
Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

1

Color Computer 1/2/3 Hardware Programming
Chris Lomont, Aug 2007, version 0.82

This document collects and details hardware programming information for the TRS-80 Color
Computer, versions 1, 2, and 3. Although it has some tutorial information in it, it is designed to be a
reference. Many areas also apply to the Color Computer Clones such as the British Dragon 32/64.

It is compiled and edited by Chris Lomont, www.lomont.org. Send comments, corrections, and
errors to CoCo3 at the above domain. Please don't repost this on the web, but point to this copy, so
eventually all information is corrected and integrated.

This document is compiled from many sources, listed in the Bibliography. If you feel this infringes
any of your copyrighted material, email me with your material, and I will remove or rewrite from
scratch the offending sections.

Hex numbers start with a $, as in 255=$FF. Addresses like $FFFE (65534) give the decimal in
parentheses. 16-bit addresses like $B0F1 are in 6809 CPU address space. On the Color Computer 3,
20-bit addresses like $70FFF are in GIME address space. Also on the Color Computer 3, the
Memory Mapping Unit (MMU) maps eight 8K pages from the GIME space into CPU space.

Many sections (marked TODO) need a lot more work, which I will do given time.

DISCLAIMER: All information provided as is, etc. Use at your own risk.

Version History
0.8

June 2006 Initial version and organization of material.

0.81

July 2007 One pass of cleanup and some new material added.

0.82

Aug 2007 Rewrite, reformat, complete overhaul.

http://www.lomont.org/

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

2

Table of Contents
COLOR COMPUTER 1/2/3 HARDWARE PROGRAMMING ... 1
TABLE OF CONTENTS... 2
HARDWARE INTRODUCTION... 5
6809 CPU NOTES.. 5
COLOR COMPUTER 1/2 HARDWARE TOPICS (PIA, VDG, SAM).. 7

PIA (PERIPHERAL INTERFACE ADAPTERS)... 7
VDG (VIDEO DISPLAY GENERATOR)... 7
SAM (SYNCHRONOUS ADDRESS MULTIPLEXER) ... 8

COLOR COMPUTER 3 HARDWARE TOPICS (GIME) .. 9
GIME (GRAPHICS INTERRUPT MEMORY ENHANCEMENT) ... 9

MMU (Memory Management Unit).. 10
Graphics ... 10
Palettes ... 10
Interrupts .. 10
CoCo 1/2 compatibility... 10

MEMORY MAPPING .. 10
COCO 1/2:.. 10

CoCo 2 memory map.. 10
COCO 3 .. 11

Simple CoCo 3 Memory Map ... 12
COLORS... 14

COCO 1/2:.. 14
COCO 3:... 14

GRAPHICS MODES... 15
COCO 1/2... 15
COCO 3 .. 18

TEXT MODES... 18
COCO 1/2... 18
COCO 3 .. 19

KEYBOARD .. 21
JOYSTICK ... 22
MOUSE... 23
INTERRUPTS.. 23

COCO 1/2/3.. 23
COCO 3 .. 24

SOUND ... 25
CASSETTE STORAGE .. 25

FILE FORMAT ... 25
HARDWARE.. 26

DISK STORAGE ... 28

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

3

DISK FORMAT .. 28
CONTROLLER ... 30
DUP - MERGE AND REMOVE... 33

SERIAL I/O.. 35
SOFTWARE ... 35
HARDWARE.. 35

CARTRIDGE INFO .. 36
BASIC, EXTENDED BASIC, AND DISK BASIC SUMMARY.. 38

COLOR BASIC (NON-EXTENDED) SUMMARY .. 38
EXTENDED COLOR BASIC SUMMARY... 40
DISK BASIC SUMMARY .. 43

ROM ROUTINES.. 46
COLOR BASIC INFO .. 46
EXTENDED COLOR BASIC INFO .. 46
DISK COLOR BASIC INFO ... 46
ROM ROUTINES.. 46

COLOR COMPUTER HARDWARE REGISTER REFERENCE ($FF00-$FFFF) ... 48
PIA REFERENCE ($FF00-$FF3F) ... 48

PIA0 ($FF00-$FF1F)... 48
PIA1 ($FF20-$FF3F)... 49

DISK CONTROLLER REFERENCE... 50
Disk Controller ($FF40) .. 50
DSKREG Copies ($FF41-$FF47) (65345-65351) ... 51
Status/Command ($FF48) .. 51
Track $FF49... 53
Sector $FF4A ... 53
Data $FF4B.. 53
Other Disks $FF50-$FF5F .. 53

MISCELLANEOUS HARDWARE.. 54
$FF60 (65376)-$FF62 (65378) X-Pad interface.. 54
$FF60 (65376)-$FF67 (65383) CoCo Max A/D Module ... 54
$FF60 (65376)-$FF7F (65407) TC^3 SCSI... 55
$FF63 (65379)-$FF67 (65383) Unused... 55
$FF68 (65384)-$FF6B (65387) RS-232 PROGRAM PAK Interface ... 55
$FF6C (65388)-$FF6F (65391) Direct Connect Modem Pak ... 56
$FF70 (65392),$FF72 (65394) Musica stereo pack .. 57
$FF70 (65392)-$FF72 (65394) Laser light show D/A... 57
$FF70 (65392)-$FF74 (65396) SPEECH SYSTEMS SUPERVOICE .. 57
$FF70 (65392)-$FF74 (65396) Burke & Burke CYBERVOICE.. 57
$FF70 (65392)-$FF78 (65400) Glenside IDE controller .. 58
$FF7A (65392)-$FF7B (65404) Orchestra-90... 59
$FF7D (65405)-$FF7E (65406) SOUND/SPEECH CARTRIDGE.. 59
$FF7F(65407) MULTI-PAK PROGRAMMING REGISTER ... 59

COCO 3 GIME HARDWARE REFERENCE.. 60
$FF90 (65424) Initialization Register 0 - INIT0 .. 60
$FF91 (65425) Initialization Register 1 - INIT1 .. 61
$FF92 (65426) Interrupt Request Enable Register – IRQENR .. 61
$FF93 (65427) Fast Interrupt Request Enable Reg - FIRQENR ... 61
$FF94-$FF95 TIMERMSB/TIMERLSB ... 62
$FF96-$FF97 - Unused ... 63
$FF98 (65432) Video mode register - VMODE ... 63

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

4

$FF99 (65433) Video resolution register - VRES .. 64
$FF9A (65434) Border color register - BRDR... 66
$FF9C (65436) Vertical scroll register - VSC ... 66
$FF9D-$FF9E Vertical offset register... 66
$FF9F (65439) Horizontal offset register .. 67
$FFA0-$FFAF (65440-65455) MMU bank registers (tasks 0 and 1) .. 67
$FFB0-$FFBF (65456-65471) Color palette registers.. 69

SAM REGISTERS $FFC0-$FFDF.. 70
$FFC0 (65472)-$FFC5 (65477) SAM Video Display - SAM_Vx.. 70
$FFC6 (65478)-$FFD3 (65491) SAM Page Select Reg-SAM_Fx.. 71
$FFD4 (65492)-$FFD5 (65493) SAM Page Select Reg-SAMPAG.. 71
$FFD6 (65494)-$FFD9 (65497) Clock Speed R0/R1 - SAM_R0/1.. 72
$FFDA (65498)-$FFDD (65501) Memory size M0/M1 - SAM_M0/1 ... 72
$FFDE/$FFDF (65502/65503) ROM/RAM map type - SAM_TYP.. 72

INTERRUPT VECTORS ... 73
$FFE0-$FFF1 (65504/65522) Reserved.. 73
$FFF2-$FFFF (65523/65535) Interrupt vectors ... 73

COCO 3 DETAILED MEMORY MAP... 74
SCHEMATICS... 81
BIBLIOGRAPHY .. 84
GLOSSARY.. 84
INDEX... 84
TODO.. 85

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

5

Hardware Introduction

This document covers the hardware in the Color Computer, versions 1, 2, and 3, often called the
CoCo 1, CoCo 2, and CoCo 3.

The original version of the Color Computer, the CoCo 1, was in a silver-gray case with a chiclet
keyboard, and was available with a memory sizes of 4K (26-30011), 16K (26-3002), or 32K (26-
3003). Many actually had 64K of RAM, which could be accessed with special utilities. The second
generation CoCo 2 came in 16K (standard and extended BASIC) and 64K RAM sizes, removed the
12V power line, and the new BASIC ROMs fixed some bugs. The CoCo 3 was a major upgrade
using the ASIC Graphics Interrupt Memory Enhancement (GIME) chip, which added many new
features, detailed below. Some of the new features included up to 512K of RAM, lowercase letters,
40 and 80 column text, higher clock speeds, new interrupt sources, and many new video modes.

TODO – pics?

The CoCo3 supports the CoCo 1 and 2 hardware in CoCo 1/2 compatibility mode, described in the
CoCo 1/2 Compatibility Section.

All three versions of the CoCo run on a Motorola 6809 chip, details of which are in a different
document. A brief note about the 6809 is below.

The main hardware interfaces are:

CoCo 1/2/3:
PIA Peripheral Interface Adapter General hardware Input/Output
SAM Synchronous Address Multiplexer Determines how data moves
VDG Video Display Generator Converts RAM to images

CoCo 3 only:
GIME Graphics Interrupt Memory Enhancement What it says...

Miscellaneous hardware items cover disk drives, cassette, sound, joysticks, speech packs, modem
packs, multi-pak, and more.

6809 CPU Notes
The Motorola 6809 is an 8-bit CPU with some 16-bit instructions and registers. Here is a rough
picture of the programming model:

1 These type of numbers are from Radio Shack catalogs.

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

6

The condition code bits in the Condition Code register are used in this document, and are

Bit Function
E During interrupt, if 1, indicated all registers on stack, else only PC and CC. Needed for RTI

(Return From Interrupt) opcode.
F FIRQ Disabled if 1. Set to 1 on power up and during interrupt processing.
H Half Carry from low nibble to high nibble, used for DAA (Decimal Addition Adjust)

opcode.
I IRQ Disabled if 1. Set to 1 on power up and during interrupt processing.
N Last operation resulted in Negative.
Z Last operation resulted in Zero.
V Signed arithmetic overflow.
C Carry generated.

Many hobbyists have replaced the 6809 with the pin compatible Hitachi 6309EP, which offers
higher performance, more registers, and many more opcodes. For details on the 6809 and 6309 see
http://www.lomont.org/Software/Misc/CoCo/Lomont_6809.pdf.

http://www.lomont.org/Software/Misc/CoCo/Lomont_6809.pdf

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

7

Color Computer 1/2 Hardware Topics (PIA, VDG, SAM)
The main hardware interfaces in the CoCo 1 and 2 (also in the CoCo 3) are the 2 PIAs (Peripheral
Interface Adapter), a SAM (Synchronous Address Multiplexer) and a VDG (Video Display
Generator). Details follow.

The CoCo 1 came in 4K, 16K, and 32K RAM versions, with RAM starting at address $0000 and
going through $1FFF, $3FFF, and $7FFF respectively. ROM addresses are $8000-$FFFF, with
addresses $FF00-$FFFF being hardware access ports.

The CoCo 2 came with 64K of RAM, and 32K of ROM. The upper 32K was selected to be RAM
or ROM by setting a bit in $FFDE/$FFDF.

The CoCo 2 has a RAM/ROM mode, and an all RAM mode, selected by SAM control bit TY,
accessed from $FFDE/$FFDF.

32K RAM $0000-$7FFF /32K ROM $8000-$FFFF or
64K RAM $0000-$FFFF (TODO - vectors?)

All 3 CoCos have hardware interface registers in the 256 bytes from $FF00-$FFFF.

PIA (Peripheral Interface Adapters)
The PIA is a Motorola MC6821 or MC6822. There are two PIA chips, PIA0 and PIA1, each
consisting of 4 addresses. Each PIA has two data registers and two control registers.

PIA0 uses addresses $FF00-$FF03. Data registers $FF00 and $FF02 are mostly keyboard and
printer interfaces, and control registers $FF01 and $FF03 handle horizontal and vertical sync
interrupts and joystick direction.

PIA1 uses addresses $FF20-$FF23, handling cassette, printer, CoCo 1/2 video modes, audio, and
cartridge info. Details are in the hardware section under the respective addresses.

TODO

VDG (Video Display Generator)
The VDG is a Motorola MC6847 (later, the enhanced MC6847T1), capable of displaying text and
graphics contained within a roughly square display 256 pixels wide by 192 lines high. It is capable
of displaying 9 colors: black, green, yellow, blue, red, buff, cyan, magenta, and orange. It can
generate a few modes: text modes, graphics modes, and "semigraphics" modes. The semigraphics
modes replace each character position from a text mode with blocks containing pixels.

The CoCo is physically wired such that its default alphanumeric display is semigraphics-4 mode.

In alphanumeric mode, each character is a 5 dot wide by 7 dot high character in a box 8 dots wide
and 12 lines high. This display mode consumes 512 bytes of memory and is a 32 character wide

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

8

screen with 16 lines. The internal ROM character generator only holds 64 characters, so no lower
case characters are provided. Lower case is instead "simulated" by inverting the color of the
character.

Semigraphics is a hybrid display mode where alphanumerics and block graphics can be mixed
together on the same screen. See other sections for details.

By setting the SAM such that it believes it is displaying a full graphics mode, but leaving the VDG
in Alphanumeric/Semigraphics 4 mode, it is possible to subdivide the character box into smaller
pieces. This creates the "virtual" modes Semigraphics 8, 12, and 24. These modes were not
implemented on the CoCo 3.

There were several full graphics display modes, -C (for "color) modes and -R (for "resolution")
modes. See elsewhere in this document for details.

The 256x192 two-color mode allows "artifact colors" on an NTSC TV, due to limitations of the
phase relationship between the VDG clock and colorburst signal. In the white and black colorset,
alternating dots bleed together to give red or blue, in effect giving a 128x192 four color mode with
red, black, white, and blue. Reversing dot order reverses artifact colors. However, the color formed
is somewhat random on RESET, so many games have the player press RESET until the colors are
correct for the game. The CoCo 3 fixed this problem, always starting the same, and holding F1
during reset would reverse the colors. Artifacting does not work on the RGB monitors.

Graphics modes are covered in the section on Graphics Modes.

The VDG is programmed through PIA1.

SAM (Synchronous Address Multiplexer)
The SAM is a Motorola MC6883 or SN74LS785.

The SAM performs the following functions:

• Clock generation and synchronization for the 6809E CPU and 6847 VDG
• Up to 64K Dynamic Random Access Memory (DRAM) control and refresh
• Device selection based on CPU memory address to determine if the CPU access is to

DRAM, ROM, PIA, etc.
• Duplication of the VDG address counter to "feed" the VDG the data it is expecting
• Divides the internal 4x NTSC freq (14.31818MHz for NTSC) by 4, passes it to the VDG for

its own internal timing (3.579545MHz for NTSC).
• Divides the master clock by 16 (or 8 in certain cases) for the two phase CPU clock - in

NTSC this is .89MHz (or 1.8MHz if div by 8).

The SAM's 16-bit configuration register is spread across 32 memory addresses ($FFC0-$FFDF).
Writing even addresses sets that register bit to 0; writing to odd addresses sets it to 1.

The SAM contains a duplicate of the VDG's 12-bit address counter, and usually is programmed to
be in sync. Mixing modes between the two results in other possible modes.

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

9

There are actually three speed settings on the CoCo. The default is to run at .895 MHz all the time.
There is another setting that makes it run at twice that speed when accessing the ROM memory, but
still at the slower speed when accessing RAM, called "address dependent" or "AD". Finally, there
is a speed setting that uses the double speed all the time.

When the CPU chip runs faster, it generates more heat. Most CoCo 6809's can take the heat of
running double-speed, but some might burn out, so do it at your own risk, especially on older, early
version CoCos.

Note that a lot of the timing-dependent things in the CoCo BASIC ROMs won't work right at any
speed other than "slow", like reading or writing cassettes and disks, and making sounds. On CoCo 1
and 2 it also causes problems with the display.

Clock speed is controlled by addresses $FFD6-$FFD9 in the SAM.

TODO

Color Computer 3 Hardware Topics (GIME)
The CoCo 3 supports the hardware of the CoCo 1 and 2, and adds a multifunction chip, the GIME.
There were two versions, the 1986 and 1987 versions.

TODO – version differences? 256 color mode conjecture?

GIME (Graphics Interrupt Memory Enhancement)
The GIME is a custom ASIC chip designed to replace and extend many parts in the original CoCo
1 and 2. The main features added are support for more than 64K of memory (128K was the
standard, and a 512K upgrade was common), advanced graphics modes, and more interrupt
options. A mode bit (bit 7) in INIT0 ($FF90) (bit 7) switched between CoCo 1/2 mode and CoCo 3
mode.

There are many other features, covered in the hardware section for the GIME, which uses hardware
registers $FF90-$FFBF. Here are a few features.

The GIME adds

• Many more graphics and text options.
• New interrupt sources, like timer and keyboard.
• Ability to address more memory (128K in original CoCo 3's, 512K after upgrade. There are

other, bigger upgrades available). The Memory Management Unit (MMU, registers $FFA0-
$FFAF) handles this by paging 8K blocks into the address space used by the CPU

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

10

MMU (Memory Management Unit)
The first thing to learn about the GIME is to understand the MMU, and how addresses from the
GIME memory space map to the CPU memory space. The MMU is controlled by addresses
$FFA0-$FFAF, and more details are under the section on Memory Mapping.

Graphics
See the GIME hardware section.
TODO – table?

Palettes
See the GIME hardware section on Palettes ($FFB0-$FFBF) and the Colors section.
TODO – palettes?

Interrupts
See the GIME hardware section on interrupts.
TODO

CoCo 1/2 compatibility
A mode bit (bit 7) in INIT0 ($FF90) (bit 7) switched between CoCo 1/2 mode and CoCo 3 mode.
To use CoCo 1/2 graphics modes, set this bit. To use CoCo 3 graphics modes, clear this bit.

Memory Mapping
This section covers how memory is mapped into the CPU space on the CoCo 1, 2, and 3.

CoCo 1/2:
32/64K maps see TODO
TODO

CoCo 2 memory map

Address Usage
$0000-$0069 Direct Page RAM: available for M/L Programs
$006A-$00FF Internal Use
$006F DEVNUM: 0=screen, FE=printer
$007D BLKLEN: number of bytes in a block (0-255)
$007C BLKTYP: block type: 0=header, 1=data, FF=end
$007E CBUFAD: buffer address (two bytes?)
$0081 CSRERR: cassette error code
$0100-$0111 Interrupt Vectors
$0112-$0114 USRJMP - Jump to BASIC USR function
$0115-$0119 Unassigned - available for M/L Programs
$011A Keyboard Alpha Lock (0 = not locked; FF = Locked)
$011B-$011C Keyboard Delay Constant

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

11

$011D-$0151 Unassigned - available for M/L Programs
$0152-$0159 Keyboard Rollover Tables
$015A-$015D POTVAL: Joystick values

$15A Right joystick, left/right value
$15B Right joystick, up/down value
$15C Left joystick, left/right value
$15D Left joystick, up/down value

$015E - $03FF Internal Use
$0400-$05FF Video Text memory
$0600-$1FFF
$0600-$3FFF
$0600-$7FFF

User's BASIC program (4K RAM)
User's BASIC program (16K RAM)
User's BASIC program (32K or 64K RAM)

$8000-$9FFF Extended Color BASIC ROM
$A000-$BFFF Color BASIC
$C000-$DFFF Cartridge ROM Space
$E000-$FEFF Unused
$FF00-$FFFF I/O, machine configuration, reset vectors

CoCo 3
The GIME chip can access 512K of memory, yet the 6809 CPU can only access 64K. The barrier is
broken by a MMU (Memory Management Unit) that splits the access into 8 blocks visible to the
CPU of 8K each.

To use the memory mapping, bit 6 of INIT0 ($FF90) must be set to 1,

There are two possible memory maps, Map 0 and Map 1, selected by bit 0 of the INIT1 ($FF91)
register. Setting this bit to 0 enables Map 0 (using the pages stored in $FFA0-$FFA7), and setting
this bit to 1 enables Map 1 (using pages in $FFA8-$FFAF).

 TODO see http://www.coco25.com/wiki/index.php/MMU_RAMROM_Mode

A memory page is an 8K block in the GIME address space. A 128K system has 128/8=16 blocks,
numbered hex $30-$3F. A 512K system has 64 blocks, numbered hex $00-$3F. To place a page in
CPU memory for access, write the page number in the appropriate memory select register.

