes like \\\" and \\\\" correctly (yielding 0101 and 01010, respectively). // // Does this by: // - Shift the escape mask to get potentially escaped characters (characters after backslashes). // - Mask escaped sequences that start on *even* bits with 1010101010 (odd bits are escaped, even bits are not) // - Mask escaped sequences that start on *odd* bits with 0101010101 (even bits are escaped, odd bits are not) // // To distinguish between escaped sequences starting on even/odd bits, it finds the start of all // escape sequences, filters out the ones that start on even bits, and adds that to the mask of // escape sequences. This causes the addition to clear out the sequences starting on odd bits (since // the start bit causes a carry), and leaves even-bit sequences alone. // // Example: // // text | \\\ | \\\"\\\" \\\" \\"\\" | // escape | xxx | xx xxx xxx xx xx | Removed overflow backslash; will | it into follows_escape // odd_starts | x | x x x | escape & ~even_bits & ~follows_escape // even_seq | c| cxxx c xx c | c = carry bit -- will be masked out later // invert_mask | | cxxx c xx c| even_seq << 1 // follows_escape | xx | x xx xxx xxx xx xx | Includes overflow bit // escaped | x | x x x x x x x x | // desired | x | x x x x x x x x | // text | \\\ | \\\"\\\" \\\" \\"\\" | // simdjson_really_inline uint64_t json_string_scanner::find_escaped_branchless(uint64_t backslash) { // If there was overflow, pretend the first character isn't a backslash backslash &= ~prev_escaped; uint64_t follows_escape = backslash << 1 | prev_escaped; // Get sequences starting on even bits by clearing out the odd series using + const uint64_t even_bits = 0x5555555555555555ULL; uint64_t odd_sequence_starts = backslash & ~even_bits & ~follows_escape; uint64_t sequences_starting_on_even_bits; prev_escaped = add_overflow(odd_sequence_starts, backslash, &sequences_starting_on_even_bits); uint64_t invert_mask = sequences_starting_on_even_bits << 1; // The mask we want to return is the *escaped* bits, not escapes. // Mask every other backslashed character as an escaped character // Flip the mask for sequences that start on even bits, to correct them return (even_bits ^ invert_mask) & follows_escape; } // // Return a mask of all string characters plus end quotes. // // prev_escaped is overflow saying whether the next character is escaped. // prev_in_string is overflow saying whether we're still in a string. // // Backslash sequences outside of quotes will be detected in stage 2. // simdjson_really_inline json_string_block json_string_scanner::next(const simd::simd8x64& in) { const uint64_t backslash = in.eq('\\'); const uint64_t escaped = find_escaped(backslash); const uint64_t quote = in.eq('"') & ~escaped; // // prefix_xor flips on bits inside the string (and flips off the end quote). // // Then we xor with prev_in_string: if we were in a string already, its effect is flipped // (characters inside strings are outside, and characters outside strings are inside). // const uint64_t in_string = prefix_xor(quote) ^ prev_in_string; // // Check if we're still in a string at the end of the box so the next block will know // // right shift of a signed value expected to be well-defined and standard // compliant as of C++20, John Regher from Utah U. says this is fine code // prev_in_string = uint64_t(static_cast(in_string) >> 63); // Use ^ to turn the beginning quote off, and the end quote on. // We are returning a function-local object so either we get a move constructor // or we get copy elision. return json_string_block( backslash, escaped, quote, in_string ); } simdjson_really_inline error_code json_string_scanner::finish() { if (prev_in_string) { return UNCLOSED_STRING; } return SUCCESS; } } // namespace stage1 } // unnamed namespace } // namespace ppc64 } // namespace simdjson /* end file src/generic/stage1/json_string_scanner.h */ /* begin file src/generic/stage1/json_scanner.h */ namespace simdjson { namespace ppc64 { namespace { namespace stage1 { /** * A block of scanned json, with information on operators and scalars. * * We seek to identify pseudo-structural characters. Anything that is inside * a string must be omitted (hence & ~_string.string_tail()). * Otherwise, pseudo-structural characters come in two forms. * 1. We have the structural characters ([,],{,},:, comma). The * term 'structural character' is from the JSON RFC. * 2. We have the 'scalar pseudo-structural characters'. * Scalars are quotes, and any character except structural characters and white space. * * To identify the scalar pseudo-structural characters, we must look at what comes * before them: it must be a space, a quote or a structural characters. * Starting with simdjson v0.3, we identify them by * negation: we identify everything that is followed by a non-quote scalar, * and we negate that. Whatever remains must be a 'scalar pseudo-structural character'. */ struct json_block { public: // We spell out the constructors in the hope of resolving inlining issues with Visual Studio 2017 simdjson_really_inline json_block(json_string_block&& string, json_character_block characters, uint64_t follows_potential_nonquote_scalar) : _string(std::move(string)), _characters(characters), _follows_potential_nonquote_scalar(follows_potential_nonquote_scalar) {} simdjson_really_inline json_block(json_string_block string, json_character_block characters, uint64_t follows_potential_nonquote_scalar) : _string(string), _characters(characters), _follows_potential_nonquote_scalar(follows_potential_nonquote_scalar) {} /** * The start of structurals. * In simdjson prior to v0.3, these were called the pseudo-structural characters. **/ simdjson_really_inline uint64_t structural_start() const noexcept { return potential_structural_start() & ~_string.string_tail(); } /** All JSON whitespace (i.e. not in a string) */ simdjson_really_inline uint64_t whitespace() const noexcept { return non_quote_outside_string(_characters.whitespace()); } // Helpers /** Whether the given characters are inside a string (only works on non-quotes) */ simdjson_really_inline uint64_t non_quote_inside_string(uint64_t mask) const noexcept { return _string.non_quote_inside_string(mask); } /** Whether the given characters are outside a string (only works on non-quotes) */ simdjson_really_inline uint64_t non_quote_outside_string(uint64_t mask) const noexcept { return _string.non_quote_outside_string(mask); } // string and escape characters json_string_block _string; // whitespace, structural characters ('operators'), scalars json_character_block _characters; // whether the previous character was a scalar uint64_t _follows_potential_nonquote_scalar; private: // Potential structurals (i.e. disregarding strings) /** * structural elements ([,],{,},:, comma) plus scalar starts like 123, true and "abc". * They may reside inside a string. **/ simdjson_really_inline uint64_t potential_structural_start() const noexcept { return _characters.op() | potential_scalar_start(); } /** * The start of non-operator runs, like 123, true and "abc". * It main reside inside a string. **/ simdjson_really_inline uint64_t potential_scalar_start() const noexcept { // The term "scalar" refers to anything except structural characters and white space // (so letters, numbers, quotes). // Whenever it is preceded by something that is not a structural element ({,},[,],:, ") nor a white-space // then we know that it is irrelevant structurally. return _characters.scalar() & ~follows_potential_scalar(); } /** * Whether the given character is immediately after a non-operator like 123, true. * The characters following a quote are not included. */ simdjson_really_inline uint64_t follows_potential_scalar() const noexcept { // _follows_potential_nonquote_scalar: is defined as marking any character that follows a character // that is not a structural element ({,},[,],:, comma) nor a quote (") and that is not a // white space. // It is understood that within quoted region, anything at all could be marked (irrelevant). return _follows_potential_nonquote_scalar; } }; /** * Scans JSON for important bits: structural characters or 'operators', strings, and scalars. * * The scanner starts by calculating two distinct things: * - string characters (taking \" into account) * - structural characters or 'operators' ([]{},:, comma) * and scalars (runs of non-operators like 123, true and "abc") * * To minimize data dependency (a key component of the scanner's speed), it finds these in parallel: * in particular, the operator/scalar bit will find plenty of things that are actually part of * strings. When we're done, json_block will fuse the two together by masking out tokens that are * part of a string. */ class json_scanner { public: json_scanner() {} simdjson_really_inline json_block next(const simd::simd8x64& in); // Returns either UNCLOSED_STRING or SUCCESS simdjson_really_inline error_code finish(); private: // Whether the last character of the previous iteration is part of a scalar token // (anything except whitespace or a structural character/'operator'). uint64_t prev_scalar = 0ULL; json_string_scanner string_scanner{}; }; // // Check if the current character immediately follows a matching character. // // For example, this checks for quotes with backslashes in front of them: // // const uint64_t backslashed_quote = in.eq('"') & immediately_follows(in.eq('\'), prev_backslash); // simdjson_really_inline uint64_t follows(const uint64_t match, uint64_t &overflow) { const uint64_t result = match << 1 | overflow; overflow = match >> 63; return result; } simdjson_really_inline json_block json_scanner::next(const simd::simd8x64& in) { json_string_block strings = string_scanner.next(in); // identifies the white-space and the structurat characters json_character_block characters = json_character_block::classify(in); // The term "scalar" refers to anything except structural characters and white space // (so letters, numbers, quotes). // We want follows_scalar to mark anything that follows a non-quote scalar (so letters and numbers). // // A terminal quote should either be followed by a structural character (comma, brace, bracket, colon) // or nothing. However, we still want ' "a string"true ' to mark the 't' of 'true' as a potential // pseudo-structural character just like we would if we had ' "a string" true '; otherwise we // may need to add an extra check when parsing strings. // // Performance: there are many ways to skin this cat. const uint64_t nonquote_scalar = characters.scalar() & ~strings.quote(); uint64_t follows_nonquote_scalar = follows(nonquote_scalar, prev_scalar); // We are returning a function-local object so either we get a move constructor // or we get copy elision. return json_block( strings,// strings is a function-local object so either it moves or the copy is elided. characters, follows_nonquote_scalar ); } simdjson_really_inline error_code json_scanner::finish() { return string_scanner.finish(); } } // namespace stage1 } // unnamed namespace } // namespace ppc64 } // namespace simdjson /* end file src/generic/stage1/json_scanner.h */ /* begin file src/generic/stage1/json_minifier.h */ // This file contains the common code every implementation uses in stage1 // It is intended to be included multiple times and compiled multiple times // We assume the file in which it is included already includes // "simdjson/stage1.h" (this simplifies amalgation) namespace simdjson { namespace ppc64 { namespace { namespace stage1 { class json_minifier { public: template static error_code minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) noexcept; private: simdjson_really_inline json_minifier(uint8_t *_dst) : dst{_dst} {} template simdjson_really_inline void step(const uint8_t *block_buf, buf_block_reader &reader) noexcept; simdjson_really_inline void next(const simd::simd8x64& in, const json_block& block); simdjson_really_inline error_code finish(uint8_t *dst_start, size_t &dst_len); json_scanner scanner{}; uint8_t *dst; }; simdjson_really_inline void json_minifier::next(const simd::simd8x64& in, const json_block& block) { uint64_t mask = block.whitespace(); dst += in.compress(mask, dst); } simdjson_really_inline error_code json_minifier::finish(uint8_t *dst_start, size_t &dst_len) { error_code error = scanner.finish(); if (error) { dst_len = 0; return error; } dst_len = dst - dst_start; return SUCCESS; } template<> simdjson_really_inline void json_minifier::step<128>(const uint8_t *block_buf, buf_block_reader<128> &reader) noexcept { simd::simd8x64 in_1(block_buf); simd::simd8x64 in_2(block_buf+64); json_block block_1 = scanner.next(in_1); json_block block_2 = scanner.next(in_2); this->next(in_1, block_1); this->next(in_2, block_2); reader.advance(); } template<> simdjson_really_inline void json_minifier::step<64>(const uint8_t *block_buf, buf_block_reader<64> &reader) noexcept { simd::simd8x64 in_1(block_buf); json_block block_1 = scanner.next(in_1); this->next(block_buf, block_1); reader.advance(); } template error_code json_minifier::minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) noexcept { buf_block_reader reader(buf, len); json_minifier minifier(dst); // Index the first n-1 blocks while (reader.has_full_block()) { minifier.step(reader.full_block(), reader); } // Index the last (remainder) block, padded with spaces uint8_t block[STEP_SIZE]; size_t remaining_bytes = reader.get_remainder(block); if (remaining_bytes > 0) { // We do not want to write directly to the output stream. Rather, we write // to a local buffer (for safety). uint8_t out_block[STEP_SIZE]; uint8_t * const guarded_dst{minifier.dst}; minifier.dst = out_block; minifier.step(block, reader); size_t to_write = minifier.dst - out_block; // In some cases, we could be enticed to consider the padded spaces // as part of the string. This is fine as long as we do not write more // than we consumed. if(to_write > remaining_bytes) { to_write = remaining_bytes; } memcpy(guarded_dst, out_block, to_write); minifier.dst = guarded_dst + to_write; } return minifier.finish(dst, dst_len); } } // namespace stage1 } // unnamed namespace } // namespace ppc64 } // namespace simdjson /* end file src/generic/stage1/json_minifier.h */ /* begin file src/generic/stage1/find_next_document_index.h */ namespace simdjson { namespace ppc64 { namespace { /** * This algorithm is used to quickly identify the last structural position that * makes up a complete document. * * It does this by going backwards and finding the last *document boundary* (a * place where one value follows another without a comma between them). If the * last document (the characters after the boundary) has an equal number of * start and end brackets, it is considered complete. * * Simply put, we iterate over the structural characters, starting from * the end. We consider that we found the end of a JSON document when the * first element of the pair is NOT one of these characters: '{' '[' ':' ',' * and when the second element is NOT one of these characters: '}' ']' ':' ','. * * This simple comparison works most of the time, but it does not cover cases * where the batch's structural indexes contain a perfect amount of documents. * In such a case, we do not have access to the structural index which follows * the last document, therefore, we do not have access to the second element in * the pair, and that means we cannot identify the last document. To fix this * issue, we keep a count of the open and closed curly/square braces we found * while searching for the pair. When we find a pair AND the count of open and * closed curly/square braces is the same, we know that we just passed a * complete document, therefore the last json buffer location is the end of the * batch. */ simdjson_really_inline uint32_t find_next_document_index(dom_parser_implementation &parser) { // Variant: do not count separately, just figure out depth if(parser.n_structural_indexes == 0) { return 0; } auto arr_cnt = 0; auto obj_cnt = 0; for (auto i = parser.n_structural_indexes - 1; i > 0; i--) { auto idxb = parser.structural_indexes[i]; switch (parser.buf[idxb]) { case ':': case ',': continue; case '}': obj_cnt--; continue; case ']': arr_cnt--; continue; case '{': obj_cnt++; break; case '[': arr_cnt++; break; } auto idxa = parser.structural_indexes[i - 1]; switch (parser.buf[idxa]) { case '{': case '[': case ':': case ',': continue; } // Last document is complete, so the next document will appear after! if (!arr_cnt && !obj_cnt) { return parser.n_structural_indexes; } // Last document is incomplete; mark the document at i + 1 as the next one return i; } // If we made it to the end, we want to finish counting to see if we have a full document. switch (parser.buf[parser.structural_indexes[0]]) { case '}': obj_cnt--; break; case ']': arr_cnt--; break; case '{': obj_cnt++; break; case '[': arr_cnt++; break; } if (!arr_cnt && !obj_cnt) { // We have a complete document. return parser.n_structural_indexes; } return 0; } } // unnamed namespace } // namespace ppc64 } // namespace simdjson /* end file src/generic/stage1/find_next_document_index.h */ namespace simdjson { namespace ppc64 { namespace { namespace stage1 { class bit_indexer { public: uint32_t *tail; simdjson_really_inline bit_indexer(uint32_t *index_buf) : tail(index_buf) {} // flatten out values in 'bits' assuming that they are are to have values of idx // plus their position in the bitvector, and store these indexes at // base_ptr[base] incrementing base as we go // will potentially store extra values beyond end of valid bits, so base_ptr // needs to be large enough to handle this simdjson_really_inline void write(uint32_t idx, uint64_t bits) { // In some instances, the next branch is expensive