EightBit/M6502/src/mos6502.cpp
2021-07-18 14:28:40 +01:00

756 lines
30 KiB
C++

#include "stdafx.h"
#include "../inc/mos6502.h"
EightBit::MOS6502::MOS6502(Bus& bus)
: LittleEndianProcessor(bus) {
RaisedPOWER.connect([this](EventArgs) {
X() = Bit7;
Y() = 0;
A() = 0;
P() = RF;
S() = Mask8;
lowerSYNC();
lowerRW();
});
}
DEFINE_PIN_LEVEL_CHANGERS(NMI, MOS6502);
DEFINE_PIN_LEVEL_CHANGERS(SO, MOS6502);
DEFINE_PIN_LEVEL_CHANGERS(SYNC, MOS6502);
DEFINE_PIN_LEVEL_CHANGERS(RDY, MOS6502);
DEFINE_PIN_LEVEL_CHANGERS(RW, MOS6502);
int EightBit::MOS6502::step() {
resetCycles();
ExecutingInstruction.fire(*this);
if (LIKELY(powered())) {
tick();
if (UNLIKELY(lowered(SO())))
handleSO();
if (LIKELY(raised(RDY()))) {
lowerSYNC(); // Instruction fetch beginning
raiseRW();
opcode() = BUS().read(PC()++); // can't use fetchByte
if (UNLIKELY(lowered(RESET())))
handleRESET();
else if (UNLIKELY(lowered(NMI())))
handleNMI();
else if (UNLIKELY(lowered(INT()) && !interruptMasked()))
handleINT();
execute();
}
}
ExecutedInstruction.fire(*this);
return cycles();
}
// Interrupt (etc.) handlers
void EightBit::MOS6502::handleSO() {
raiseSO();
P() |= VF;
}
void EightBit::MOS6502::handleRESET() {
raiseRESET();
m_handlingRESET = true;
opcode() = 0x00; // BRK
}
void EightBit::MOS6502::handleNMI() {
raiseNMI();
m_handlingNMI = true;
opcode() = 0x00; // BRK
}
void EightBit::MOS6502::handleINT() {
raiseINT();
m_handlingINT = true;
opcode() = 0x00; // BRK
}
void EightBit::MOS6502::interrupt() {
const bool reset = m_handlingRESET;
const bool nmi = m_handlingNMI;
const bool irq = m_handlingINT;
const bool hardware = nmi || irq || reset;
const bool software = !hardware;
if (reset) {
dummyPush(PC().high);
dummyPush(PC().low);
dummyPush(P());
} else {
pushWord(PC());
push(P() | (software ? BF : 0));
}
P() = setBit(P(), IF); // Disable IRQ
const uint8_t vector = reset ? RSTvector : (nmi ? NMIvector : IRQvector);
jump(getWordPaged(0xff, vector));
m_handlingRESET = m_handlingNMI = m_handlingINT = false;
}
//
void EightBit::MOS6502::busWrite() {
tick();
lowerRW();
Processor::busWrite();
}
uint8_t EightBit::MOS6502::busRead() {
tick();
raiseRW();
return Processor::busRead();
}
//
int EightBit::MOS6502::execute() {
raiseSYNC(); // Instruction fetch has now completed
switch (opcode()) {
case 0x00: fetchByte(); interrupt(); break; // BRK (implied)
case 0x01: A() = orr(A(), AM_IndexedIndirectX()); break; // ORA (indexed indirect X)
case 0x02: break;
case 0x03: slo(AM_IndexedIndirectX()); break; // *SLO (indexed indirect X)
case 0x04: AM_ZeroPage(); break; // *NOP (zero page)
case 0x05: A() = orr(A(), AM_ZeroPage()); break; // ORA (zero page)
case 0x06: memoryReadModifyWrite(asl(AM_ZeroPage())); break; // ASL (zero page)
case 0x07: slo(AM_ZeroPage()); break; // *SLO (zero page)
case 0x08: memoryRead(); php(); break; // PHP (implied)
case 0x09: A() = orr(A(), AM_Immediate()); break; // ORA (immediate)
case 0x0a: memoryRead(); A() = asl(A()); break; // ASL A (implied)