In RAM/ROM mode, the ROM pages ($3C-$3F) can be written to any of the eight available MMU
slots. In all cases the last two bits of the page are ignored by the MMU and substituted by the last
two bits of the slot number. This might cause some addressing confusion, and should be noted.

A memory page number is a 6-bit value. When reading the memory select registers, be sure to
mask off the top two bits, since they can contain garbage.

The memory select registers are registers $FFA0-$FFAF. A write of a page value to the address on
the left makes the page visible at the CPU address on the right.

Map 0 Map 1

http://www.coco25.com/wiki/index.php/MMU_RAMROM_Mode

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

12

$FFA0 -> $0000-$1FFF $FFA8 -> $0000-$1FFF
$FFA1 -> $2000-$2FFF $FFA9 -> $2000-$2FFF
$FFA2 -> $4000-$5FFF $FFAA -> $4000-$5FFF
$FFA3 -> $6000-$7FFF $FFAB -> $6000-$7FFF
$FFA4 -> $8000-$9FFF $FFAC -> $8000-$9FFF
$FFA5 -> $A000-$BFFF $FFAD -> $A000-$BFFF
$FFA6 -> $C000-$DFFF $FFAE -> $C000-$DFFF
$FFA7 -> $E000-$FFFF $FFAF -> $E000-$FFFF

Details are in the hardware reference for the MMU.

Example: to set GIME memory location $60000 to value 0, you could:

 ORCC #$50 SHUT OFF INTERRUPTS - TODO - SAVE FOR RESTORE LATER
 LDA $FFA1 GET THE PAGE FOR THE RESTORE
 ANDA #63 STRIP OFF TOP BITS
 PSHS A SAVE THE PAGE FOR LATER
 LDA #$30 ACCESS TO PAGE $30 = GIME $60000
 STA $FFA1 MAP PAGE $60000-$61FFF TO LOCATIONS $2000-$3FFF
 LDA #$00 THE BYTE IS 0
 STA $2000 SET THE PROPER BYTE IN CPU SPACE
 PULS A RESTORE THE PAGE VALUE THAT WAS THERE
 STA $FFA1 MAP ORIGINAL PAGE BACK INTO CPU SPACE

Notes:

1. Unless you know what you are doing, shut off interrupts when changing pages. If you
change a page that has an interrupt handler in it, and an interrupt occurs, you will likely
crash the computer.

2. If you are using the stack, be careful if you page out the stack. Return addresses may be
changed, and stack values will not likely be the same. Therefore, KNOW WHERE THE
STACK IS! In basic, it starts in the $6000-$7FFF page.

Simple CoCo 3 Memory Map
Here is a simple CoCo 3 memory map. Detailed versions are in the section on Detailed Memory
Maps.

Here are page values for GIME address, default page values on a power up, and default CPU
addresses:
Page GIME Address CPU Address Standard Page Contents
$00-
2F

00000-$5FFFF 512K upgrade RAM, unused by BASIC; not
present in 128K or smaller systems

$30 $60000-$61FFF Hi-Res page #1
$31 $62000-$63FFF Hi-Res page #2
$32 $64000-$65FFF Hi-Res page #3
$33 $66000-$67FFF Hi-Res page #4
$34 $68000-$69FFF HGET/HPUT buffer
$35 $6A000-$6BFFF Secondary Stack
$36 $6C000-$6DFFF Hi-Res text screen RAM

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

13

$37 $6E000-$6FFFF Unused by BASIC
$38 $70000-$71FFF $0000-$1FFF BASIC memory
$39 $72000-$73FFF $2000-$3FFF BASIC memory
$3A $74000-$75FFF $4000-$5FFF BASIC memory
$3B $76000-$77FFF $6000-$7FFF BASIC memory
$3C $78000-$79FFF $8000-$9FFF Extended Basic ROM
$3D $7A000-$7BFFF $A000-$BFFF Color Basic ROM
$3E $7C000-$7DFFF $C000-$DFFF Cartridge or Disk Basic ROM
$3F $7E000-$7FFFF $D000-$FFFF Super Basic, GIME regs, I/O, Interrupts

A little more detail for the default power on situation for the BASIC memory sections, and
GIME Address *Contents*
$70000 - $703FF System RAM
$70400 - $705FF Lowres text screen
Non Disk System
$70600 - $70BFF Page 1 - lowres graphics
$70C00 - $711FF Page 2
$71200 - $717FF Page 3
$71800 - $71DFF Page 4
$71E00 - $723FF Page 5
$72400 - $729FF Page 6
$72A00 - $72FFF Page 7
$73000 - $735FF Page 8
Disk System
$70600 - $70DFF Disk System RAM
$70E00 - Page 1
Either System 1 - 8 graphic pages reserved, Basic program start varies.
$71200 - $77FFF
 or Basic programs, variables, and user ml programs
$71400 - $77FFF

High pages:
$7E000 - $7FDFF Super Extended Basic
$7FE00 - $7FEFF Secondary vector table
$7FF00 - $7FF3F PIAs
$7FF90 - $7FBFF GIME in CoCo 3
$7FFC0 - $7FFDF video control, clock, and map type
$7FFE0 - $7FFF1 Unused
$7FFF2 - $7FFFF Interrupt vectors

Note: the Vector Page RAM at $7FE00 - $7FEFF (when enabled), will appear instead of the RAM
or ROM at $FE00 - $FEFF. (see INIT0 ($FF90) Bit 3) TODO

The 256 top bytes $FF00-$FFFF in CPU space contain byte-mapped hardware interfaces, covered
elsewhere in this doc.

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

14

TODO - make sure all this in detailed maps
TODO - Merge memory maps into one section, with two or three levels of detail.

Colors

CoCo 1/2:

TODO

CoCo 3:
Palette colors are defined in registers $FFB0-$FFBF. The format differs depending on if you are in
RGB or Composite monitor mode. Mode is selected by setting TODO

Default composite colors on startup:
$FFB0 GREEN 18 $FFB8 BLACK 00
$FFB1 YELLOW 36 $FFB9 GREEN 18
$FFB2 BLUE 11 $FFBA BLACK 00
$FFB3 RED 07 $FFBB BUFF 63
$FFB4 BUFF 63 $FFBC BLACK 00
$FFB5 CYAN 31 $FFBD GREEN 18
$FFB6 MAGENTA 09 $FFBE BLACK 00
$FFB7 ORANGE 38 $FFBF ORANGE 38

Entering PALETTE CMP or PALETTE RGB will set this palette for the type of monitor you are
using.

The format is explained in the GIME Palette ($FFB0-$FFBF) register section.

The table of (hex) colors given below is the conversion used in OS-9 Level II.

Monitor Color Monitor Color
RGB CMP RGB CMP
00 00 Black 32 23 Medium intensity red
01 12 Low intensity blue 33 08 Blue tint red
02 02 Low intensity green 34 21 Light Orange
03 14 Low intensity cyan 35 06 Cyan tint red
04 07 Low intensity red 36 39 Full intensity red
05 09 Low intensity magenta 37 24 Magenta tint red
06 05 Low intensity brown 38 38 Brown tint red
07 16 Low intensity white 39 54 Faded red
08 28 Medium intensity blue 40 25 Medium intensity magenta
09 44 Full intensity blue 41 42 Blue tint magenta
10 13 Green tint blue 42 26 Green tint magenta
11 29 Cyan tint blue 43 58 Cyan tint magenta
12 11 Red tint blue 44 24 Red tint magenta
13 27 Magenta tint blue 45 41 Full intensity magenta
14 10 Brown tint blue 46 40 Brown tint magenta
15 43 Faded blue 47 56 Faded magenta
16 34 Medium intensity green 48 20 Medium intensity yellow
17 17 Blue tint green 49 04 Blue tint yellow

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

15

18 18 Full intensity green 50 35 Green tint yellow
19 33 Cyan tint green 51 51 Cyan tint yellow
20 03 Red tint green 52 37 Red tint yellow
21 01 Magenta tint green 53 53 Magenta tint yellow
22 19 Brown tint green 54 36 Full intensity yellow
23 50 Faded green 55 52 Faded yellow
24 30 Medium intensity cyan 56 32 Medium intensity white
25 45 Blue tint cyan 57 59 Light blue
26 31 Green tint cyan 58 49 Light green
27 46 Full intensity cyan 59 62 Light cyan
28 15 Red tint cyan 60 55 Light red
29 60 Magenta tint cyan 61 57 Light magenta
30 47 Brown tint cyan 62 63 Light yellow
31 61 Faded cyan 63 48 White

TODO – there is a dup in the entries – check elsewhere, and also make reverse table. 24 is used
twice in the CMP side, and 22 is missed on the CMP side.

Graphics Modes

CoCo 1/2
TODO - table? From http://homepage.ntlworld.com/kryten_droid/coco/coco_tm_s3.htm ?

TODO - add semigraphics 8, 12, and 24 modes info?

ALPHANUMERIC DISPLAY MODES – All alphanumeric modes occupy an 8 x 12 dot character
matrix box and there are 32 x 16 character boxes per TV frame. Each horizontal dot (dot-clock)
corresponds to one half the period duration of the 3.58 MHz clock and each vertical dot is one scan
line. One of two colors for the lighted dots may be selected by the color set select pin (pin 39). An
internal ROM will generate 64 ASCII display characters in a standard 5 x 7 box. Six bits of the
eight-bit data word are used for the ASCII character generator and the two bits not used are used to
implement inverse video and mode switching to semigraphics – 4, – 8, – 12, or – 24.

The ALPHA SEMIGRAPHICS – 4 mode translates bits 0 through 3 into a 4 x 6 dot element in the
standard 8 x 12 dot box. Three data bits may be used to select one of eight colors for the entire
character box. The extra bit is used to switch to alphanumeric. A 512 byte display memory is
required. A density of 64 x 32 elements is available in the display area. The element area is four
dot-clocks wide by six lines high.

The ALPHA SEMIGRAPHICS – 6 mode maps six 4 x 4 dot elements into the standard 8 x 12 dot
alphanumeric box, a screen density of 64 x 48 elements is available. Six bits are used to generate
this map and two data bits may be used to select one of four colors in the display box. A 512 byte
display memory is required. The element area is four dot-clocks wide by four lines high.

The ALPHA SEMIGRAPHICS – 8 mode maps eight 4 x 3 dot elements into the standard 8 x 12
dot box. This mode requires four memory locations per box and each memory location may specify
one of eight colors or black. A 2048 byte display memory is required. A density of 64 x 64

http://homepage.ntlworld.com/kryten_droid/coco/coco_tm_s3.htm

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

16

elements is available in the display area. The element area is four dot-clocks wide by three lines
high.

The ALPHA SEMIGRAPHICS – 12 mode maps twelve 4 x 2 dot elements into the standard 8 x 12
dot box. This mode requires six memory locations per box and each memory location may specify
one of eight colors or black. A 3072 byte display memory is required. A density of 64 x 96
elements is available in the display area. The element area is four dot-clocks wide by two lines
high.

The ALPHA SEMIGRAPHICS – 24 mode maps twenty-four 4 x 1 dot elements into the standard 8
x 12 dot box. This mode requires twelve memory locations per box and each memory location may
specify one of eight colors or black. A 6144 byte display memory is required. A density of 64 x 192
elements is available in the display are. The element area is four dot-clocks wide by one line high.

FULL GRAPHIC MODES – There are eight full graphic modes available from the VDG. These
modes require 1K to 6K bytes of memory. The eight full-graphic modes include an outside color
border in one of two colors depending upon the color set select pin (CSS). The CSS pin (pin 39)
selects one of two sets of four colors in the four color graphic modes.

The 64 x 64 Color Graphics mode generates a display matrix of 64 elements wide by 64 elements
high. Each element may be one of four colors. A 1K x 8 display memory is required. Each pixel
equals four dot-clocks by three scan lines.

The 128 x 64 Graphics Mode generates a matrix 128 elements wide by 64 elements high. Each
element may be either ON or OFF. However, the entire display may be one of two colors, selected
by using the color set select pin. A 1K x 8 display memory is required. Each pixel equals two dot-
clocks by three scan lines.

The 128 x 64 Color Graphics mode generates a display matrix 128 elements wide by 64 elements
high. Each element may be one of four colors. A 2K x 8 display memory is required. Each pixel
equals two dot-clocks by three scan lines.

The 128 x 96 Graphics mode generates a display matrix 128 elements wide by 96 elements high.
Each element may be either ON or OFF. However, the entire display may be one of two colors
selected by using the color select pin. A 2K x 8 display memory is required. Each pixel equals two
dot-clocks by two scan lines.

The 128 x 96 Color Graphics mode generates a display 128 elements wide by 96 elements high.
Each element may be one of four colors. A 3K x 8 display memory is required. Each pixel equals
two dot-clocks by two scan lines.

The 128 x 192 Graphics mode generates a display matrix 128 elements wide by 192 elements high.
Each element may be either ON or OFF, but the ON elements may be one of two colors selected
with color set select pin. A 3K x 8 display memory is required. Each pixel equals two dot-clocks by
one scan line.

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

17

The 128 x 192 Color Graphics mode generates a display 128 elements wide by 192 elements high.
Each element may be one of four colors. A 6K x 8 display memory is required. A detailed
description of the VDG modes is given in Table 2. Each pixel equals two dot-clocks by one scan
line.

The 256 x 192 Graphics mode generates a display 256 elements wide by 192 elements high. Each
element may be either ON or OFF, but the ON element may be one of two colors selected with the
color set select pin. A 6K x 8 display memory is required. Each pixel equals one dot-clock by one
scan line.

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

18

CoCo 3
TODO - table?

See throughout this document
TODO - table?

Text Modes

CoCo 1/2
The character set available for CoCo 1/2 or CoCo 3 in CoCo 1/2 compatible text mode (WIDTH
32) follows.

On CoCo 3(?) the character set assumes that bit 4 of $FF22 is set. If that bit is clear, then the
characters in the range of $0-$1F must be replaced by the corresponding characters in the range
$40-$5F in inverse video.

CoCo 1 and 2, and CoCo3 WIDTH 32 character set:

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

19

Each entry is hex for Inverted, NonInverted, Text

 $00 $40 @ $10 $50 P $20 $60 $30 $70 0
 $01 $41 A $11 $51 Q $21 $61 ! $31 $71 1
 $02 $42 B $12 $52 R $22 $62 " $32 $72 2
 $03 $43 C $13 $53 S $23 $63 # $33 $73 3
 $04 $44 D $14 $54 T $24 $64 $ $34 $74 4
 $05 $45 E $15 $55 U $25 $65 % $35 $75 5
 $06 $46 F $16 $56 V $26 $66 & $36 $76 6
 $07 $47 G $17 $57 W $27 $67 ' $37 $77 7
 $08 $48 H $18 $58 X $28 $68 ($38 $78 8
 $09 $49 I $19 $59 Y $29 $69) $39 $79 9
 $0A $4A J $1A $5A Z $2A $6A * $3A $7A :
 $0B $4B K $1B $5B [$2B $6B + $3B $7B ;
 $0C $4C L $1C $5C \ $2C $6C , $3C $7C <
 $0D $4D M $1D $5D] $2D $6D - $3D $7D =
 $0E $4E N $1E $5E up $2E $6E . $3E $7E >
 $0F $4F O $1F $5F left $2F $6F / $3F $7F ?

The characters defined by $20-$3F are inverse video. Graphics blocks are printed for character
values $80-$FF. Here is a screenshot for values $00-$FF:

CoCo 3
CoCo 3 high-resolution text modes (WIDTH 40, 80) have more characters. The character set is
repeated for character values $80-$FF.

 $00 Ç $10 ó $20 $30 0 $40 @ $50 P $60 ^ $70 p

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

20

 $01 ü $11 æ $21 ! $31 1 $41 A $51 Q $61 a $71 q
 $02 é $12 Æ $22 " $32 2 $42 B $52 R $62 b $72 r
 $03 â $13 ô $23 # $33 3 $43 C $53 S $63 c $73 s
 $04 ä $14 ö $24 $ $34 4 $44 D $54 T $64 d $74 t
 $05 à $15 ø $25 % $35 5 $45 E $55 U $65 e $75 u
 $06 å $16 û $26 & $36 6 $46 F $56 V $66 f $76 v
 $07 ç $17 ù $27 ' $37 7 $47 G $57 W $67 g $77 w
 $08 ê $18 Ø $28 ($38 8 $48 H $58 X $68 h $78 x
 $09 ë $19 Ö $29) $39 9 $49 I $59 Y $69 I $79 y
 $0A è $1A Ü $2A * $3A : $4A J $5A Z $6A j $7A z
 $0B ï $1B § $2B + $3B ; $4B K $5B [$6B k $7B {
 $0C î $1C £ $2C , $3C < $4C L $5C \ $6C l $7C |
 $0D ß $1D ± $2D - $3D = $4D M $5D] $6D m $7D }
 $0E Ä $1E ° $2E . $3D > $4E N $5E up $6E n $7E ~
 $0F Å $1F ƒ $2F / $3F ? $4F O $5F lft $6F o $7F _

For the CoCo3 hi-res screen modes, each character is 2 bytes, in the format char, attrib, char, attrib,
etc. where char is a character code and attrib is an attribute byte. The attribute byte looks like this:

Bit 7 Bit 6 Bits 5,4,3 Bits 2,1,0
Flash (1=flash,0 =
don't)

Underline
(1=underline, 0 =

three foreground color
bits (palettes 8-15)

three background color
bits (palettes 0-7)

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

21

don't) $FFB8-$FFBF $FFB0-$FFB7

Keyboard
The keyboard is accessed through PIA0, addresses $FF00-$FF03. Access is done by setting (for
example) $FF00 for input, $FF02 for output, sending a signal down the required bit(s) in $FF02,
and reading the inputs from $FF00. The roles of $FF00 and $FF02 can be reversed if desired.

The bit values seem backwards and are 0 for on, and 1 for off, in reading the keyboard.

Example code: Needs work on how to do keyboard: - clean this up and correct it
 CLR $FF01 set $FF00 for direction
 CLR $FF00 set for input
 CLR $FF03 set $FF02 for direction
 LDA #$FF
 STA $FF02 set for output

 LDA #%11101111 check only a single column number 4
 STA $FF02 signal columns (in diagram below)
 LDA $FF00 read rows (in diagram below)
 COMA invert output
 ANDA #$7F strip bit
 CMPA #%011111011 check single bit 2 - we tested for T key

Here is the keyboard matrix. Some entries have multiple keys separated by a slash. For example,
es/br is the Esc/Break key.
 __
| LSB $FF02 MSB |
| 0 1 2 3 4 5 6 7 |
+--+
| @ A B C D E F G 0 LSB |
| |
| H I J K L M N O 1 |
| $ |
| P Q R S T U V W 2 F |
| F |
| X Y Z up dn lf rt space 3 0 |
| 0 |
| 0 !/1 "/2 #/3 $/4 %/5 &/6 '/7 4 |
| |
| (/8)/9 */: +/; </, =/- >/. ? / 5 |
| |
| enter clr es/br alt ctrl F1 F2 shifts 6 |
Joystick comparison result 7 MSB
TODO – check kbd example, and make sure works, add joystick buttons to the mix

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

22

Joystick
PIA control registers at $FF01 and $FF03 set control registers CA2 and CB2, which in turn select
which joystick to read and which axis to read.

The 6 most significant bits of $FF20 are the digital to analog converter, and any value here is
compared to a joystick reading. The high bit of $FF00 will be 1 whenever the joystick value
exceeds the D/A value. So set $FF20 to $FC (the highest possible), check the bit, and decrease the
value until the bit changes, giving the joystick value.

Since these bits also affect sound, you should mute the CoCo first.

Example:
 see http://www.coco25.com/wiki/index.php/Sampling TODO

In the CoCo 1 and 2, the joysticks are read by looking at the single bit output of a comparator; one
input to that comparator is one of the joystick values, the other is the output of a digital-to-analog
(D/A) converter under software control. When the selected joystick value exceeds the output of the
D/A converter, the comparator outputs a one, any other time, if outputs a zero. So the joystick value
itself isn't just sitting in memory anywhere; you have to select which joystick to use as input to the
comparator, vary the input to the D/A converter, and then check the output of the comparator to see
when it changes from a one to a zero or visa-versa.

