#pragma once #include #include #include #include #include #include #include #include namespace EightBit { class MOS6502 : public Processor { public: enum StatusBits { NF = Bit7, // Negative VF = Bit6, // Overflow RF = Bit5, // reserved BF = Bit4, // Brk DF = Bit3, // D (use BCD for arithmetic) IF = Bit2, // I (IRQ disable) ZF = Bit1, // Zero CF = Bit0, // Carry }; MOS6502(Bus& bus); Signal ExecutingInstruction; Signal ExecutedInstruction; virtual int execute(uint8_t opcode) final; virtual int step() final; virtual void powerOn() override; uint8_t& X() { return x; } uint8_t& Y() { return y; } uint8_t& A() { return a; } uint8_t& S() { return s; } uint8_t& P() { return p; } PinLevel& SO() { return m_soLine; } // In protected: virtual void reset() final; virtual uint8_t SUB(uint8_t operand, uint8_t data, int borrow = 0); uint8_t SBC(uint8_t operand, uint8_t data); uint8_t SUB_b(uint8_t operand, uint8_t data, int borrow); uint8_t SUB_d(uint8_t operand, uint8_t data, int borrow); virtual uint8_t ADD(uint8_t operand, uint8_t data, int carry = 0); uint8_t ADC(uint8_t operand, uint8_t data); uint8_t ADD_b(uint8_t operand, uint8_t data, int carry); uint8_t ADD_d(uint8_t operand, uint8_t data, int carry); private: void interrupt(uint8_t vector); void adjustZero(uint8_t datum) { clearFlag(P(), ZF, datum); } void adjustNegative(uint8_t datum) { setFlag(P(), NF, datum & NF); } void adjustNZ(uint8_t datum) { adjustZero(datum); adjustNegative(datum); } register16_t getWordPaged(uint8_t page, uint8_t offset); uint8_t getBytePaged(uint8_t page, uint8_t offset); void setBytePaged(uint8_t page, uint8_t offset, uint8_t value); virtual void push(uint8_t value) final; virtual uint8_t pop() final; // Address resolution void Address_Absolute() { MEMPTR() = fetchWord(); } void Address_ZeroPage() { MEMPTR().low = fetchByte(); MEMPTR().high = 0; } void Address_ZeroPageIndirect() { Address_ZeroPage(); MEMPTR() = getWordPaged(0, MEMPTR().low); } void Address_Indirect() { Address_Absolute(); MEMPTR() = getWordPaged(MEMPTR().high, MEMPTR().low); } void Address_ZeroPageX() { Address_ZeroPage(); MEMPTR().low += X(); } void Address_ZeroPageY() { Address_ZeroPage(); MEMPTR().low += Y(); } bool Address_AbsoluteX() { Address_Absolute(); const auto page = MEMPTR().high; MEMPTR().word += X(); return MEMPTR().high != page; } bool Address_AbsoluteY() { Address_Absolute(); const auto page = MEMPTR().high; MEMPTR().word += Y(); return MEMPTR().high != page; } void Address_IndexedIndirectX() { Address_ZeroPageX(); MEMPTR() = getWordPaged(0, MEMPTR().low); } bool Address_IndirectIndexedY() { Address_ZeroPageIndirect(); const auto page = MEMPTR().high; MEMPTR().word += Y(); return MEMPTR().high != page; } // Addressing modes, read uint8_t AM_Immediate() { return fetchByte(); } uint8_t AM_Absolute() { Address_Absolute(); return getByte(MEMPTR()); } uint8_t AM_ZeroPage() { Address_ZeroPage(); return getByte(MEMPTR()); } uint8_t AM_AbsoluteX() { if (UNLIKELY(Address_AbsoluteX())) addCycle(); return getByte(MEMPTR()); } uint8_t AM_AbsoluteY() { if (UNLIKELY(Address_AbsoluteY())) addCycle(); return getByte(MEMPTR()); } uint8_t AM_ZeroPageX() { Address_ZeroPageX(); return getByte(MEMPTR()); } uint8_t AM_ZeroPageY() { Address_ZeroPageY(); return getByte(MEMPTR()); } uint8_t AM_IndexedIndirectX() { Address_IndexedIndirectX(); return getByte(MEMPTR()); } uint8_t AM_IndirectIndexedY() { if (UNLIKELY(Address_IndirectIndexedY())) addCycle(); return getByte(MEMPTR()); } // Addressing modes, write void AM_Absolute(uint8_t value) { Address_Absolute(); setByte(MEMPTR(), value); } void AM_ZeroPage(uint8_t value) { Address_ZeroPage(); setByte(MEMPTR(), value); } void AM_AbsoluteX(uint8_t value) { Address_AbsoluteX(); setByte(MEMPTR(), value); } void AM_AbsoluteY(uint8_t value) { Address_AbsoluteY(); setByte(MEMPTR(), value); } void AM_ZeroPageX(uint8_t value) { Address_ZeroPageX(); setByte(MEMPTR(), value); } void AM_ZeroPageY(uint8_t value) { Address_ZeroPageY(); setByte(MEMPTR(), value); } void AM_IndexedIndirectX(uint8_t value) { Address_IndexedIndirectX(); setByte(MEMPTR(), value); } void AM_IndirectIndexedY(uint8_t value) { Address_IndirectIndexedY(); setByte(MEMPTR(), value); } // Operations void DCP(uint8_t value) { setByte(--value); CMP(A(), value); } void ISB(uint8_t value) { setByte(++value); A() = SBC(A(), value); } void SLO(uint8_t value) { const auto result = ASL(value); setByte(result); ORA(result); } void SRE(uint8_t value) { const auto result = LSR(value); setByte(result); EORA(result); } void RLA(uint8_t value) { const auto result = ROL(value); setByte(result); ANDA(result); } void RRA(uint8_t value) { const auto result = ROR(value); setByte(result); A() = ADC(A(), result); } void LAX(uint8_t value) { adjustNZ(X() = A() = value); } void AAC(uint8_t value) { ANDA(value); setFlag(P(), CF, A() & Bit7); } void ASR(uint8_t value) { A() = LSR(A() & value); } void ARR(uint8_t value) { } void ATX(uint8_t value) { ANDA(value); X() = A(); } void AXS(uint8_t value) { } // uint8_t DEC(uint8_t value) { const auto result = --value; adjustNZ(result); return result; } uint8_t INC(uint8_t value) { const auto result = ++value; adjustNZ(result); return result; } void ORA(uint8_t value) { adjustNZ(A() |= value); } void ANDA(uint8_t value) { adjustNZ(A() &= value); } void EORA(uint8_t value) { adjustNZ(A() ^= value); } uint8_t ROR(uint8_t value); uint8_t LSR(uint8_t value); void BIT(uint8_t data); uint8_t ROL(uint8_t value); uint8_t ASL(uint8_t value); void CMP(uint8_t first, uint8_t second); void Branch(int8_t displacement); void Branch(bool flag); void PHP(); void PLP(); void JSR_abs(); void RTI(); void RTS(); void JMP_abs(); void JMP_ind(); void BRK(); // All interrupt vectors are on the 0xFF page const uint8_t IRQvector = 0xfe; const uint8_t RSTvector = 0xfc; const uint8_t NMIvector = 0xfa; uint8_t x = 0; // index register X uint8_t y = 0; // index register Y uint8_t a = 0; // accumulator uint8_t s = 0; // stack pointer uint8_t p = 0; // processor status PinLevel m_soLine = Low; }; }