#include "stdafx.h" #include "LR35902.h" // based on http://www.z80.info/decoding.htm // Half carry flag help from https://github.com/oubiwann/z80 EightBit::LR35902::LR35902(Bus& memory) : IntelProcessor(memory), m_bus(memory), m_ime(false), m_prefixCB(false) { } void EightBit::LR35902::reset() { IntelProcessor::reset(); SP().word = 0xfffe; di(); } void EightBit::LR35902::initialise() { IntelProcessor::initialise(); AF().word = 0xffff; BC().word = 0xffff; DE().word = 0xffff; HL().word = 0xffff; m_prefixCB = false; } #pragma region Interrupt routines void EightBit::LR35902::di() { IME() = false; } void EightBit::LR35902::ei() { IME() = true; } int EightBit::LR35902::interrupt(uint8_t value) { di(); restart(value); return 4; } #pragma endregion Interrupt routines #pragma region Flag manipulation helpers void EightBit::LR35902::increment(uint8_t& f, uint8_t& operand) { clearFlag(f, NF); adjustZero(f, ++operand); clearFlag(f, HC, lowNibble(operand)); } void EightBit::LR35902::decrement(uint8_t& f, uint8_t& operand) { setFlag(f, NF); clearFlag(f, HC, lowNibble(operand)); adjustZero(f, --operand); } #pragma endregion Flag manipulation helpers #pragma region PC manipulation: call/ret/jp/jr bool EightBit::LR35902::jrConditionalFlag(uint8_t& f, int flag) { switch (flag) { case 0: // NZ return jrConditional(!(f & ZF)); case 1: // Z return jrConditional(f & ZF); case 2: // NC return jrConditional(!(f & CF)); case 3: // C return jrConditional(f & CF); default: __assume(0); } throw std::logic_error("Unhandled JR conditional"); } bool EightBit::LR35902::jumpConditionalFlag(uint8_t& f, int flag) { switch (flag) { case 0: // NZ return jumpConditional(!(f & ZF)); case 1: // Z return jumpConditional(f & ZF); case 2: // NC return jumpConditional(!(f & CF)); case 3: // C return jumpConditional(f & CF); default: __assume(0); } throw std::logic_error("Unhandled JP conditional"); } void EightBit::LR35902::reti() { ret(); ei(); } bool EightBit::LR35902::returnConditionalFlag(uint8_t& f, int flag) { switch (flag) { case 0: // NZ return returnConditional(!(f & ZF)); case 1: // Z return returnConditional(f & ZF); case 2: // NC return returnConditional(!(f & CF)); case 3: // C return returnConditional(f & CF); default: __assume(0); } throw std::logic_error("Unhandled RET conditional"); } bool EightBit::LR35902::callConditionalFlag(uint8_t& f, int flag) { switch (flag) { case 0: // NZ return callConditional(!(f & ZF)); case 1: // Z return callConditional(f & ZF); case 2: // NC return callConditional(!(f & CF)); case 3: // C return callConditional(f & CF); default: __assume(0); } throw std::logic_error("Unhandled CALL conditional"); } #pragma endregion PC manipulation: call/ret/jp/jr #pragma region 16-bit arithmetic void EightBit::LR35902::add(uint8_t& f, register16_t& operand, register16_t value) { MEMPTR() = operand; const auto result = MEMPTR().word + value.word; operand.word = result; clearFlag(f, NF); setFlag(f, CF, result & Bit16); adjustHalfCarryAdd(f, MEMPTR().high, value.high, operand.high); } #pragma endregion 16-bit arithmetic #pragma region ALU void EightBit::LR35902::add(uint8_t& f, uint8_t& operand, uint8_t value, int carry) { register16_t result; result.word = operand + value + carry; adjustHalfCarryAdd(f, operand, value, result.low); operand = result.low; clearFlag(f, NF); setFlag(f, CF, result.word & Bit8); adjustZero(f, operand); } void EightBit::LR35902::adc(uint8_t& f, uint8_t& operand, uint8_t value) { add(f, operand, value, (f & CF) >> 4); } void EightBit::LR35902::subtract(uint8_t& f, uint8_t& operand, uint8_t value, int carry) { register16_t result; result.word = operand - value - carry; adjustHalfCarrySub(f, operand, value, result.low); operand = result.low; setFlag(f, NF); setFlag(f, CF, result.word & Bit8); adjustZero(f, operand); } void EightBit::LR35902::sbc(uint8_t& f, uint8_t& operand, uint8_t