The input to the D/A is the most-significant 6 bits at address $FF20; write $FC to that address to set
the analog value as high as it will go. The comparator output can be read as the most-significant bit
at address $FF00; when it's a one, the joystick value is higher than the D/A output.

Note that the remaining bits at those addresses are used for other things: $FF20 also has a bit going
to the serial port output, and a bit coming in from the cassette port; while the rest of $FF00 is input
from the keyboard matrix and joystick fire-buttons. So you should strip out the bits you need by
doing the appropriate ANDs. Ignoring extraneous input bits causes no problem, and (in this case)
setting the remaining output bits to zero should be okay. (Though you might want to leave the serial
output line high; for that, just OR in $02 before writing the D/A value).

To select which joystick value gets compared (ie: left or right, and X or Y axis), you have to
control a pair of special PIA outputs; CA2 and CB2. Each of the four possible values of these bits
selects a different joystick line to compare. These are controlled by writing to the PIA control
registers, which is a little complicated because they also control a bunch of other things. The
control registers you want are at addresses $FF01 (for CA2) and $FF03 (for CB2). For each
address, I *think* you want to write the value $3F to set the output to a one, and $37 to set it to
zero. These settings enable interrupts that (I think) the CoCo normally uses, and triggers them on
the rising edge of the input signals, which I also think is the normal setting. If these are wrong,
please let me know!

Another possibility is that the PIA control registers might be readable. In that case, you would just
want to read the control register, mask out the bits controlling the select line by ANDing against

http://www.coco25.com/wiki/index.php/Sampling

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

23

$C7, and the fill in the new control values for those bits by ORing against $38 (for high output) or
against $30 (for low).

Of course, the easiest way to do this is from BASIC is with the JOYSTK (I) function, where I is a
joystick axis number. There are four axes you might want to read: each of the two joysticks has a
left-right axis and an up-down axis. Read JOYSTK(0) to cache all four values (BASIC weirdness),
and then read the other three values at your leisure.

The second easiest way is to call a ROM routine (POLCAT) that will read all four joystick values
and leave them sitting in memory. This routine lives in the Color BASIC ROM at address $A00A
and leaves its results in the four bytes at addresses $015A through $015D.

TODO – rewrite section, test, and minimize the example.

Mouse
This is the same as joystick programming.
TODO

Interrupts

CoCo 1/2/3
An interrupt is an external event that alters the normal flow of the microprocessor. There are many
possible ways to generate interrupts. The 6809 has 4 hardware interrupts and 3 software interrupts.
They are (listed in lowest to highest precedence):

Interrupt Expanded

notation
Default
use

Registers pushed Vector Vector
points
to

Code at
location

SWI3 Software
Interrupt
3

not used? A,B,X,Y,U,PC,DP,CC $FFF2 $FEEE LBRA
$0100

SWI2 Software
Interrupt
2

not used?
some use
in OS9?

A,B,X,Y,U,PC,DP,CC $FFF4 $FEF1 LBRA
$0103

FIRQ Fast
Interrupt
Request

disk
drive
access

PC,CC $FFF6 $FEF4 LBRA
$010F

IRQ Interrupt
Request

sound and
TIMER
functions

A,B,X,Y,U,PC,DP,CC $FFF8 $FEF7 LBRA
$010C

SWI Software
Interrupt
1

unused in
Basic,
used in
EDTASM

A,B,X,Y,U,PC,DP,CC $FFFA $FEFA LBRA
$0106

NMI Non-
Maskable
Interrupt

not
supported

A,B,X,Y,U,PC,DP,CC $FFFC $FEFD LBRA
$0109

RESET Inital
power up

resetting
the

None $FFFE $8C1B reset
code

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

24

and RESET
button

machine

When a FIRQ or IRQ interrupt fires, the microprocessor first sees if the corresponding bit in the
Condition Code (CC) register in the 6809 microprocessor is 0. If it is, the exception processing is
performed. The microprocessor gets the address to go to from the interrupt vectors, and jumps to
the address stored there.

In the CoCo, each of the vectors is in ROM, and cannot be changed. However, the vectors each
point to a RAM location that can be changed.

If there are multiple interrupts, only the highest priority one will be taken.

The FIRQ interrupt is fast in the sense that it does not push many registers on the stack.

For example, if an IRQ occurred and the proper CC bit is 0, and location $FFF8-$FFF9 is $A101,
the microprocessor would then start executing code at $A101. Interrupts save the listed registers
before the interrupt handler is called, and these registers are restored when the Return From
Interrupt (RTI) instruction is called at the end of the interrupt routine.

RTI is similar to RTS except that it, in conjunction with the E bit in CC, determines how many
registers to pull from the stack.

To disable the interrupts (useful before many changes in the system), use
 ORCC #$10 disables IRQ
 ORCC #$40 disables FIRQ
 ORCC #$50 disables them both

To enable the interrupts, use
 ANDCC #$EF enables IRQ
 ANDCC #$BF enables FIRQ
 ANDCC #$AF enables them both

CoCo 3
The GIME chip has the capability of sending interrupts to either the IRQ or FIRQ line. If you are
running a 100% ML program you can them as you want. If you are running a combination
program, Basic sets the GIME interrupt registers back to Vertical Border only.

The GIME chip enables a host of other interrupts possible to trigger either/both FIRQ and IRQ
interrupts through $FF92-$FF93. The interrupt sources include

• A programmable timer
• Horizontal and vertical border
• Serial port
• Keyboard port and joystick buttons
• Pin 8 of the Cartridge port

TODO

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

25

Sound

Mute sound:

BEGIN LDA $FF23 Get current Control Register B value of PIA 2
 ORA #$30 Set CB2 to be an output. (Set bits 4 and 5.)

Now the status of bit 3 of Control Register B will control the CB2 line. If bit 3 is low the line will
be low. If bit 3 is high the line will be high. Setting CB2 low will mute the CoCo.

 ANDA #$F7 Clear bit 3 - Mute CoCo
 STA $FF23 Write value back to Control Register B

In general programming sound uses the 6-bit D/A.

Also, there was a magazine article early on about 4-channel sound, but I have been unable to find it
and analyze it for this section. Perhaps Rainbow or Hot-CoCo? I think it is named Bells and
Whistles 2. TODO

Sockmaster has a MOD Player.

Another source is the single bit sound:
$FF23 bit 2 to 0, (changes $FF22 to data dir register)
$FF22 to output?,
$FF23 bit back to 1 (change $FF22 back)
Store sound bits into $FF22 (top bit?)

$FF03 bit 3 $FF01 Bit 3 Sound Source
 0 0 DAC
 0 1 Cassette
 1 0 Cartridge
 1 1 No Sound

Another source is the cassette recorder

Another source is the cartridge slot?

TODO

Cassette Storage

File format

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

26

Color BASIC saves a file as a series of blocks, each with 0-255 bytes of data. Some blocks need
preceded by a leader to establish timing.

Each bit is recorded as a single cycle of a sine-wave. A "1" is a single cycle at 2400 Hz, and a "0" is
a single cycle at 1200 Hz. Bytes are stored least significant bit first. Bits are recognized when the
sine wave crosses from positive to negative, so loudness is not as important as one might expect.

A file consists of:

 1. a leader
 2. a filename block
 3. a 1/2 second gap
 4. another leader
 5. some number of data blocks
 6. an end-of-file block

A leader is just hex $80(128 dec) bytes of hex $55 (binary 01010101).

A block contains:

 1. two "magic" bytes ($55 and $3C)
 2. one byte - block type (00=filename, $01=data, $FF=EOF)
 3. one byte - data length ($00 to $FF)
 4. 0 to 255 bytes - data
 5. one byte - checksum (sum of data, type, and length bytes)
 6. another magic byte ($55)

Filename blocks have $F(15) bytes of data; EOF blocks have zero bytes of data; data blocks have
$00-$FF bytes of data indicated by length byte.

A filename block contains:

 1. eight bytes - the filename
 2. one byte - file type ($00=BASIC, $01=data, $02=machine code)
 3. one byte - ASCII flag ($00=binary, $FF=ASCII)
 4. one byte - gap flag ($00=no gaps, $FF=gaps)
 (The tech manual incorrectly (?) shows 01 as the code for "no gaps")
 5. two bytes - machine code starting address
 6. two bytes - machine code loading address

There should be no gaps, except preceding the file, and in case the filename blocks requests gaps,
in which case there is a 1/2 second gap and leader before each data block and EOF block.

Hardware
The cassette cable has a 5-pin DIN connector on one end, that plugs into the back of the CoCo; the
other end has three earphone-style plugs, that plug into the EAR, AUX (or MIC), and REMOTE

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

27

jacks. The remote-control plug is smaller than the other two. The other two are differentiated by
color: the black one plugs into the EAR jack, while the grey one plugs into AUX.

Here is an ASCII drawing of that connector, including a pinout and showing how the pins are
numbered. The drawing is of the connector at the end of the cable, with the pins pointing toward
you. So if you are looking at the back of the machine, at the connector there, this pinout is
backwards. My apologies for the wacky numbering; this is the same numbering as in the CoCo-1
technical manual.

 ------- Pin# Name Connects to
 / ___/ \ ---- ------- -----------------------------------
 / \
 / \ 1 CASSMOT SG stem

 | | 2 GND B stem, LG stem
 | 1o o3 |
 | | 3 CASSMOT SG tip
 o o
 \ 4 o 5 / 4 CASSIN B tip
 \ 2 /
 \ / 5 CASSOUT LG tip

 B=black SG=small grey LG=large grey

The names are given from the perspective of the computer, so "OUT" means output from the
computer, input to the cassette, and it should go into the AUX (or MIC) jack while the cassette is
recording.

The "connects-to" column show which of the three earphone-style plugs the wire leads to, and to
which part (stem or tip).

Below is another cheesy ASCII drawing, this time of one of those plugs. The cylindrical prong
actually consists of two metal parts, separated by a narrow strip of plastic, drawn as "X"s. The stem
section is much longer than the tip section, and the tip section has a groove around it, so that a
spring loaded contact can hold it in place a little bit when it is inserted into a jack.

 | |
 | |------------xx-\ /--\
 | | XX -- |
 | | "stem" XX "tip"|
 | | XX -- |
 | |------------xx-/ \--/
 | |

For both of the plugs that carry data (the large ones), the stem is connected to ground, and the tip is
the data line.

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

28

For the motor-control plug (the small plug), it shouldn't really matter which of its two wires
connects to its tip and which connects to its stem; you could just as easily connect 1 to SG tip and 3
to SG stem, and it should still work fine. These two wires are just connected together by a relay in
the computer when it is time to let the motor run. The wiring shown here matches my cassette
cable.

TODO

Disk Storage

Disk Format
Low-level format

CoCo disks are formatted to contain 35 tracks, numbered 0 through 34. Each track has 18 sectors,
numbered 1 through 18. A sector contains 256 bytes.

High-level format

Track number 17 is special; it contains the directory and File Allocation Table (or FAT). Every
other track is divided into two granules; in those tracks, sectors 1 through 9 form one granule, and
sectors 10 through 18 form the other. So there are 68 granules on a disk, numbered 0 through 67,
each containing 2304 bytes. Disk space for files is allocated by the granule, so even if you create a
file that contains only one byte, a whole granule of 2304 bytes is reserved for it. While it may seem
wasteful at first, this reduces the amount of work in allocating space for the file as you add to it.
The computer only has to do that allocation work once for every 2304 bytes that you add. It also
reduces fragmentation - by reserving space in such big chunks, your file can't possibly end up
scattered all over the disk in little tiny pieces.

The directory track (17) contains the file allocation table in sector 2, and the directory of files in
sectors 3 through 11. The remaining sectors on the directory track are unused ("reserved for future
use").

The file allocation table is 68 bytes long; one byte for each granule on the disk. If one of these
bytes is between 0 and 67, it tells the number of the next granule used by the same file. If it is
between 192 and 201 (hex C0 and C9), then this is the last granule allocated for its file, and the
least significant four bits tell how many sectors of the granule are used. If it is FF then it is unused,
and may be allocated as needed. So the bytes in the FAT form a linked list for each file, telling
which granules the file consists of.

Each directory sector contains eight entries of 32 bytes each. So the entire directory has room for
72 files. (There is room in the directory for more files than there are granules on the disk!) Each
entry contains:

 * eight bytes for the filename (padded with spaces)
 * three bytes for the filename extension (padded with spaces)
 * one file-type byte

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

29

 (0=BASIC program, 1=BASIC data, 2=machine code, or 3=ASCII text)
 * one format byte (0=binary or FF=ASCII)
 * one byte telling the number of the file's first granule
 * two bytes telling the number of bytes used in the last sector in the last granule,
 * sixteen unused bytes ("reserved for future use" again).

Color Disk BASIC reserves track 17 for the directory because that is the middle position for the
read/write head of the disk drive, so it should be efficient for frequent access. When allocating
granules to be used in files, it chooses granules that are close to the directory first, so in a half-full
disk you would expect the outermost and innermost tracks to be empty, and the tracks near the
directory to be full.

Color BASIC Disk Format:
35 decimal tracks, numbered 0-34.
18 sectors, numbered 1-18.
Each sector has 256 bytes.
Total size then 35*18*256 = 161280 decimal bytes.

High-level format
Track 17 contains the directory and File Allocation Table (FAT). Other tracks split the eighteen
sectors into two granules: sectors 1-9 make one granule, 10-18 make the other. The granules are
then numbered 0-67, each containing 2304 bytes. Files are allocated at the granule level, so a one-
byte file still reserves 2304 bytes. Track 17 is the middle of the disk, so is in a good position for
disk activity.

Track 17 contains the FAT in sector 2, and the directory on sectors 3 though 11. Other sectors are
unused.

The bytes in the FAT contain linked lists of file locations on the disk.

The FAT is 68 bytes long - one byte for each granule on the disk. Values 0-67 denote the NEXT
granule used by the file. Values between $C0(192) and $C9(201) denote the last granule for the
file, and the least four significant bits tell how many sectors of the granule are used. Value $FF
marks an unused granule.

A directory sector contains eight entries of $20(32) bytes, making room for seventy-two files. A
directory is:

1. eight bytes for the space-padded filename
2. three bytes for the space padded filename extension
3. one file-type byte ($0=BASIC program, $1=BASIC data, $2=machine code, $3=ASCII

text)
4. one format byte ($0=binary or $FF=ASCII)
5. one byte containing the file's first granule
6. two bytes containing the number of bytes used in the last sector of the last granule
7. sixteen unused bytes

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

30

Controller
The disk controller consists of a ROM that adds disk commands to Extended Color BASIC, a disk
controller chip, and a little glue to make it all work.

The disk controller chip is a Western Digital 1793 (or 1773), and has four registers at addresses
$FF48 through $FF4B, and one control register at $FF40. The control register enables the drive
motors, select lines, and so on.

Here is a map:

• $FF40 Control register
• $FF48 Command/Status register
• $FF49 Track register
• $FF4A Sector register
• $FF4B Data register

In general, you make the disk controller execute a command by writing a command byte into the
Command register, and see the results by reading the Status register. During the execution of a read
command, you have to load data bytes from the data register, where they appear as they come from
the disk; during a write, you have to put bytes into the data register from where they will be written
onto the disk. The speed of reads and writes is constant; if your program does not read or write
bytes into the Data register quickly enough, the chance is gone, and the command will not complete
successfully.

Control Register
This is not part of the controller chip, but is part of the "glue" that makes it all fit together.

You can force the drive motor to turn off by writing a zero into this. You can also force the motor
on by writing non-zero there, but the documentation doesn't explain which bits do what. Don't
panic; more details are on the way.

This register is write-only; you can't tell what value was last written there just by reading it. So
Disk BASIC probably keeps a copy in somewhere of each value that it writes here. This means that
if your programs write here, it might confuse BASIC, because the last thing it put here is no longer
true. Be careful about that.

Since this register is not part of the disk controller chip, there are other things to be careful of as
well. For instance, the disk controller's Track register normally contains the track number at which
the disk drive head is positioned. But if you have more than one disk drive, you can switch which
one you are using by writing some value into this Control register. The disk controller does not
know that it is now talking to a new disk drive, and the head position of the new disk drive may be
different from the old one. So the controller might think it is at track 10, where the old drive was.
But maybe the new drive's head is over track 23. As soon as the controller tries to execute any read
or write command, it will notice that the data coming from the disk drive is claiming track 23,
instead of the 10 it expected. So the controller will return an error instead of executing the
command.

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

31

Track and Sector registers
The Track and Sector registers just hold track and sector numbers. The Track register normally
reflects the current position of the head; you don't normally write into it. To get to a track you use
the Seek command and put the desired track number in the data register. When that command has
completed successfully, the track number will be in the Track register. In contrast, the Sector
register is used to tell the controller which sector you want; you write into it.

You can, of course, write into the Track register. But if it doesn't match the position of the head, the
controller will produce an error if you try to read or write a sector - it notices that it is not at the
track it expected.

Still, there is a good reason to write into the Track register if you have more than one disk drive.
Whenever you select a new disk drive by writing into the Control register, you may want to update
the controller's Track register with the position of the new drive.

Data Register
Command/Status Register
Writing into this register gives a command to the disk controller chip. Reading from it tells you the
status of the command's execution. In effect, the two registers share the same address; the
Command register is write-only, and the Status register is read-only.

Command bits
There are four types of disk commands.
 Type I - Restore, Seek, Step, Step In, and Step Out.
 Type II - Read Sector and Write Sector.
 Type III - Read Track, Write Track, and Read Address.
 Type IV - Force Interrupt.

 Status bits
 Bits in the error code are defined as follows. (This info comes from the 1793 data sheet.) The
1793 data sheet is more terse than the 1771 data sheet which was mistakenly referenced before, so
I've filled in some missing descriptions in italics, like this; some from the 1771 data sheet and
others that just seem obvious. Take those additions with a grain of salt, although I *think* they are
right.

 Note that some of the bits have different meanings based on which type of command caused
them to be set. The status word is defined only for commands of type I, II, and III. The status of a
type IV command, Force Interrupt, depends on the command that was interrupted.

 Signals are named from the perspective of the 1793 disk controller chip, so "input" means input
to that chip from either the computer or the disk drive, and "output" means an output from the 1793
to one of those. Signal names preceded by an asterisk "*" indicate that the signal is active-low, or
inverted, so that "0" means true and "1" means false.

 7 Not Ready

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

32

 This bit, when set, indicates that the disk drive is not ready. When reset it indicates that the
drive is ready. This bit is an inverted copy of the READY input from the disk drive and logically
ORed with the *MR (Master Reset) input signal. Type II and III commands will not execute unless
the drive is ready.

 6 Write Protect
 Type I commands:
 When set, indicates that Write Protect is activated. This bit is an inverted copy of the
*WRPT (Write Protect) input from the disk drive.
 Type II/III commands:
 On Read Sector: not used. On Read Track: not used. On any Write command, this bit
indicates that the diskette was write protected so the write failed. This bit is reset when updated.

 5 Head Loaded/Record Type/Write Fault
 Type I commands: Head Loaded
 This indicates that the head is loaded and engaged, and is a logical AND of the HLD
(Head Loaded) and HLT (Head Load Timing) input signals from the disk drive.
 Type II/III commands: Record Type/Write Fault
 On Read Sector: it indicates the record-type code from the data-field address mark. 0 =
Data Mark, 1 = Deleted Data Mark. On any Write: It indicates a write fault. This bit is reset when
updated.

 4 Seek Error/Record Not Found
 Type I commands: Seek Error
 When set, the desired track was not verified. This bit is reset to 0 when updated.
 Type II/III commands: Record Not Found
 When set, it indicates that the desired track, sector, or side were not found. This bit is reset
when updated.

 3 CRC error
 Type I commands:
 CRC error encountered in ID field during track verification.
 Type II/III commands:
 If Bit 4 is set, an error was found in one or more ID fields; otherwise, it indicates an error
in data field. (Each sector is written as an ID field followed by a data field; each field contains a
CRC, which is a kind of checksum used as a sanity-check when reading.) This bit is reset when
updated.

 2 Track 00/Lost Data
 Type I commands: Track 00
 When set, indicates Read/Write head is positioned to Track 0. This bit is an inverted copy
of the *TR00 (Track 00) input from the disk drive.
 Type II/III commands: Lost Data
 When set, it indicates that the computer did not respond to the DRQ (Data Request) output
in one byte time and therefore that data was lost. This bit is reset to zero when updated.