case 0x0b: anc(AM_Immediate()); break; // *ANC (immediate)
case 0x0c: AM_Absolute(); break; // *NOP (absolute)
case 0x0d: A() = orr(A(), AM_Absolute()); break; // ORA (absolute)
case 0x0e: memoryReadModifyWrite(asl(AM_Absolute())); break; // ASL (absolute)
case 0x0f: slo(AM_Absolute()); break; // *SLO (absolute)
case 0x10: branch(!negative()); break; // BPL (relative)
case 0x11: A() = orr(A(), AM_IndirectIndexedY()); break; // ORA (indirect indexed Y)
case 0x12: break;
case 0x13: slo(AM_IndirectIndexedY()); break; // *SLO (indirect indexed Y)
case 0x14: AM_ZeroPageX(); break; // *NOP (zero page, X)
case 0x15: A() = orr(A(), AM_ZeroPageX()); break; // ORA (zero page, X)
case 0x16: memoryReadModifyWrite(asl(AM_ZeroPageX())); break; // ASL (zero page, X)
case 0x17: slo(AM_ZeroPageX()); break; // *SLO (zero page, X)
case 0x18: memoryRead(); P() = clearBit(P(), CF); break; // CLC (implied)
case 0x19: A() = orr(A(), AM_AbsoluteY()); break; // ORA (absolute, Y)
case 0x1a: memoryRead(); break; // *NOP (implied)
case 0x1b: slo(AM_AbsoluteY()); break; // *SLO (absolute, Y)
case 0x1c: AM_AbsoluteX(); break; // *NOP (absolute, X)
case 0x1d: A() = orr(A(), AM_AbsoluteX()); break; // ORA (absolute, X)
case 0x1e: memoryReadModifyWrite(asl(AM_AbsoluteX(PageCrossingBehavior::AlwaysReadTwice))); break; // ASL (absolute, X)
case 0x1f: slo(AM_AbsoluteX()); break; // *SLO (absolute, X)
case 0x20: jsr(); break; // JSR (absolute)
case 0x21: A() = andr(A(), AM_IndexedIndirectX()); break; // AND (indexed indirect X)
case 0x22: break;
case 0x23: rla(AM_IndexedIndirectX()); break; // *RLA (indexed indirect X)
case 0x24: bit(A(), AM_ZeroPage()); break; // BIT (zero page)
case 0x25: A() = andr(A(), AM_ZeroPage()); break; // AND (zero page)
case 0x26: memoryReadModifyWrite(rol(AM_ZeroPage())); break; // ROL (zero page)
case 0x27: rla(AM_ZeroPage()); break; // *RLA (zero page)
case 0x28: memoryRead(); getBytePaged(1, S()); plp(); break; // PLP (implied)
case 0x29: A() = andr(A(), AM_Immediate()); break; // AND (immediate)
case 0x2a: memoryRead(); A() = rol(A()); break; // ROL A (implied)
case 0x2b: anc(AM_Immediate()); break; // *ANC (immediate)
case 0x2c: bit(A(), AM_Absolute()); break; // BIT (absolute)
case 0x2d: A() = andr(A(), AM_Absolute()); break; // AND (absolute)
case 0x2e: memoryReadModifyWrite(rol(AM_Absolute())); break; // ROL (absolute)
case 0x2f: rla(AM_Absolute()); break; // *RLA (absolute)
case 0x30: branch(negative()); break; // BMI (relative)
case 0x31: A() = andr(A(), AM_IndirectIndexedY()); break; // AND (indirect indexed Y)
case 0x32: break;
case 0x33: rla(AM_IndirectIndexedY()); break; // *RLA (indirect indexed Y)
case 0x34: AM_ZeroPageX(); break; // *NOP (zero page, X)
case 0x35: A() = andr(A(), AM_ZeroPageX()); break; // AND (zero page, X)
case 0x36: memoryReadModifyWrite(rol(AM_ZeroPageX())); break; // ROL (zero page, X)
case 0x37: rla(AM_ZeroPageX()); break; // *RLA (zero page, X)