value) { subtract(f, operand, value, (f & CF) >> 4); } void EightBit::LR35902::andr(uint8_t& f, uint8_t& operand, uint8_t value) { setFlag(f, HC); clearFlag(f, CF | NF); adjustZero(f, operand &= value); } void EightBit::LR35902::xorr(uint8_t& f, uint8_t& operand, uint8_t value) { clearFlag(f, HC | CF | NF); adjustZero(f, operand ^= value); } void EightBit::LR35902::orr(uint8_t& f, uint8_t& operand, uint8_t value) { clearFlag(f, HC | CF | NF); adjustZero(f, operand |= value); } void EightBit::LR35902::compare(uint8_t& f, uint8_t check, uint8_t value) { subtract(f, check, value); } #pragma endregion ALU #pragma region Shift and rotate uint8_t EightBit::LR35902::rlc(uint8_t& f, uint8_t operand) { clearFlag(f, NF | HC | ZF); setFlag(f, CF, operand & Bit7); return _rotl8(operand, 1); } uint8_t EightBit::LR35902::rrc(uint8_t& f, uint8_t operand) { clearFlag(f, NF | HC | ZF); setFlag(f, CF, operand & Bit0); return _rotr8(operand, 1); } uint8_t EightBit::LR35902::rl(uint8_t& f, uint8_t operand) { clearFlag(f, NF | HC | ZF); const auto carry = f & CF; setFlag(f, CF, operand & Bit7); return (operand << 1) | (carry >> 4); // CF at Bit4 } uint8_t EightBit::LR35902::rr(uint8_t& f, uint8_t operand) { clearFlag(f, NF | HC | ZF); const auto carry = f & CF; setFlag(f, CF, operand & Bit0); return (operand >> 1) | (carry << 3); // CF at Bit4 } uint8_t EightBit::LR35902::sla(uint8_t& f, uint8_t operand) { clearFlag(f, NF | HC | ZF); setFlag(f, CF, operand & Bit7); return operand << 1; } uint8_t EightBit::LR35902::sra(uint8_t& f, uint8_t operand) { clearFlag(f, NF | HC | ZF); setFlag(f, CF, operand & Bit0); return (operand >> 1) | (operand & Bit7); } uint8_t EightBit::LR35902::swap(uint8_t& f, uint8_t operand) { clearFlag(f, NF | HC | CF); return promoteNibble(operand) | demoteNibble(operand); } uint8_t EightBit::LR35902::srl(uint8_t& f, uint8_t operand) { clearFlag(f, NF | HC | ZF); setFlag(f, CF, operand & Bit0); return (operand >> 1) & ~Bit7; } #pragma endregion Shift and rotate #pragma region BIT/SET/RES uint8_t EightBit::LR35902::bit(uint8_t& f, int n, uint8_t operand) { auto carry = f & CF; uint8_t discarded = operand; andr(f, discarded, 1 << n); setFlag(f, CF, carry); return operand; } uint8_t EightBit::LR35902::res(int n, uint8_t operand) { return operand & ~(1 << n); } uint8_t EightBit::LR35902::set(int n, uint8_t operand) { return operand | (1 << n); } #pragma endregion BIT/SET/RES #pragma region Miscellaneous instructions void EightBit::LR35902::daa(uint8_t& a, uint8_t& f) { int updated = a; if (f & NF) { if (f & HC) updated = (updated - 6) & Mask8; if (f & CF) updated -= 0x60; } else { if ((f & HC) || lowNibble(updated) > 9) updated += 6; if ((f & CF) || updated > 0x9F) updated += 0x60; } clearFlag(f, HC | ZF); setFlag(f, CF, (f & CF) || (updated & Bit8)); a = updated & Mask8; adjustZero(f, a); } void EightBit::LR35902::cpl(uint8_t& a, uint8_t& f) { setFlag(f, HC | NF); a = ~a; } void EightBit::LR35902::scf(uint8_t& a, uint8_t& f) { setFlag(f, CF); clearFlag(f, HC | NF); } void EightBit::LR35902::ccf(uint8_t& a, uint8_t& f) { clearFlag(f, NF | HC); clearFlag(f, CF, f & CF); } #pragma endregion Miscellaneous instructions int EightBit::LR35902::run(int limit) { int current = 0; do { auto interruptEnable = m_bus.peekRegister(Bus::IE); auto interruptFlags = m_bus.peekRegister(Bus::IF); auto ime = IME(); auto masked = interruptEnable & interruptFlags; if (masked) { if (ime) { m_bus.pokeRegister(Bus::IF, 0); } else { if (isHalted()) proceed(); } } if (ime && (masked & Bus::Interrupts::VerticalBlank)) { current += interrupt(0x40); } else if (ime && (masked & Bus::Interrupts::DisplayControlStatus)) { current += interrupt(0x48); } else if (ime && (masked & Bus::Interrupts::TimerOverflow)) { current += interrupt(0x50); } else if (ime && (masked & Bus::Interrupts::SerialTransfer)) { current += interrupt(0x58); } else if (ime && (masked & Bus::Interrupts::Keypad)) { current += interrupt(0x60); } else { current += isHalted() ? 