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

33

 1 Index/Data Request
 Type I commands: Index
 When set, indicates index mark detected from drive. This bit is an inverted copy of the *IP
(Index Pulse) input signal from the disk drive.
 Type II/III commands: Data Request
 This bit is a copy of the DRQ output. When set, it indicates that the DR (Data Register) is
full on a Read operation or the DR is empty on a Write operation. This bit is reset to zero when
updated.

 0 Busy
 When set, command is under execution. When reset, no command is under execution.

DUP - merge and remove
TODO - clean up, unify with hardware reference

In short:
 $FF40 Control register
 $FF48 Command/Status register
 $FF49 Track register
 $FF4A Sector register
 $FF4B Data register

Write a command into the command register, and read the status in the status register. For reads
and writes you need to read/write data to/from the data register. You must do this at the proper
speed or the command will fail.

Writing a 0 into the control register turns off the drive motor.

The control register is write only, so Disk Basic keeps a copy of what is written there. If you
modify it, you should keep this in mind.

The Track and Sector registers hold current track and sector numbers, reflecting register the current
position of the head. Use the Seek command to position the head to the Track you want. Then write
the Sector register to tell the controller which sector you want.

Command/Status
Writing into register $FF48 gives a command to the disk controller chip. Reading from it tells you
the status of the command's execution.

There are four types of disk commands.
 Type I - Restore, Seek, Step, Step In, and Step Out.
 Type II - Read Sector and Write Sector.
 Type III - Read Track, Write Track, and Read Address.
 Type IV - Force Interrupt.

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

34

Status bits in the error code are defined as follows, from the 1793 data
sheet, and have meaning dependent on the command type. Type IV status
codes depend on what command was interrupted.

Bit 7 - Not Ready
 0 - drive ready
 1 - drive not ready.
 Type II and III will not execute unless the drive is ready.

Bit 6 - Write Protect
 Type I : 0 - not write protected, 1 - write protected;
 Type II/III : Not used on Read Sector or Track. On Write, same as Type I.
 This bit is reset when updated.

Bit 5 - Head Loaded/Record Type/Write Fault
 Type I commands: Head Loaded 1 - head loaded and engaged
 Type II/III commands: Record Type/Write Fault
 Read : indicates the record-type code from the data-field address
 mark. 0 = Data Mark, 1 = Deleted Data Mark.
 Write: indicates a write fault. This bit is reset when updated.

Bit 4 Seek Error/Record Not Found
 Type I : Seek Error - 0 = verified, 1 = track not verified. Reset to 0
 when updated.
 Type II/III : Record Not Found - 0 - ok, 1 - track, sector, or side not
 found. Reset when updated

Bit 3 CRC error (Cyclic Redundancy Check)
 Type I commands: 0 - CRC ok, 1 - CRC failed
 Type II/III commands: If bit 4 set, indicates an error in 1+ ID fields,
 else error in Data field This bit is reset when updated.

Bit 2 Track 00/Lost Data
 Type I commands: Track 00 - 0 = ?, 1 = Read/Write head positioned at
 Track 0.
 Type II/III commands: Lost Data 1 - Computer did not respond to DRQ
 (Data Request) in time and lost data. Bit reset to 0 on update.

Bit 1 Index/Data Request
 Type I commands: Index - 0 - ?, 1 - index mark detected from drive.
 Type II/III commands: Data Request., copy of DRQ output. 1 - DR(Data
 Register) is full on a read or empty on write, reset to 0 when
 updated.

Bit 0 Busy

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

35

 0 - not busy
 1 - Command being processed

TODO

Serial I/O

Software
The 4-pin DIN connector on the CoCo back is a serial port. This must be operated from software; a
loop reads and writes bits to this port as needed.

Set baud rate (values in decimal):
 POKE 150,180 [300 bps]
 POKE 150,88 [600 bps]
 POKE 150,41 [1200 bps]
 POKE 150,18 [2400 bps]
 POKE 150,7 [4800 bps]
 POKE 150,1 [9600 bps]

Others have used assembly routines to support much faster rates.

Hardware
The Color Computer has a four-pin DIN connector on its back panel for its serial port. There is
very little internal hardware dedicated to supporting this, so most of the work of sending and
receiving bits is done in software; the CPU goes into a loop either setting the output bit or reading
the input bit.

As you might imagine, doing both at the same time can be tricky, since you don't have any
guarantees about when the first bit of a byte will arrive; it might be while you are right in the
middle of sending a byte. The result is a limited baud rate; the CPU can only do so many bits per
second.

Here is a drawing of that connector, including a pinout and showing how the pins are numbered.
The drawing is of the back-panel connector, looking at it from the back of the machine. So if you
are looking at the pins of the connector at the end of a cable, it is backwards.

 ------ Pin# RS-232 signal Printer signal
 / __/ \ ---- ---------------------- ---------------
 / \
 / 4 1 \ 1 CD - carrier detect ignored
 o o
 | | 2 RS232IN - input data printer status
 | | (high == ready)
 | 3 2 |
 o o 3 GND - ground ground
 \ /
 \ / 4 RS232OUT - output data data to printer
 \ /

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

36

Note that pins of connector are not always used the same way! This is possible because most
everything is done in software; pins 1 and 2 are required by the hardware to be inputs, but it is up to
the program to decide how to use those inputs. While any sort of communications program should
use the RS-232 pin-out, the built-in BASIC printer routines use pin 2 as "printer status" and
completely ignore pin 1. So the cable you wire up for a printer has to be different from the one you
wire up for a modem.

TODO

Cartridge Info

Color Computer 1, 2, & 3 Cartridge Connector Definitions (* are LOW (0 volts) to activate)

Pin Signal Name Description
1 N.C. (-12 VDC on CoCo 1 and 2)
2 N.C. (+12 VDC on CoCo 1 and 2)
3 HALT* Halt input to the CPU
4 NMI* Non-Maskable Interrupt to the CPU
5 RESET* Main Reset and Power-up Clear

6 E CLOCK Main CPU Clock
7 Q CLOCK Clock which leads E by 90 degrees
8 CART* Rom-Pak Detection Interrupt
9 +5 VDC +5 Volts DC (300 mA)

10 DATA 0 CPU Data Bus - Bit 0
11 DATA 1 CPU Data Bus - Bit 1
12 DATA 2 CPU Data Bus - Bit 2
13 DATA 3 CPU Data Bus - Bit 3
14 DATA 4 CPU Data Bus - Bit 4
15 DATA 5 CPU Data Bus - Bit 5
16 DATA 6 CPU Data Bus - Bit 6
17 DATA 7 CPU Data Bus - Bit 7

18 R/W* CPU Read/Write Signa

19 ADDR 0 CPU Address Bus - Bit 0
20 ADDR 1 CPU Address Bus - Bit 1
21 ADDR 2 CPU Address Bus - Bit 2
22 ADDR 3 CPU Address Bus - Bit 3
23 ADDR 4 CPU Address Bus - Bit 4
24 ADDR 5 CPU Address Bus - Bit 5
25 ADDR 6 CPU Address Bus - Bit 6

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

37

26 ADDR 7 CPU Address Bus - Bit 7
27 ADDR 8 CPU Address Bus - Bit 8
28 ADDR 9 CPU Address Bus - Bit 9
29 ADDR 10 CPU Address Bus - Bit 10
30 ADDR 11 CPU Address Bus - Bit 11
31 ADDR 12 CPU Address Bus - Bit 12

32 CTS* Cartridge (ROM) Select Signal
33 GROUND Signal Ground
34 GROUND Signal Ground
35 SND Cartridge Sound Input
36 SCS* Spare Cartridge (DISK) Select Signal

37 ADDR 13 CPU Address Bus - Bit 13
38 ADDR 14 CPU Address Bus - Bit 14
39 ADDR 15 CPU Address Bus - Bit 15

40 SLENB* Input to Disable Internal Devices
By covering pin 8 on the cartridge, ROM-packs could be inserted without them starting up. It is
EXTREMELY DANGEROUS to insert a ROM-Pack with the CoCo switched on. You might cook
your CoCo.

Some signals:

HALT* This signal allows the data and address buses to be placed in the tri-state mode so an

external processor may access RAM and ROM
NMI* This is the non-maskable interrupt input to the CPU.
RESET* This is master system reset and power-up clear signal.
E & Q These are the two clock signals for the 6809E CPU
CART* This is an interrupt input to one of the PIA'S. It is used to detect the presence of a

Cartridge
CTS* This is the select signal to the Cartridge. The address space C000 (Hex) through

FFEF (Hex) is selected.
SND This signal is connected directly to the sound multiplexer, to allow a sound source in

the cartridge.
SCS* This is a spare divide select signal from U11. It selects the address space FF40 (Hex)

through FF5F (Hex).
SLENB* This signal disables the internal device selection. This allows decoded but unused

sections of memory to be used by the Cartridge hardware.

TODO – boot sequence? Addresses used?

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

38

Basic, Extended Basic, and Disk Basic Summary
TODO – shrink, more comments, 4 column wide table?

Color Basic (non-Extended) Summary

Statements
 AUDIO ON
 AUDIO OFF
 CLEAR n,h Reserve n bytes for strings, and use only up to address h for BASIC
 CLOAD
 CLOAD name
 CLOSE d
 CLS c
 CONT
 CSAVE name
 CSAVE name,A
 DATA
 DIM
 END
 EXEC
 EXEC address
 FOR .. TO .. STEP .. / NEXT
 GOSUB linenumber
 GOTO linenumber
 IF .. THEN .. ELSE ..
 INPUT
 INPUT #-1
 LIST
 LLIST
 MOTOR ON
 MOTOR OFF
 NEW
 ON .. GOSUB ..
 ON .. GOTO ..
 OPEN m,#d,filename
 POKE addr,value Save value at address addr, where 0 <= addr <= 65535, and 0 <= value <= 255
 PRINT
 PRINT #-1
 PRINT #-2
 PRINT TAB
 PRINT @location
 READ
 REM
 RESET (x,y)
 RESTORE
 RETURN

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

39

 RUN
 SET (x,y,c)
 SKIPF
 SKIPF name
 SOUND tone,duration
 STOP

Functions
 ABS(num)
 ASC(str)
 CHR$(charcode)
 EOF(f)
 INKEY$
 INSTR(first,str,substr)
 INT(num)
 JOYSTK(j) Reads joystick value j: 0=left_horiz 1=left_vert 2=right_horiz 3=right_vert
 LEFT$(str,length)
 LEN(str)
 MEM
 MID$(str,first,len)
 POINT(x,y)
 RIGHT$(str,length)
 SGN(num)
 SIN(num)
 STR$(num)
 USR(num) Calls the machine-language routine whose address is stored at addresses 275 and 276
 VAL(str)
 VARPTR(var)

Operators
 ^ Exponentiation
 -,+ Unary negative, positive
 *,/ Multiplication, division
 +,- Addition and concatenation, subtraction
 <,>,=,<=,>=,<> Relational tests
 NOT, AND, OR Logical operators

Error messages
 Abbrev. Explanation
 /0 Division by zero
 AO File already open
 BS Bad subscript - out of range
 CN Cannot continue
 DD Redimensioned array
 DN Device number error
 DS Direct statement in file

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

40

 FC Illegal function call
 FD Bad file data
 FM Bad file mode
 ID Illegal direct
 IE Input past end of file
 I/O Input/Output error
 LS String too long
 NF NEXT without FOR
 NO File not open
 OD Out of data
 OM Out of memory
 OS Out of string space
 OV Overflow
 RG RETURN without GOSUB
 SN Syntax error
 ST String formula too complex
 TM Type mismatch
 UL Undefined line number

Extended Color Basic Summary

Statements
 AUDIO ON
 AUDIO OFF
 CIRCLE(x,y),r,c,hw,start,end
 CLEAR n,h Reserve n bytes for strings, and use only up to address h for BASIC
 CLOAD
 CLOAD name
 CLOADM
 CLOADM name
 CLOADM name,offset
 CLOSE d
 CLS c
 COLOR (fg,bg)
 CONT
 CSAVE name
 CSAVE name,A
 CSAVEM name,a1,a2,ax
 DATA
 DEF FN
 DEFUSERn = addr
 DEL
 DIM
 DLOAD

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

41

 DRAW string
 EDIT linenumber
 END
 EXEC
 EXEC address
 FOR .. TO .. STEP / NEXT
 GET (start)-(end),dest,G
 GOSUB linenumber
 GOTO linenumber
 IF .. THEN .. ELSE
 INPUT
 INPUT #-1
 LET
 LIST
 LLIST
 LINE (x1,y1)-(x2,y2),PSET,BF
 LINE (x1,y1)-(x2,y2),PRESET,BF
 LINE INPUT
 MOTOR ON
 MOTOR OFF
 NEW
 ON .. GOSUB
 ON .. GOTO
 OPEN m,#d,filename
 PAINT (x,y),c,b
 PCLEAR n
 PCLS c
 PCOPY
 PLAY string
 PMODE mode,startpage
 POKE addr,value Save value at address addr, where 0 <= addr <= 65535, and 0 <= value <= 255
 PRESET (x,y)
 PRINT
 PRINT #-1
 PRINT #-2
 PRINT TAB
 PRINT USING
 PRINT @location
 PSET (x,y,c)
 PUT (start)-(end),source,action
 READ
 REM
 RENUM newline,startline,increment
 RESET (x,y)
 RESTORE
 RETURN

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

42

 RUN
 SCREEN screentype,colorset
 SET (x,y,c)
 SKIPF
 SKIPF name
 SOUND tone,duration
 STOP
 TROFF
 TRON

Functions

 ABS(num)
 ASC(str)
 ATN(num)
 CHR$(charcode)
 COS(num)
 EOF(f)
 EXP(num)
 FIX(num)
 HEX$(num)
 INKEY$
 INSTR(first,str,substr)
 INT(num)
 JOYSTK(j) Reads joystick value j: 0=left_horiz 1=left_vert 2=right_horiz 3=right_vert
 LEFT$(str,length)
 LEN(str)
 LOG(num)
 MEM
 MID$(str,first,len)
 PEEK(address)
 POINT(x,y)
 POS(dev)
 PPOINT(x,y)
 RIGHT$(str,length)
 SGN(num)
 SIN(num)
 STRING$(length,charcode)
 STRING$(length,str)
 STR$(num)
 SQR(num)
 TAN(num)
 TIMER
 USRn(num) Calls the machine-language subroutine whose address was defined by
DEFUSRn, where 0 <= n <= 9

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

43

 VAL(str)
 VARPTR(var)

Operators
 ^ Exponentiation
 -,+ Unary negative, positive
 *,/ Multiplication, division
 +,- Addition and concatenation, subtraction
 <,>,=,<=,>=,<> Relational tests
 NOT, AND, OR Logical operators

Error messages
 Abbrev. Explanation
 /0 Division by zero
 AO File already open
 BS Bad subscript - out of range
 CN Cannot continue
 DD Redimensioned array
 DN Device number error
 DS Direct statement in file
 FC Illegal function call
 FD Bad file data
 FM Bad file mode
 ID Illegal direct
 IE Input past end of file
 I/O Input/Output error
 LS String too long
 NF NEXT without FOR
 NO File not open
 OD Out of data
 OM Out of memory
 OS Out of string space
 OV Overflow
 RG RETURN without GOSUB
 SN Syntax error
 ST String formula too complex
 TM Type mismatch
 UL Undefined line number

Disk Basic Summary
In addition to the capabilities of Extended Color BASIC, Color Disk BASIC adds the following.

Disk management commands
 BACKUP n TO m Copy all files from one disk to another

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

44

 BACKUP n BACKUP a disk using only a single disk drive
 COPY file1 TO file2 Make a duplicate of a file
 DIR n List the files that are on the disk
 DRIVE n Use drive n as the default
 DSKINIn Initialize (format) a disk
 KILL file Delete a file from the disk
 LOAD file Load a program
 LOAD file,R Load a program and start it running
 LOADM file,offset Load a machine-code program, shifting by offset
 MERGE file Load an ASCII program without clearing the old one
 MERGE file,R Merge a program and start it running
 RENAME file1 TO file2 Change the name of a file
 RUN file Load a program and start it running
 RUN file,R Load and run program, leaving files open
 SAVE file Save a program
 SAVE file,A Save a program in ASCII format
 SAVEM file,a1,a2,ax Save a machine-code program, from a1 to a2, exec at ax
 VERIFY ON Double-check all writes to the disk
 VERIFY OFF Don't double-check

Programming commands
 FILES max_f,size Reserve buffers for open files
 FREE(n) Returns the number of free granules (2304 bytes each)
 UNLOAD n Close all open files on drive n
 DSKI$ n,t,s,v1$,v2$ Read track t sector s into v1$ and v2$
 DSKO$ n,t,s,v1$,v2$ Write track t sector s from v1$ and v2$
 OPEN "I",f,file Open a file for sequential input (ie: INPUT)
 OPEN "O",f,file Open a file for sequential output (ie: PRINT/WRITE)
 OPEN "D",f,file,len Open a file for direct access; (ie: GET/PUT); record length len is optional
 CLOSE #f Close a file

Sequential file commands
 EOF(f) Returns true if file f has been read to the end
 INPUT #f, var,... Read variables from a file
 LINE INPUT #f,var$ Read an entire line from a file into a string variable
 WRITE #f,values Write values to file, with commas, strings in quotes,...
 PRINT #f,values Write values to file, just as PRINT would display them
 PRINT #f,USING f$;values Formatted printing; many options for f$

Direct-access file commands
 FIELD #f, size AS v$,... Give variable names to parts of the file buffer
 RSET v$ = value$ Fill in a named part of the file buffer, right-justified
 LSET v$ = value$ Fill in ..., left justified
 PUT #f,r Write the buffer to record r
 GET #f,r Read record r into the buffer
 CVN(var$) Make a number out of a binary string

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

45

 MKN$(num) Make a binary string out of a number
 LOC(f) Return the current record number in the buffer
 LOF(f) Return the highest record number in the file

In all cases, f is a file number, n and m are drive numbers, file is a filename, and dollar signs
signify variables that must be string-variables. Note that filenames must be either string variables or
string constants in quotes. Upper-case words are keywords, lower-case words are supplied by the
user.

Special file numbers are -2=printer -1=cassette and 0=screen

The name can be up to eight characters long, and cannot include a dot, slash, colon, or zero. The
extension can be up to three characters long, and also cannot include those four characters. The
drive number is a single digit, from zero up to the highest drive on your system.

Examples of legal filenames:

 PROGRAM.BAS -- filename=PROGRAM, extension=BAS, no drivenum
 PROGRAM/BAS -- filename=PROGRAM, extension=BAS, no drivenum
 FOO.BAR:0 -- filename=FOO, extension=BAR, drivenum=0
 FOO:1 -- filename=FOO, no extension, drivenum=1
 FRED -- filename=FRED no extension, no drivenum

There is one documented subroutine in the Disk BASIC ROM that you can use to access the disk.
Its address is stored at $C004 and $C005, so you jump to it using indirection: JSR [$C004] .

Before calling that, you should load the X register with the address of a data structure that describes
what you want to do. The examples in the manual always load this address from locations $C006
and $C007. I have not tried using this, so I don't know it will work if you put your structure
anyplace else. This data structure is seven bytes long:

 1 byte op code (0 - 3)
 1 byte drive number (0 - 3)
 1 byte track number (0 - 34)
 1 byte sector number (1 - 18)
 2 bytes address of 128-byte data buffer
 1 byte error code

Op codes are either 0 (restore to track 0), 1 (no op), 2 (read sector), or 3 (write sector).

Bits in the error code seem to come straight from the chip in the disk controller. See that for more
details.

The disk control routine modifies the contents of only the condition code register.

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

46

ROM Routines

Color Basic Info
To detect which version of the Color BASIC ROM you have between 1.0, 1.1, and 1.2, check
location $A155, which holds $30, $31, and $32 respectively.

Extended Color Basic Info
To detect which version of the Extended Color BASIC ROM you have between 1.0 and 1.1, check
location $80FF, which holds $30 and $31 respectively.

Disk Color Basic Info

TODO – get info from unraveled series. Also get disk ROM versions and how to detect.

Rom Routines
Here are the approved routines that could be called from assembly language.