because it is mispredicted. // Unfortunately, in other cases, // it helps tremendously. if (bits == 0) return; #if defined(SIMDJSON_PREFER_REVERSE_BITS) /** * ARM lacks a fast trailing zero instruction, but it has a fast * bit reversal instruction and a fast leading zero instruction. * Thus it may be profitable to reverse the bits (once) and then * to rely on a sequence of instructions that call the leading * zero instruction. * * Performance notes: * The chosen routine is not optimal in terms of data dependency * since zero_leading_bit might require two instructions. However, * it tends to minimize the total number of instructions which is * beneficial. */ uint64_t rev_bits = reverse_bits(bits); int cnt = static_cast(count_ones(bits)); int i = 0; // Do the first 8 all together for (; i<8; i++) { int lz = leading_zeroes(rev_bits); this->tail[i] = static_cast(idx) + lz; rev_bits = zero_leading_bit(rev_bits, lz); } // Do the next 8 all together (we hope in most cases it won't happen at all // and the branch is easily predicted). if (simdjson_unlikely(cnt > 8)) { i = 8; for (; i<16; i++) { int lz = leading_zeroes(rev_bits); this->tail[i] = static_cast(idx) + lz; rev_bits = zero_leading_bit(rev_bits, lz); } // Most files don't have 16+ structurals per block, so we take several basically guaranteed // branch mispredictions here. 16+ structurals per block means either punctuation ({} [] , :) // or the start of a value ("abc" true 123) every four characters. if (simdjson_unlikely(cnt > 16)) { i = 16; while (rev_bits != 0) { int lz = leading_zeroes(rev_bits); this->tail[i++] = static_cast(idx) + lz; rev_bits = zero_leading_bit(rev_bits, lz); } } } this->tail += cnt; #else // SIMDJSON_PREFER_REVERSE_BITS /** * Under recent x64 systems, we often have both a fast trailing zero * instruction and a fast 'clear-lower-bit' instruction so the following * algorithm can be competitive. */ int cnt = static_cast(count_ones(bits)); // Do the first 8 all together for (int i=0; i<8; i++) { this->tail[i] = idx + trailing_zeroes(bits); bits = clear_lowest_bit(bits); } // Do the next 8 all together (we hope in most cases it won't happen at all // and the branch is easily predicted). if (simdjson_unlikely(cnt > 8)) { for (int i=8; i<16; i++) { this->tail[i] = idx + trailing_zeroes(bits); bits = clear_lowest_bit(bits); } // Most files don't have 16+ structurals per block, so we take several basically guaranteed // branch mispredictions here. 16+ structurals per block means either punctuation ({} [] , :) // or the start of a value ("abc" true 123) every four characters. if (simdjson_unlikely(cnt > 16)) { int i = 16; do { this->tail[i] = idx + trailing_zeroes(bits); bits = clear_lowest_bit(bits); i++; } while (i < cnt); } } this->tail += cnt; #endif } }; class json_structural_indexer { public: /** * Find the important bits of JSON in a 128-byte chunk, and add them to structural_indexes. * * @param partial Setting the partial parameter to true allows the find_structural_bits to * tolerate unclosed strings. The caller should still ensure that the input is valid UTF-8. If * you are processing substrings, you may want to call on a function like trimmed_length_safe_utf8. */ template static error_code index(const uint8_t *buf, size_t len, dom_parser_implementation &parser, stage1_mode partial) noexcept; private: simdjson_really_inline json_structural_indexer(uint32_t *structural_indexes); template simdjson_really_inline void step(const uint8_t *block, buf_block_reader &reader) noexcept; simdjson_really_inline void next(const simd::simd8x64& in, const json_block& block, size_t idx); simdjson_really_inline error_code finish(dom_parser_implementation &parser, size_t idx, size_t len, stage1_mode partial); json_scanner scanner{}; utf8_checker checker{}; bit_indexer indexer; uint64_t prev_structurals = 0; uint64_t unescaped_chars_error = 0; }; simdjson_really_inline json_structural_indexer::json_structural_indexer(uint32_t *structural_indexes) : indexer{structural_indexes} {} // Skip the last character if it is partial simdjson_really_inline size_t trim_partial_utf8(const uint8_t *buf, size_t len) { if (simdjson_unlikely(len < 3)) { switch (len) { case 2: if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left if (buf[len-2] >= 0b11100000) { return len-2; } // 3- and 4-byte characters with only 2 bytes left return len; case 1: if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left return len; case 0: return len; } } if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left if (buf[len-2] >= 0b11100000) { return len-2; } // 3- and 4-byte characters with only 1 byte left if (buf[len-3] >= 0b11110000) { return len-3; } // 4-byte characters with only 3 bytes left return len; } // // PERF NOTES: // We pipe 2 inputs through these stages: // 1. Load JSON into registers. This takes a long time and is highly parallelizable, so we load // 2 inputs' worth at once so that by the time step 2 is looking for them input, it's available. // 2. Scan the JSON for critical data: strings, scalars and operators. This is the critical path. // The output of step 1 depends entirely on this information. These functions don't quite use // up enough CPU: the second half of the functions is highly serial, only using 1 execution core // at a time. The second input's scans has some dependency on the first ones finishing it, but // they can make a lot of progress before they need that information. // 3. Step 1 doesn't use enough capacity, so we run some extra stuff while we're waiting for that // to finish: utf-8 checks and generating the output from the last iteration. // // The reason we run 2 inputs at a time, is steps 2 and 3 are *still* not enough to soak up all // available capacity with just one input. Running 2 at a time seems to give the CPU a good enough // workout. // template error_code json_structural_indexer::index(const uint8_t *buf, size_t len, dom_parser_implementation &parser, stage1_mode partial) noexcept { if (simdjson_unlikely(len > parser.capacity())) { return CAPACITY; } // We guard the rest of the code so that we can assume that len > 0 throughout. if (len == 0) { return EMPTY; } if (is_streaming(partial)) { len = trim_partial_utf8(buf, len); // If you end up with an empty window after trimming // the partial UTF-8 bytes, then chances are good that you // have an UTF-8 formatting error. if(len == 0) { return UTF8_ERROR; } } buf_block_reader reader(buf, len); json_structural_indexer indexer(parser.structural_indexes.get()); // Read all but the last block while (reader.has_full_block()) { indexer.step(reader.full_block(), reader); } // Take care of the last block (will always be there unless file is empty which is // not supposed to happen.) uint8_t block[STEP_SIZE]; if (simdjson_unlikely(reader.get_remainder(block) == 0)) { return UNEXPECTED_ERROR; } indexer.step(block, reader); return indexer.finish(parser, reader.block_index(), len, partial); } template<> simdjson_really_inline void json_structural_indexer::step<128>(const uint8_t *block, buf_block_reader<128> &reader) noexcept { simd::simd8x64 in_1(block); simd::simd8x64 in_2(block+64); json_block block_1 = scanner.next(in_1); json_block block_2 = scanner.next(in_2); this->next(in_1, block_1, reader.block_index()); this->next(in_2, block_2, reader.block_index()+64); reader.advance(); } template<> simdjson_really_inline void json_structural_indexer::step<64>(const uint8_t *block, buf_block_reader<64> &reader) noexcept { simd::simd8x64 in_1(block); json_block block_1 = scanner.next(in_1); this->next(in_1, block_1, reader.block_index()); reader.advance(); } simdjson_really_inline void json_structural_indexer::next(const simd::simd8x64& in, const json_block& block, size_t idx) { uint64_t unescaped = in.lteq(0x1F); checker.check_next_input(in); indexer.write(uint32_t(idx-64), prev_structurals); // Output *last* iteration's structurals to the parser prev_structurals = block.structural_start(); unescaped_chars_error |= block.non_quote_inside_string(unescaped); } simdjson_really_inline error_code json_structural_indexer::finish(dom_parser_implementation &parser, size_t idx, size_t len, stage1_mode partial) { // Write out the final iteration's structurals indexer.write(uint32_t(idx-64), prev_structurals); error_code error = scanner.finish(); // We deliberately break down the next expression so that it is // human readable. const bool should_we_exit = is_streaming(partial) ? ((error != SUCCESS) && (error != UNCLOSED_STRING)) // when partial we tolerate UNCLOSED_STRING : (error != SUCCESS); // if partial is false, we must have SUCCESS const bool have_unclosed_string = (error == UNCLOSED_STRING); if (simdjson_unlikely(should_we_exit)) { return error; } if (unescaped_chars_error) { return UNESCAPED_CHARS; } parser.n_structural_indexes = uint32_t(indexer.tail - parser.structural_indexes.get()); /*** * The On Demand API requires special padding. * * This is related to https://github.com/simdjson/simdjson/issues/906 * Basically, we want to make sure that if the parsing continues beyond the last (valid) * structural character, it quickly stops. * Only three structural characters can be repeated without triggering an error in JSON: [,] and }. * We repeat the padding character (at 'len'). We don't know what it is, but if the parsing * continues, then it must be [,] or }. * Suppose it is ] or }. We backtrack to the first character, what could it be that would * not trigger an error? It could be ] or } but no, because you can't start a document that way. * It can't be a comma, a colon or any simple value. So the only way we could continue is * if the repeated character is [. But if so, the document must start with [. But if the document * starts with [, it should end with ]. If we enforce that rule, then we would get * ][[ which is invalid. * * This is illustrated with the test array_iterate_unclosed_error() on the following input: * R"({ "a": [,,)" **/ parser.structural_indexes[parser.n_structural_indexes] = uint32_t(len); // used later in partial == stage1_mode::streaming_final parser.structural_indexes[parser.n_structural_indexes + 1] = uint32_t(len); parser.structural_indexes[parser.n_structural_indexes + 2] = 0; parser.next_structural_index = 0; // a valid JSON file cannot have zero structural indexes - we should have found something if (simdjson_unlikely(parser.n_structural_indexes == 0u)) { return EMPTY; } if (simdjson_unlikely(parser.structural_indexes[parser.n_structural_indexes - 1] > len)) { return UNEXPECTED_ERROR; } if (partial == stage1_mode::streaming_partial) { // If we have an unclosed string, then the last structural // will be the quote and we want to make sure to omit it. if(have_unclosed_string) { parser.n_structural_indexes--; // a valid JSON file cannot have zero structural indexes - we should have found something if (simdjson_unlikely(parser.n_structural_indexes == 0u)) { return CAPACITY; } } // We truncate the input to the end of the last complete document (or zero). auto new_structural_indexes = find_next_document_index(parser); if (new_structural_indexes == 0 && parser.n_structural_indexes > 0) { if(parser.structural_indexes[0] == 0) { // If the buffer is partial and we started at index 0 but the document is // incomplete, it's too big to parse. return CAPACITY; } else { // It is possible that the document could be parsed, we just had a lot // of white space. parser.n_structural_indexes = 0; return EMPTY; } } parser.n_structural_indexes = new_structural_indexes; } else if (partial == stage1_mode::streaming_final) { if(have_unclosed_string) { parser.n_structural_indexes--; } // We truncate the input to the end of the last complete document (or zero). // Because partial == stage1_mode::streaming_final, it means that we may // silently ignore trailing garbage. Though it sounds bad, we do it // deliberately because many people who have streams of JSON documents // will truncate them for processing. E.g., imagine that you are uncompressing // the data from a size file or receiving it in chunks from the network. You // may not know where exactly the last document will be. Meanwhile the // document_stream instances allow people to know the JSON documents they are // parsing (see the iterator.source() method). parser.n_structural_indexes = find_next_document_index(parser); // We store the initial n_structural_indexes so that the client can see // whether we used truncation. If initial_n_structural_indexes == parser.n_structural_indexes, // then this will query parser.structural_indexes[parser.n_structural_indexes] which is len, // otherwise, it will copy some prior index. parser.structural_indexes[parser.n_structural_indexes + 1] = parser.structural_indexes[parser.n_structural_indexes]; // This next line is critical, do not change it unless you understand what you are // doing. parser.structural_indexes[parser.n_structural_indexes] = uint32_t(len); if (simdjson_unlikely(parser.n_structural_indexes == 0u)) { // We tolerate an unclosed string at the very end of the stream. Indeed, users // often load their data in bulk without being careful and they want us to ignore // the trailing garbage. return EMPTY; } } checker.check_eof(); return checker.errors(); } } // namespace stage1 } // unnamed namespace } // namespace ppc64 } // namespace simdjson /* end file src/generic/stage1/json_structural_indexer.h */ /* begin file src/generic/stage1/utf8_validator.h */ namespace simdjson { namespace ppc64 { namespace { namespace stage1 { /** * Validates that the string is actual UTF-8. */ template bool generic_validate_utf8(const uint8_t * input, size_t length) { checker c{}; buf_block_reader<64> reader(input, length); while (reader.has_full_block()) { simd::simd8x64 in(reader.full_block()); c.check_next_input(in); reader.advance(); } uint8_t block[64]{}; reader.get_remainder(block); simd::simd8x64 in(block); c.check_next_input(in); reader.advance(); c.check_eof(); return c.errors() == error_code::SUCCESS; } bool generic_validate_utf8(const char * input, size_t length) { return generic_validate_utf8(reinterpret_cast(input),length); } } // namespace stage1 } // unnamed namespace } // namespace ppc64 } // namespace simdjson /* end file src/generic/stage1/utf8_validator.h */ // // Stage 2 // /* begin file src/generic/stage2/tape_builder.h */ /* begin file src/generic/stage2/json_iterator.h */ /* begin file src/generic/stage2/logger.h */ // This is for an internal-only stage 2 specific logger. // Set LOG_ENABLED = true to log what stage 2 is doing! namespace simdjson { namespace ppc64 { namespace { namespace logger { static constexpr const char * DASHES = "----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------"; #if SIMDJSON_VERBOSE_LOGGING static constexpr const bool LOG_ENABLED = true; #else static constexpr const bool LOG_ENABLED = false; #endif static constexpr const int LOG_EVENT_LEN = 20; static constexpr const int LOG_BUFFER_LEN = 30; static constexpr const int LOG_SMALL_BUFFER_LEN = 10; static constexpr const int LOG_INDEX_LEN = 5; static int log_depth; // Not threadsafe. Log only. // Helper to turn unprintable or newline characters into spaces static simdjson_really_inline char printable_char(char c) { if (c >= 0x20) { return c; } else { return ' '; } } // Print the header and set up log_start static simdjson_really_inline void log_start() { if (LOG_ENABLED) { log_depth = 0; printf("\n"); printf("| %-*s | %-*s | %-*s | %-*s | Detail |\n", LOG_EVENT_LEN, "Event", LOG_BUFFER_LEN, "Buffer", LOG_SMALL_BUFFER_LEN, "Next", 5, "Next#"); printf("|%.*s|%.*s|%.*s|%.