case 0x38: memoryRead(); P() = setBit(P(), CF); break; // SEC (implied)
case 0x39: A() = andr(A(), AM_AbsoluteY()); break; // AND (absolute, Y)
case 0x3a: memoryRead(); break; // *NOP (implied)
case 0x3b: rla(AM_AbsoluteY()); break; // *RLA (absolute, Y)
case 0x3c: AM_AbsoluteX(); break; // *NOP (absolute, X)
case 0x3d: A() = andr(A(), AM_AbsoluteX()); break; // AND (absolute, X)
case 0x3e: memoryReadModifyWrite(rol(AM_AbsoluteX(PageCrossingBehavior::AlwaysReadTwice))); break; // ROL (absolute, X)
case 0x3f: rla(AM_AbsoluteX()); break; // *RLA (absolute, X)
case 0x40: memoryRead(); rti(); break; // RTI (implied)
case 0x41: A() = eorr(A(), AM_IndexedIndirectX()); break; // EOR (indexed indirect X)
case 0x42: break;
case 0x43: sre(AM_IndexedIndirectX()); break; // *SRE (indexed indirect X)
case 0x44: AM_ZeroPage(); break; // *NOP (zero page)
case 0x45: A() = eorr(A(), AM_ZeroPage()); break; // EOR (zero page)
case 0x46: memoryReadModifyWrite(lsr(AM_ZeroPage())); break; // LSR (zero page)
case 0x47: sre(AM_ZeroPage()); break; // *SRE (zero page)
case 0x48: memoryRead(); push(A()); break; // PHA (implied)
case 0x49: A() = eorr(A(), AM_Immediate()); break; // EOR (immediate)
case 0x4a: memoryRead(); A() = lsr(A()); break; // LSR A (implied)
case 0x4b: asr(AM_Immediate()); break; // *ASR (immediate)
case 0x4c: jump(Address_Absolute()); break; // JMP (absolute)
case 0x4d: A() = eorr(A(), AM_Absolute()); break; // EOR (absolute)
case 0x4e: memoryReadModifyWrite(lsr(AM_Absolute())); break; // LSR (absolute)
case 0x4f: sre(AM_Absolute()); break; // *SRE (absolute)
case 0x50: branch(!overflow()); break; // BVC (relative)
case 0x51: A() = eorr(A(), AM_IndirectIndexedY()); break; // EOR (indirect indexed Y)
case 0x52: break;
case 0x53: sre(AM_IndirectIndexedY()); break; // *SRE (indirect indexed Y)
case 0x54: AM_ZeroPageX(); break; // *NOP (zero page, X)
case 0x55: A() = eorr(A(), AM_ZeroPageX()); break; // EOR (zero page, X)
case 0x56: memoryReadModifyWrite(lsr(AM_ZeroPageX())); break; // LSR (zero page, X)
case 0x57: sre(AM_ZeroPageX()); break; // *SRE (zero page, X)
case 0x58: memoryRead(); P() = clearBit(P(), IF); break; // CLI (implied)
case 0x59: A() = eorr(A(), AM_AbsoluteY()); break; // EOR (absolute, Y)
case 0x5a: memoryRead(); break; // *NOP (implied)
case 0x5b: sre(AM_AbsoluteY()); break; // *SRE (absolute, Y)
case 0x5c: AM_AbsoluteX(); break; // *NOP (absolute, X)
case 0x5d: A() = eorr(A(), AM_AbsoluteX()); break; // EOR (absolute, X)
case 0x5e: memoryReadModifyWrite(lsr(AM_AbsoluteX(PageCrossingBehavior::AlwaysReadTwice))); break; // LSR (absolute, X)
case 0x5f: sre(AM_AbsoluteX()); break; // *SRE (absolute, X)
case 0x60: memoryRead(); rts(); break; // RTS (implied)
case 0x61: A() = adc(A(), AM_IndexedIndirectX()); break; // ADC (indexed indirect X)
case 0x62: break;
case 0x63: rra(AM_IndexedIndirectX()); break; // *RRA (indexed indirect X)