ROM subroutines

BLKIN [$A006]
Reads a Block from Cassette
Must immediately follow CSRDON.
CSRDON, CBUFAD contains the Buffer address.
BLKTYP, located at 7C, contains the block type:
 0 = File Header
 1 = Data
 FF = End of File
BLKLEN, located at 7D, contains the number of data bytes in the block (0-255).
Z = 1, A=CSRERR=0 (if NO Errors.)
Z = 0, A=CSRERR=1 (if a checksum error occurs)
Z = 0, A=CSRERR=2 (if a memory error occurs)
(Z is a flag in the Condition Code CC Register)
(CSRERR = 81)
Unless a memory error occurs, X=CBUFAD + BLKLEN. If a memory error occurs, X points to
beyond the bad address. Interrupts are masked. U and Y are preserved, all other registers are
modified.

BLKOUT [$A008]
Writes a Block to Cassette
Call Subroutine WRTLDR

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

47

CBUFAD, located at 7E, contains the buffer address
BLKTYP, located at 7C, contains the block type
BLKLEN, located at 7D, contains the number of data bytes
Interrupts are masked.
X = CBUFAD + BLKLEN.
All Registers are Modified

WRTLDR [$A00C]
Turns the cassette On and writes a Leader
Entry: None
Return: None

CHROUT [$A002]
Outputs a Character to Device
On Entry, the character to be output is in A
Output device is determined by the contents of 6F (DEVNUM) (0 = Screen, -2 = Printer)
All registers except CC are preserved

CSRDON [$A004]
starts the cassette and gets into bit sync for reading
Entry: None
FIRQ and IRQ are masked.
U and Y are preserved, all others are modified

GIVABF [$B4F4]
Passes parameter to BASIC
D = parameter
USR variable = parameter

INTCNV [$B3ED]
Passes parameter from BASIC
USR argument = parameter
D = parameter

JOYIN [$A00A]
Samples all 4 joystick pots. Values are stored in POTVAL through POTVAL + 3
Left Joystick Up / Down $15A Right / Left $15B
Right Joystick Up / Down $15C Right / Left $15D
Entry conditions: None
Registers used: Y is preserved. All others are modified

POLCAT [$A000]
Polls Keyboard for a character
None
Return:
If Key is pressed

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

48

 Z = 0 and A register contains ASCII value
If no key is pressed
 Z = 1 and A register contains 00
Registers: A and CC are modified

There are many more that can be called depending on the ROM installed, and these must be used
very carefully.

Color Computer Hardware Register Reference ($FF00-$FFFF)
Here is the usage of the hardware registers $FF00-$FFFF.

PIA Reference ($FF00-$FF3F)
For PIA details see the section on the PIA.

PIA0 ($FF00-$FF1F)
$FF00 (65280) PIA 0 side A data register - PIA0AD CoCo 1/2/3
Bit 7 Joystick Comparison Input
Bit 6 Keyboard Row 7
Bit 5 Row 6
Bit 4 Row 5
Bit 3 Row 4 & Left Joystick Switch 2
Bit 2 Row 3 & Right Joystick Switch 2
Bit 1 Row 2 & Left Joystick Switch 1
Bit 0 Row 1 & Right Joystick Switch 1
(1) Todo - keyboard matrix - note

$FF01 (65281) PIA 0 side A control reg - PIA0AC CoCo 1/2/3
Bit 7 HSYNC Flag
Bit 6 Unused
Bit 5 1
Bit 4 1
Bit 3 Select Line LSB of MUX
Bit 2 DATA DIRECTION TOGGLE 0 = $FF00 sets data direction 1 = normal
Bit 1 IRQ POLARITY 0 = flag set on falling edge 1=set on rising edge
Bit 0 HSYNC IRQ 0 = disabled 1 = enabled

$FF02 (65282) PIA 0 side B data register - PIA0BD CoCo 1/2/3
Bit 7 KEYBOARD COLUMN 8
Bit 6 7 / RAM SIZE OUTPUT
Bit 5 6
Bit 4 5

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

49

Bit 3 4
Bit 2 3
Bit 1 2
Bit 0 KEYBOARD COLUMN 1
|(1) Todo - keyboard matrix - note

$FF03 (65283) PIA 0 side B control reg - PIA0BC CoCo 1/2/3
Bit 7 VSYNC FLAG
Bit 6 N/A
Bit 5 1
Bit 4 1
Bit 3 SELECT LINE MSB of MUX
Bit 2 DATA DIRECTION TOGGLE 0 = $FF02 sets data direction 1=normal
Bit 1 IRQ POLARITY 0=flag set on falling edge 1=set on rising edge
Bit 0 VSYNC IRQ 0=disabled 1=enabled

Note: $FF00-$FF03 are repeated through addresses $FF04 to $FF1F. Thus $FF1E is an alias for
$FF02. Similarly, $FF20-$FF23 are repeated through $FF24-$FF3F.

PIA1 ($FF20-$FF3F)
$FF20 (65312) PIA 1 side A data register - PIA1AD CoCo 1/2/3
Bit 7 6 BIT DAC MSB
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2 6 BIT DAC LSB
Bit 1 RS-232C DATA OUTPUT
Bit 0 CASSETTE DATA INPUT

$FF21 (65313) PIA 1 side A control reg - PIA1AC CoCo 1/2/3
Bit 7 CD FIRQ FLAG
Bit 6 N/A
Bit 5 1
Bit 4 1
Bit 3 CASSETTE MOTOR CONTROL 0=OFF 1=ON
Bit 2 DATA DIRECTION CONTROL 0=$FF20 data direction 1=normal
Bit 1 FIRQ POLARITY 0=falling 1=rising
Bit 0 CD FIRQ (RS-232C) 0=FIRQ disabled 1=enabled

$FF22 (65314) PIA 1 side B data register - PIA1BD CoCo 1/2/3
Bit 7 VDG CONTROL A/G : Alphanum = 0, graphics =1
Bit 6 " GM2

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

50

Bit 5 " GM1 & invert
Bit 4 VDG CONTROL GM0 & shift toggle
Bit 3 RGB Monitor sensing (INPUT) CSS - Color Set Select 0,1
Bit 2 RAM SIZE INPUT
Bit 1 SINGLE BIT SOUND OUTPUT
Bit 0 RS-232C DATA INPUT
(1) VDG sets graphics modes for CoCo 1/2 and CoCo 3 in compatibility mode. To set a mode, use
these bits and the registers $FFC0-$FFC5. See the section under $FFC0-$FFC5 for details and
text/graphics mode settings.

$FF23 (65315) PIA 1 side B control reg - PIA1BC CoCo 1/2/3
Bit 7 CART FIRQ FLAG
Bit 6 N/A
Bit 5 1
Bit 4 1
Bit 3 SOUND ENABLE
Bit 2 DATA DIRECTION CONTROL 0 = $FF22 data direction 1 = normal
Bit 1 FIRQ POLARITY 0 = falling 1 = rising
Bit 0 CART FIRQ 0 = FIRQ disabled 1 = enabled

Note: $FF00-$FF03 are repeated through addresses $FF04 to $FF1F. Thus $FF1E is an alias for
$FF02. Similarly, $FF20-$FF23 are repeated through $FF24-$FF3F.

Disk Controller Reference

Disk Controller ($FF40)
$FF40 (65344) Disk Controller DSKREG CoCo 1/2/3
Bit 7 halt flag 0 = disabled 1 = enabled
Bit 6 drive select 3
Bit 5 density flag 0 = single 1 = double
Bit 4 write precompensation 0 = no precomp 1 = precomp
Bit 3 drive motor enable 0 = motors off 1 = motors on
Bit 2 drive select 2
Bit 1 drive select 1
Bit 0 drive select 0

1. This is a write only register
2. Write precomp should be on for tracks over 22.
3. Disk communication is done through $FF48-$FF4B as follows

Reg Read operation Write operation
$FF48 Status Command
$FF49 Track Track
$FF4A Sector Sector
$FF4B Data Data

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

51

 4. See $FF48 for the list of commands.

DSKREG Copies ($FF41-$FF47) (65345-65351)
$FF41-$FF47
(65345-65351)

DSKREG IMAGES CoCo 1/2/3

1) Copies of disk registers?

Status/Command ($FF48)
$FF48 (65352) Floppy Disk Controller

STATUS/COMMAND REGISTER FDCREG
CoCo 1/2/3

Bits 7 - 0 Status/Command register for disk controller
(1) Write sends a command, then read to get status
 COMMANDS TYPE COMMAND CODE
 RESTORE I $03
 SEEK I $17
 STEP I $23
 STEP IN I $43
 STEP OUT I $53
 READ SECTOR II $80
 WRITE SECTOR II $A0
 READ ADDRESS III $C0
 READ TRACK III $E4
 WRITE TRACK III $F4
 FORCE INTERRUPT IV $D0

(2) Read obtains status resulting from a command. See Status explained
 elsewhere

(3) Commands
 Bit
 7 6 5 4 3 2 1 0 Command

 0 0 0 0 x x x x Restore to track 0
 0 0 0 1 x x x x Seek
 0 0 1 x x x x x Step
 0 1 0 x x x x x Step in
 0 1 1 x x x x x Step out

 Bits:
 4: 0:No update of track reg
 1:Update track register
 3: 0:Unload head at start
 1:Load head at start
 2: 0:No verify of track no
 1:Verify track no. on disc

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

52

 1-0:Read as 2-bit stepping rate:
 00 = 6ms
 01 = 12ms
 10 = 20ms
 11 = 30ms

 1 0 0 x x x x 0 Read sector
 1 0 1 x x x x x Write sector
 1 1 0 0 0 x x 0 Read address
 1 1 1 0 0 x x 0 Read track
 1 1 1 1 0 x x 0 Write track

 Bits:
 4: 0:Read/write 1 sector
 1:Read all sectors till the end of a track.
 3: Interpretation of 2 bit sector length field in sector header
 0: Field is interpreted as
 00 = 256 bytes/sector
 01 = 512 bytes/sector
 10 = 1024 bytes/sector
 11 = 128 bytes/sector
 1: Field is interpreted as
 00 = 128 bytes/sector
 01 = 256 bytes/sector
 10 = 512 bytes/sector
 11 = 1024 bytes/sector (set to 1 on Dragon)
 2: 0:No head loading delay
 1:Head loading delay of 30ms prior to read/writes.
 1: 0:Set side select o/p to 0
 1:Set side select o/p to 1
 0: 0:Write Data Address Mark
 1:Write Deleted Data

 Address mark

 1 1 0 1 x x x x Force Interrupt
 Generate an interrupt & terminate the current operation on:
 Bits set:
 0 - Drive status transition Not-Ready to Ready
 1 - Drive status transition Ready to Not-Ready
 2 - Index pulse
 3 - Immediate interrupt

 Bits clear:
 No interrupt occurs, all operations terminated. ($D0)

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

53

 Status (read), when set:

 Status bits may have different meanings depending on
 the command being performed.

 0 - Drive busy
 1 - Data Request (Data Read/Data Written) OR Index Pulse
 2 - Lost Data/Track 00
 3 - CRC error
 4 - Record Not Found/Seek Err
 5 - Data Address Mark
 0: Data Address Mark read
 1: Deleted Data Address Mark read OR Head Loaded
 6 - Write Protect
 7 - Not Ready

Track $FF49
$FF49 (65353) FDC Track Register CoCo 1/2/3
Bits 7 - 0 Disk Controller Track Register
(1) Track is 0-34 decimal
(2) Do not write directly, but use SEEK command

Sector $FF4A
$FF4A(65354) FDC Sector Register CoCo 1/2/3
Bits 7-0 Disk Controller Sector Register
(1) Sector is 1-18 decimal
(2) Can write directly

Data $FF4B
$FF4B(65355) FDC Data Register CoCo 1/2/3
Bits 7 - 0 Disk Controller Data Register
(1) Read or write data bytes from/to the disk controller
(2) Must do so at the exact needed rate or there will be errors

Other Disks $FF50-$FF5F
$FF50-$FF5F
(65360-65375)

Other Disks CoCo 1/2/3

Bit 7
Bit 6
Bit 5
Bit 4

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

54

Bit 3
Bit 2
Bit 1
Bit 0
(1) TODO - Tandy, Disto mini controller, mirror of drive controller
(2) TODO - Disto mini expansion bus $FF50-$FF57?
(3) TODO - Glenside IDE controller default address $FF50-$FF58
 The Glenside IDE board memory map:
 $FFx0 - 1st 8 bits of DATA register
 $FFx1 - Error (read) / Features (Write) register
 $FFx2 - Sector count register
 $FFx3 - Sector # register
 $FFx4 - Cylinder low byte
 $FFx5 - Cylinder high byte
 $FFx6 - Device/head register
 $FFx7 - Status (read) / Command (Write) register
 $FFx8 - 2nd 8 bits of DATA register (latch)
 Please note, that if you are using ATAPI, most of these change (which is why the current driver
will not handle ATAPI, except for detecting it's presence). (L. Curtis Boyle)

Miscellaneous Hardware

$FF60 (65376)-$FF62 (65378) X-Pad interface
$FF60-$FF62
(65376-65378)

X-Pad interface CoCo 1/2/3

$FF60 X COORDINATE FOR X-PAD, 0-255
$FF61 Y COORDINATE FOR X-PAD, 0-191
$FF62 STATUS REGISTER FOR X-PAD

(1) Upper left on the X-Pad is (0,0)
(2) Coords wrap around on the X-Pad margins
(3) Reading the x coord causes the y value and status to lock at that time so the values stay in

sync for reading.
(4) Status is 4 bits:

Bit 0 - Pen down
Bit 1 - Pen within 1" of surface
Bit 2 - Pen in X-Margin
Bit 3 - Pen in Y-Margin

$FF60 (65376)-$FF67 (65383) CoCo Max A/D Module
$FF60-$FF67
(65376-65383)

CoCo Max A/D Module CoCo 1/2/3

Bit 7
 TODO
 It is unfortunately simplistic to say that the addresses are as you say. The first time an address is

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

55

accessed (read), it sets up an A/D conversion cycle for the channel as you specify above. THEN
the next access is normally a read which reads the value converted from the previous read access.
By doing a read on the next channel, you set up the A/D conversion cycle for the channel read, but
read the previous channel's data. Here's another way to look at it.

Access(read) address data retrieved
 1 $FF60 Whatever channel was set up last
 2 $FF61 Data from channel #0 (X pos)
 3 $FF62 Data from channel #1 (Y pos)
 4 $FF63 Data from channel #2 (pen switch)
 5 any Data from channel #3 (not used in CCMax)
 6 Ad-nausium..
 (Nosko S.)

 $FF60 (65376)-$FF7F (65407) TC^3 SCSI
$FF60-$FF7F
(65376-65407)

TC^3 SCSI CoCo 1/2/3

TODO TC^3 SCSI interface uses two addresses anywhere in this range

$FF63 (65379)-$FF67 (65383) Unused
$FF63-$FF67
(65379-65383)

Unused CoCo 1/2/3

Unused

$FF68 (65384)-$FF6B (65387) RS-232 PROGRAM PAK Interface
$FF68-$FF6B
(65384-65387)

RS-232 PROGRAM PAK Interface CoCo 1/2/3

$FF68 READ/WRITE DATA REGISTER
$FF69 STATUS REGISTER
$FF6A COMMAND REGISTER
$FF6B CONTROL REGISTER

(1) Based on Synertek 6551 ASCI chip.
(2) Write to STATUS causes a soft reset, read obtain status, an 8-bit field:

 Status bit meaning to clear:
 Bit 0 - Parity error = 1, no error = 0 self clearing
 Bit 1 - Framing error self clearing
 Bit 2 - Overrun self clearing
 Bit 3 - Receive data register full = 1 read receive data reg
 Bit 4 - Transmit data register empty = 1 write transmit data reg
 Bit 5 - NOT(DCD) 1 = high
 Bit 6 - NOT(DSR) 1 = high
 Bit 7 - IRQ 1 = interrupt read status reg
(3) Command register:
 Bits 765: parity:

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

56

 xx0 - parity disabled
 001 - odd parity rec and trans
 011 - even parity rec and trans
 101 - mark parity bit transmitted, parity check disabled
 111 - space parity bit transmitted, parity check disabled
 Bit 4 : echo = 1 (bits 2 and 3 must be 0)
 Bits 32 : transmitter controls
 trans interrupt NOT(RTS) level Transmitter
 00 - disabled high off
 01 - enabled low on
 10 - disabled low on
 11 - disabled low trans brk
 Bit 1 : receiver interrupt enable 0 - IRQ enabled with bit 3 of status
 1 - IRQ disabled
 Bit 0 : data terminal ready 0 - disable receiver and interrupts
 1 - enable receiver and interrupts
(4) Control register:
 Bit 7: stop bit 0 = 1 stop bit, 1 = 2 stop bits (TODO - more)
 Bits 65: data length 00=8, 01=7, 10=6, 11 = 5
 Bit 4: receiver clock source 0 = external, 1=baud rate generator
 Bits 3-0: baud rate generator
 0000 - 16x external clock
 0001 - 50 baud
 0010 - 75 baud
 0011 - 109.92 baud
 0100 - 134.58 baud
 0101 - 150 baud
 0110 - 300 baud
 0111 - 600 baud
 1000 - 1200 baud
 1001 - 1800 baud
 1010 - 2400 baud
 1011 - 3600 baud
 1100 - 4800 baud
 1101 - 7200 baud
 1110 - 9600 baud
 1111 - 19200 baud

$FF6C (65388)-$FF6F (65391) Direct Connect Modem Pak
$FF6C-$FF6F
(65388-65391)

Direct Connect Modem Pak CoCo 1/2/3

$FF6C READ/WRITE DATA REGISTER
$FF6D STATUS REGISTER
$FF6E COMMAND REGISTER

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

57

$FF6F CONTROL REGISTER
(1) Same control information as the RS-232 Program Pak

$FF70 (65392) LR-Tech SASI controller CoCo 1/2/3
alternate address of LR-Tech SASI controller

$FF70 (65392),$FF72 (65394) Musica stereo pack
$FF70,$FF72
(65392,65394)

Musica stereo pack CoCo 1/2/3

Musica stereo pack - the two stereo channels
$FF72 - (*NOT* $FF71) / (Nosko S.)

$FF70 (65392)-$FF72 (65394) Laser light show D/A
$FF70-$FF72
(65392-65394)

laser light show D/A CoCo 1/2/3

$FF70 X
$FF71 Y
$FF72 Z (intensity)
laser light show D/A converters (Nosko S.)

$FF70 (65392)-$FF74 (65396) SPEECH SYSTEMS SUPERVOICE
$FF70-$FF74
(65392-65396)

SPEECH SYSTEMS SUPERVOICE CoCo 1/2/3

(VOTRAX SC-02)
 new model (1 MHZ clock)
 (these can be modified to be 2MHz)
 (Rodney V Hamilton)
 TODO

$FF70 (65392)-$FF74 (65396) Burke & Burke CYBERVOICE
$FF70-$FF74
(65392-65396)

Burke & Burke CYBERVOICE CoCo 1/2/3

Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
(VOTRAX SC-02)
 2MHz clock, OS9L2/CoCo 3 compatible
 (Rodney V Hamilton)
 TODO

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

58

$FF70 (65392)-$FF78 (65400) Glenside IDE controller
$FF70-$FF78
(65392-65400)

Glenside IDE controller CoCo 1/2/3

$FFx0 1st 8 bits of DATA register
$FFx1 Error (read) / Features (Write) register
$FFx2 Sector count register
$FFx3 Sector # register
$FFx4 Cylinder low byte
$FFx5 Cylinder high byte
$FFx6 Device/head register
$FFx7 Status (read) / Command (Write) register
$FFx8 2nd 8 bits of DATA register (latch)
The Glenside IDE board memory map , alternate address.

$FF74 (65396) CoCo 1/2/3
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
TODO default address of LR-Tech SASI controller

$FF74-$FF77
(65396-65399)

Disto SCII CoCo 1/2/3

Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
TODO Disto SCII haltless controller additional addresses

$FF70-$FF79
(65392-65401)

Unused CoCo 1/2/3

Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

59

Bit 1
Bit 0

$FF7A (65392)-$FF7B (65404) Orchestra-90
$FF7A-$FF7B
(65392-65404)

Orchestra-90 CoCo 1/2/3

$FF7A Left Channel
$FF7B Right Channel
(1) TODO - detail

$FF7C (65404) Unused CoCo 1/2/3

$FF7D (65405)-$FF7E (65406) SOUND/SPEECH CARTRIDGE
$FF7D-$FF7E
(65405-65406)

SOUND/SPEECH CARTRIDGE CoCo 1/2/3

$FF7D SOUND/SPEECH CARTRIDGE RESET
$FF7E SOUND/SPEECH CARTRIDGE READ/WRITE

(1) Based on a SPO256-AL2 Speech Processor and a AY3-8913 Programmable Sound
Generator. Also has a PIC7040 with internal 4K ROM, 2K RAM

(2) Set RESET bit 0 to 1 then to 0 to do a reset.
(3) Read from $FF7E bit 7 set indicates previous byte written not yet processed. Bit 6 set

indicates chip is currently talking. bit 5 set indicates sound currently playing.