*s|--------|\n", LOG_EVENT_LEN+2, DASHES, LOG_BUFFER_LEN+2, DASHES, LOG_SMALL_BUFFER_LEN+2, DASHES, 5+2, DASHES); } } simdjson_unused static simdjson_really_inline void log_string(const char *message) { if (LOG_ENABLED) { printf("%s\n", message); } } // Logs a single line from the stage 2 DOM parser template static simdjson_really_inline void log_line(S &structurals, const char *title_prefix, const char *title, const char *detail) { if (LOG_ENABLED) { printf("| %*s%s%-*s ", log_depth*2, "", title_prefix, LOG_EVENT_LEN - log_depth*2 - int(strlen(title_prefix)), title); auto current_index = structurals.at_beginning() ? nullptr : structurals.next_structural-1; auto next_index = structurals.next_structural; auto current = current_index ? &structurals.buf[*current_index] : reinterpret_cast(" "); auto next = &structurals.buf[*next_index]; { // Print the next N characters in the buffer. printf("| "); // Otherwise, print the characters starting from the buffer position. // Print spaces for unprintable or newline characters. for (int i=0;i simdjson_warn_unused simdjson_really_inline error_code walk_document(V &visitor) noexcept; /** * Create an iterator capable of walking a JSON document. * * The document must have already passed through stage 1. */ simdjson_really_inline json_iterator(dom_parser_implementation &_dom_parser, size_t start_structural_index); /** * Look at the next token. * * Tokens can be strings, numbers, booleans, null, or operators (`[{]},:`)). * * They may include invalid JSON as well (such as `1.2.3` or `ture`). */ simdjson_really_inline const uint8_t *peek() const noexcept; /** * Advance to the next token. * * Tokens can be strings, numbers, booleans, null, or operators (`[{]},:`)). * * They may include invalid JSON as well (such as `1.2.3` or `ture`). */ simdjson_really_inline const uint8_t *advance() noexcept; /** * Get the remaining length of the document, from the start of the current token. */ simdjson_really_inline size_t remaining_len() const noexcept; /** * Check if we are at the end of the document. * * If this is true, there are no more tokens. */ simdjson_really_inline bool at_eof() const noexcept; /** * Check if we are at the beginning of the document. */ simdjson_really_inline bool at_beginning() const noexcept; simdjson_really_inline uint8_t last_structural() const noexcept; /** * Log that a value has been found. * * Set ENABLE_LOGGING=true in logger.h to see logging. */ simdjson_really_inline void log_value(const char *type) const noexcept; /** * Log the start of a multipart value. * * Set ENABLE_LOGGING=true in logger.h to see logging. */ simdjson_really_inline void log_start_value(const char *type) const noexcept; /** * Log the end of a multipart value. * * Set ENABLE_LOGGING=true in logger.h to see logging. */ simdjson_really_inline void log_end_value(const char *type) const noexcept; /** * Log an error. * * Set ENABLE_LOGGING=true in logger.h to see logging. */ simdjson_really_inline void log_error(const char *error) const noexcept; template simdjson_warn_unused simdjson_really_inline error_code visit_root_primitive(V &visitor, const uint8_t *value) noexcept; template simdjson_warn_unused simdjson_really_inline error_code visit_primitive(V &visitor, const uint8_t *value) noexcept; }; template simdjson_warn_unused simdjson_really_inline error_code json_iterator::walk_document(V &visitor) noexcept { logger::log_start(); // // Start the document // if (at_eof()) { return EMPTY; } log_start_value("document"); SIMDJSON_TRY( visitor.visit_document_start(*this) ); // // Read first value // { auto value = advance(); // Make sure the outer object or array is closed before continuing; otherwise, there are ways we // could get into memory corruption. See https://github.com/simdjson/simdjson/issues/906 if (!STREAMING) { switch (*value) { case '{': if (last_structural() != '}') { log_value("starting brace unmatched"); return TAPE_ERROR; }; break; case '[': if (last_structural() != ']') { log_value("starting bracket unmatched"); return TAPE_ERROR; }; break; } } switch (*value) { case '{': if (*peek() == '}') { advance(); log_value("empty object"); SIMDJSON_TRY( visitor.visit_empty_object(*this) ); break; } goto object_begin; case '[': if (*peek() == ']') { advance(); log_value("empty array"); SIMDJSON_TRY( visitor.visit_empty_array(*this) ); break; } goto array_begin; default: SIMDJSON_TRY( visitor.visit_root_primitive(*this, value) ); break; } } goto document_end; // // Object parser states // object_begin: log_start_value("object"); depth++; if (depth >= dom_parser.max_depth()) { log_error("Exceeded max depth!"); return DEPTH_ERROR; } dom_parser.is_array[depth] = false; SIMDJSON_TRY( visitor.visit_object_start(*this) ); { auto key = advance(); if (*key != '"') { log_error("Object does not start with a key"); return TAPE_ERROR; } SIMDJSON_TRY( visitor.increment_count(*this) ); SIMDJSON_TRY( visitor.visit_key(*this, key) ); } object_field: if (simdjson_unlikely( *advance() != ':' )) { log_error("Missing colon after key in object"); return TAPE_ERROR; } { auto value = advance(); switch (*value) { case '{': if (*peek() == '}') { advance(); log_value("empty object"); SIMDJSON_TRY( visitor.visit_empty_object(*this) ); break; } goto object_begin; case '[': if (*peek() == ']') { advance(); log_value("empty array"); SIMDJSON_TRY( visitor.visit_empty_array(*this) ); break; } goto array_begin; default: SIMDJSON_TRY( visitor.visit_primitive(*this, value) ); break; } } object_continue: switch (*advance()) { case ',': SIMDJSON_TRY( visitor.increment_count(*this) ); { auto key = advance(); if (simdjson_unlikely( *key != '"' )) { log_error("Key string missing at beginning of field in object"); return TAPE_ERROR; } SIMDJSON_TRY( visitor.visit_key(*this, key) ); } goto object_field; case '}': log_end_value("object"); SIMDJSON_TRY( visitor.visit_object_end(*this) ); goto scope_end; default: log_error("No comma between object fields"); return TAPE_ERROR; } scope_end: depth--; if (depth == 0) { goto document_end; } if (dom_parser.is_array[depth]) { goto array_continue; } goto object_continue; // // Array parser states // array_begin: log_start_value("array"); depth++; if (depth >= dom_parser.max_depth()) { log_error("Exceeded max depth!"); return DEPTH_ERROR; } dom_parser.is_array[depth] = true; SIMDJSON_TRY( visitor.visit_array_start(*this) ); SIMDJSON_TRY( visitor.increment_count(*this) ); array_value: { auto value = advance(); switch (*value) { case '{': if (*peek() == '}') { advance(); log_value("empty object"); SIMDJSON_TRY( visitor.visit_empty_object(*this) ); break; } goto object_begin; case '[': if (*peek() == ']') { advance(); log_value("empty array"); SIMDJSON_TRY( visitor.visit_empty_array(*this) ); break; } goto array_begin; default: SIMDJSON_TRY( visitor.visit_primitive(*this, value) ); break; } } array_continue: switch (*advance()) { case ',': SIMDJSON_TRY( visitor.increment_count(*this) ); goto array_value; case ']': log_end_value("array"); SIMDJSON_TRY( visitor.visit_array_end(*this) ); goto scope_end; default: log_error("Missing comma between array values"); return TAPE_ERROR; } document_end: log_end_value("document"); SIMDJSON_TRY( visitor.visit_document_end(*this) ); dom_parser.next_structural_index = uint32_t(next_structural - &dom_parser.structural_indexes[0]); // If we didn't make it to the end, it's an error if ( !STREAMING && dom_parser.next_structural_index != dom_parser.n_structural_indexes ) { log_error("More than one JSON value at the root of the document, or extra characters at the end of the JSON!"); return TAPE_ERROR; } return SUCCESS; } // walk_document() simdjson_really_inline json_iterator::json_iterator(dom_parser_implementation &_dom_parser, size_t start_structural_index) : buf{_dom_parser.buf}, next_structural{&_dom_parser.structural_indexes[start_structural_index]}, dom_parser{_dom_parser} { } simdjson_really_inline const uint8_t *json_iterator::peek() const noexcept { return &buf[*(next_structural)]; } simdjson_really_inline const uint8_t *json_iterator::advance() noexcept { return &buf[*(next_structural++)]; } simdjson_really_inline size_t json_iterator::remaining_len() const noexcept { return dom_parser.len - *(next_structural-1); } simdjson_really_inline bool json_iterator::at_eof() const noexcept { return next_structural == &dom_parser.structural_indexes[dom_parser.n_structural_indexes]; } simdjson_really_inline bool json_iterator::at_beginning() const noexcept { return next_structural == dom_parser.structural_indexes.get(); } simdjson_really_inline uint8_t json_iterator::last_structural() const noexcept { return buf[dom_parser.structural_indexes[dom_parser.n_structural_indexes - 1]]; } simdjson_really_inline void json_iterator::log_value(const char *type) const noexcept { logger::log_line(*this, "", type, ""); } simdjson_really_inline void json_iterator::log_start_value(const char *type) const noexcept { logger::log_line(*this, "+", type, ""); if (logger::LOG_ENABLED) { logger::log_depth++; } } simdjson_really_inline void json_iterator::log_end_value(const char *type) const noexcept { if (logger::LOG_ENABLED) { logger::log_depth--; } logger::log_line(*this, "-", type, ""); } simdjson_really_inline void json_iterator::log_error(const char *error) const noexcept { logger::log_line(*this, "", "ERROR", error); } template simdjson_warn_unused simdjson_really_inline error_code json_iterator::visit_root_primitive(V &visitor, const uint8_t *value) noexcept { switch (*value) { case '"': return visitor.visit_root_string(*this, value); case 't': return visitor.visit_root_true_atom(*this, value); case 'f': return visitor.visit_root_false_atom(*this, value); case 'n': return visitor.visit_root_null_atom(*this, value); case '-': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': return visitor.visit_root_number(*this, value); default: log_error("Document starts with a non-value character"); return TAPE_ERROR; } } template simdjson_warn_unused simdjson_really_inline error_code json_iterator::visit_primitive(V &visitor, const uint8_t *value) noexcept { switch (*value) { case '"': return visitor.visit_string(*this, value); case 't': return visitor.visit_true_atom(*this, value); case 'f': return visitor.visit_false_atom(*this, value); case 'n': return visitor.visit_null_atom(*this, value); case '-': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': return visitor.visit_number(*this, value); default: log_error("Non-value found when value was expected!"); return TAPE_ERROR; } } } // namespace stage2 } // unnamed namespace } // namespace ppc64 } // namespace simdjson /* end file src/generic/stage2/json_iterator.h */ /* begin file src/generic/stage2/tape_writer.h */ namespace simdjson { namespace ppc64 { namespace { namespace stage2 { struct tape_writer { /** The next place to write to tape */ uint64_t *next_tape_loc; /** Write a signed 64-bit value to tape. */ simdjson_really_inline void append_s64(int64_t value) noexcept; /** Write an unsigned 64-bit value to tape. */ simdjson_really_inline void append_u64(uint64_t value) noexcept; /** Write a double value to tape. */ simdjson_really_inline void append_double(double value) noexcept; /** * Append a tape entry (an 8-bit type,and 56 bits worth of value). */ simdjson_really_inline void append(uint64_t val, internal::tape_type t) noexcept; /** * Skip the current tape entry without writing. * * Used to skip the start of the container, since we'll come back later to fill it in when the * container ends. */ simdjson_really_inline void skip() noexcept; /** * Skip the number of tape entries necessary to write a large u64 or i64. */ simdjson_really_inline void skip_large_integer() noexcept; /** * Skip the number of tape entries necessary to write a double. */ simdjson_really_inline void skip_double() noexcept; /** * Write a value to a known location on tape. * * Used to go back and write out the start of a container after the container ends. */ simdjson_really_inline static void write(uint64_t &tape_loc, uint64_t val, internal::tape_type t) noexcept; private: /** * Append both the tape entry, and a supplementary value following it. Used for types that need * all 64 bits, such as double and uint64_t. */ template simdjson_really_inline void append2(uint64_t val, T val2, internal::tape_type t) noexcept; }; // struct number_writer simdjson_really_inline void tape_writer::append_s64(int64_t value) noexcept { append2(0, value, internal::tape_type::INT64); } simdjson_really_inline void tape_writer::append_u64(uint64_t value) noexcept { append(0, internal::tape_type::UINT64); *next_tape_loc = value; next_tape_loc++; } /** Write a double value to tape. */ simdjson_really_inline void tape_writer::append_double(double value) noexcept { append2(0, value, internal::tape_type::DOUBLE); } simdjson_really_inline void tape_writer::skip() noexcept { next_tape_loc++; } simdjson_really_inline void tape_writer::skip_large_integer() noexcept { next_tape_loc += 2; } simdjson_really_inline void tape_writer::skip_double() noexcept { next_tape_loc += 2; } simdjson_really_inline void tape_writer::append(uint64_t val, internal::tape_type t) noexcept { *next_tape_loc = val | ((uint64_t(char(t))) << 56); next_tape_loc++; } template simdjson_really_inline void tape_writer::append2(uint64_t val, T val2, internal::tape_type t) noexcept { append(val, t); static_assert(sizeof(val2) == sizeof(*next_tape_loc), "Type is not 64 bits!"); memcpy(next_tape_loc, &val2, sizeof(val2)); next_tape_loc++; } simdjson_really_inline void tape_writer::write(uint64_t &tape_loc, uint64_t val, internal::tape_type t) noexcept { tape_loc = val | ((uint64_t(char(t))) << 56); } } // namespace stage2 } // unnamed namespace } // namespace ppc64 } // namespace simdjson /* end file src/generic/stage2/tape_writer.h */ namespace simdjson { namespace ppc64 { namespace { namespace stage2 { struct tape_builder { template simdjson_warn_unused static simdjson_really_inline error_code parse_document( dom_parser_implementation &dom_parser, dom::document &doc) noexcept; /** Called when a non-empty document starts. */ simdjson_warn_unused simdjson_really_inline error_code visit_document_start(json_iterator &iter) noexcept; /** Called when a non-empty document ends without error. */ simdjson_warn_unused simdjson_really_inline error_code visit_document_end(json_iterator &iter) noexcept; /** Called when a non-empty array starts. */ simdjson_warn_unused simdjson_really_inline error_code visit_array_start(json_iterator &iter) noexcept; /** Called when a non-empty array ends. */ simdjson_warn_unused simdjson_really_inline error_code visit_array_end(json_iterator &iter) noexcept; /** Called when an empty array is found. */ simdjson_warn_unused simdjson_really_inline error_code visit_empty_array(json_iterator &iter) noexcept; /** Called when a non-empty object starts. */ simdjson_warn_unused simdjson_really_inline error_code visit_object_start(json_iterator &iter) noexcept; /** * Called when a key in a field is encountered. * * primitive, visit_object_start, visit_empty_object, visit_array_start, or visit_empty_array * will be called after this with the field value. */ simdjson_warn_unused simdjson_really_inline error_code visit_key(json_iterator &iter, const uint8_t *key) noexcept; /** Called when a non-empty object ends. */ simdjson_warn_unused simdjson_really_inline error_code visit_object_end(json_iterator &iter) noexcept; /** Called when an empty object is found. */ simdjson_warn_unused simdjson_really_inline error_code visit_empty_object(json_iterator &iter) noexcept; /** * Called when a string, number, boolean or null is found. */ simdjson_warn_unused simdjson_really_inline error_code visit_primitive(json_iterator &iter, const uint8_t *value) noexcept; /** * Called when a string, number, boolean or null is found at the top level of a document (i.e. * when there is no array or object and the entire document is a single string, number, boolean or * null. * * This is separate from primitive() because simdjson's normal primitive parsing routines assume * there is at least one more token after the value, which is only true in an array or object. */ simdjson_warn_unused simdjson_really_inline error_code visit_root_primitive(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_string(json_iterator &iter, const uint8_t *value, bool key = false) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_number(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_true_atom(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_false_atom(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_null_atom(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_root_string(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_root_number(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_root_true_atom(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_root_false_atom(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_root_null_atom(json_iterator &iter, const uint8_t *value) noexcept; /** Called each time a new field or element in an array or object is found. */ simdjson_warn_unused simdjson_really_inline error_code increment_count(json_iterator &iter) noexcept; /** Next location to write to tape */ tape_writer tape; private: /** Next write location in the string buf for stage 2 parsing */ uint8_t *current_string_buf_loc; simdjson_really_inline tape_builder(dom::document &doc) noexcept; simdjson_really_inline uint32_t next_tape_index(json_iterator &iter) const noexcept; simdjson_really_inline void start_container(json_iterator &iter) noexcept; simdjson_warn_unused simdjson_really_inline error_code end_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept; simdjson_warn_unused simdjson_really_inline error_code empty_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept; simdjson_really_inline uint8_t *on_start_string(json_iterator &iter) noexcept; simdjson_really_inline void on_end_string(uint8_t *dst) noexcept; }; // class tape_builder template simdjson_warn_unused simdjson_really_inline error_code tape_builder::parse_document( dom_parser_implementation &dom_parser, dom::document &doc) noexcept { dom_parser.doc = &doc; json_iterator iter(dom_parser, STREAMING ? dom_parser.next_structural_index : 0); tape_builder builder(doc); return iter.walk_document(builder); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_primitive(json_iterator &iter, const uint8_t *value) noexcept { return iter.visit_root_primitive(*this, value); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_primitive(json_iterator &iter, const uint8_t *value) noexcept { return iter.visit_primitive(*this, value); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_empty_object(json_iterator &iter) noexcept { return empty_container(iter, internal::tape_type::START_OBJECT, internal::tape_type::END_OBJECT); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_empty_array(json_iterator &iter) noexcept { return empty_container(iter, internal::tape_type::START_ARRAY, internal::tape_type::END_ARRAY); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_document_start(json_iterator &iter) noexcept { start_container(iter); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_object_start(json_iterator &iter) noexcept { start_container(iter); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_array_start(json_iterator &iter) noexcept { start_container(iter); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_object_end(json_iterator &iter) noexcept { return end_container(iter, internal::tape_type::START_OBJECT, internal::tape_type::END_OBJECT); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_array_end(json_iterator &iter) noexcept { return end_container(iter, internal::tape_type::START_ARRAY, internal::tape_type::END_ARRAY); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_document_end(json_iterator &iter) noexcept { constexpr uint32_t start_tape_index = 0; tape.append(start_tape_index, internal::tape_type::ROOT); tape_writer::write(iter.dom_parser.doc->tape[start_tape_index], next_tape_index(iter), internal::tape_type::ROOT); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_key(json_iterator &iter, const uint8_t *key) noexcept { return visit_string(iter, key, true); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::increment_count(json_iterator &iter) noexcept { iter.dom_parser.open_containers[iter.depth].count++; // we have a key value pair in the object at parser.dom_parser.depth - 1 return SUCCESS; } simdjson_really_inline tape_builder::tape_builder(dom::document &doc) noexcept : tape{doc.tape.get()}, current_string_buf_loc{doc.string_buf.get()} {} simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_string(json_iterator &iter, const uint8_t *value, bool key) noexcept { iter.log_value(key ? "key" : "string"); uint8_t *dst = on_start_string(iter); dst = stringparsing::parse_string(value+1, dst); if (dst == nullptr) { iter.log_error("Invalid escape in string"); return STRING_ERROR; } on_end_string(dst); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_string(json_iterator &iter, const uint8_t *value) noexcept { return visit_string(iter, value); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_number(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("number"); return numberparsing::parse_number(value, tape); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_number(json_iterator &iter, const uint8_t *value) noexcept { // // We need to make a copy to make sure that the string is space terminated. // This is not about padding the input, which should already padded up // to len + SIMDJSON_PADDING. However, we have no control at this stage // on how the padding was done. What if the input string was padded with nulls? // It is quite common for an input string to have an extra null character (C string). // We do not want to allow 9\0 (where \0 is the null character) inside a JSON // document, but the string "9\0" by itself is fine. So we make a copy and // pad the input with spaces when we know that there is just one input element. // This copy is relatively expensive, but it will almost never be called in // practice unless you are in the strange scenario where you have many JSON // documents made of single atoms. // std::unique_ptrcopy(new (std::nothrow) uint8_t[iter.remaining_len() + SIMDJSON_PADDING]); if (copy.get() == nullptr) { return MEMALLOC; } std::memcpy(copy.get(), value, iter.remaining_len()); std::memset(copy.get() + iter.remaining_len(), ' ', SIMDJSON_PADDING); error_code error = visit_number(iter, copy.get()); return error; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_true_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("true"); if (!atomparsing::is_valid_true_atom(value)) { return T_ATOM_ERROR; } tape.append(0, internal::tape_type::TRUE_VALUE); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_true_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("true"); if (!atomparsing::is_valid_true_atom(value, iter.remaining_len())) { return T_ATOM_ERROR; } tape.append(0, internal::tape_type::TRUE_VALUE); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_false_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("false"); if (!atomparsing::is_valid_false_atom(value)) { return F_ATOM_ERROR; } tape.append(0, internal::tape_type::FALSE_VALUE); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_false_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("false"); if (!atomparsing::is_valid_false_atom(value, iter.remaining_len())) { return F_ATOM_ERROR; } tape.append(0, internal::tape_type::FALSE_VALUE); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_null_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("null"); if (!atomparsing::is_valid_null_atom(value)) { return N_ATOM_ERROR; } tape.append(0, internal::tape_type::NULL_VALUE); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_null_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("null"); if (!atomparsing::is_valid_null_atom(value, iter.remaining_len())) { return N_ATOM_ERROR; } tape.append(0, internal::tape_type::NULL_VALUE); return SUCCESS; } // private: simdjson_really_inline uint32_t tape_builder::next_tape_index(json_iterator &iter) const noexcept { return uint32_t(tape.next_tape_loc - iter.dom_parser.doc->tape.get()); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::empty_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept { auto start_index = next_tape_index(iter); tape.append(start_index+2, start); tape.append(start_index, end); return SUCCESS; } simdjson_really_inline void tape_builder::start_container(json_iterator &iter) noexcept { iter.dom_parser.open_containers[iter.depth].tape_index = next_tape_index(iter); iter.dom_parser.open_containers[iter.depth].count = 0; tape.skip(); // We don't actually *write* the start element until the end. } simdjson_warn_unused simdjson_really_inline error_code tape_builder::end_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept { // Write the ending tape element, pointing at the start location const uint32_t start_tape_index = iter.dom_parser.open_containers[iter.depth].tape_index; tape.append(start_tape_index, end); // Write the start tape element, pointing at the end location (and including count) // count can overflow if it exceeds 24 bits... so we saturate // the convention being that a cnt of 0xffffff or more is undetermined in value (>= 0xffffff). const uint32_t count = iter.dom_parser.open_containers[iter.depth].count; const uint32_t cntsat = count > 0xFFFFFF ? 0xFFFFFF : count; tape_writer::write(iter.dom_parser.doc->tape[start_tape_index], next_tape_index(iter) | (uint64_t(cntsat) << 32), start); return SUCCESS; } simdjson_really_inline uint8_t *tape_builder::on_start_string(json_iterator &iter) noexcept { // we advance the point, accounting for the fact that we have a NULL termination tape.append(current_string_buf_loc - iter.dom_parser.doc->string_buf.get(), internal::tape_type::STRING); return current_string_buf_loc + sizeof(uint32_t); } simdjson_really_inline void tape_builder::on_end_string(uint8_t *dst) noexcept { uint32_t str_length = uint32_t(dst - (current_string_buf_loc + sizeof(uint32_t))); // TODO check for overflow in case someone has a crazy string (>=4GB?) // But only add the overflow check when the document itself exceeds 4GB // Currently unneeded because we refuse to parse docs larger or equal to 4GB. memcpy(current_string_buf_loc, &str_length, sizeof(uint32_t)); // NULL termination is still handy if you expect all your strings to // be NULL terminated? It comes at a small cost *dst = 0; current_string_buf_loc = dst + 1; } } // namespace stage2 } // unnamed namespace } // namespace ppc64 } // namespace simdjson /* end file src/generic/stage2/tape_builder.h */ // // Implementation-specific overrides // namespace simdjson { namespace ppc64 { namespace { namespace stage1 { simdjson_really_inline uint64_t json_string_scanner::find_escaped(uint64_t backslash) { // On PPC, we don't short-circuit this if there are no backslashes, because the branch gives us no // benefit and therefore makes things worse. // if (!backslash) { uint64_t escaped = prev_escaped; prev_escaped = 0; return escaped; } return find_escaped_branchless(backslash); } } // namespace stage1 } // unnamed namespace simdjson_warn_unused error_code implementation::minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) const noexcept { return ppc64::stage1::json_minifier::minify<64>(buf, len, dst, dst_len); } simdjson_warn_unused error_code dom_parser_implementation::stage1(const uint8_t *_buf, size_t _len, stage1_mode streaming) noexcept { this->buf = _buf; this->len = _len; return ppc64::stage1::json_structural_indexer::index<64>(buf, len, *this, streaming); } simdjson_warn_unused bool implementation::validate_utf8(const char *buf, size_t len) const noexcept { return ppc64::stage1::generic_validate_utf8(buf,len); } simdjson_warn_unused error_code dom_parser_implementation::stage2(dom::document &_doc) noexcept { return stage2::tape_builder::parse_document(*this, _doc); } simdjson_warn_unused error_code dom_parser_implementation::stage2_next(dom::document &_doc) noexcept { return stage2::tape_builder::parse_document(*this, _doc); } simdjson_warn_unused error_code dom_parser_implementation::parse(const uint8_t *_buf, size_t _len, dom::document &_doc) noexcept { auto error = stage1(_buf, _len, stage1_mode::regular); if (error) { return error; } return stage2(_doc); } } // namespace ppc64 } // namespace simdjson /* begin file include/simdjson/ppc64/end.h */ /* end file include/simdjson/ppc64/end.h */ /* end file src/ppc64/dom_parser_implementation.cpp */ #endif #if SIMDJSON_IMPLEMENTATION_WESTMERE /* begin file src/westmere/implementation.cpp */ /* begin file include/simdjson/westmere/begin.h */ // redefining SIMDJSON_IMPLEMENTATION to "westmere" // #define SIMDJSON_IMPLEMENTATION westmere SIMDJSON_TARGET_WESTMERE /* end file include/simdjson/westmere/begin.h */ namespace simdjson { namespace westmere { simdjson_warn_unused error_code implementation::create_dom_parser_implementation( size_t capacity, size_t max_depth, std::unique_ptr& dst ) const noexcept { dst.reset( new (std::nothrow) dom_parser_implementation() ); if (!dst) { return MEMALLOC; } if (auto err = dst->set_capacity(capacity)) return err; if (auto err = dst->set_max_depth(max_depth)) return err; return SUCCESS; } } // namespace westmere } // namespace simdjson /* begin file include/simdjson/westmere/end.h */ SIMDJSON_UNTARGET_WESTMERE /* end file include/simdjson/westmere/end.h */ /* end file src/westmere/implementation.cpp */ /* begin file src/westmere/dom_parser_implementation.cpp */ /* begin file include/simdjson/westmere/begin.h */ // redefining SIMDJSON_IMPLEMENTATION to "westmere" // #define SIMDJSON_IMPLEMENTATION westmere SIMDJSON_TARGET_WESTMERE /* end file include/simdjson/westmere/begin.h */ // // Stage 1 // namespace simdjson { namespace westmere { namespace { using namespace simd; struct json_character_block { static simdjson_really_inline json_character_block classify(const simd::simd8x64& in); simdjson_really_inline uint64_t whitespace() const noexcept { return _whitespace; } simdjson_really_inline uint64_t op() const noexcept { return _op; } simdjson_really_inline uint64_t scalar() const noexcept { return ~(op() | whitespace()); } uint64_t _whitespace; uint64_t _op; }; simdjson_really_inline json_character_block json_character_block::classify(const simd::simd8x64& in) { // These lookups rely on the fact that anything < 127 will match the lower 4 bits, which is why // we can't use the generic lookup_16. auto whitespace_table = simd8::repeat_16(' ', 100, 100, 100, 17, 100, 113, 2, 100, '\t', '\n', 112, 100, '\r', 100, 100); // The 6 operators (:,[]{}) have these values: // // , 2C // : 3A // [ 5B // { 7B // ] 5D // } 7D // // If you use | 0x20 to turn [ and ] into { and }, the lower 4 bits of each character is unique. // We exploit this, using a simd 4-bit lookup to tell us which character match against, and then // match it (against | 0x20). // // To prevent recognizing other characters, everything else gets compared with 0, which cannot // match due to the | 0x20. // // NOTE: Due to the | 0x20, this ALSO treats and (control characters 0C and 1A) like , // and :. This gets caught in stage 2, which checks the actual character to ensure the right // operators are in the right places. const auto op_table = simd8::repeat_16( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ':', '{', // : = 3A, [ = 5B, { = 7B ',', '}', 0, 0 // , = 2C, ] = 5D, } = 7D ); // We compute whitespace and op separately. If the code later only use one or the // other, given the fact that all functions are aggressively inlined, we can // hope that useless computations will be omitted. This is namely case when // minifying (we only need whitespace). const uint64_t whitespace = in.eq({ _mm_shuffle_epi8(whitespace_table, in.chunks[0]), _mm_shuffle_epi8(whitespace_table, in.chunks[1]), _mm_shuffle_epi8(whitespace_table, in.chunks[2]), _mm_shuffle_epi8(whitespace_table, in.chunks[3]) }); // Turn [ and ] into { and } const simd8x64 curlified{ in.chunks[0] | 0x20, in.chunks[1] | 0x20, in.chunks[2] | 0x20, in.chunks[3] | 0x20 }; const uint64_t op = curlified.eq({ _mm_shuffle_epi8(op_table, in.chunks[0]), _mm_shuffle_epi8(op_table, in.chunks[1]), _mm_shuffle_epi8(op_table, in.chunks[2]), _mm_shuffle_epi8(op_table, in.chunks[3]) }); return { whitespace, op }; } simdjson_really_inline bool is_ascii(const simd8x64& input) { return input.reduce_or().is_ascii(); } simdjson_unused simdjson_really_inline simd8 must_be_continuation(const simd8 prev1, const simd8 prev2, const simd8 prev3) { simd8 is_second_byte = prev1.saturating_sub(0b11000000u-1); // Only 11______ will be > 0 simd8 is_third_byte = prev2.saturating_sub(0b11100000u-1); // Only 111_____ will be > 0 simd8 is_fourth_byte = prev3.saturating_sub(0b11110000u-1); // Only 1111____ will be > 0 // Caller requires a bool (all 1's). All values resulting from the subtraction will be <= 64, so signed comparison is fine. return simd8(is_second_byte | is_third_byte | is_fourth_byte) > int8_t(0); } simdjson_really_inline simd8 must_be_2_3_continuation(const simd8 prev2, const simd8 prev3) { simd8 is_third_byte = prev2.saturating_sub(0b11100000u-1); // Only 111_____ will be > 0 simd8 is_fourth_byte = prev3.saturating_sub(0b11110000u-1); // Only 1111____ will be > 0 // Caller requires a bool (all 1's). All values resulting from the subtraction will be <= 64, so signed comparison is fine. return simd8(is_third_byte | is_fourth_byte) > int8_t(0); } } // unnamed namespace } // namespace westmere } // namespace simdjson /* begin file src/generic/stage1/utf8_lookup4_algorithm.h */ namespace simdjson { namespace westmere { namespace { namespace utf8_validation { using namespace simd; simdjson_really_inline simd8 check_special_cases(const simd8 input, const simd8 prev1) { // Bit 0 = Too Short (lead byte/ASCII followed by lead byte/ASCII) // Bit 1 = Too Long (ASCII followed by continuation) // Bit 2 = Overlong 3-byte // Bit 4 = Surrogate // Bit 5 = Overlong 2-byte // Bit 7 = Two Continuations constexpr const uint8_t TOO_SHORT = 1<<0; // 11______ 0_______ // 11______ 11______ constexpr const uint8_t TOO_LONG = 1<<1; // 0_______ 10______ constexpr const uint8_t OVERLONG_3 = 1<<2; // 11100000 100_____ constexpr const uint8_t SURROGATE = 1<<4; // 11101101 101_____ constexpr const uint8_t OVERLONG_2 = 1<<5; // 1100000_ 10______ constexpr const uint8_t TWO_CONTS = 1<<7; // 10______ 10______ constexpr const uint8_t TOO_LARGE = 1<<3; // 11110100 1001____ // 11110100 101_____ // 11110101 1001____ // 11110101 101_____ // 1111011_ 1001____ // 1111011_ 101_____ // 11111___ 1001____ // 11111___ 101_____ constexpr const uint8_t TOO_LARGE_1000 = 1<<6; // 11110101 1000____ // 1111011_ 1000____ // 11111___ 1000____ constexpr const uint8_t OVERLONG_4 = 1<<6; // 11110000 1000____ const simd8 byte_1_high = prev1.shr<4>().lookup_16( // 0_______ ________ TOO_LONG, TOO_LONG, TOO_LONG, TOO_LONG, TOO_LONG, TOO_LONG, TOO_LONG, TOO_LONG, // 10______ ________ TWO_CONTS, TWO_CONTS, TWO_CONTS, TWO_CONTS, // 1100____ ________ TOO_SHORT | OVERLONG_2, // 1101____ ________ TOO_SHORT, // 1110____ ________ TOO_SHORT | OVERLONG_3 | SURROGATE, // 1111____ ________ TOO_SHORT | TOO_LARGE | TOO_LARGE_1000 | OVERLONG_4 ); constexpr const uint8_t CARRY = TOO_SHORT | TOO_LONG | TWO_CONTS; // These all have ____ in byte 1 . const simd8 byte_1_low = (prev1 & 0x0F).lookup_16( // ____0000 ________ CARRY | OVERLONG_3 | OVERLONG_2 | OVERLONG_4, // ____0001 ________ CARRY | OVERLONG_2, // ____001_ ________ CARRY, CARRY, // ____0100 ________ CARRY | TOO_LARGE, // ____0101 ________ CARRY | TOO_LARGE | TOO_LARGE_1000, // ____011_ ________ CARRY | TOO_LARGE | TOO_LARGE_1000, CARRY | TOO_LARGE | TOO_LARGE_1000, // ____1___ ________ CARRY | TOO_LARGE | TOO_LARGE_1000, CARRY | TOO_LARGE | TOO_LARGE_1000, CARRY | TOO_LARGE | TOO_LARGE_1000, CARRY | TOO_LARGE | TOO_LARGE_1000, CARRY | TOO_LARGE | TOO_LARGE_1000, // ____1101 ________ CARRY | TOO_LARGE | TOO_LARGE_1000 | SURROGATE, CARRY | TOO_LARGE | TOO_LARGE_1000, CARRY | TOO_LARGE | TOO_LARGE_1000 ); const simd8 byte_2_high = input.shr<4>().lookup_16( // ________ 0_______ TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT, // ________ 1000____ TOO_LONG | OVERLONG_2 | TWO_CONTS | OVERLONG_3 | TOO_LARGE_1000 | OVERLONG_4, // ________ 1001____ TOO_LONG | OVERLONG_2 | TWO_CONTS | OVERLONG_3 | TOO_LARGE, // ________ 101_____ TOO_LONG | OVERLONG_2 | TWO_CONTS | SURROGATE | TOO_LARGE, TOO_LONG | OVERLONG_2 | TWO_CONTS | SURROGATE | TOO_LARGE, // ________ 11______ TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT ); return (byte_1_high & byte_1_low & byte_2_high); } simdjson_really_inline simd8 check_multibyte_lengths(const simd8 input, const simd8 prev_input, const simd8 sc) { simd8 prev2 = input.prev<2>(prev_input); simd8 prev3 = input.prev<3>(prev_input); simd8 must23 = simd8(must_be_2_3_continuation(prev2, prev3)); simd8 must23_80 = must23 & uint8_t(0x80); return must23_80 ^ sc; } // // Return nonzero if there are incomplete multibyte characters at the end of the block: // e.g. if there is a 4-byte character, but it's 3 bytes from the end. // simdjson_really_inline simd8 is_incomplete(const simd8 input) { // If the previous input's last 3 bytes match this, they're too short (they ended at EOF): // ... 