case 0x64: AM_ZeroPage(); break; // *NOP (zero page)
case 0x65: A() = adc(A(), AM_ZeroPage()); break; // ADC (zero page)
case 0x66: memoryReadModifyWrite(ror(AM_ZeroPage())); break; // ROR (zero page)
case 0x67: rra(AM_ZeroPage()); break; // *RRA (zero page)
case 0x68: memoryRead(); getBytePaged(1, S()); A() = through(pop()); break; // PLA (implied)
case 0x69: A() = adc(A(), AM_Immediate()); break; // ADC (immediate)
case 0x6a: memoryRead(); A() = ror(A()); break; // ROR A (implied)
case 0x6b: arr(AM_Immediate()); break; // *ARR (immediate)
case 0x6c: jump(Address_Indirect()); break; // JMP (indirect)
case 0x6d: A() = adc(A(), AM_Absolute()); break; // ADC (absolute)
case 0x6e: memoryReadModifyWrite(ror(AM_Absolute())); break; // ROR (absolute)
case 0x6f: rra(AM_Absolute()); break; // *RRA (absolute)
case 0x70: branch(overflow()); break; // BVS (relative)
case 0x71: A() = adc(A(), AM_IndirectIndexedY()); break; // ADC (indirect indexed Y)
case 0x72: break;
case 0x73: rra(AM_IndirectIndexedY()); break; // *RRA (indirect indexed Y)
case 0x74: AM_ZeroPageX(); break; // *NOP (zero page, X)
case 0x75: A() = adc(A(), AM_ZeroPageX()); break; // ADC (zero page, X)
case 0x76: memoryReadModifyWrite(ror(AM_ZeroPageX())); break; // ROR (zero page, X)
case 0x77: rra(AM_ZeroPageX()); break; // *RRA (zero page, X)
case 0x78: memoryRead(); P() = setBit(P(), IF); break; // SEI (implied)
case 0x79: A() = adc(A(), AM_AbsoluteY()); break; // ADC (absolute, Y)
case 0x7a: memoryRead(); break; // *NOP (implied)
case 0x7b: rra(AM_AbsoluteY()); break; // *RRA (absolute, Y)
case 0x7c: AM_AbsoluteX(); break; // *NOP (absolute, X)
case 0x7d: A() = adc(A(), AM_AbsoluteX()); break; // ADC (absolute, X)
case 0x7e: memoryReadModifyWrite(ror(AM_AbsoluteX(PageCrossingBehavior::AlwaysReadTwice))); break; // ROR (absolute, X)
case 0x7f: rra(AM_AbsoluteX()); break; // *RRA (absolute, X)
case 0x80: AM_Immediate(); break; // *NOP (immediate)
case 0x81: memoryWrite(Address_IndexedIndirectX(), A()); break; // STA (indexed indirect X)
case 0x82: AM_Immediate(); break; // *NOP (immediate)
case 0x83: memoryWrite(Address_IndexedIndirectX(), A() & X()); break; // *SAX (indexed indirect X)
case 0x84: memoryWrite(Address_ZeroPage(), Y()); break; // STY (zero page)
case 0x85: memoryWrite(Address_ZeroPage(), A()); break; // STA (zero page)
case 0x86: memoryWrite(Address_ZeroPage(), X()); break; // STX (zero page)
case 0x87: memoryWrite(Address_ZeroPage(), A() & X()); break; // *SAX (zero page)
case 0x88: memoryRead(); Y() = dec(Y()); break; // DEY (implied)
case 0x89: AM_Immediate(); break; // *NOP (immediate)
case 0x8a: memoryRead(); A() = through(X()); break; // TXA (implied)
case 0x8b: break;
case 0x8c: memoryWrite(Address_Absolute(), Y()); break; // STY (absolute)
case 0x8d: memoryWrite(Address_Absolute(), A()); break; // STA (absolute)
case 0x8e: memoryWrite(Address_Absolute(), X()); break; // STX (absolute)