1 : step(); } m_bus.checkTimers(current); } while (current < limit); return current; } int EightBit::LR35902::step() { ExecutingInstruction.fire(*this); m_prefixCB = false; cycles = 0; return fetchExecute(); } int EightBit::LR35902::execute(uint8_t opcode) { const auto& decoded = getDecodedOpcode(opcode); auto x = decoded.x; auto y = decoded.y; auto z = decoded.z; auto p = decoded.p; auto q = decoded.q; if (m_prefixCB) executeCB(x, y, z, p, q); else executeOther(x, y, z, p, q); if (cycles == 0) throw std::logic_error("Unhandled opcode"); return cycles * 4; } void EightBit::LR35902::executeCB(int x, int y, int z, int p, int q) { auto& a = A(); auto& f = F(); switch (x) { case 0: { // rot[y] r[z] auto operand = R(z, a); switch (y) { case 0: operand = rlc(f, operand); break; case 1: operand = rrc(f, operand); break; case 2: operand = rl(f, operand); break; case 3: operand = rr(f, operand); break; case 4: operand = sla(f, operand); break; case 5: operand = sra(f, operand); break; case 6: // GB: SWAP r operand = swap(f, operand); break; case 7: operand = srl(f, operand); break; default: __assume(0); } cycles += 2; R(z, a, operand); adjustZero(f, operand); if (z == 6) cycles += 2; break; } case 1: // BIT y, r[z] bit(f, y, R(z, a)); cycles += 2; if (z == 6) cycles += 2; break; case 2: // RES y, r[z] R(z, a, res(y, R(z, a))); cycles += 2; if (z == 6) cycles += 2; break; case 3: // SET y, r[z] R(z, a, set(y, R(z, a))); cycles += 2; if (z == 6) cycles += 2; break; default: __assume(0); } } void EightBit::LR35902::executeOther(int x, int y, int z, int p, int q) { auto& a = A(); auto& f = F(); switch (x) { case 0: switch (z) { case 0: // Relative jumps and assorted ops switch (y) { case 0: // NOP cycles++; break; case 1: // GB: LD (nn),SP fetchWord(); setWordViaMemptr(SP()); cycles += 5; break; case 2: // GB: STOP stop(); cycles++; break; case 3: // JR d jr(fetchByte()); cycles += 4; break; case 4: // JR cc,d case 5: case 6: case 7: if (jrConditionalFlag(f, y - 4)) cycles++; cycles += 2; break; default: __assume(0); } break; case 1: // 16-bit load immediate/add switch (q) { case 0: // LD rp,nn Processor::fetchWord(RP(p)); cycles += 3; break; case 1: // ADD HL,rp add(f, HL(), RP(p)); cycles += 2; break; default: __assume(0); } break; case 2: // Indirect loading switch (q) { case 0: switch (p) { case 0: // LD (BC),A setByte(BC(), a); cycles += 2; break; case 1: // LD (DE),A setByte(DE(), a); cycles += 2; break; case 2: // GB: LDI (HL),A setByte(HL().word++, a); cycles += 2; break; case 3: // GB: LDD (HL),A setByte(HL().word--, a); cycles += 2; break; default: __assume(0); } break; case 1: switch (p) { case 0: // LD A,(BC) a = getByte(BC()); cycles += 2; break; case 1: // LD A,(DE) a = getByte(DE()); cycles += 2; break; case 2: // GB: LDI A,(HL) a = getByte(HL().word++); cycles += 2; break; case 3: // GB: LDD A,(HL) a = getByte(HL().word--); cycles += 2; break; default: __assume(0); } break; default: __assume(0); } break; case 3: // 16-bit INC/DEC switch (q) { case 0: // INC rp ++RP(p).word; break; case 1: // DEC rp --RP(p).word; break; default: __assume(0); } cycles += 2; break; case 4: { // 8-bit INC auto operand = R(y, a); increment(f, operand); R(y, a, operand); cycles++; if (y == 6) cycles += 2; break; } case 5: { // 8-bit DEC auto operand = R(y, a); decrement(f, operand); R(y, a, operand); cycles++; if (y == 6) cycles += 2; break; } case 6: // 8-bit load immediate R(y, a, fetchByte()); // LD r,n cycles += 2; break; case 7: // Assorted operations on accumulator/flags switch (y) { case 0: a = rlc(f, a); break; case 1: a = rrc(f, a); break; case 2: a = rl(f, a); break; case 3: a = rr(f, a); break; case 4: daa(a, f); break; case 