1111____ 111_____ 11______ static const uint8_t max_array[32] = { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0b11110000u-1, 0b11100000u-1, 0b11000000u-1 }; const simd8 max_value(&max_array[sizeof(max_array)-sizeof(simd8)]); return input.gt_bits(max_value); } struct utf8_checker { // If this is nonzero, there has been a UTF-8 error. simd8 error; // The last input we received simd8 prev_input_block; // Whether the last input we received was incomplete (used for ASCII fast path) simd8 prev_incomplete; // // Check whether the current bytes are valid UTF-8. // simdjson_really_inline void check_utf8_bytes(const simd8 input, const simd8 prev_input) { // Flip prev1...prev3 so we can easily determine if they are 2+, 3+ or 4+ lead bytes // (2, 3, 4-byte leads become large positive numbers instead of small negative numbers) simd8 prev1 = input.prev<1>(prev_input); simd8 sc = check_special_cases(input, prev1); this->error |= check_multibyte_lengths(input, prev_input, sc); } // The only problem that can happen at EOF is that a multibyte character is too short // or a byte value too large in the last bytes: check_special_cases only checks for bytes // too large in the first of two bytes. simdjson_really_inline void check_eof() { // If the previous block had incomplete UTF-8 characters at the end, an ASCII block can't // possibly finish them. this->error |= this->prev_incomplete; } simdjson_really_inline void check_next_input(const simd8x64& input) { if(simdjson_likely(is_ascii(input))) { this->error |= this->prev_incomplete; } else { // you might think that a for-loop would work, but under Visual Studio, it is not good enough. static_assert((simd8x64::NUM_CHUNKS == 2) || (simd8x64::NUM_CHUNKS == 4), "We support either two or four chunks per 64-byte block."); if(simd8x64::NUM_CHUNKS == 2) { this->check_utf8_bytes(input.chunks[0], this->prev_input_block); this->check_utf8_bytes(input.chunks[1], input.chunks[0]); } else if(simd8x64::NUM_CHUNKS == 4) { this->check_utf8_bytes(input.chunks[0], this->prev_input_block); this->check_utf8_bytes(input.chunks[1], input.chunks[0]); this->check_utf8_bytes(input.chunks[2], input.chunks[1]); this->check_utf8_bytes(input.chunks[3], input.chunks[2]); } this->prev_incomplete = is_incomplete(input.chunks[simd8x64::NUM_CHUNKS-1]); this->prev_input_block = input.chunks[simd8x64::NUM_CHUNKS-1]; } } // do not forget to call check_eof! simdjson_really_inline error_code errors() { return this->error.any_bits_set_anywhere() ? error_code::UTF8_ERROR : error_code::SUCCESS; } }; // struct utf8_checker } // namespace utf8_validation using utf8_validation::utf8_checker; } // unnamed namespace } // namespace westmere } // namespace simdjson /* end file src/generic/stage1/utf8_lookup4_algorithm.h */ /* begin file src/generic/stage1/json_structural_indexer.h */ // This file contains the common code every implementation uses in stage1 // It is intended to be included multiple times and compiled multiple times // We assume the file in which it is included already includes // "simdjson/stage1.h" (this simplifies amalgation) /* begin file src/generic/stage1/buf_block_reader.h */ namespace simdjson { namespace westmere { namespace { // Walks through a buffer in block-sized increments, loading the last part with spaces template struct buf_block_reader { public: simdjson_really_inline buf_block_reader(const uint8_t *_buf, size_t _len); simdjson_really_inline size_t block_index(); simdjson_really_inline bool has_full_block() const; simdjson_really_inline const uint8_t *full_block() const; /** * Get the last block, padded with spaces. * * There will always be a last block, with at least 1 byte, unless len == 0 (in which case this * function fills the buffer with spaces and returns 0. In particular, if len == STEP_SIZE there * will be 0 full_blocks and 1 remainder block with STEP_SIZE bytes and no spaces for padding. * * @return the number of effective characters in the last block. */ simdjson_really_inline size_t get_remainder(uint8_t *dst) const; simdjson_really_inline void advance(); private: const uint8_t *buf; const size_t len; const size_t lenminusstep; size_t idx; }; // Routines to print masks and text for debugging bitmask operations simdjson_unused static char * format_input_text_64(const uint8_t *text) { static char buf[sizeof(simd8x64) + 1]; for (size_t i=0; i); i++) { buf[i] = int8_t(text[i]) < ' ' ? '_' : int8_t(text[i]); } buf[sizeof(simd8x64)] = '\0'; return buf; } // Routines to print masks and text for debugging bitmask operations simdjson_unused static char * format_input_text(const simd8x64& in) { static char buf[sizeof(simd8x64) + 1]; in.store(reinterpret_cast(buf)); for (size_t i=0; i); i++) { if (buf[i] < ' ') { buf[i] = '_'; } } buf[sizeof(simd8x64)] = '\0'; return buf; } simdjson_unused static char * format_mask(uint64_t mask) { static char buf[sizeof(simd8x64) + 1]; for (size_t i=0; i<64; i++) { buf[i] = (mask & (size_t(1) << i)) ? 'X' : ' '; } buf[64] = '\0'; return buf; } template simdjson_really_inline buf_block_reader::buf_block_reader(const uint8_t *_buf, size_t _len) : buf{_buf}, len{_len}, lenminusstep{len < STEP_SIZE ? 0 : len - STEP_SIZE}, idx{0} {} template simdjson_really_inline size_t buf_block_reader::block_index() { return idx; } template simdjson_really_inline bool buf_block_reader::has_full_block() const { return idx < lenminusstep; } template simdjson_really_inline const uint8_t *buf_block_reader::full_block() const { return &buf[idx]; } template simdjson_really_inline size_t buf_block_reader::get_remainder(uint8_t *dst) const { if(len == idx) { return 0; } // memcpy(dst, null, 0) will trigger an error with some sanitizers std::memset(dst, 0x20, STEP_SIZE); // std::memset STEP_SIZE because it's more efficient to write out 8 or 16 bytes at once. std::memcpy(dst, buf + idx, len - idx); return len - idx; } template simdjson_really_inline void buf_block_reader::advance() { idx += STEP_SIZE; } } // unnamed namespace } // namespace westmere } // namespace simdjson /* end file src/generic/stage1/buf_block_reader.h */ /* begin file src/generic/stage1/json_string_scanner.h */ namespace simdjson { namespace westmere { namespace { namespace stage1 { struct json_string_block { // We spell out the constructors in the hope of resolving inlining issues with Visual Studio 2017 simdjson_really_inline json_string_block(uint64_t backslash, uint64_t escaped, uint64_t quote, uint64_t in_string) : _backslash(backslash), _escaped(escaped), _quote(quote), _in_string(in_string) {} // Escaped characters (characters following an escape() character) simdjson_really_inline uint64_t escaped() const { return _escaped; } // Escape characters (backslashes that are not escaped--i.e. in \\, includes only the first \) simdjson_really_inline uint64_t escape() const { return _backslash & ~_escaped; } // Real (non-backslashed) quotes simdjson_really_inline uint64_t quote() const { return _quote; } // Start quotes of strings simdjson_really_inline uint64_t string_start() const { return _quote & _in_string; } // End quotes of strings simdjson_really_inline uint64_t string_end() const { return _quote & ~_in_string; } // Only characters inside the string (not including the quotes) simdjson_really_inline uint64_t string_content() const { return _in_string & ~_quote; } // Return a mask of whether the given characters are inside a string (only works on non-quotes) simdjson_really_inline uint64_t non_quote_inside_string(uint64_t mask) const { return mask & _in_string; } // Return a mask of whether the given characters are inside a string (only works on non-quotes) simdjson_really_inline uint64_t non_quote_outside_string(uint64_t mask) const { return mask & ~_in_string; } // Tail of string (everything except the start quote) simdjson_really_inline uint64_t string_tail() const { return _in_string ^ _quote; } // backslash characters uint64_t _backslash; // escaped characters (backslashed--does not include the hex characters after \u) uint64_t _escaped; // real quotes (non-backslashed ones) uint64_t _quote; // string characters (includes start quote but not end quote) uint64_t _in_string; }; // Scans blocks for string characters, storing the state necessary to do so class json_string_scanner { public: simdjson_really_inline json_string_block next(const simd::simd8x64& in); // Returns either UNCLOSED_STRING or SUCCESS simdjson_really_inline error_code finish(); private: // Intended to be defined by the implementation simdjson_really_inline uint64_t find_escaped(uint64_t escape); simdjson_really_inline uint64_t find_escaped_branchless(uint64_t escape); // Whether the last iteration was still inside a string (all 1's = true, all 0's = false). uint64_t prev_in_string = 0ULL; // Whether the first character of the next iteration is escaped. uint64_t prev_escaped = 0ULL; }; // // Finds escaped characters (characters following \). // // Handles runs of backslashes like \\\" and \\\\" correctly (yielding 0101 and 01010, respectively). // // Does this by: // - Shift the escape mask to get potentially escaped characters (characters after backslashes). // - Mask escaped sequences that start on *even* bits with 1010101010 (odd bits are escaped, even bits are not) // - Mask escaped sequences that start on *odd* bits with 0101010101 (even bits are escaped, odd bits are not) // // To distinguish between escaped sequences starting on even/odd bits, it finds the start of all // escape sequences, filters out the ones that start on even bits, and adds that to the mask of // escape sequences. This causes the addition to clear out the sequences starting on odd bits (since // the start bit causes a carry), and leaves even-bit sequences alone. // // Example: // // text | \\\ | \\\"\\\" \\\" \\"\\" | // escape | xxx | xx xxx xxx xx xx | Removed overflow backslash; will | it into follows_escape // odd_starts | x | x x x | escape & ~even_bits & ~follows_escape // even_seq | c| cxxx c xx c | c = carry bit -- will be masked out later // invert_mask | | cxxx c xx c| even_seq << 1 // follows_escape | xx | x xx xxx xxx xx xx | Includes overflow bit // escaped | x | x x x x x x x x | // desired | x | x x x x x x x x | // text | \\\ | \\\"\\\" \\\" \\"\\" | // simdjson_really_inline uint64_t json_string_scanner::find_escaped_branchless(uint64_t backslash) { // If there was overflow, pretend the first character isn't a backslash backslash &= ~prev_escaped; uint64_t follows_escape = backslash << 1 | prev_escaped; // Get sequences starting on even bits by clearing out the odd series using + const uint64_t even_bits = 0x5555555555555555ULL; uint64_t odd_sequence_starts = backslash & ~even_bits & ~follows_escape; uint64_t sequences_starting_on_even_bits; prev_escaped = add_overflow(odd_sequence_starts, backslash, &sequences_starting_on_even_bits); uint64_t invert_mask = sequences_starting_on_even_bits << 1; // The mask we want to return is the *escaped* bits, not escapes. // Mask every other backslashed character as an escaped character // Flip the mask for sequences that start on even bits, to correct them return (even_bits ^ invert_mask) & follows_escape; } // // Return a mask of all string characters plus end quotes. // // prev_escaped is overflow saying whether the next character is escaped. // prev_in_string is overflow saying whether we're still in a string. // // Backslash sequences outside of quotes will be detected in stage 2. // simdjson_really_inline json_string_block json_string_scanner::next(const simd::simd8x64& in) { const uint64_t backslash = in.eq('\\'); const uint64_t escaped = find_escaped(backslash); const uint64_t quote = in.eq('"') & ~escaped; // // prefix_xor flips on bits inside the string (and flips off the end quote). // // Then we xor with prev_in_string: if we were in a string already, its effect is flipped // (characters inside strings are outside, and characters outside strings are inside). // const uint64_t in_string = prefix_xor(quote) ^ prev_in_string; // // Check if we're still in a string at the end of the box so the next block will know // // right shift of a signed value expected to be well-defined and standard // compliant as of C++20, John Regher from Utah U. says this is fine code // prev_in_string = uint64_t(static_cast(in_string) >> 63); // Use ^ to turn the beginning quote off, and the end quote on. // We are returning a function-local object so either we get a move constructor // or we get copy elision. return json_string_block( backslash, escaped, quote, in_string ); } simdjson_really_inline error_code json_string_scanner::finish() { if (prev_in_string) { return UNCLOSED_STRING; } return SUCCESS; } } // namespace stage1 } // unnamed namespace } // namespace westmere } // namespace simdjson /* end file src/generic/stage1/json_string_scanner.h */ /* begin file src/generic/stage1/json_scanner.h */ namespace simdjson { namespace westmere { namespace { namespace stage1 { /** * A block of scanned json, with information on operators and scalars. * * We seek to identify pseudo-structural characters. Anything that is inside * a string must be omitted (hence & ~_string.string_tail()). * Otherwise, pseudo-structural characters come in two forms. * 1. We have the structural characters ([,],{,},:, comma). The * term 'structural character' is from the JSON RFC. * 2. We have the 'scalar pseudo-structural characters'. * Scalars are quotes, and any character except structural characters and white space. * * To identify the scalar pseudo-structural characters, we must look at what comes * before them: it must be a space, a quote or a structural characters. * Starting with simdjson v0.3, we identify them by * negation: we identify everything that is followed by a non-quote scalar, * and we negate that. Whatever remains must be a 'scalar pseudo-structural character'. */ struct json_block { public: // We spell out the constructors in the hope of resolving inlining issues with Visual Studio 2017 simdjson_really_inline json_block(json_string_block&& string, json_character_block characters, uint64_t follows_potential_nonquote_scalar) : _string(std::move(string)), _characters(characters), _follows_potential_nonquote_scalar(follows_potential_nonquote_scalar) {} simdjson_really_inline json_block(json_string_block string, json_character_block characters, uint64_t follows_potential_nonquote_scalar) : _string(string), _characters(characters), _follows_potential_nonquote_scalar(follows_potential_nonquote_scalar) {} /** * The start of structurals. * In simdjson prior to v0.3, these were called the pseudo-structural characters. **/ simdjson_really_inline uint64_t structural_start() const noexcept { return potential_structural_start() & ~_string.string_tail(); } /** All JSON whitespace (i.e. not in a string) */ simdjson_really_inline uint64_t whitespace() const noexcept { return non_quote_outside_string(_characters.whitespace()); } // Helpers /** Whether the given characters are inside a string (only works on non-quotes) */ simdjson_really_inline uint64_t non_quote_inside_string(uint64_t mask) const noexcept { return _string.non_quote_inside_string(mask); } /** Whether the given characters are outside a string (only works on non-quotes) */ simdjson_really_inline uint64_t non_quote_outside_string(uint64_t mask) const noexcept { return _string.non_quote_outside_string(mask); } // string and escape characters json_string_block _string; // whitespace, structural characters ('operators'), scalars json_character_block _characters; // whether the previous character was a scalar uint64_t _follows_potential_nonquote_scalar; private: // Potential structurals (i.e. disregarding strings) /** * structural elements ([,],{,},:, comma) plus scalar starts like 123, true and "abc". * They may reside inside a string. **/ simdjson_really_inline uint64_t potential_structural_start() const noexcept { return _characters.op() | potential_scalar_start(); } /** * The start of non-operator runs, like 123, true and "abc". * It main reside inside a string. **/ simdjson_really_inline uint64_t potential_scalar_start() const noexcept { // The term "scalar" refers to anything except structural characters and white space // (so letters, numbers, quotes). // Whenever it is preceded by something that is not a structural element ({,},[,],:, ") nor a white-space // then we know that it is irrelevant structurally. return _characters.scalar() & ~follows_potential_scalar(); } /** * Whether the given character is immediately after a non-operator like 123, true. * The characters following a quote are not included. */ simdjson_really_inline uint64_t follows_potential_scalar() const noexcept { // _follows_potential_nonquote_scalar: is defined as marking any character that follows a character // that is not a structural element ({,},[,],:, comma) nor a quote (") and that is not a // white space. // It is understood that within quoted region, anything at all could be marked (irrelevant). return _follows_potential_nonquote_scalar; } }; /** * Scans JSON for important bits: structural characters or 'operators', strings, and scalars. * * The scanner starts by calculating two distinct things: * - string characters (taking \" into account) * - structural characters or 'operators' ([]{},:, comma) * and scalars (runs of non-operators like 123, true and "abc") * * To minimize data dependency (a key component of the scanner's speed), it finds these in parallel: * in particular, the operator/scalar bit will find plenty of things that are actually part of * strings. When we're done, json_block will fuse the two together by masking out tokens that are * part of a string. */ class json_scanner { public: json_scanner() {} simdjson_really_inline json_block next(const simd::simd8x64& in); // Returns either UNCLOSED_STRING or SUCCESS simdjson_really_inline error_code finish(); private: // Whether the last character