case 0x8f: memoryWrite(Address_Absolute(), A() & X()); break; // *SAX (absolute)
case 0x90: branch(!carry()); break; // BCC (relative)
case 0x91: AM_IndirectIndexedY(); memoryWrite(A()); break; // STA (indirect indexed Y)
case 0x92: break;
case 0x93: break;
case 0x94: memoryWrite(Address_ZeroPageX(), Y()); break; // STY (zero page, X)
case 0x95: memoryWrite(Address_ZeroPageX(), A()); break; // STA (zero page, X)
case 0x96: memoryWrite(Address_ZeroPageY(), X()); break; // STX (zero page, Y)
case 0x97: memoryWrite(Address_ZeroPageY(), A() & X()); break; // *SAX (zero page, Y)
case 0x98: memoryRead(); A() = through(Y()); break; // TYA (implied)
case 0x99: sta_AbsoluteY(); break; // STA (absolute, Y)
case 0x9a: memoryRead(); S() = X(); break; // TXS (implied)
case 0x9b: break;
case 0x9c: break;
case 0x9d: sta_AbsoluteX(); break; // STA (absolute, X)
case 0x9e: break;
case 0x9f: break;
case 0xa0: Y() = through(AM_Immediate()); break; // LDY (immediate)
case 0xa1: A() = through(AM_IndexedIndirectX()); break; // LDA (indexed indirect X)
case 0xa2: X() = through(AM_Immediate()); break; // LDX (immediate)
case 0xa3: A() = X() = through(AM_IndexedIndirectX()); break; // *LAX (indexed indirect X)
case 0xa4: Y() = through(AM_ZeroPage()); break; // LDY (zero page)
case 0xa5: A() = through(AM_ZeroPage()); break; // LDA (zero page)
case 0xa6: X() = through(AM_ZeroPage()); break; // LDX (zero page)
case 0xa7: A() = X() = through(AM_ZeroPage()); break; // *LAX (zero page)
case 0xa8: memoryRead(); Y() = through(A()); break; // TAY (implied)
case 0xa9: A() = through(AM_Immediate()); break; // LDA (immediate)
case 0xaa: memoryRead(); X() = through(A()); break; // TAX (implied)
case 0xab: A() = X() = through(AM_Immediate()); break; // *ATX (immediate)
case 0xac: Y() = through(AM_Absolute()); break; // LDY (absolute)
case 0xad: A() = through(AM_Absolute()); break; // LDA (absolute)
case 0xae: X() = through(AM_Absolute()); break; // LDX (absolute)
case 0xaf: A() = X() = through(AM_Absolute()); break; // *LAX (absolute)
case 0xb0: branch(carry()); break; // BCS (relative)
case 0xb1: A() = through(AM_IndirectIndexedY()); break; // LDA (indirect indexed Y)
case 0xb2: break;
case 0xb3: A() = X() = through(AM_IndirectIndexedY()); break; // *LAX (indirect indexed Y)
case 0xb4: Y() = through(AM_ZeroPageX()); break; // LDY (zero page, X)
case 0xb5: A() = through(AM_ZeroPageX()); break; // LDA (zero page, X)
case 0xb6: X() = through(AM_ZeroPageY()); break; // LDX (zero page, Y)
case 0xb7: A() = X() = through(AM_ZeroPageY()); break; // *LAX (zero page, Y)
case 0xb8: memoryRead(); P() = clearBit(P(), VF); break; // CLV (implied)
case 0xb9: A() = through(AM_AbsoluteY()); break; // LDA (absolute, Y)
case 0xba: memoryRead(); X() = through(S()); break; // TSX (implied)
case 0xbb: break;
case 0xbc: Y() = through(AM_AbsoluteX()); break; // LDY (absolute, X)
case 0xbd: A() = through(AM_AbsoluteX()); break; // LDA (absolute, X)