4 . No more info known - TODO

$FF7F(65407) MULTI-PAK PROGRAMMING REGISTER
$FF7F (65407) MULTI-PAK PROGRAMMING REGISTER CoCo 1/2/3
Bit 7 (2)
Bit 6 (2)
Bits 5-4 Number of active CTS slot (ROM)
Bit 3 (2)
Bit 2 (2)
Bits 1-0 Number of active SCS slot (FDC)

1. Poke value 0 for slot 1, 17 for slot 2, 34 slot 3, 51 slot 4
2. All set means value given is select switch setting binary 00rr00ii

bits 5-4: number of active CTS slot (ROM $C000-$DFFF) & CART* select
bits 1-0: number of active SCS slot (I/O $FF40-$FF5F)

$FF80-$FFBF
(65408-65471)

Unused in CoCo 1/2 CoCo 1/2

(1) $FF90-$FFBF are used in CoCo3 for the GIME chip, elsewhere in this document.

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

60

$FF80-$FF84
(65408-65412)

SPEECH SYSTEMS SUPERVOICE CoCo 1/2/3

Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
(VOTRAX SC-02)
 old model (1 MHZ clock)
 (these can be modified to be CYBERVOICE address/speed compatible)
 (Rodney V Hamilton)
 TODO

$FF80-$FF8F
(65408-65424)

Unused in CoCo 3 CoCo 3

Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
(1) $FF90-$FFBF are used in CoCo3 for the GIME chip, elsewhere in this doc

CoCo 3 GIME Hardware Reference

$FF90 (65424) Initialization Register 0 - INIT0
$FF90 (65424) Initialization Register 0 - INIT0 CoCo 3
Bit 7 CoCo Bit 1 = Color Computer 1/2 Compatible, 0 = CoCo3
Bit 6 M/P 1 = MMU enabled
Bit 5 IEN 1 = GIME IRQ output enabled to CPU, 0 = disabled
Bit 4 FEN 1 = GIME FIRQ output enabled to CPU, 0 = disabled
Bit 3 MC3 1 = Vector RAM at FEXX enabled, 0 = disabled
Bit 2 MC2 1 = Standard SCS (DISK) (0=expand 1=normal)
Bit 1 MC1 ROM Map - see note (1)
Bit 0 MC0 " "

(1) MC1 BIT MC0 BIT ROM MAP (VECTORS EXCLUDED)

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

61

0 X 16K INTERNAL, 16K EXTERNAL
1 0 32K INTERNAL
1 1 32K EXTERNAL (EXCEPT INTERRUPT VECTORS)

(2) SCS is Spare Chip Select
(3) To get CoCo 1/2: CoCo bit set, MMU disabled, Video address from SAM, RGB/Comp

Palettes => CC2.
(4) To use CoCo 3 graphics, the COCO bit must be set to zero. When using CoCo 1/2

resolutions, the bit is set to 1. RSDOS typically sets the INIT0 register to 196 in CoCo 2
resolutions and 68 when using CoCo 3 graphics modes.

$FF91 (65425) Initialization Register 1 - INIT1
$FF91 (65425) Initialization Register 1 - INIT1 CoCo 3
Bit 7 Unused
Bit 6 Memory type 1=256K, 0=64K chips
Bit 5 TINS Timer INput clock source 1=279.365 nsec, 0=63.695 usec
Bits 4-1 Unused
Bit 0 MMU Task Register select 0=enable $FFA0-$FFA7 1=enable $FFA8-$FFAF

(1) TINS=1 is a 279.365 ns (3.58 MHZ) clock, not a 70ns clock as published some places.
TINS = 0 is default

(2) The TINS bit selects the clock speed of the countdown timer. The 279 ns clock is useful for
interrupt driven sound routines while the 63 us (15.87 kHZ) clock is used for a slower
timer.

(3) The task register selects which set of MMU bank registers to assign to the CPU's 64K
workspace. The task bit is generally set to zero in DECB.

$FF92 (65426) Interrupt Request Enable Register – IRQENR
$FF92 (65426) Interrupt Request Enable Register - IRQENR CoCo 3
Bits 7-6 Unused
Bit 5 TMR 1=Enable timer IRQ, 0 = disable
Bit 4 HBORD 1=Enable Horizontal border Sync IRQ, 0 = disable
Bit 3 VBORD 1=Enable Vertical border Sync IRQ, 0 = disable
Bit 2 EI2 1=Enable RS232 Serial data IRQ, 0 = disable
Bit 1 EI1 1=Enable Keyboard IRQ, 0 = disable
Bit 0 EI0 1=Enable Cartridge IRQ, 0 = disable

(1) THIS REGISTER WORKS THE SAME AS FIRQENR EXCEPT THAT IT GENERATES IRQ
INTERRUPTS.

(2) SEE NOTES FOLLOWING $FF93 FIRQENR FOR MORE INTERRUPT INFORMATION.

$FF93 (65427) Fast Interrupt Request Enable Reg - FIRQENR
$FF93 (65427) Fast Interrupt Request Enable Reg - FIRQENR CoCo 3
Bits 7-6 Unused
Bit 5 TMR 1=Enable timer FIRQ, 0 = disable

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

62

Bit 4 HBORD 1=Enable Horizontal border Sync FIRQ, 0 = disable
Bit 3 VBORD 1=Enable Vertical border Sync FIRQ, 0 = disable
Bit 2 EI2 1=Enable RS232 Serial data FIRQ, 0 = disable
Bit 1 EI1 1=Enable Keyboard FIRQ, 0 = disable
Bit 0 EI0 1=Enable Cartridge FIRQ, 0 = disable
(1) TMR: FIRQ interrupt generated whenever 12 bit timer counts down to zero.
(2) HBORD: Horiz border FIRQ interrupt generated on falling edge of HSYNC.
(3) VBORD: Vert border FIRQ interrupt generated on falling edge of VSYNC.
(4) EI2: Serial FIRQ interrupt generated on falling edge of the signal on PIN 4 of the serial port.
(5) EI1: Keyboard FIRQ interrupt generated whenever a zero appears on any one of PA0-PA6 on
the PIA0.
(6) EI0: Cartridge FIRQ interrupt generated on the falling edge of the signal on PIN 8 of the
cartridge port.
(7) Reading from the register tells you which interrupts came in and acknowledges and resets the
interrupt source.
(8) Here's a table of the interrupt vectors and where they end up going. You can't change the $FFxx
vectors, but you can change the $FExx and $01xx vectors which contain jmps/lbras to the interrupt
routine.
 Be sure to disable the interrupt you are setting before changing values.
 Interrupt -> CPU reads -> points to -> jumps to this routine
 SWI3 $FFF2 $FEEE $0100
 SWI2 $FFF4 $FEF1 $0103
 FIRQ $FFF6 $FEF4 $010F
 IRQ $FFF8 $FEF7 $010C
 SWI $FFFA $FEFA $0106
 NMI $FFFC $FEFD $0109
 RESET $FFFE $8C1B
 This is in order of increasing precedence. Thus an IRQ firing while a FIRQ is being serviced will
interrupt the FIRQ. Conversely, a FIRQ never interrupts an IRQ.

 Note that the equivalent interrupt output enable bit must be set in $FF90

(9) You can also read these regs to see if there is a LOW on an interrupt input pin. If you have both
the IRQ and FIRQ for the same device enabled, you read a 1 bit on both regs if that input is low.
For example, if you set $FF02=0 and $FF92=2, then as long as a key is held down, you will read
back bit 1 as Set.

$FF94-$FF95 TIMERMSB/TIMERLSB
$FF94 (65428) Timer register MSB - TIMERMSB CoCo 3
Bits 7-4 Unused
Bits 3-0 TMRH - Timer Bits 8-11 - write here to start timer

$FF95 (65429) Timer register LSB - TIMERLSB CoCo 3
Bits 7-0 TIMRL - Timer Bits 0-7

(1) The 12-bit timer can be loaded with any number from 0-4095. The timer resets and restarts
counting down as soon as a number is written to $FF94. Writing to $FF95 does not restart
the timer, but the value does save. Reading from either register does not restart the timer.

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

63

When the timer reaches zero, it automatically restarts and triggers an interrupt (if enabled).
The timer also controls the rate of blinking text. Storing a zero to both registers stops the
timer from operating. Lastly, the timer works slightly differently on the 1986 and 1987
versions of the GIME. Neither can actually run a clock count of 1. That is, if you store a
1 into the timer register, the 1986 GIME actually processes this as a '3' and the 1987 GIME
processes it as a '2'. All other values stored are affected the same way: nnn+2 for 1986
GIME and nnn+1 for 1987 GIME.

(2) Must turn timer interrupt enable off/on again to reset timer IRQ/FIRQ.
(3) Storing a $00 at $FF94 seems to stop the timer. Also, apparently each time it passes thru

zero, the $FF92/93 bit is set without having to re-enable that Interrupt Request.

$FF96-$FF97 - Unused
$FF96-$FF97
(65430-65431)

Unused CoCo 3

Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Both registers unused

$FF98 (65432) Video mode register - VMODE
$FF98 (65432) Video mode register - VMODE CoCo 3
Bit 7 BP 0=alphanumeric (text modes), 1=bit plane (graphics modes)
Bit 6 Unused
Bit 5 DESCEN 1= extra DESCender ENable(text), swap artifact colors (in gr mode)
Bit 4 MOCH MOnoCHrome (composite video output) (1=mono), 0 = color
Bit 3 H50 1=50hz vs 0=60hz bit
Bit 2 -0 LPR210 - Number of lines/char row
(1) LPR210 is Lines Per Row:
 000 - 1 line/row 100 - 9
 001 - 2 (CoCo1&2) 101 - 10 (Reserved?)
 010 - 3 (CoCo1&2) 110 - 11 (12?(CoCo1&2?))
 011 - 8 111 - (12?) Infinite*

(2) Bit 5 is the artifact color shift bit. Change it to flip Pmode 4 colors.
 A One is what is put there if you hold down the F1 key on reset.
 POKE &HFF98,&H13 from Basic if colors artifact the wrong way for you.

 *Mostly useless, but it does generate a graphics mode where the whole screen is filled with the
same line of graphics - like a 320x1 resolution. This can be used for a very fast oscilloscope type
display where the program only updates data in one scan line over time and as the screen refreshes,

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

64

you get a screen full of samples. Sockmaster used it in his Boink bouncing ball demo to take
manual control of the vertical resolution of the screen to make the ball appear that it's going up and
down (without actually scrolling the whole screen up and down).

$FF99 (65433) Video resolution register - VRES
$FF99 (65433) Video resolution register - VRES CoCo 3
Bit 7 Unused(?)
Bits 6-5 LPF10 – Lines per field
Bits 4 -2 HRES210 – Horizontal resolution
Bit 1-0 CO01 – Color bits

(1) BITS 6-5: LINES PER FIELD LPF:
00 -> 192 SCAN LINES ON SCREEN
01 -> 200 SCAN LINES ON SCREEN
10 -> *ZERO/INFINITE LINES ON SCREEN (UNDEFINED)
11 -> 225 SCAN LINES ON SCREEN

(2) Bits 4-2: Horizontal resolution HR
Graphics modes:
000=16 bytes per row
001=20 bytes per row
010=32 bytes per row
011=40 bytes per row
100=64 bytes per row
101=80 bytes per row
110=128 bytes per row
111=160 bytes per row
Text modes (HR1 - don't care for text):
0x0=32 characters per row
0x1=40 characters per row
1x0=64 characters per row
1x1=80 characters per row

(3) Bits 1-0 CRES Color Resolution
Graphics modes:
00=2 colors (8 pixels per byte)
01=4 colors (4 pixels per byte)
10=16 colors (2 pixels per byte)
11=Undefined (would have been 256 colors!?)
Text modes:
 x0=No color attributes
x1=Color attributes enabled

 *The zero/infinite scanlines setting will either set the screen to display nothing but border
(zero lines) or graphics going all the way up and down out of the screen, never retriggering.
It all depends on when you set the register. If you set it while the video raster was drawing
the vertical border you get zero lines, and if you set it while video was drawing graphics
you get infinite lines. Mostly useless, but it should be possible to coax a vertical overscan

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

65

mode using this with some tricky timing.

 Old SAM modes work if CC Bit set. HR and CRES are Don't Care in SAM mode. Note the
correspondence of HR2 HR0 to the text mode's bytes/line.

 Commonly used graphics modes:
Width Colors HR210 C010
640 4 111 01
640 2 101 00
512 4 110 01
512 2 100 00
320 16 111 10
320 4 101 01
320 2 011 00
256 16 110 10
256 4 100 01
256 2 010 00
160 16 101 10
160 4 011 01 *
160 2 001 00 *
128 16 100 10 *
128 4 010 01 *
128 2 000 00 *
* - not supported. Other combos also possible but not supported.

(4) HiRes text always two bytes per character; even byte 6 bit character, odd byte attribute.
Characters from 128 ASCII, no graphic chars.
Format is:
Bit 7 1 = Blink
Bit 6 1 = Underline
Bits 5-3 Foreground Palette 0-7 from $FFB0-$FFB7
Bits 2-0 Background Palette 0-7 from $FFB8-$FFBF

(5) Due to a design error in the GIME, the "200-line" mode only displays 199 lines of active
video on the screen. If you do the BASIC pokes for 25 lines on the WIDTH 40 and
WIDTH 80 screens, you will see the blinking underscore cursor disappear at the bottom
line. If the graphic screens are poked for 200 lines, the bottom-most line will be #198, not
#199. Try it and see.
(Rodney V Hamilton)

 TODO – check 200 line error

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

66

$FF9A (65434) Border color register - BRDR
$FF9A (65434) Border color register - BRDR CoCo 3
Bits 7-6 Unused
Bits 5-0 Border palette color, same format as $FFB0-$FFBF

(1) This controls the color of the border around the screen. The color bits work the same as the
palette registers. This register only controls the border color of CoCo 3 video modes and
does not affect Coco 1/2 modes.

(2) See $FFB0-$FFBF for color definition.
(3) Format depends on Composite or RGB monitor.

$FF9B (65435) Disto 2 Meg Upgrade bank CoCo 3
Bits 7-2
Bits 1-0 VBANK Used by Disto 2 Meg upgrades to switch between 512K banks

$FF9C (65436) Vertical scroll register - VSC
$FF9C (65436) Vertical scroll register - VSC CoCo 3
Bits7-4 Unused
Bit 3-0 VSC Vertical smooth scroll 3=MSB <-> LSB=0 vals 0=16 (?)
The vertical scroll register is used to allow smooth scrolling in text modes. Consecutive numbers
scroll the screen upwards one scan line at a time in video modes where more than one scan line
makes up a row of text (typically 8 lines per character row) or graphics (double height + graphics).

TODO – check 0=16 in this case

$FF9D-$FF9E Vertical offset register
$FF9D (65437) Vertical offset register MSB CoCo 3
Bits 7-0 Y15-Y8 MSB Start of video in GIME RAM (video location * 2048)

$FF9E (65438) Vertical offset register LSB CoCo 3
Bits 7-0 Y7-Y0 LSB Start of video in GIME RAM (video location * 8)
$FF9D VERTICAL OFFSET V SCROLL MUST BE $0F
 $FF9D Screen start address Bits 18-11

 $FF9E Screen Start Address Register 0 (bits 10-3)
 $FF9E V OFFSET #2 WORD = ADDRESS/8 EX. $C000 = $60000/8
 BIT 7
 |
 BIT 0 LSB
 $FF9E Screen start address Bits 10-3
 DDDDDDDDEEEEEEEE000

 $FF9E (65438) Vertical offset register LSB

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

67

Y15-Y0 is used to set the video mode to start in any GIME memory location in 512K by steps of 8
bytes. On a 128K machine, the memory range is $60000-$7FFFF. There is a bug in some versions
of the GIME that causes the computer to crash when you set odd numbered values in $FF9E in
some resolutions, so it's safest to limit positioning to steps of 16 bytes. Fortunately, you can use
$FF9F to make up for it and get steps as small as 2 bytes.

$FF9F (65439) Horizontal offset register
$FF9F (65439) Horizontal offset register - TODO - CoCo 3
Bit 7 HVEN

1=Horizontal virtual screen enable (256 bytes per row)
0=Normal horizontal display

Bits 6-0 0-127 byte offset from $FF9D/$FF9E
(1) If Bit 7 set & in Text mode there are 128 chars (only 80 seen)/line. This allows an offset to

be specified into a virtual 128-char/line screen, useful for horizontal hardware scrolling on
wide text or spreadsheets.

(2) If you set Bit 7 and you're in graphics mode, you can scroll across a 128-byte picture. To
use this, of course, you'd have to write your own graphics routines. On my machine, though,
an offset of more than about 5 crashes.

Bit 7
Bits 6-0 X6-X0 Horizontal offset address (video location *2)

(3) You can combine the horizontal and vertical offsets to get a higher definition video
position: Y15-Y4,X6-X0 which gives you 19 bit positioning by steps of 2 bytes.
Otherwise, you can use this register to do scrolling effects. The virtual screen mode allows
you to set up a 256 byte wide graphics or text screen, showing only part of it at a time and
allowing you to scroll it vertically (horizontally TODO ?).

$FFA0-$FFAF (65440-65455) MMU bank registers (tasks 0 and 1)
$FFA0-$FFA7
(65440-65447)

MMU bank registers (task 0) CoCo 3

$FFA8-$FFAF
(65448-65455)

MMU bank registers (task 1) CoCo 3

$FFA0/8 Page $0000-$1FFF
$FFA1/9 Page $2000-$3FFF
$FFA2/A Page $4000-$5FFF
$FFA3/B Page $6000-$7FFF
$FFA4/C Page $8000-$9FFF
$FFA5/D Page $A000-$BFFF
$FFA6/E Page $C000-$DFFF
$FFA7/F Page $E000-$FFFF (or $E000-$FDFF - see (TODO 1))

1. The MMU registers select 8K pages from the GIME addressable space $0-$7FFFFF into

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

68

CPU addressable space $0-$FFFF in 8K blocks.
2. The pages are numbered by the top 6 bits of the address, and are $30-$3F for a 128K

machine, and $00-$3F for a 512K machine.
3. In a 128K machine pages $0-$2F are copies of pages $30-$3F.
4. The registers to set the various 8K blocks, and power-up contents:

MMU Register: CPU:
Task0 Task1 Logical Address / Block# Default page
$FFA0 $FFA8 $0000 - $1FFF 0 $38
$FFA1 $FFA9 $2000 - $3FFF 1 $39
$FFA2 $FFAA $4000 - $5FFF 2 $3A
$FFA3 $FFAB $6000 - $7FFF 3 $3B
$FFA4 $FFAC $8000 - $9FFF 4 $3C
$FFA5 $FFAD $A000 - $BFFF 5 $3D
$FFA6 $FFAE $C000 - $DFFF 6 $3E
$FFA7 $FFAF $E000 - $FDFF 7 $3F

5. $FF91 Bit 0 selects task 0 (bit = 0) or task 1 (bit = 1).Task 0 uses MMU pages from $FFA0-
$FFA7 and Task 1 uses MMU pages from $FFA8-$FFAF.