of the previous iteration is part of a scalar token // (anything except whitespace or a structural character/'operator'). uint64_t prev_scalar = 0ULL; json_string_scanner string_scanner{}; }; // // Check if the current character immediately follows a matching character. // // For example, this checks for quotes with backslashes in front of them: // // const uint64_t backslashed_quote = in.eq('"') & immediately_follows(in.eq('\'), prev_backslash); // simdjson_really_inline uint64_t follows(const uint64_t match, uint64_t &overflow) { const uint64_t result = match << 1 | overflow; overflow = match >> 63; return result; } simdjson_really_inline json_block json_scanner::next(const simd::simd8x64& in) { json_string_block strings = string_scanner.next(in); // identifies the white-space and the structurat characters json_character_block characters = json_character_block::classify(in); // The term "scalar" refers to anything except structural characters and white space // (so letters, numbers, quotes). // We want follows_scalar to mark anything that follows a non-quote scalar (so letters and numbers). // // A terminal quote should either be followed by a structural character (comma, brace, bracket, colon) // or nothing. However, we still want ' "a string"true ' to mark the 't' of 'true' as a potential // pseudo-structural character just like we would if we had ' "a string" true '; otherwise we // may need to add an extra check when parsing strings. // // Performance: there are many ways to skin this cat. const uint64_t nonquote_scalar = characters.scalar() & ~strings.quote(); uint64_t follows_nonquote_scalar = follows(nonquote_scalar, prev_scalar); // We are returning a function-local object so either we get a move constructor // or we get copy elision. return json_block( strings,// strings is a function-local object so either it moves or the copy is elided. characters, follows_nonquote_scalar ); } simdjson_really_inline error_code json_scanner::finish() { return string_scanner.finish(); } } // namespace stage1 } // unnamed namespace } // namespace westmere } // namespace simdjson /* end file src/generic/stage1/json_scanner.h */ /* begin file src/generic/stage1/json_minifier.h */ // This file contains the common code every implementation uses in stage1 // It is intended to be included multiple times and compiled multiple times // We assume the file in which it is included already includes // "simdjson/stage1.h" (this simplifies amalgation) namespace simdjson { namespace westmere { namespace { namespace stage1 { class json_minifier { public: template static error_code minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) noexcept; private: simdjson_really_inline json_minifier(uint8_t *_dst) : dst{_dst} {} template simdjson_really_inline void step(const uint8_t *block_buf, buf_block_reader &reader) noexcept; simdjson_really_inline void next(const simd::simd8x64& in, const json_block& block); simdjson_really_inline error_code finish(uint8_t *dst_start, size_t &dst_len); json_scanner scanner{}; uint8_t *dst; }; simdjson_really_inline void json_minifier::next(const simd::simd8x64& in, const json_block& block) { uint64_t mask = block.whitespace(); dst += in.compress(mask, dst); } simdjson_really_inline error_code json_minifier::finish(uint8_t *dst_start, size_t &dst_len) { error_code error = scanner.finish(); if (error) { dst_len = 0; return error; } dst_len = dst - dst_start; return SUCCESS; } template<> simdjson_really_inline void json_minifier::step<128>(const uint8_t *block_buf, buf_block_reader<128> &reader) noexcept { simd::simd8x64 in_1(block_buf); simd::simd8x64 in_2(block_buf+64); json_block block_1 = scanner.next(in_1); json_block block_2 = scanner.next(in_2); this->next(in_1, block_1); this->next(in_2, block_2); reader.advance(); } template<> simdjson_really_inline void json_minifier::step<64>(const uint8_t *block_buf, buf_block_reader<64> &reader) noexcept { simd::simd8x64 in_1(block_buf); json_block block_1 = scanner.next(in_1); this->next(block_buf, block_1); reader.advance(); } template error_code json_minifier::minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) noexcept { buf_block_reader reader(buf, len); json_minifier minifier(dst); // Index the first n-1 blocks while (reader.has_full_block()) { minifier.step(reader.full_block(), reader); } // Index the last (remainder) block, padded with spaces uint8_t block[STEP_SIZE]; size_t remaining_bytes = reader.get_remainder(block); if (remaining_bytes > 0) { // We do not want to write directly to the output stream. Rather, we write // to a local buffer (for safety). uint8_t out_block[STEP_SIZE]; uint8_t * const guarded_dst{minifier.dst}; minifier.dst = out_block; minifier.step(block, reader); size_t to_write = minifier.dst - out_block; // In some cases, we could be enticed to consider the padded spaces // as part of the string. This is fine as long as we do not write more // than we consumed. if(to_write > remaining_bytes) { to_write = remaining_bytes; } memcpy(guarded_dst, out_block, to_write); minifier.dst = guarded_dst + to_write; } return minifier.finish(dst, dst_len); } } // namespace stage1 } // unnamed namespace } // namespace westmere } // namespace simdjson /* end file src/generic/stage1/json_minifier.h */ /* begin file src/generic/stage1/find_next_document_index.h */ namespace simdjson { namespace westmere { namespace { /** * This algorithm is used to quickly identify the last structural position that * makes up a complete document. * * It does this by going backwards and finding the last *document boundary* (a * place where one value follows another without a comma between them). If the * last document (the characters after the boundary) has an equal number of * start and end brackets, it is considered complete. * * Simply put, we iterate over the structural characters, starting from * the end. We consider that we found the end of a JSON document when the * first element of the pair is NOT one of these characters: '{' '[' ':' ',' * and when the second element is NOT one of these characters: '}' ']' ':' ','. * * This simple comparison works most of the time, but it does not cover cases * where the batch's structural indexes contain a perfect amount of documents. * In such a case, we do not have access to the structural index which follows * the last document, therefore, we do not have access to the second element in * the pair, and that means we cannot identify the last document. To fix this * issue, we keep a count of the open and closed curly/square braces we found * while searching for the pair. When we find a pair AND the count of open and * closed curly/square braces is the same, we know that we just passed a * complete document, therefore the last json buffer location is the end of the * batch. */ simdjson_really_inline uint32_t find_next_document_index(dom_parser_implementation &parser) { // Variant: do not count separately, just figure out depth if(parser.n_structural_indexes == 0) { return 0; } auto arr_cnt = 0; auto obj_cnt = 0; for (auto i = parser.n_structural_indexes - 1; i > 0; i--) { auto idxb = parser.structural_indexes[i]; switch (parser.buf[idxb]) { case ':': case ',': continue; case '}': obj_cnt--; continue; case ']': arr_cnt--; continue; case '{': obj_cnt++; break; case '[': arr_cnt++; break; } auto idxa = parser.structural_indexes[i - 1]; switch (parser.buf[idxa]) { case '{': case '[': case ':': case ',': continue; } // Last document is complete, so the next document will appear after! if (!arr_cnt && !obj_cnt) { return parser.n_structural_indexes; } // Last document is incomplete; mark the document at i + 1 as the next one return i; } // If we made it to the end, we want to finish counting to see if we have a full document. switch (parser.buf[parser.structural_indexes[0]]) { case '}': obj_cnt--; break; case ']': arr_cnt--; break; case '{': obj_cnt++; break; case '[': arr_cnt++; break; } if (!arr_cnt && !obj_cnt) { // We have a complete document. return parser.n_structural_indexes; } return 0; } } // unnamed namespace } // namespace westmere } // namespace simdjson /* end file src/generic/stage1/find_next_document_index.h */ namespace simdjson { namespace westmere { namespace { namespace stage1 { class bit_indexer { public: uint32_t *tail; simdjson_really_inline bit_indexer(uint32_t *index_buf) : tail(index_buf) {} // flatten out values in 'bits' assuming that they are are to have values of idx // plus their position in the bitvector, and store these indexes at // base_ptr[base] incrementing base as we go // will potentially store extra values beyond end of valid bits, so base_ptr // needs to be large enough to handle this simdjson_really_inline void write(uint32_t idx, uint64_t bits) { // In some instances, the next branch is expensive because it is mispredicted. // Unfortunately, in other cases, // it helps tremendously. if (bits == 0) return; #if defined(SIMDJSON_PREFER_REVERSE_BITS) /** * ARM lacks a fast trailing zero instruction, but it has a fast * bit reversal instruction and a fast leading zero instruction. * Thus it may be profitable to reverse the bits (once) and then * to rely on a sequence of instructions that call the leading * zero instruction. * * Performance notes: * The chosen routine is not optimal in terms of data dependency * since zero_leading_bit might require two instructions. However, * it tends to minimize the total number of instructions which is * beneficial. */ uint64_t rev_bits = reverse_bits(bits); int cnt = static_cast(count_ones(bits)); int i = 0; // Do the first 8 all together for (; i<8; i++) { int lz = leading_zeroes(rev_bits); this->tail[i] = static_cast(idx) + lz; rev_bits = zero_leading_bit(rev_bits, lz); } // Do the next 8 all together (we hope in most cases it won't happen at all // and the branch is easily predicted). if (simdjson_unlikely(cnt > 8)) { i = 8; for (; i<16; i++) { int lz = leading_zeroes(rev_bits); this->tail[i] = static_cast(idx) + lz; rev_bits = zero_leading_bit(rev_bits, lz); } // Most files don't have 16+ structurals per block, so we take several basically guaranteed // branch mispredictions here. 16+ structurals per block means either punctuation ({} [] , :) // or the start of a value ("abc" true 123) every four characters. if (simdjson_unlikely(cnt > 16)) { i = 16; while (rev_bits != 0) { int lz = leading_zeroes(rev_bits); this->tail[i++] = static_cast(idx) + lz; rev_bits = zero_leading_bit(rev_bits, lz); } } } this->tail += cnt; #else // SIMDJSON_PREFER_REVERSE_BITS /** * Under recent x64 systems, we often have both a fast trailing zero * instruction and a fast 'clear-lower-bit' instruction so the following * algorithm can be competitive. */ int cnt = static_cast(count_ones(bits)); // Do the first 8 all together for (int i=0; i<8; i++) { this->tail[i] = idx + trailing_zeroes(bits); bits = clear_lowest_bit(bits); } // Do the next 8 all together (we hope in most cases it won't happen at all // and the branch is easily predicted). if (simdjson_unlikely(cnt > 8)) { for (int i=8; i<16; i++) { this->tail[i] = idx + trailing_zeroes(bits); bits = clear_lowest_bit(bits); } // Most files don't have 16+ structurals per block, so we take several basically guaranteed // branch mispredictions here. 16+ structurals per block means either punctuation ({} [] , :) // or the start of a value ("abc" true 123) every four characters. if (simdjson_unlikely(cnt > 16)) { int i = 16; do { this->tail[i] = idx + trailing_zeroes(bits); bits = clear_lowest_bit(bits); i++; } while (i < cnt); } } this->tail += cnt; #endif } }; class json_structural_indexer { public: /** * Find the important bits of JSON in a 128-byte chunk, and add them to structural_indexes. * * @param partial Setting the partial parameter to true allows the find_structural_bits to * tolerate unclosed strings. The caller should still ensure that the input is valid UTF-8. If * you are processing substrings, you may want to call on a function like trimmed_length_safe_utf8. */ template static error_code index(const uint8_t *buf, size_t len, dom_parser_implementation &parser, stage1_mode partial) noexcept; private: simdjson_really_inline json_structural_indexer(uint32_t *structural_indexes); template simdjson_really_inline void step(const uint8_t *block, buf_block_reader &reader) noexcept; simdjson_really_inline void next(const simd::simd8x64& in, const json_block& block, size_t idx); simdjson_really_inline error_code finish(dom_parser_implementation &parser, size_t idx, size_t len, stage1_mode partial); json_scanner scanner{}; utf8_checker checker{}; bit_indexer indexer; uint64_t prev_structurals = 0; uint64_t unescaped_chars_error = 0; }; simdjson_really_inline json_structural_indexer::json_structural_indexer(uint32_t *structural_indexes) : indexer{structural_indexes} {} // Skip the last character if it is partial simdjson_really_inline size_t trim_partial_utf8(const uint8_t *buf, size_t len) { if (simdjson_unlikely(len < 3)) { switch (len) { case 2: if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left if (buf[len-2] >= 0b11100000) { return len-2; } // 3- and 4-byte characters with only 2 bytes left return len; case 1: if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left return len; case 0: return len; } } if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left if (buf[len-2] >= 0b11100000) { return len-2; } // 3- and 4-byte characters with only 1 byte left if (buf[len-3] >= 0b11110000) { return len-3; } // 4-byte characters with only 3 bytes left return len; } // // PERF NOTES: // We pipe 2 inputs through these stages: // 1. Load JSON into registers. This takes a long time and is highly parallelizable, so we load // 2 inputs' worth at once so that by the time step 2 is looking for them input, it's available. // 2. Scan the JSON for critical data: strings, scalars and operators. This is the critical path. // The output of step 1 depends entirely on this information. These functions don't quite use // up enough CPU: the second half of the functions is highly serial, only using 1 execution core // at a time. The second input's scans has some dependency on the first ones finishing it, but // they can make a lot of progress before they need that information. // 3. Step 1 doesn't use enough capacity, so we run some extra stuff while we're waiting for that // to finish: utf-8 checks and generating the output from the last iteration. // // The reason we run 2 inputs at a time, is steps 2 and 3 are *still* not enough to soak up all // available capacity with just one input. Running 2 at a time seems to give the CPU a good enough // workout. // template error_code json_structural_indexer::index(const uint8_t *buf, size_t len, dom_parser_implementation &parser, stage1_mode partial) noexcept { if (simdjson_unlikely(len > parser.capacity())) { return CAPACITY; } // We guard the rest of the code so that we can assume that len > 0 throughout. if (len == 0) { return EMPTY; } if (is_streaming(partial)) { len = trim_partial_utf8(buf, len); // If you end up with an empty window after trimming // the partial UTF-8 bytes, then chances are good that you // have an UTF-8 formatting error. if(len == 0) { return UTF8_ERROR; } } buf_block_reader reader(buf, len); json_structural_indexer indexer(parser.structural_indexes.get()); // Read all but the last block while (reader.has_full_block()) { indexer.step(reader.full_block(), reader); } // Take care of the last block (will always be there unless file is empty which is // not supposed to happen.) uint8_t block[STEP_SIZE]; if (simdjson_unlikely(reader.get_remainder(block) == 0)) { return UNEXPECTED_ERROR; } indexer.step(block, reader); return indexer.finish(parser, reader.block_index(), len, partial); } template<> simdjson_really_inline void json_structural_indexer::step<128>(const uint8_t *block, buf_block_reader<128> &reader) noexcept { simd::simd8x64 in_1(block); simd::simd8x64 in_2(block+64); json_block block_1 = scanner.next(in_1); json_block block_2 = scanner.next(in_2); this->next(in_1, block_1, reader.block_index()); this->next(in_2, block_2, reader.block_index()+64); reader.advance(); } template<> simdjson_really_inline void json_structural_indexer::step<64>(const uint8_t *block, buf_block_reader<64> &reader) noexcept { simd::simd8x64 in_1(block); json_block block_1 = scanner.next(in_1); this->next(in_1, block_1, reader.block_index()); reader.advance(); } simdjson_really_inline void json_structural_indexer::next(const simd::simd8x64& in, const json_block& block, size_t idx) { uint64_t unescaped = in.lteq(0x1F); checker.check_next_input(in); indexer.write(uint32_t(idx-64), prev_structurals); // Output *last* iteration's structurals to the parser prev_structurals = block.structural_start(); unescaped_chars_error |= block.non_quote_inside_string(unescaped); } simdjson_really_inline error_code json_structural_indexer::finish(dom_parser_implementation &parser, size_t idx, size_t len, stage1_mode partial) { // Write out the final iteration's structurals indexer.write(uint32_t(idx-64), prev_structurals); error_code error = scanner.finish(); // We deliberately break down the next expression so that it is // human readable. const bool should_we_exit = is_streaming(partial) ? ((error != SUCCESS) && (error != UNCLOSED_STRING)) // when partial we tolerate UNCLOSED_STRING : (error != SUCCESS); // if partial is false, we must have SUCCESS const bool have_unclosed_string = (error == UNCLOSED_STRING); if (simdjson_unlikely(should_we_exit)) { return error; } if (unescaped_chars_error) { return UNESCAPED_CHARS; } parser.n_structural_indexes = uint32_t(indexer.tail - parser.structural_indexes.get()); /*** * The On Demand API requires special padding. * * This