case 0xbe: X() = through(AM_AbsoluteY()); break; // LDX (absolute, Y)
case 0xbf: A() = X() = through(AM_AbsoluteY()); break; // *LAX (absolute, Y)
case 0xc0: cmp(Y(), AM_Immediate()); break; // CPY (immediate)
case 0xc1: cmp(A(), AM_IndexedIndirectX()); break; // CMP (indexed indirect X)
case 0xc2: AM_Immediate(); break; // *NOP (immediate)
case 0xc3: dcp(AM_IndexedIndirectX()); break; // *DCP (indexed indirect X)
case 0xc4: cmp(Y(), AM_ZeroPage()); break; // CPY (zero page)
case 0xc5: cmp(A(), AM_ZeroPage()); break; // CMP (zero page)
case 0xc6: memoryReadModifyWrite(dec(AM_ZeroPage())); break; // DEC (zero page)
case 0xc7: dcp(AM_ZeroPage()); break; // *DCP (zero page)
case 0xc8: memoryRead(); Y() = inc(Y()); break; // INY (implied)
case 0xc9: cmp(A(), AM_Immediate()); break; // CMP (immediate)
case 0xca: memoryRead(); X() = dec(X()); break; // DEX (implied)
case 0xcb: axs(AM_Immediate()); break; // *AXS (immediate)
case 0xcc: cmp(Y(), AM_Absolute()); break; // CPY (absolute)
case 0xcd: cmp(A(), AM_Absolute()); break; // CMP (absolute)
case 0xce: memoryReadModifyWrite(dec(AM_Absolute())); break; // DEC (absolute)
case 0xcf: dcp(AM_Absolute()); break; // *DCP (absolute)
case 0xd0: branch(!zero()); break; // BNE (relative)
case 0xd1: cmp(A(), AM_IndirectIndexedY()); break; // CMP (indirect indexed Y)
case 0xd2: break;
case 0xd3: dcp(AM_IndirectIndexedY()); break; // *DCP (indirect indexed Y)
case 0xd4: AM_ZeroPageX(); break; // *NOP (zero page, X)
case 0xd5: cmp(A(), AM_ZeroPageX()); break; // CMP (zero page, X)
case 0xd6: memoryReadModifyWrite(dec(AM_ZeroPageX())); break; // DEC (zero page, X)
case 0xd7: dcp(AM_ZeroPageX()); break; // *DCP (zero page, X)
case 0xd8: memoryRead(); P() = clearBit(P(), DF); break; // CLD (implied)
case 0xd9: cmp(A(), AM_AbsoluteY()); break; // CMP (absolute, Y)
case 0xda: memoryRead(); break; // *NOP (implied)
case 0xdb: dcp(AM_AbsoluteY()); break; // *DCP (absolute, Y)
case 0xdc: AM_AbsoluteX(); break; // *NOP (absolute, X)
case 0xdd: cmp(A(), AM_AbsoluteX()); break; // CMP (absolute, X)
case 0xde: memoryReadModifyWrite(dec(AM_AbsoluteX(PageCrossingBehavior::AlwaysReadTwice))); break; // DEC (absolute, X)
case 0xdf: dcp(AM_AbsoluteX()); break; // *DCP (absolute, X)
case 0xe0: cmp(X(), AM_Immediate()); break; // CPX (immediate)
case 0xe1: A() = sbc(A(), AM_IndexedIndirectX()); break; // SBC (indexed indirect X)
case 0xe2: AM_Immediate(); break; // *NOP (immediate)
case 0xe3: isb(AM_IndexedIndirectX()); break; // *ISB (indexed indirect X)
case 0xe4: cmp(X(), AM_ZeroPage()); break; // CPX (zero page)
case 0xe5: A() = sbc(A(), AM_ZeroPage()); break; // SBC (zero page)
case 0xe6: memoryReadModifyWrite(inc(AM_ZeroPage())); break; // INC (zero page)
case 0xe7: isb(AM_ZeroPage()); break; // *ISB (zero page)
case 0xe8: memoryRead(); X() = inc(X()); break; // INX (implied)
case 0xe9: A() = sbc(A(), AM_Immediate()); break; // SBC (immediate)
case 0xea: memoryRead(); break; // NOP (implied)