6. $FE00-$FFFF can be held constant at $7Fexx.
7. If you don't know it is safe not to, you should turn off interrupts before swapping MMU

blocks. Be very careful when swapping out ROM or low system RAM.
8. These registers can be read, but the top two bits must be masked out since they might

contain garbage.
9. See the section on memory mapping and memory maps for more details TODO.
10. Here is the GIME address view and default page usage:

Page GIME Address CPU Address* Standard Page Contents

 $00-2F $00000-$5FFFF 512K upgrade RAM, not in 128K
 $30 $60000-$61FFF Hi-Res page #1
 $31 $62000-$63FFF Hi-Res page #2
 $32 $64000-$65FFF Hi-Res page #3
 $33 $66000-$67FFF Hi-Res page #4
 $34 $68000-$69FFF HGET/HPUT buffer
 $35 $6A000-$6BFFF Secondary Stack
 $36 $6C000-$6DFFF Hi-Res text screen RAM
 $37 $6E000-$6FFFF unused
 $38 $70000-$71FFF $0000-$1FFF Basic memory
 $39 $72000-$73FFF $2000-$3FFF Basic memory
 $3A $74000-$75FFF $4000-$5FFF Basic memory
 $3B $76000-$77FFF $6000-$7FFF Basic memory
 $3C $78000-$79FFF $8000-$9FFF Extended Basic Interpreter
 $3D $7A000-$7BFFF $A000-$BFFF Color Basic Interpreter
 $3E $7C000-$7DFFF $C000-$DFFF Disk Basic Interpreter
 $3F $7E000-$7FFFF $E000-$FFFF Super Basic, GIME regs, I/O, Interrupts

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

69

$FFB0-$FFBF (65456-65471) Color palette registers
$FFB0-$FFBF
(65456-65471)

Color palette registers -TODO CoCo 3

$FFB0-$FFBF Palette entries 0-15
RGB Mode: Bits 7-6 Unused
 Bit 5 = High order Red R1
 Bit 4 = High order Green G1
 Bit 3 = High order Blue B1
 Bit 2 = Low order Red R0
 Bit 1 = Low order Green G0
 Bit 0 = Low order Blue B0
Composite mode:
 Bits 7-6 Unused
 Bits 5-4 = 4 intensity levels I1 I0
 Bits 3-0 = 16 colors P3 P2 P1 P0

Todo - RGB/Composite bit?, names? Of the 16 composite colors?
(1) These 16 registers set the 16 colors used in the system.
(2) Their format depends on the RGB/Composite bit setting in TODO
(3) They can be read, but the top two (or three) bits must be masked off for correctness.
(4) Both reading and writing to the palette registers causes a small glitch on the screen, which can

be avoided by changing the palettes while the video retrace is in the vertical or horizontal
border.

(5) The BORDER register uses the same format, and also depends on the RGB/COMPOSITE
setting TODO

(6) $FFB0-$FFB7 are also used for the text mode character background colors, and $FFB8-$FFBF
TODO

(7) Default values:

Here are the default RGB palette values on power up:

 $FFB0 GREEN $12 $FFB8 BLACK $00
 $FFB1 YELLOW $36 $FFB9 GREEN $12
 $FFB2 BLUE $09 $FFBA BLACK $00
 $FFB3 RED $24 $FFBB BUFF $3F
 $FFB4 BUFF $3F $FFBC BLACK $00
 $FFB5 CYAN $1B $FFBD GREEN $12
 $FFB6 MAGENTA $2D $FFBE BLACK $00
 $FFB7 ORANGE $26 $FFBF ORANGE $26

 Here are the default Composite palette values on power up:

 $FFB0 GREEN $12 $FFB8 BLACK $00
 $FFB1 YELLOW $24 $FFB9 GREEN $12
 $FFB2 BLUE $0B $FFBA BLACK $00
 $FFB3 RED $07 $FFBB BUFF $3F
 $FFB4 BUFF $3F $FFBC BLACK $00
 $FFB5 CYAN $1F $FFBD GREEN $12

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

70

 $FFB6 MAGENTA $09 $FFBE BLACK $00
 $FFB7 ORANGE $26 $FFBF ORANGE $26

TODO – merge default colors from the color section.

SAM registers $FFC0-$FFDF

$FFC0 (65472)-$FFC5 (65477) SAM Video Display - SAM_Vx
$FFC0-$FFC5
(65472-65477)

SAM Video Display - SAM_Vx CoCo 1/2/3

$FFC0/1 SAM_V0, or V0CLR/V0SET
$FFC2/3 SAM_V1, or V1CLR/V1SET
$FFC4/5 SAM_V2, or V2CLR/V1SET
(1) This allows setting video modes on the CoCo 1 and 2
(2) SAM_Vx are three pairs of addresses (V0-V2), and poking any value to
 EVEN addresses sets bit Vx off (0) in Video Display Generator (VDG)
 circuitry. Poking a value to ODD addresses sets bit on (1) in VDG circuit.
(3) These registers work with $FF22 for setting modes, and should match up
(4) Default screen mode is semigraphic-4
(5) Mode correspondence between the SAM and the VDG:

 Mode VDG Settings SAM
 A/G GM2 GM1 GM0 V2/V1/V0 Desc. RAM used
 x,y,clrs in hex(dec)
 Internal alphanumeric 0 X X 0 0 0 0 32x16 (5x7 pixel ch)
 External alphanumeric 0 X X 1 0 0 0 32x16 (8x12 pixel ch)
 Semigraphic-4 0 X X 0 0 0 0 32x16 ch, 64x32 pixels
 Semigraphic-6 0 X X 1 0 0 0 64x48 pixels
 Full graphic 1-C 1 0 0 0 0 0 1 64x64x4 $400(1024)
 Full graphic 1-R 1 0 0 1 0 0 1 128x64x2 $400(1024)
 Full graphic 2-C 1 0 1 0 0 1 0 128x64x4 $800(2048)
 Full graphic 2-R 1 0 1 1 0 1 1 128x96x2 $600(1536)
 Full graphic 3-C 1 1 0 0 1 0 0 128x96x4 $C00(3072)
 Full graphic 3-R 1 1 0 1 1 0 1 128x192x2 $C00(3072)
 Full graphic 6-C 1 1 1 0 1 1 0 128x192x4 $1800(6144)
 Full graphic 6-R 1 1 1 1 1 1 0 256x192x2 $1800(6144)
 Direct memory access X X X X 1 1 1

(6) Notes:
 - The graphic modes with -C are 4 color, -R is 2 color.
 - 2 color mode - 8 pixels per byte (each bit denotes on/off)
 4 color mode - 4 pixels per byte (each 2 bits denotes color)
 - CSS (in FF22) is the color select bit:
 Color set 0: 0 = black, 1 = green for -R modes
 00 = green, 01 = yellow for -C modes
 10 = blue, 11 = red for -C modes
 Color set 1: 0 = black, 1 = buff for -R modes

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

71

 00 = buff, 01 = cyan, for -C modes
 10 = magenta, 11 = orange for -C modes

 In semigraphic-4 mode, each byte is a char or 4 pixels:
 bit 7 = 0 -> text char in following 7 bits
 bit 7 = 1 -> graphic: 3 bit color code, then 4 bits for 4 quads of color
 colors 000-cyan, yellow, blue, red, buff, cyan, magenta, orange=111
 quad bits orientation UL, UR, LL, LR

 In semigraphic-6 mode, each byte is 6 pixels:
 bit 7-6 = C1-C0 color from 4 color sets above
 bit 5-0 = 6 pixels in 2x3 block, each on/off
 TODO - orientation

 Example: To set 6-C color set 0, lda #$E0, sta in $FF22, $FFC3, $FFC5
 To return to text mode, clra, sta in $FF22, $FFC2, $FFC4
(7) In the CoCo 3, The SAM is mostly CoCo 1/2 compatible Write-Only registers

$FFC6 (65478)-$FFD3 (65491) SAM Page Select Reg-SAM_Fx
$FFC6-$FFD3
(65478-65491)

SAM Page Select Reg-SAM_Fx CoCo 1/2/3

$FFC6/7 SAM_F0, or F0CLR/F0SET
$FFC8/9 SAM_F1, or F1CLR/F1SET
$FFCA/B SAM_F2, or F2CLR/F2SET
$FFCC/D SAM_F3, or F3CLR/F3SET
$FFCE/F SAM_F4, or F4CLR/F4SET
$FFD0/1 SAM_F5, or F5CLR/F5SET
$FFD2/3 SAM_F6, or F6CLR/F6SET

(1) These registers denote the start of the image in RAM to display in CoCo 1 and 2 text and
graphics modes. The value in $F0-$F6 times 512 is the start of video RAM.

(2) SAM_Fx are seven pairs of addresses ($F0-$F6), and poking any value to EVEN addresses
sets bit Fx off (0) in Video Display Generator (VDG) circuitry. Poking value to ODD
addresses sets bit on (1) in VDG circuit.

$FFD4 (65492)-$FFD5 (65493) SAM Page Select Reg-SAMPAG
$FFD4-$FFD5
(65492-65493)

SAM Page Select Reg-SAMPAG CoCo 1/2/3

$FFD4 Any write sets page #1 P1 control bit to 0, 0 = normal
$FFD5 Any write sets page #1 P1 control bit to 1

(1) page register MPU addresses $0000-$7FFF, apply page #1 if P1 = 1
TODO – meaning?

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

72

$FFD6 (65494)-$FFD9 (65497) Clock Speed R0/R1 - SAM_R0/1
$FFD6-$FFD9
(65494-65497)

Clock Speed R0/R1 - SAM_R0/1 CoCo 1/2/3

$FFD6 SAM_R0 - Any write sets R0 control bit to 0
$FFD7 | - Any write sets R0 control bit to 1
$FFD8 SAM_R1 - Any write sets R1 control bit to 0
$FFD9 | - Any write sets R1 control bit to 1
(1) R1-R0: 00-0.89 MHZ only, 01-0.89/1.78 MHZ <== both transparent refresh
 10-1.78 MHZ only, 11-1.78 MHZ TODO – meaning?

(2) May not work on early CoCo1 (and 2?), but works on all CoCo 3's (true?)
(3) 0.89 Mhz: no address-dependent speed , default setting?
(4) Speedup only for ROM accesses?
(5) These are commonly used as follows:
 Slow poke: $FFD8 write selects 0.89 Mhz CPU clock
 Fast poke: $FFD9 write selects 1.78 Mhz CPU clock

(6) Switching the SAM into 1.8MHz operation gives the CPU the time
 ordinarily used by the VDG and refresh, so the display shows garbage,
 so this mode is seldom used. The SAM in Address Dependent mode, where
 ROM reads (since they do not use the DRAM) occur at 1.8MHz but regular
 RAM access occurs at .89MHz, runs the BASIC interpreter from ROM twice
 as fast, nearly doubling BASIC program performance.

$FFDA (65498)-$FFDD (65501) Memory size M0/M1 - SAM_M0/1
$FFDA-
$FFDD
(65498-65501)

Memory size M0/M1 - SAM_M0/1 CoCo 1/2/3

$FFD6 SAM_M0 - Any write sets M0 control bit to 0
$FFD7 - Any write sets M0 control bit to 1
$FFD8 SAM_M1 - Any write sets M1 control bit to 0
$FFD9 - Any write sets M1 control bit to 1
(1) M1-M0: 00 - 4K, 01 - 16K
 10 - 64K (all 3 dynamic), 11 = 64K static
(2) Todo - is this right? Or Dragon only?

$FFDE/$FFDF (65502/65503) ROM/RAM map type - SAM_TYP
$FFDE-$FFDF
(65502-65503)

ROM/RAM map type - SAM_TYP CoCo 1/2/3

$FFDE Any write switches system ROMs into memory map (ROM mode)
$FFDF Any write selects all-RAM mode (RAM mode)
(1) RAM accesses use MMU translations in CoCo 3

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

73

(2) Default mode 0 - ROM Mode CoCo 1/2, Default mode 1 - RAM Mode CoCo 3
(3) These registers are often called TY=0 and TY=1

Interrupt Vectors

$FFE0-$FFF1 (65504/65522) Reserved
$FFE0-$FFF1
(65504-65522)

Reserved CoCo 1/2/3

|(1) Reserved for future enhancements :)

$FFF2-$FFFF (65523/65535) Interrupt vectors
$FFF2-$FFFF
(65523-65535)

Interrupt vectors CoCo 1/2/3

$FFF2/3 SWI3 points to $FEEE
$FFF4/5 SWI2 points to $FEF1
$FFF6/7 FIRQ points to $FEF4
$FFF8/9 IRQ points to $FEF7
$FFFA/B SWI points to $FEFA
$FFFC/D NMI points to $FEFD
$FFFE/F RESET points to $8C1B

(1) WHEN AN INTERRUPT OF THE GIVEN TYPE OCCURS, THE VECTOR IS LOADED INTO THE
PROGRAM COUNTER, WHICH POINTS TO THE ADDRESS GIVEN ABOVE. YOU CAN SET
YOUR OWN INTERRUPT ROUTINES BY REPLACING THE $FEXX VALUES WITH YOUR OWN
LBRA XXXX VALUES

(2) Turn off interrupts before setting a new value.
(3) Restore what was there to restore the system
(4) See also the section on interrupts in this document.

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

74

CoCo 3 Detailed Memory Map
This memory map also has a lot of useful information for the CoCo 1 and CoCo 2. This section also
contains some information on CoCo clones: Dragon 32 & 64.

Format conventions:
 $xxxx references a hexadecimal CPU memory address
 0xab or 0xabcd are C style hexadecimal constants
 %TITLE% shows a 'standard' assembler reference
 UPPERCASE words typically refer to Basic keywords or Assembler mnemonics
 (0x1234) Numbers in brackets refer to the default value at power-up

Abbreviations:
 CoCo refers to the Tandy CoCo only
 D32 only applicable to Dragon 32
 D64 only applicable to Dragon 64
 DOS refers to a generic DragonDos compatible unless stated otherwise
 lsb least significant byte
 msb most significant byte
 ptr pointer (or address of)
 w/o without

0000 BREAK message flag - if negative print BREAK
0001 String delimiting char (0x22 '"')
0002 Another delimiting char (0x22 '"')
0003 General counter byte
0004 Count of IFs looking for ELSE
0005 DIM flag
0006 %VALTYP% Variable type flag (0x00 numeric, Non-0x00 string)
0007 Garbage collection flag
0008 Subscript allowed flag
0009 INPUT/READ flag
000a Arithmetic use
000b:000c String ptr first free temporary
000d:000e String ptr last free temporary
000f-0018 Temporary results
0019:001a Start address of BASIC program ($1e01, $2401 with DOS)
001b:001c Start address of simple variables
001d:001e Start address of array variables
001f:0020 End of storage, Start of unused mem after BASIC program
0021:0022 Top of stack, growing down ($7e36)
0023:0024 Top of free string space ($7ffe)
0025:0026 Temp Ptr to string in string space
0027:0028 Top of Ram available to BASIC - returned by DOS HIMEM ($7ffe)
0029:002a Last/CONT line number
002b:002c Temp/Input line number store
002d:002e Ptr to next statement to be executed
002f:0030 Direct mode command text pointer
0031:0032 Current DATA statement line number
0033:0034 Ptr to next item in current DATA statement
0035:0036 Ptr to keyboard input buffer

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

75

0037:0038 Ptr to variable last in use
0037:0038 ASCII codes of last variable used
0039:003a VARPTR address of last variable used
003b-004e Evaluation variables
0041:0042 High end destination addr for block
0043:0044 High end origin addr
0045:0046 Low end destination addr for block
0047:0048 Low end origin addr
004f-0054 Floating Point Accumulator Num 1
004f Exponent
0050-0053 Mantissa
0050:0051 16 bit values in FAC stored here
0052:0053 VARPTR of variables is stored here
0054 Mantissa Sign (0x00 positive, 0xff negative)
0055 Temp sign of FAC
0056 String variable length
0057-005b String Descriptor temporaries
005c-0061 Floating Point Accumulator Num 2
0062 Sign comparison
0062-0067 Misc use
0063 CoCo - Extended precision byte
0068:0069 Current Line number (0xffff in direct mode)
006a-006e Device Params used in PRINT
006a Device Comma field width (VDU - 0x10)
006b Device Last comma field
006c Device Current column num (VDU - 0x00-0x1f)
006d Device Line width - num chars per line (VDU 0x20)
006e Cassette I/O in progress flag - 0xff on input or output occurring
006f %DEVNUM% Current device number
 0x00 VDU screen
 0x01-0x04 DOS - DosPlus only - drive number.
 0xfd serial port (Dragon 64 only)
 0xfe printer
 0xff tape
0070 Cassette EOF flag - non-zero if EOF - used by EOF(-1)
0071 Restart flag - if not 0x55 cold start on reset, see $0072
0072:0073 Restart vector - Following a reset if $0072 pts to a NOP opcode &

 $0071 is 0x55 then a warm start is performed to this vector
 else a cold start. (0xb44f) (DOS SuperDosE6 $c706)
0074:0075 Physical end of Ram minus 1 (0x7ffe)
0076:0077 Unused
0078 Cassette status
 0x00 closed
 0x01 input
 0x02 output
0079 Cassette I/O - Buffer size - bytes in block
007a:007b Header buffer addr - ptr to filename block
007c %BLKTYP% Cassette block type
 0x00 filename
 0x01 data
 0xff EOF block
007d %DBLEN% Cassette block length, number bytes read/to write
007e:007f %DBADR% Cassette I/O Buffer address
 Contains 1 + End address of last program loaded
0080 Cassette I/O - block checksum used internally
0081 Cassette I/O - error code

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

76

 0x00 none
 0x01 CRC (checksum) error
 0x02 attempt to load into ROM
0082 Cassette I/O - Pulse width counter
0083 Cassette I/O - Sync bits counter
0084 Cassette I/O - Bit phase flag
0085 Last sine wave value for output to DAC
0086 Data for low res SET/RESET, POINT routines
0087 ASCII code of last key pressed (cleared by Break check)
0088:0089 Current VDU cursor addr (typ 0x0400-0x05ff)
008a:008b Gen purpose 16bit scratch pad / 16bit zero (0x0000)
008a:008b CoCo - Motor on delay
008c Sound pitch frequency
008d:008e Gen purpose countdown (?sound timer)
008f Cursor flash counter (0x20)
0090:0091 Cassette leader byte count - number of 0x55 bytes written as sync
 leader (D32 - 0x0080, D64 - 0x0100)
0092 Minimum cycle width of 1200Hz (0x12)
0092:0093 CoCo - Cassette leader byte count
0093 Minimum pulse width of 1200Hz (0x0a)
0094 Maximum pulse width of 1200Hz (0x12)
0095:0096 Motor on delay (0xda5c = approx 0.5s)
0095:0096 CoCo - Serial Baud rate constant (0x0057 = 600 baud)
0097:0098 Keyboard scan debounce delay constant (0x045e)
0097:0098 CoCo - Serial Line Printer End of Line delay (0x0001)
0099 Printer comma field width (0x10 = 16)
009a Printer last comma field (0x74 = 116) (CoCo 0x70 = 112)
009b Printer line width dflt (0x84 = 132)
009c Printer head column posn == POS(-2),
 Updated by LPOUT ($800f) routine
009d:009e EXEC default entry address
 (D32 - $8b8d = ?FC ERROR; D64 - $bf49 = Boot 64k mode)
009f-00aa %CHRGET% Self modifying routine to read next char
009f:00a0 INC <$A7
00a1:00a2 BNE $00A5
00a3:00a4 INC <$A6
00a5-00a7 LDA >xxxx
00a6:00a7 Ptr to next character to read
00a8-00aa JMP $BB26
00ab-00ae Used by RND
00af TRON/TROFF trace flag - non zero for TRON
00b0:00b1 Ptr to start of USR table ($0134; DOS - $0683)
00b2 Current foreground colour (0x03)
00b3 Current background colour (0x00)
00b4 Temp/active colour in use
00b5 Byte value for current colour - ie bit pattern
00b6 Graphics PMODE number in use (0x00)
00b7:00b8 Ptr to last byte+1 of current graphics mode ($0c00 w/o Dos)
00b9 Number of bytes per line in current PMODE (0x10)
00ba:00bb Ptr to first byte of current graphics mode ($0600)
00bc Msb of start of graphics pages (0x06 or 0x0c with Dos)
00bd:00be Current X cursor position (not user available ?)
00bf:00c0 Current Y cursor position (not user available ?)
00c1 Colour set currently in use (0x08 if colorset 1)
00c2 Plot/Unplot flag: 0x00 reset, non zero set
00c3:00c4 Current horizontal pixel number
00c5:00c6 Current vertical pixel number