5: cpl(a, f); break; case 6: scf(a, f); break; case 7: ccf(a, f); break; default: __assume(0); } cycles++; break; default: __assume(0); } break; case 1: // 8-bit loading if (z == 6 && y == 6) { // Exception (replaces LD (HL), (HL)) halt(); } else { R(y, a, R(z, a)); if ((y == 6) || (z == 6)) // M operations cycles++; } cycles++; break; case 2: // Operate on accumulator and register/memory location switch (y) { case 0: // ADD A,r add(f, a, R(z, a)); break; case 1: // ADC A,r adc(f, a, R(z, a)); break; case 2: // SUB r subtract(f, a, R(z, a)); break; case 3: // SBC A,r sbc(f, a, R(z, a)); break; case 4: // AND r andr(f, a, R(z, a)); break; case 5: // XOR r xorr(f, a, R(z, a)); break; case 6: // OR r orr(f, a, R(z, a)); break; case 7: // CP r compare(f, a, R(z, a)); break; default: __assume(0); } cycles++; if (z == 6) cycles++; break; case 3: switch (z) { case 0: // Conditional return switch (y) { case 0: case 1: case 2: case 3: if (returnConditionalFlag(f, y)) cycles += 3; cycles += 2; break; case 4: // GB: LD (FF00 + n),A m_bus.writeRegister(fetchByte(), a); cycles += 3; break; case 5: { // GB: ADD SP,dd auto before = SP().word; auto value = fetchByte(); auto result = before + (int8_t)value; SP().word = result; auto carried = before ^ value ^ result; clearFlag(f, ZF | NF); setFlag(f, CF, carried & 0x100); setFlag(f, HC, carried & 0x10); } cycles += 4; break; case 6: // GB: LD A,(FF00 + n) a = m_bus.readRegister(fetchByte()); cycles += 3; break; case 7: { // GB: LD HL,SP + dd auto before = SP().word; auto value = fetchByte(); auto result = before + (int8_t)value; HL().word = result; auto carried = before ^ value ^ result; clearFlag(f, ZF | NF); setFlag(f, CF, carried & 0x100); setFlag(f, HC, carried & 0x10); } cycles += 3; break; default: __assume(0); } break; case 1: // POP & various ops switch (q) { case 0: // POP rp2[p] popWord(RP2(p)); cycles += 3; break; case 1: switch (p) { case 0: // RET ret(); cycles += 4; break; case 1: // GB: RETI reti(); cycles += 4; break; case 2: // JP HL PC() = HL(); cycles++; break; case 3: // LD SP,HL SP() = HL(); cycles += 2; break; default: __assume(0); } break; default: __assume(0); } break; case 2: // Conditional jump switch (y) { case 0: case 1: case 2: case 3: jumpConditionalFlag(f, y); cycles += 3; break; case 4: // GB: LD (FF00 + C),A m_bus.writeRegister(C(), a); cycles += 2; break; case 5: // GB: LD (nn),A fetchWord(); setByte(MEMPTR(), a); cycles += 4; break; case 6: // GB: LD A,(FF00 + C) a = m_bus.readRegister(C()); cycles += 2; break; case 7: // GB: LD A,(nn) fetchWord(); a = getByte(MEMPTR().word); cycles += 4; break; default: __assume(0); } break; case 3: // Assorted operations switch (y) { case 0: // JP nn fetchWord(); jump(); cycles += 4; break; case 1: // CB prefix m_prefixCB = true; fetchExecute(); break; case 6: // DI di(); cycles++; break; case 7: // EI ei(); cycles++; break; } break; case 4: // Conditional call: CALL cc[y], nn if (callConditionalFlag(f, y)) cycles += 3; cycles += 3; break; case 5: // PUSH & various ops switch (q) { case 0: // PUSH rp2[p] pushWord(RP2(p)); cycles += 4; break; case 1: switch (p) { case 0: // CALL nn fetchWord(); call(); cycles += 6; break; } break; default: __assume(0); } break; case 6: // Operate on accumulator and immediate operand: alu[y] n switch (y) { case 0: // ADD A,n add(f, a, fetchByte()); break; case 1: // ADC A,n adc(f, a, fetchByte()); break; case 2: // SUB n subtract(f, a, fetchByte()); break; case 3: // SBC A,n sbc(f, a, fetchByte()); break; case 4: // AND n andr(f, a, fetchByte()); break; case 5: // XOR n xorr(f, a, fetchByte()); break; case 6: // OR n orr(f, a, fetchByte()); break; case 7: // CP n compare(f, a, fetchByte()); break; default: __assume(0); } cycles += 2; break; case 7: // Restart: RST y * 8 restart(y << 3); cycles += 4; break; default: __assume(0); } break; } }