is related to https://github.com/simdjson/simdjson/issues/906 * Basically, we want to make sure that if the parsing continues beyond the last (valid) * structural character, it quickly stops. * Only three structural characters can be repeated without triggering an error in JSON: [,] and }. * We repeat the padding character (at 'len'). We don't know what it is, but if the parsing * continues, then it must be [,] or }. * Suppose it is ] or }. We backtrack to the first character, what could it be that would * not trigger an error? It could be ] or } but no, because you can't start a document that way. * It can't be a comma, a colon or any simple value. So the only way we could continue is * if the repeated character is [. But if so, the document must start with [. But if the document * starts with [, it should end with ]. If we enforce that rule, then we would get * ][[ which is invalid. * * This is illustrated with the test array_iterate_unclosed_error() on the following input: * R"({ "a": [,,)" **/ parser.structural_indexes[parser.n_structural_indexes] = uint32_t(len); // used later in partial == stage1_mode::streaming_final parser.structural_indexes[parser.n_structural_indexes + 1] = uint32_t(len); parser.structural_indexes[parser.n_structural_indexes + 2] = 0; parser.next_structural_index = 0; // a valid JSON file cannot have zero structural indexes - we should have found something if (simdjson_unlikely(parser.n_structural_indexes == 0u)) { return EMPTY; } if (simdjson_unlikely(parser.structural_indexes[parser.n_structural_indexes - 1] > len)) { return UNEXPECTED_ERROR; } if (partial == stage1_mode::streaming_partial) { // If we have an unclosed string, then the last structural // will be the quote and we want to make sure to omit it. if(have_unclosed_string) { parser.n_structural_indexes--; // a valid JSON file cannot have zero structural indexes - we should have found something if (simdjson_unlikely(parser.n_structural_indexes == 0u)) { return CAPACITY; } } // We truncate the input to the end of the last complete document (or zero). auto new_structural_indexes = find_next_document_index(parser); if (new_structural_indexes == 0 && parser.n_structural_indexes > 0) { if(parser.structural_indexes[0] == 0) { // If the buffer is partial and we started at index 0 but the document is // incomplete, it's too big to parse. return CAPACITY; } else { // It is possible that the document could be parsed, we just had a lot // of white space. parser.n_structural_indexes = 0; return EMPTY; } } parser.n_structural_indexes = new_structural_indexes; } else if (partial == stage1_mode::streaming_final) { if(have_unclosed_string) { parser.n_structural_indexes--; } // We truncate the input to the end of the last complete document (or zero). // Because partial == stage1_mode::streaming_final, it means that we may // silently ignore trailing garbage. Though it sounds bad, we do it // deliberately because many people who have streams of JSON documents // will truncate them for processing. E.g., imagine that you are uncompressing // the data from a size file or receiving it in chunks from the network. You // may not know where exactly the last document will be. Meanwhile the // document_stream instances allow people to know the JSON documents they are // parsing (see the iterator.source() method). parser.n_structural_indexes = find_next_document_index(parser); // We store the initial n_structural_indexes so that the client can see // whether we used truncation. If initial_n_structural_indexes == parser.n_structural_indexes, // then this will query parser.structural_indexes[parser.n_structural_indexes] which is len, // otherwise, it will copy some prior index. parser.structural_indexes[parser.n_structural_indexes + 1] = parser.structural_indexes[parser.n_structural_indexes]; // This next line is critical, do not change it unless you understand what you are // doing. parser.structural_indexes[parser.n_structural_indexes] = uint32_t(len); if (simdjson_unlikely(parser.n_structural_indexes == 0u)) { // We tolerate an unclosed string at the very end of the stream. Indeed, users // often load their data in bulk without being careful and they want us to ignore // the trailing garbage. return EMPTY; } } checker.check_eof(); return checker.errors(); } } // namespace stage1 } // unnamed namespace } // namespace westmere } // namespace simdjson /* end file src/generic/stage1/json_structural_indexer.h */ /* begin file src/generic/stage1/utf8_validator.h */ namespace simdjson { namespace westmere { namespace { namespace stage1 { /** * Validates that the string is actual UTF-8. */ template bool generic_validate_utf8(const uint8_t * input, size_t length) { checker c{}; buf_block_reader<64> reader(input, length); while (reader.has_full_block()) { simd::simd8x64 in(reader.full_block()); c.check_next_input(in); reader.advance(); } uint8_t block[64]{}; reader.get_remainder(block); simd::simd8x64 in(block); c.check_next_input(in); reader.advance(); c.check_eof(); return c.errors() == error_code::SUCCESS; } bool generic_validate_utf8(const char * input, size_t length) { return generic_validate_utf8(reinterpret_cast(input),length); } } // namespace stage1 } // unnamed namespace } // namespace westmere } // namespace simdjson /* end file src/generic/stage1/utf8_validator.h */ // // Stage 2 // /* begin file src/generic/stage2/tape_builder.h */ /* begin file src/generic/stage2/json_iterator.h */ /* begin file src/generic/stage2/logger.h */ // This is for an internal-only stage 2 specific logger. // Set LOG_ENABLED = true to log what stage 2 is doing! namespace simdjson { namespace westmere { namespace { namespace logger { static constexpr const char * DASHES = "----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------"; #if SIMDJSON_VERBOSE_LOGGING static constexpr const bool LOG_ENABLED = true; #else static constexpr const bool LOG_ENABLED = false; #endif static constexpr const int LOG_EVENT_LEN = 20; static constexpr const int LOG_BUFFER_LEN = 30; static constexpr const int LOG_SMALL_BUFFER_LEN = 10; static constexpr const int LOG_INDEX_LEN = 5; static int log_depth; // Not threadsafe. Log only. // Helper to turn unprintable or newline characters into spaces static simdjson_really_inline char printable_char(char c) { if (c >= 0x20) { return c; } else { return ' '; } } // Print the header and set up log_start static simdjson_really_inline void log_start() { if (LOG_ENABLED) { log_depth = 0; printf("\n"); printf("| %-*s | %-*s | %-*s | %-*s | Detail |\n", LOG_EVENT_LEN, "Event", LOG_BUFFER_LEN, "Buffer", LOG_SMALL_BUFFER_LEN, "Next", 5, "Next#"); printf("|%.*s|%.*s|%.*s|%.*s|--------|\n", LOG_EVENT_LEN+2, DASHES, LOG_BUFFER_LEN+2, DASHES, LOG_SMALL_BUFFER_LEN+2, DASHES, 5+2, DASHES); } } simdjson_unused static simdjson_really_inline void log_string(const char *message) { if (LOG_ENABLED) { printf("%s\n", message); } } // Logs a single line from the stage 2 DOM parser template static simdjson_really_inline void log_line(S &structurals, const char *title_prefix, const char *title, const char *detail) { if (LOG_ENABLED) { printf("| %*s%s%-*s ", log_depth*2, "", title_prefix, LOG_EVENT_LEN - log_depth*2 - int(strlen(title_prefix)), title); auto current_index = structurals.at_beginning() ? nullptr : structurals.next_structural-1; auto next_index = structurals.next_structural; auto current = current_index ? &structurals.buf[*current_index] : reinterpret_cast(" "); auto next = &structurals.buf[*next_index]; { // Print the next N characters in the buffer. printf("| "); // Otherwise, print the characters starting from the buffer position. // Print spaces for unprintable or newline characters. for (int i=0;i simdjson_warn_unused simdjson_really_inline error_code walk_document(V &visitor) noexcept; /** * Create an iterator capable of walking a JSON document. * * The document must have already passed through stage 1. */ simdjson_really_inline json_iterator(dom_parser_implementation &_dom_parser, size_t start_structural_index); /** * Look at the next token. * * Tokens can be strings, numbers, booleans, null, or operators (`[{]},:`)). * * They may include invalid JSON as well (such as `1.2.3` or `ture`). */ simdjson_really_inline const uint8_t *peek() const noexcept; /** * Advance to the next token. * * Tokens can be strings, numbers, booleans, null, or operators (`[{]},:`)). * * They may include invalid JSON as well (such as `1.2.3` or `ture`). */ simdjson_really_inline const uint8_t *advance() noexcept; /** * Get the remaining length of the document, from the start of the current token. */ simdjson_really_inline size_t remaining_len() const noexcept; /** * Check if we are at the end of the document. * * If this is true, there are no more tokens. */ simdjson_really_inline bool at_eof() const noexcept; /** * Check if we are at the beginning of the document. */ simdjson_really_inline bool at_beginning() const noexcept; simdjson_really_inline uint8_t last_structural() const noexcept; /** * Log that a value has been found. * * Set ENABLE_LOGGING=true in logger.h to see logging. */ simdjson_really_inline void log_value(const char *type) const noexcept; /** * Log the start of a multipart value. * * Set ENABLE_LOGGING=true in logger.h to see logging. */ simdjson_really_inline void log_start_value(const char *type) const noexcept; /** * Log the end of a multipart value. * * Set ENABLE_LOGGING=true in logger.h to see logging. */ simdjson_really_inline void log_end_value(const char *type) const noexcept; /** * Log an error. * * Set ENABLE_LOGGING=true in logger.h to see logging. */ simdjson_really_inline void log_error(const char *error) const noexcept; template simdjson_warn_unused simdjson_really_inline error_code visit_root_primitive(V &visitor, const uint8_t *value) noexcept; template simdjson_warn_unused simdjson_really_inline error_code visit_primitive(V &visitor, const uint8_t *value) noexcept; }; template simdjson_warn_unused simdjson_really_inline error_code json_iterator::walk_document(V &visitor) noexcept { logger::log_start(); // // Start the document // if (at_eof()) { return EMPTY; } log_start_value("document"); SIMDJSON_TRY( visitor.visit_document_start(*this) ); // // Read first value // { auto value = advance(); // Make sure the outer object or array is closed before continuing; otherwise, there are ways we // could get into memory corruption. See https://github.com/simdjson/simdjson/issues/906 if (!STREAMING) { switch (*value) { case '{': if (last_structural() != '}') { log_value("starting brace unmatched"); return TAPE_ERROR; }; break; case '[': if (last_structural() != ']') { log_value("starting bracket unmatched"); return TAPE_ERROR; }; break; } } switch (*value) { case '{': if (*peek() == '}') { advance(); log_value("empty object"); SIMDJSON_TRY( visitor.visit_empty_object(*this) ); break; } goto object_begin; case '[': if (*peek() == ']') { advance(); log_value("empty array"); SIMDJSON_TRY( visitor.visit_empty_array(*this) ); break; } goto array_begin; default: SIMDJSON_TRY( visitor.visit_root_primitive(*this, value) ); break; } } goto document_end; // // Object parser states // object_begin: log_start_value("object"); depth++; if (depth >= dom_parser.max_depth()) { log_error("Exceeded max depth!"); return DEPTH_ERROR; } dom_parser.is_array[depth] = false; SIMDJSON_TRY( visitor.visit_object_start(*this) ); { auto key = advance(); if (*key != '"') { log_error("Object does not start with a key"); return TAPE_ERROR; } SIMDJSON_TRY( visitor.increment_count(*this) ); SIMDJSON_TRY( visitor.visit_key(*this, key) ); } object_field: if (simdjson_unlikely( *advance() != ':' )) { log_error("Missing colon after key in object"); return TAPE_ERROR; } { auto value = advance(); switch (*value) { case '{': if (*peek() == '}') { advance(); log_value("empty object"); SIMDJSON_TRY( visitor.visit_empty_object(*this) ); break; } goto object_begin; case '[': if (*peek() == ']') { advance(); log_value("empty array"); SIMDJSON_TRY( visitor.visit_empty_array(*this) ); break; } goto array_begin; default: SIMDJSON_TRY( visitor.visit_primitive(*this, value) ); break; } } object_continue: switch (*advance()) { case ',': SIMDJSON_TRY( visitor.increment_count(*this) ); { auto key = advance(); if (simdjson_unlikely( *key != '"' )) { log_error("Key string missing at beginning of field in object"); return TAPE_ERROR; } SIMDJSON_TRY( visitor.visit_key(*this, key) ); } goto object_field; case '}': log_end_value("object"); SIMDJSON_TRY( visitor.visit_object_end(*this) ); goto scope_end; default: log_error("No comma between object fields"); return TAPE_ERROR; } scope_end: depth--; if (depth == 0) { goto document_end; } if (dom_parser.is_array[depth]) { goto array_continue; } goto object_continue; // // Array parser states // array_begin: log_start_value("array"); depth++; if (depth >= dom_parser.max_depth()) { log_error("Exceeded max depth!"); return DEPTH_ERROR; } dom_parser.is_array[depth] = true; SIMDJSON_TRY( visitor.visit_array_start(*this) ); SIMDJSON_TRY( visitor.increment_count(*this) ); array_value: { auto value = advance(); switch (*value) { case '{': if (*peek() == '}') { advance(); log_value("empty object"); SIMDJSON_TRY( visitor.visit_empty_object(*this) ); break; } goto object_begin; case '[': if (*peek() == ']') { advance(); log_value("empty array"); SIMDJSON_TRY( visitor.visit_empty_array(*this) ); break; } goto array_begin; default: SIMDJSON_TRY( visitor.visit_primitive(*this, value) ); break; } } array_continue: switch (*advance()) { case ',': SIMDJSON_TRY( visitor.increment_count(*this) ); goto array_value; case ']': log_end_value("array"); SIMDJSON_TRY( visitor.visit_array_end(*this) ); goto scope_end; default: log_error("Missing comma between array values"); return TAPE_ERROR; } document_end: log_end_value("document"); SIMDJSON_TRY( visitor.visit_document_end(*this) ); dom_parser.next_structural_index = uint32_t(next_structural - &dom_parser.structural_indexes[0]); // If we didn't make it to the end, it's an error if ( !STREAMING && dom_parser.next_structural_index != dom_parser.n_structural_indexes ) { log_error("More than one JSON value at the root of the document, or extra characters at the end of the JSON!"); return TAPE_ERROR; } return SUCCESS; } // walk_document() simdjson_really_inline json_iterator::json_iterator(dom_parser_implementation &_dom_parser, size_t start_structural_index) : buf{_dom_parser.buf}, next_structural{&_dom_parser.structural_indexes[start_structural_index]}, dom_parser{_dom_parser} { } simdjson_really_inline const uint8_t *json_iterator::peek() const noexcept { return &buf[*(next_structural)]; } simdjson_really_inline const uint8_t *json_iterator::advance() noexcept { return &buf[*(next_structural++)]; } simdjson_really_inline size_t json_iterator::remaining_len() const noexcept { return dom_parser.len - *(next_structural-1); } simdjson_really_inline bool json_iterator::at_eof() const noexcept { return next_structural == &dom_parser.structural_indexes[dom_parser.n_structural_indexes]; } simdjson_really_inline bool json_iterator::at_beginning() const noexcept { return next_structural == dom_parser.structural_indexes.get(); } simdjson_really_inline uint8_t json_iterator::last_structural() const noexcept { return buf[dom_parser.structural_indexes[dom_parser.n_structural_indexes - 1]]; } simdjson_really_inline void json_iterator::log_value(const char *type) const noexcept { logger::log_line(*this, "", type, ""); } simdjson_really_inline void json_iterator::log_start_value(const char *type) const noexcept { logger::log_line(*this, "+", type, ""); if (logger::LOG_ENABLED) { logger::log_depth++; } } simdjson_really_inline void json_iterator::log_end_value(const char *type) const noexcept { if (logger::LOG_ENABLED) { logger::log_depth--; } logger::log_line(*this, "-", type, ""); } simdjson_really_inline void json_iterator::log_error(const char *error) const noexcept { logger::log_line(*this, "", "ERROR", error); } template simdjson_warn_unused simdjson_really_inline error_code json_iterator::visit_root_primitive(V &visitor, const uint8_t *value) noexcept { switch (*value) { case '"': return visitor.visit_root_string(*this, value); case 't': return visitor.visit_root_true_atom(*this, value); case 'f': return visitor.visit_root_false_atom(*this, value); case 'n': return visitor.visit_root_null_atom(*this, value); case '-': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': return visitor.visit_root_number(*this, value); default: log_error("Document starts with a non-value character"); return TAPE_ERROR; } } template simdjson_warn_unused simdjson_really_inline error_code json_iterator::visit_primitive(V &visitor, const uint8_t *value) noexcept { switch (*value) { case '"': return visitor.visit_string(*this, value); case 't': return visitor.visit_true_atom(*this, value); case 'f': return visitor.visit_false_atom(*this, value); case 'n': return visitor.visit_null_atom(*this, value); case '-': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': return visitor.visit_number(*this, value); default: log_error("Non-value found when value was expected!"); return TAPE_ERROR; } } } // namespace stage2 } // unnamed namespace } // namespace westmere } // namespace simdjson /* end file src/generic/stage2/json_iterator.h */ /* begin file src/generic/stage2/tape_writer.h */ namespace simdjson { namespace westmere { namespace { namespace stage2 { struct tape_writer { /** The next place to write to tape */ uint64_t *next_tape_loc; /** Write a signed 64-bit value to tape. */ simdjson_really_inline void append_s64(int64_t value) noexcept; /** Write an unsigned 64-bit value to tape. */ simdjson_really_inline void