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

77

00c7:00c8 Current X cursor coord (0x0080)
00c9:00ca Current Y cursor coord (0x0060)
00cb:00cc CIRCLE command X coood as if drawn in PMODE 4
00cd:00ce CIRCLE command Y coord as if drawn in PMODE 4
00cf:00d0 CIRCLE radius as if drawn in PMODE 4
00cf:00d0 RENUM increment value
00d1:00d2 RENUM start line
00d3:00d4 CLOADM 2's complement load offset
00d5:00d6 RENUM new start line
00d7 EDIT line length (not user available)
00d7 PLAY -
00d8 PLAY - bytes left in string
00d9:00da PLAY - ptr to current char in string
00d8-00dd Graphics use ?
00de PLAY: Current octave in use (0-4) (0x02)
00df:00e0 PLAY: Volume data for volume setting (D32 - 0xba42) (D64 - 0xb844)
00e1 PLAY: Current note length (0x04)
00e2 PLAY: Current tempo (0x02)
00e3:00e4 PLAY: Music duration count
00e5 PLAY: Music dotted note flag
00e6-00ff D32 - Unused in Dragon 32 w/o DOS
00e6 CoCo - baud rate constant
00e7 Coco - Input timeout constant
00e8 Current angle used in DRAW (??)
00e9 Current scale used in DRAW (??)
00ea-00f6 DOS - Used by DragonDos
00f8 DOS - sector currently seeking {SuperDos Rom}
0100-0102 SWI3 Secondary vector (Uninitialised)
0103-0105 SWI2 Secondary vector (Uninitialised)
0106-0108 SWI Secondary vector (Uninitialised)
0109-010b NMI Secondary vector (Uninitialised)
 (CoCo DOS JMP $d7ae; SuperDos E6 JMP $c71e)
010c-010e IRQ Secondary vector - JMP $9d3d
 (CoCo JMP $a9b3 or $894c (extended); CoCo DOS JMP $d7bc;
 SuperDos E6 JMP $c727)
010f-0111 FIRQ Secondary vector - JMP $b469
 (CoCo JMP $a0f6; SuperDos E6 JMP $c7da)
0112:0113 TIMER value
0114 Unused
0115-0119 Random number seeds (0x80, 0x4f, 0xc7, 0x52, 0x59)
011a-011f D32 - Unused
011a D64 - %FLAG64% checked on Reset from 64K mode if 0x55 then
 checksum at $011b is checked against current contents of RAM,
 if the same then a warm start is performed (64 mode) else a
 cold start (32 mode)
011a CoCo - Caps lock, 0x00 lower, non-0x00 upper
011b:011c D64 - %CSUM64% 16bit sum of words of BASIC Rom-in-ram in 64K mode
 from $c000 to $feff
011b:011c CoCo - Keyboard Delay constant
011d-011f CoCo - JMP $8489 ?
011d D64 - %LSTKEY% Last key code return by keybd poll routine
011e D64 - %CNTDWN% Auto repeat countdown
011f D64 - %REPDLY% Auto repeat inter-repeat delay value (0x05)
0120 %STUB0% Stub 0 - Number of reserved words (0x4e)
0121:0122 Stub 0 - Ptr to reserved words table ($8033)
0123:0124 Stub 0 - Ptr to reserved words dispatch table ($8154)
0125 Stub 0 - Number of functions (0x22)

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

78

0126:0127 Stub 0 - Ptr to reserved function words table ($81ca)
0128:0129 Stub 0 - Ptr to function words dispatch table ($8250)
012a %STUB1% Stub 1 - Number of reserved words (0x00)
 (DOS 0x1a)
012b:012c Stub 1 - Ptr to reserved words table (0x0000)
 (DOS $ded4; SuperDosE6 $deda)
012d:012e Stub 1 - Ptr to reserved words token processing routine
 ($89b4; DOS $c64c; SuperDosE6 $c670)
012f Stub 1 - Number of functions (0x00)
 (DOS 0x07)
0130:0131 Stub 1 - Ptr to function table (0x0000)
 (DOS $debb; SuperDosE6 $dec1)
0132:0133 Stub 1 - Ptr to function token processing routine
 ($89b4; DOS $c667; SuperDosE6 $c68b)
0134 %STUB2% Stub 2 - acts as a stub terminator under DOS
0134-0147 USR address table, relocated by DOS (10 x 2 bytes) ($8b8d)
0148 Auto line feed flag on buffer full - setting this to 0x00 causes
 a EOL sequence to be sent to printer when buffer reaches
 length in $009b (0xff)
0149 Alpha Lock flag - 0x00 Lower case, 0xff Upper case (0xff)
014a-0150 Line Printer End of line termination sequence
014a Number of bytes in EOL sequence 1-6 (0x01)
014b EOL chr 1 (0x0d CR)
014c EOL chr 2 (0x0a LF)
014d EOL chr 3 (D64 - 0x00; D32 - 0x20 ' ')
014e EOL chr 4 (D64 - 0x00; D32 - 0x44 'D' Duncan)
014f EOL chr 5 (D64 - 0x00; D32 - 0x4e 'N' N.)
0150 EOL chr 6 (D64 - 0x00; D32 - 0x4f 'S' Smeed)
0151-0159 Keyboard matrix state table
0152-0159 CoCo - Keyboard roll-over table
015a-015d %POTVAL% Joystick values (0-63)
015a Right Joystick, x value == JOYSTK(0)
015b Right Joystick, y value == JOYSTK(1)
015c Left Joystick, x value == JOYSTK(2)
015d Left Joystick, y value == JOYSTK(3)
015e-01a8 RAM hooks - each is called from ROM with a JSR before carrying out
 the specified function
015e-0160 Device Open (DOS JMP $d902; SuperDosE6 $d8f4)
0161-0163 Verify Device Number (DOS SuperDosE6 JMP $d8ec)
0164-0166 Device Init (DOS SuperDosE6 JMP $c29c)
0167-0169 Output char in A to DEVN (DOS JMP $d8fa; SuperDosE6 $d90b)
0167 Setting to 0xff disables keyboard ?!?
 Setting to 0x39 (RTS) allows use of SCREEN 0,1 etc. ??
016a-016c Input char from DEVN to A (DOS SuperDosE6 JMP $c29c)
016d-016f Input from DEVN using INPUT (DOS SuperDosE6 JMP $c29c)
0170-0172 Output to DEVN using PRINT (DOS SuperDosE6 JMP $c29c)
0173-0175 Close all files (DOS SuperDosE6 JMP $c29c)
0176-0178 Close file(DOS JMP $d917; SuperDosE6 $d6f5)
0179-017b Command Interpreter - interpret token in A as command
 (DOS SuperDosE6 JMP $c29c)
017c-017e Re-request input from keyboard (DOS JMP $d960; SuperDosE6 $d954)
017f-0181 Check keys - scan for BREAK, SHIFT+'@'
 (DOS SuperDosE6 JMP $c29c)
017f Setting this to 0x9e disables LIST/DIR
0182-0184 Line input from DEVN using LINE INPUT
 (DOS JMP $d720; SuperDosE6 $dac5)
0185-0187 Close BASIC file read in and goto Command mode

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

79

 (DOS SuperDosE6 JMP $c29c)
0188-018a Check EOF on DEVN (DOS JMP $dd4d; SuperDosE6 $dd54)
018b-018d Evaluate expression (DOS SuperDosE6 JMP $c29c)
018e-0190 User error trap, called from $8344
 (DOS SuperDosE6 JMP $c29c)
0191-0193 System error trap, called from $8344
 (DOS JMP $c69e; SuperDosE6 $c6c5)
0194-0196 Run Link - used by DOS to RUN filename
 (DOS JMP $d490; SuperDosE6 $d4b7)
0197-0199 Reset Basic Memory, editing or entering BASIC lines
019a-019c Get next command - reading in next command to be executed
019d-019f Assign string variable
01a0-01a2 Screen access - CLS, GET, PUT
01a3-01a5 Tokenise line
01a6-01a8 De-Tokenise line

01a9-01d0 String buffer area
01d1 Cassette filename length in range 0-8
01d2-01d9 Cassette filename to search for or write out
01da-02d8 Cassette I/O default data buffer - 255 bytes
01da-0268 D64 - 64K mode bootstrap routine is copied here to run
01da-01e1 Cassette buffer - filename of file read
01e2 Cassette buffer - filetype
 0x00 BASIC program
 0x01 Data
 0x02 Machine code
01e3 Cassette buffer - ASCII flag
 0x00 Binary
 0xff ASCII flag
01e4 Cassette buffer - gap flag
 0x00 Continous
 0xff Gapped file
01e5:01e6 Cassette buffer - Entry (Exec) addr of m/c file
01e7:01e8 Cassette buffer - Load address for ungapped m/c file
02d9-02dc BASIC line input buffer preamble
02dd-03d8 BASIC line input buffer - used for de-/tokenising data
02dd-03dc CoCo - 255 byte keyboard buffer
02e1-033b CoCo - 90 byte screen buffer
03d9-03ea Buffer space
03eb-03fc Unused
03fd-03ff D32 - Unused in Dragon 32
03fd:03fe D64 - Printer end of line delay in milliseconds (0x0000)
03ff D64 - %PRNSEL% selects default printer port
 0x00 Parallel, non-0x00 Serial (0x00)
0400-05ff Default Text screen
0600-1dff Available graphics pages w/o DOS
0600-0bff DOS - workspace area see also $00ea-$00f6
0600-0dff CoCo DOS workspace area (no more info)
0c00-23ff DOS - Available graphics pages
8000-bfff BASIC ROM in 32K mode
8000-9fff CoCo - Extended Color BASIC ROM
a000-bfff CoCo - Color BASIC ROM
bff0-bfff These addresses mapped from ROM to $fff0-$ffff by the SAM
c000-dfff DOS - Dos ROM
c000-feff DOS - Cumana DOS ROM only
c000-feff Available address range to cartridge expansion port 32K mode
c000-feff D64 - 64K mode - copy of BASIC ROM 2 exists in RAM here

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

80

ff00 PIA 0 A side Data reg.
ff01 PIA 0 A side Control reg.
ff02 PIA 0 B side Data reg.
ff03 PIA 0 B side Control reg.
ff04 D64 - ACIA serial port read/write data reg.
ff05 D64 - ACIA serial port status (R)/ reset (W) reg.
ff06 D64 - ACIA serial port command reg.
ff07 D64 - ACIA serial port control reg.
ff20 PIA 1 A side Data reg.
ff21 PIA 1 A side Control reg.
ff22 PIA 1 B side Data reg.
ff23 PIA 1 B side Control reg.
ff40 DOS - Disk Controller command/status reg.
ff41 DOS - Disk Controller track reg.
ff42 DOS - Disk Controller sector reg.
ff43 DOS - Disk Controller data reg.
ff48 DOS - Disk Controller hardware control reg.
ffc0-ffdf SAM (Synchronous Address Multiplexer) register bits - use even
 address to clear, odd address to set
ffc0-ffc5 SAM VDG Mode registers V0-V2
ffc0/ffc1 SAM VDG Reg V0
ffc2/ffc3 SAM VDG Reg V1
ffc3/ffc5 SAM VDG Reg V2
ffc6-ffd3 SAM Display offset in 512 byte pages F0-F6
ffc6/ffc7 SAM Display Offset bit F0
ffc8/ffc9 SAM Display Offset bit F1
ffca/ffcb SAM Display Offset bit F2
ffcc/ffcd SAM Display Offset bit F3
ffce/ffcf SAM Display Offset bit F4
ffd0/ffc1 SAM Display Offset bit F5
ffd2/ffc3 SAM Display Offset bit F6
ffd4/ffd5 SAM Page #1 bit - in D64 maps upper 32K Ram to $0000 to $7fff
ffd6-ffd9 SAM MPU Rate R0-R1
ffd6/ffd7 SAM MPU Rate bit R0
ffd8/ffd9 SAM MPU Rate bit R1
ffda-ffdd SAM Memory Size select M0-M1
ffda/ffdb SAM Memory Size select bit M0
ffdc/ffdd SAM Memory Size select bit M1
ffde/ffdf SAM Map Type - in D64 switches in upper 32K RAM $8000-$feff
ffec-ffef PC-Dragon - Used by Burgin's emulator to provide enhanced services
fff0-ffff 6809 interrupt vectors mapped from $bff0-$bfff by SAM
fff0:fff1 Reserved ($0000; D64 64K mode 0x3634 '64')
fff2:fff3 SWI3 ($0100)
fff4:fff5 SWI2 ($0103)
fff6:fff7 FIRQ ($010f)
fff8:fff9 IRQ ($010c)
fffa:fffb SWI ($0106)
fffc:fffd NMI ($0109)
fffe:ffff RESET ($b3b4; D64 64K mode $c000 - never accessed)

TODO – other memory maps, the disk stuff mismatches earlier stuff, change all addresses to $ hex
and uppercase.

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

81

Schematics
Here are two CoCo 3 schematics – one PAL and one NTSC. One is still being drawn by me and is
not quite finished, but between the two you can get a lot of information about the CoCo 3.

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

82

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

83

TODO – insert two kinds here?! Explain types?

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

84

Bibliography
1. Self experimentation :)
2. Sockmaster's webpage (John Kowalski, http://www.axess.com/twilight/sock/)
3. Notes from Kevin K. Darling, help from Greg Law, Dennis W., and Marsha.
4. Notes from Mike Pepe.
5. Notes from Graham E. Kinns.
6. PC CoCo Emulator (coco2-13.zip) by Jeff Vavasour.
7. "The Dragon Notebook", Ray Smith, NDUG.
8. "Inside the Dragon", Duncan Smeed & Ian Sommerville, Addison-Wesley,1983.
9. "TRS-80 Color Computer Tech Ref Manual", Tandy Corp, 1981.
10. WD2797 Floppy Disc Driver Controller Data Sheet (RS #6991).
11. Dragon Disc Controller Circuit Diagram, ex Dragon Data Ltd, now NDUG.
12. Dragon 32/64 Upgrade Manual, R. Hall, NDUG, 1985.
13. "Inside the 32", Dave Barnish, p13, Jan 1987.
14. "BREAKing the '64", Martyn Armitage, p8-9, Feb 1988.
15. "Firmware - Part 1", Brian Cadge, p19, Sep 1985.
16. "Dragon Answers", Brian Cadge, p31, Sep 1985.
17. Assembly Language Graphics for the TRS-80 Color Computer, Don & Kurt Inman, 1983,

Reston Publishing Company, ISBN 0-8359-0318-4.
18. TRS-80 Color Computer Assembly Language, William Barden, Jr., Radio Shack, 1983.
19. "What's Inside Radio Shack's Color Computer?", Byte Magazine, 1981,

http://www.byte.com/art/9603/sec5/art4.htm
20. Notes from http://www.cs.unc.edu/~yakowenk/coco.html
21. "Assembly Language Programming for the Color Computer", Laurence A Tepolt, Tepco,

1985.
22. "Assembly Language Programming for the CoCo3", Laurence A Tepolt, Tepco, 1987.
23. The Unraveled series: "Color Basic Unraveled II", "Extended Basic Unraveled II", "Super

Extended Basic Unraveled II", "Disk Basic Unraveled II", Walter K. Zydhek, Spectral
Associates, 1999.

24. Info from http://www.trs-80.com/

Glossary
DOS – Disk Operating System
RS-DOS – Radio Shack Disk Operating System
TODO – Need glossary

Index
G
GIME . 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 19,

41, 42, 44, 48, 49, 50, 51

TODO – index all

http://www.axess.com/twilight/sock/
http://www.byte.com/art/9603/sec5/art4.htm
http://www.cs.unc.edu/~yakowenk/coco.html
http://www.trs-80.com/

Color Computer 1/2/3 Hardware Programming, Chris Lomont, v0.82

85

TODO
A list of things to do in future versions
TODO

• Crosslink many more items
• Finish glossary, index
• Add schematics, perhaps part spec sheets?
• Major check on consistent layout, etc
• Check my asm and CoCo books for more info
• Need lots of content filled in, verified, corrected.
• See how prints, make 1, 2, and 4 page versions
• Final proof pass

END OF FILE

	 Table of Contents
	 Hardware Introduction
	6809 CPU Notes
	Color Computer 1/2 Hardware Topics (PIA, VDG, SAM)
	PIA (Peripheral Interface Adapters)
	VDG (Video Display Generator)
	SAM (Synchronous Address Multiplexer)
	Color Computer 3 Hardware Topics (GIME)
	GIME (Graphics Interrupt Memory Enhancement)
	MMU (Memory Management Unit)
	Graphics
	Palettes
	Interrupts
	CoCo 1/2 compatibility

	Memory Mapping
	CoCo 1/2:
	CoCo 2 memory map

	CoCo 3
	Simple CoCo 3 Memory Map

	Colors
	CoCo 1/2:
	CoCo 3:

	Graphics Modes
	CoCo 1/2
	CoCo 3

	Text Modes
	CoCo 1/2
	CoCo 3

	Keyboard
	Joystick
	Mouse
	Interrupts
	CoCo 1/2/3
	CoCo 3

	Sound
	Cassette Storage
	File format
	Hardware

	Disk Storage
	Disk Format
	Controller
	DUP - merge and remove

	Serial I/O
	Software
	Hardware

	Cartridge Info
	Basic, Extended Basic, and Disk Basic Summary
	Color Basic (non-Extended) Summary
	Extended Color Basic Summary
	Disk Basic Summary

	ROM Routines
	Color Basic Info
	Extended Color Basic Info
	Disk Color Basic Info
	Rom Routines

	Color Computer Hardware Register Reference ($FF00-$FFFF)
	PIA Reference ($FF00-$FF3F)
	PIA0 ($FF00-$FF1F)
	PIA1 ($FF20-$FF3F)

	Disk Controller Reference
	Disk Controller ($FF40)
	DSKREG Copies ($FF41-$FF47) (65345-65351)
	Status/Command ($FF48)
	Track $FF49
	Sector $FF4A
	Data $FF4B
	Other Disks $FF50-$FF5F

	Miscellaneous Hardware
	$FF60 (65376)-$FF62 (65378) X-Pad interface
	$FF60 (65376)-$FF67 (65383) CoCo Max A/D Module
	 $FF60 (65376)-$FF7F (65407) TC^3 SCSI
	$FF63 (65379)-$FF67 (65383) Unused
	$FF68 (65384)-$FF6B (65387) RS-232 PROGRAM PAK Interface
	$FF6C (65388)-$FF6F (65391) Direct Connect Modem Pak
	$FF70 (65392),$FF72 (65394) Musica stereo pack
	$FF70 (65392)-$FF72 (65394) Laser light show D/A
	$FF70 (65392)-$FF74 (65396) SPEECH SYSTEMS SUPERVOICE
	$FF70 (65392)-$FF74 (65396) Burke & Burke CYBERVOICE
	$FF70 (65392)-$FF78 (65400) Glenside IDE controller
	$FF7A (65392)-$FF7B (65404) Orchestra-90
	$FF7D (65405)-$FF7E (65406) SOUND/SPEECH CARTRIDGE
	$FF7F(65407) MULTI-PAK PROGRAMMING REGISTER

	CoCo 3 GIME Hardware Reference
	$FF90 (65424) Initialization Register 0 - INIT0
	$FF91 (65425) Initialization Register 1 - INIT1
	$FF92 (65426) Interrupt Request Enable Register – IRQENR
	$FF93 (65427) Fast Interrupt Request Enable Reg - FIRQENR
	$FF94-$FF95 TIMERMSB/TIMERLSB
	$FF96-$FF97 - Unused
	$FF98 (65432) Video mode register - VMODE
	$FF99 (65433) Video resolution register - VRES
	$FF9A (65434) Border color register - BRDR
	$FF9C (65436) Vertical scroll register - VSC
	$FF9D-$FF9E Vertical offset register
	$FF9F (65439) Horizontal offset register
	$FFA0-$FFAF (65440-65455) MMU bank registers (tasks 0 and 1)
	$FFB0-$FFBF (65456-65471) Color palette registers

	SAM registers $FFC0-$FFDF
	$FFC0 (65472)-$FFC5 (65477) SAM Video Display - SAM_Vx
	$FFC6 (65478)-$FFD3 (65491) SAM Page Select Reg-SAM_Fx
	$FFD4 (65492)-$FFD5 (65493) SAM Page Select Reg-SAMPAG
	$FFD6 (65494)-$FFD9 (65497) Clock Speed R0/R1 - SAM_R0/1
	$FFDA (65498)-$FFDD (65501) Memory size M0/M1 - SAM_M0/1
	$FFDE/$FFDF (65502/65503) ROM/RAM map type - SAM_TYP

	Interrupt Vectors
	$FFE0-$FFF1 (65504/65522) Reserved
	$FFF2-$FFFF (65523/65535) Interrupt vectors

	 CoCo 3 Detailed Memory Map
	Schematics
	Bibliography
	Glossary
	Index
	TODO