append_u64(uint64_t value) noexcept; /** Write a double value to tape. */ simdjson_really_inline void append_double(double value) noexcept; /** * Append a tape entry (an 8-bit type,and 56 bits worth of value). */ simdjson_really_inline void append(uint64_t val, internal::tape_type t) noexcept; /** * Skip the current tape entry without writing. * * Used to skip the start of the container, since we'll come back later to fill it in when the * container ends. */ simdjson_really_inline void skip() noexcept; /** * Skip the number of tape entries necessary to write a large u64 or i64. */ simdjson_really_inline void skip_large_integer() noexcept; /** * Skip the number of tape entries necessary to write a double. */ simdjson_really_inline void skip_double() noexcept; /** * Write a value to a known location on tape. * * Used to go back and write out the start of a container after the container ends. */ simdjson_really_inline static void write(uint64_t &tape_loc, uint64_t val, internal::tape_type t) noexcept; private: /** * Append both the tape entry, and a supplementary value following it. Used for types that need * all 64 bits, such as double and uint64_t. */ template simdjson_really_inline void append2(uint64_t val, T val2, internal::tape_type t) noexcept; }; // struct number_writer simdjson_really_inline void tape_writer::append_s64(int64_t value) noexcept { append2(0, value, internal::tape_type::INT64); } simdjson_really_inline void tape_writer::append_u64(uint64_t value) noexcept { append(0, internal::tape_type::UINT64); *next_tape_loc = value; next_tape_loc++; } /** Write a double value to tape. */ simdjson_really_inline void tape_writer::append_double(double value) noexcept { append2(0, value, internal::tape_type::DOUBLE); } simdjson_really_inline void tape_writer::skip() noexcept { next_tape_loc++; } simdjson_really_inline void tape_writer::skip_large_integer() noexcept { next_tape_loc += 2; } simdjson_really_inline void tape_writer::skip_double() noexcept { next_tape_loc += 2; } simdjson_really_inline void tape_writer::append(uint64_t val, internal::tape_type t) noexcept { *next_tape_loc = val | ((uint64_t(char(t))) << 56); next_tape_loc++; } template simdjson_really_inline void tape_writer::append2(uint64_t val, T val2, internal::tape_type t) noexcept { append(val, t); static_assert(sizeof(val2) == sizeof(*next_tape_loc), "Type is not 64 bits!"); memcpy(next_tape_loc, &val2, sizeof(val2)); next_tape_loc++; } simdjson_really_inline void tape_writer::write(uint64_t &tape_loc, uint64_t val, internal::tape_type t) noexcept { tape_loc = val | ((uint64_t(char(t))) << 56); } } // namespace stage2 } // unnamed namespace } // namespace westmere } // namespace simdjson /* end file src/generic/stage2/tape_writer.h */ namespace simdjson { namespace westmere { namespace { namespace stage2 { struct tape_builder { template simdjson_warn_unused static simdjson_really_inline error_code parse_document( dom_parser_implementation &dom_parser, dom::document &doc) noexcept; /** Called when a non-empty document starts. */ simdjson_warn_unused simdjson_really_inline error_code visit_document_start(json_iterator &iter) noexcept; /** Called when a non-empty document ends without error. */ simdjson_warn_unused simdjson_really_inline error_code visit_document_end(json_iterator &iter) noexcept; /** Called when a non-empty array starts. */ simdjson_warn_unused simdjson_really_inline error_code visit_array_start(json_iterator &iter) noexcept; /** Called when a non-empty array ends. */ simdjson_warn_unused simdjson_really_inline error_code visit_array_end(json_iterator &iter) noexcept; /** Called when an empty array is found. */ simdjson_warn_unused simdjson_really_inline error_code visit_empty_array(json_iterator &iter) noexcept; /** Called when a non-empty object starts. */ simdjson_warn_unused simdjson_really_inline error_code visit_object_start(json_iterator &iter) noexcept; /** * Called when a key in a field is encountered. * * primitive, visit_object_start, visit_empty_object, visit_array_start, or visit_empty_array * will be called after this with the field value. */ simdjson_warn_unused simdjson_really_inline error_code visit_key(json_iterator &iter, const uint8_t *key) noexcept; /** Called when a non-empty object ends. */ simdjson_warn_unused simdjson_really_inline error_code visit_object_end(json_iterator &iter) noexcept; /** Called when an empty object is found. */ simdjson_warn_unused simdjson_really_inline error_code visit_empty_object(json_iterator &iter) noexcept; /** * Called when a string, number, boolean or null is found. */ simdjson_warn_unused simdjson_really_inline error_code visit_primitive(json_iterator &iter, const uint8_t *value) noexcept; /** * Called when a string, number, boolean or null is found at the top level of a document (i.e. * when there is no array or object and the entire document is a single string, number, boolean or * null. * * This is separate from primitive() because simdjson's normal primitive parsing routines assume * there is at least one more token after the value, which is only true in an array or object. */ simdjson_warn_unused simdjson_really_inline error_code visit_root_primitive(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_string(json_iterator &iter, const uint8_t *value, bool key = false) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_number(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_true_atom(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_false_atom(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_null_atom(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_root_string(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_root_number(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_root_true_atom(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_root_false_atom(json_iterator &iter, const uint8_t *value) noexcept; simdjson_warn_unused simdjson_really_inline error_code visit_root_null_atom(json_iterator &iter, const uint8_t *value) noexcept; /** Called each time a new field or element in an array or object is found. */ simdjson_warn_unused simdjson_really_inline error_code increment_count(json_iterator &iter) noexcept; /** Next location to write to tape */ tape_writer tape; private: /** Next write location in the string buf for stage 2 parsing */ uint8_t *current_string_buf_loc; simdjson_really_inline tape_builder(dom::document &doc) noexcept; simdjson_really_inline uint32_t next_tape_index(json_iterator &iter) const noexcept; simdjson_really_inline void start_container(json_iterator &iter) noexcept; simdjson_warn_unused simdjson_really_inline error_code end_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept; simdjson_warn_unused simdjson_really_inline error_code empty_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept; simdjson_really_inline uint8_t *on_start_string(json_iterator &iter) noexcept; simdjson_really_inline void on_end_string(uint8_t *dst) noexcept; }; // class tape_builder template simdjson_warn_unused simdjson_really_inline error_code tape_builder::parse_document( dom_parser_implementation &dom_parser, dom::document &doc) noexcept { dom_parser.doc = &doc; json_iterator iter(dom_parser, STREAMING ? dom_parser.next_structural_index : 0); tape_builder builder(doc); return iter.walk_document(builder); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_primitive(json_iterator &iter, const uint8_t *value) noexcept { return iter.visit_root_primitive(*this, value); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_primitive(json_iterator &iter, const uint8_t *value) noexcept { return iter.visit_primitive(*this, value); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_empty_object(json_iterator &iter) noexcept { return empty_container(iter, internal::tape_type::START_OBJECT, internal::tape_type::END_OBJECT); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_empty_array(json_iterator &iter) noexcept { return empty_container(iter, internal::tape_type::START_ARRAY, internal::tape_type::END_ARRAY); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_document_start(json_iterator &iter) noexcept { start_container(iter); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_object_start(json_iterator &iter) noexcept { start_container(iter); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_array_start(json_iterator &iter) noexcept { start_container(iter); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_object_end(json_iterator &iter) noexcept { return end_container(iter, internal::tape_type::START_OBJECT, internal::tape_type::END_OBJECT); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_array_end(json_iterator &iter) noexcept { return end_container(iter, internal::tape_type::START_ARRAY, internal::tape_type::END_ARRAY); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_document_end(json_iterator &iter) noexcept { constexpr uint32_t start_tape_index = 0; tape.append(start_tape_index, internal::tape_type::ROOT); tape_writer::write(iter.dom_parser.doc->tape[start_tape_index], next_tape_index(iter), internal::tape_type::ROOT); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_key(json_iterator &iter, const uint8_t *key) noexcept { return visit_string(iter, key, true); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::increment_count(json_iterator &iter) noexcept { iter.dom_parser.open_containers[iter.depth].count++; // we have a key value pair in the object at parser.dom_parser.depth - 1 return SUCCESS; } simdjson_really_inline tape_builder::tape_builder(dom::document &doc) noexcept : tape{doc.tape.get()}, current_string_buf_loc{doc.string_buf.get()} {} simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_string(json_iterator &iter, const uint8_t *value, bool key) noexcept { iter.log_value(key ? "key" : "string"); uint8_t *dst = on_start_string(iter); dst = stringparsing::parse_string(value+1, dst); if (dst == nullptr) { iter.log_error("Invalid escape in string"); return STRING_ERROR; } on_end_string(dst); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_string(json_iterator &iter, const uint8_t *value) noexcept { return visit_string(iter, value); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_number(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("number"); return numberparsing::parse_number(value, tape); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_number(json_iterator &iter, const uint8_t *value) noexcept { // // We need to make a copy to make sure that the string is space terminated. // This is not about padding the input, which should already padded up // to len + SIMDJSON_PADDING. However, we have no control at this stage // on how the padding was done. What if the input string was padded with nulls? // It is quite common for an input string to have an extra null character (C string). // We do not want to allow 9\0 (where \0 is the null character) inside a JSON // document, but the string "9\0" by itself is fine. So we make a copy and // pad the input with spaces when we know that there is just one input element. // This copy is relatively expensive, but it will almost never be called in // practice unless you are in the strange scenario where you have many JSON // documents made of single atoms. // std::unique_ptrcopy(new (std::nothrow) uint8_t[iter.remaining_len() + SIMDJSON_PADDING]); if (copy.get() == nullptr) { return MEMALLOC; } std::memcpy(copy.get(), value, iter.remaining_len()); std::memset(copy.get() + iter.remaining_len(), ' ', SIMDJSON_PADDING); error_code error = visit_number(iter, copy.get()); return error; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_true_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("true"); if (!atomparsing::is_valid_true_atom(value)) { return T_ATOM_ERROR; } tape.append(0, internal::tape_type::TRUE_VALUE); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_true_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("true"); if (!atomparsing::is_valid_true_atom(value, iter.remaining_len())) { return T_ATOM_ERROR; } tape.append(0, internal::tape_type::TRUE_VALUE); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_false_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("false"); if (!atomparsing::is_valid_false_atom(value)) { return F_ATOM_ERROR; } tape.append(0, internal::tape_type::FALSE_VALUE); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_false_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("false"); if (!atomparsing::is_valid_false_atom(value, iter.remaining_len())) { return F_ATOM_ERROR; } tape.append(0, internal::tape_type::FALSE_VALUE); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_null_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("null"); if (!atomparsing::is_valid_null_atom(value)) { return N_ATOM_ERROR; } tape.append(0, internal::tape_type::NULL_VALUE); return SUCCESS; } simdjson_warn_unused simdjson_really_inline error_code tape_builder::visit_root_null_atom(json_iterator &iter, const uint8_t *value) noexcept { iter.log_value("null"); if (!atomparsing::is_valid_null_atom(value, iter.remaining_len())) { return N_ATOM_ERROR; } tape.append(0, internal::tape_type::NULL_VALUE); return SUCCESS; } // private: simdjson_really_inline uint32_t tape_builder::next_tape_index(json_iterator &iter) const noexcept { return uint32_t(tape.next_tape_loc - iter.dom_parser.doc->tape.get()); } simdjson_warn_unused simdjson_really_inline error_code tape_builder::empty_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept { auto start_index = next_tape_index(iter); tape.append(start_index+2, start); tape.append(start_index, end); return SUCCESS; } simdjson_really_inline void tape_builder::start_container(json_iterator &iter) noexcept { iter.dom_parser.open_containers[iter.depth].tape_index = next_tape_index(iter); iter.dom_parser.open_containers[iter.depth].count = 0; tape.skip(); // We don't actually *write* the start element until the end. } simdjson_warn_unused simdjson_really_inline error_code tape_builder::end_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept { // Write the ending tape element, pointing at the start location const uint32_t start_tape_index = iter.dom_parser.open_containers[iter.depth].tape_index; tape.append(start_tape_index, end); // Write the start tape element, pointing at the end location (and including count) // count can overflow if it exceeds 24 bits... so we saturate // the convention being that a cnt of 0xffffff or more is undetermined in value (>= 0xffffff). const uint32_t count = iter.dom_parser.open_containers[iter.depth].count; const uint32_t cntsat = count > 0xFFFFFF ? 0xFFFFFF : count; tape_writer::write(iter.dom_parser.doc->tape[start_tape_index], next_tape_index(iter) | (uint64_t(cntsat) << 32), start); return SUCCESS; } simdjson_really_inline uint8_t *tape_builder::on_start_string(json_iterator &iter) noexcept { // we advance the point, accounting for the fact that we have a NULL termination tape.append(current_string_buf_loc - iter.dom_parser.doc->string_buf.get(), internal::tape_type::STRING); return current_string_buf_loc + sizeof(uint32_t); } simdjson_really_inline void tape_builder::on_end_string(uint8_t *dst) noexcept { uint32_t str_length = uint32_t(dst - (current_string_buf_loc + sizeof(uint32_t))); // TODO check for overflow in case someone has a crazy string (>=4GB?) // But only add the overflow check when the document itself exceeds 4GB // Currently unneeded because we refuse to parse docs larger or equal to 4GB. memcpy(current_string_buf_loc, &str_length, sizeof(uint32_t)); // NULL termination is still handy if you expect all your strings to // be NULL terminated? It comes at a small cost *dst = 0; current_string_buf_loc = dst + 1; } } // namespace stage2 } // unnamed namespace } // namespace westmere } // namespace simdjson /* end file src/generic/stage2/tape_builder.h */ // // Implementation-specific overrides // namespace simdjson { namespace westmere { namespace { namespace stage1 { simdjson_really_inline uint64_t json_string_scanner::find_escaped(uint64_t backslash) { if (!backslash) { uint64_t escaped = prev_escaped; prev_escaped = 0; return escaped; } return find_escaped_branchless(backslash); } } // namespace stage1 } // unnamed namespace simdjson_warn_unused error_code implementation::minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) const noexcept { return westmere::stage1::json_minifier::minify<64>(buf, len, dst, dst_len); } simdjson_warn_unused error_code dom_parser_implementation::stage1(const uint8_t *_buf, size_t _len, stage1_mode streaming) noexcept { this->buf = _buf; this->len = _len; return westmere::stage1::json_structural_indexer::index<64>(_buf, _len, *this, streaming); } simdjson_warn_unused bool implementation::validate_utf8(const char *buf, size_t len) const noexcept { return westmere::stage1::generic_validate_utf8(buf,len); } simdjson_warn_unused error_code dom_parser_implementation::stage2(dom::document &_doc) noexcept { return stage2::tape_builder::parse_document(*this, _doc); } simdjson_warn_unused error_code dom_parser_implementation::stage2_next(dom::document &_doc) noexcept { return stage2::tape_builder::parse_document(*this, _doc); } simdjson_warn_unused error_code dom_parser_implementation::parse(const uint8_t *_buf, size_t _len, dom::document &_doc) noexcept { auto error = stage1(_buf, _len, stage1_mode::regular); if (error) { return error; } return stage2(_doc); } } // namespace westmere } // namespace simdjson /* begin file include/simdjson/westmere/end.h */ SIMDJSON_UNTARGET_WESTMERE /* end file include/simdjson/westmere/end.h */ /* end file src/westmere/dom_parser_implementation.cpp */ #endif SIMDJSON_POP_DISABLE_WARNINGS /* end file src/simdjson.cpp */