case 0xeb: A() = sbc(A(), AM_Immediate()); break; // *SBC (immediate)
case 0xec: cmp(X(), AM_Absolute()); break; // CPX (absolute)
case 0xed: A() = sbc(A(), AM_Absolute()); break; // SBC (absolute)
case 0xee: memoryReadModifyWrite(inc(AM_Absolute())); break; // INC (absolute)
case 0xef: isb(AM_Absolute()); break; // *ISB (absolute)
case 0xf0: branch(zero()); break; // BEQ (relative)
case 0xf1: A() = sbc(A(), AM_IndirectIndexedY()); break; // SBC (indirect indexed Y)
case 0xf2: break;
case 0xf3: isb(AM_IndirectIndexedY()); break; // *ISB (indirect indexed Y)
case 0xf4: AM_ZeroPageX(); break; // *NOP (zero page, X)
case 0xf5: A() = sbc(A(), AM_ZeroPageX()); break; // SBC (zero page, X)
case 0xf6: memoryReadModifyWrite(inc(AM_ZeroPageX())); break; // INC (zero page, X)
case 0xf7: isb(AM_ZeroPageX()); break; // *ISB (zero page, X)
case 0xf8: memoryRead(); P() = setBit(P(), DF); break; // SED (implied)
case 0xf9: A() = sbc(A(), AM_AbsoluteY()); break; // SBC (absolute, Y)
case 0xfa: memoryRead(); break; // *NOP (implied)
case 0xfb: isb(AM_AbsoluteY()); break; // *ISB (absolute, Y)
case 0xfc: AM_AbsoluteX(); break; // *NOP (absolute, X)
case 0xfd: A() = sbc(A(), AM_AbsoluteX()); break; // SBC (absolute, X)
case 0xfe: memoryReadModifyWrite(inc(AM_AbsoluteX(PageCrossingBehavior::AlwaysReadTwice))); break; // INC (absolute, X)
case 0xff: isb(AM_AbsoluteX()); break; // *ISB (absolute, X)
}
ASSUME(cycles() > 0);
return cycles();
}
////
void EightBit::MOS6502::push(uint8_t value) {
setBytePaged(1, S()--, value);
}
uint8_t EightBit::MOS6502::pop() {
return getBytePaged(1, ++S());
}
void EightBit::MOS6502::dummyPush(const uint8_t value) {
tick();
BUS().DATA() = value;
BUS().ADDRESS() = { S()--, 1 };
}
////
EightBit::register16_t EightBit::MOS6502::Address_Absolute() {
return fetchWord();
}
uint8_t EightBit::MOS6502::Address_ZeroPage() {
return fetchByte();
}
EightBit::register16_t EightBit::MOS6502::Address_ZeroPageIndirect() {
return getWordPaged(0, Address_ZeroPage());
}
EightBit::register16_t EightBit::MOS6502::Address_Indirect() {
const auto address = Address_Absolute();
return getWordPaged(address.high, address.low);
}
uint8_t EightBit::MOS6502::Address_ZeroPageX() {
const auto address = Address_ZeroPage();
memoryRead(address);
return address + X();
}
uint8_t EightBit::MOS6502::Address_ZeroPageY() {
const auto address = Address_ZeroPage();
memoryRead(address);
return address + Y();
}
std::pair<EightBit::register16_t, uint8_t> EightBit::MOS6502::Address_AbsoluteX() {
const auto address = Address_Absolute();
const auto page = address.high;
return { address + X(), page };
}
std::pair<EightBit::register16_t, uint8_t> EightBit::MOS6502::Address_AbsoluteY() {
const auto address = Address_Absolute();
const auto page = address.high;
return { address + Y(), page };
}
EightBit::register16_t EightBit::MOS6502::Address_IndexedIndirectX() {
return getWordPaged(0, Address_ZeroPageX());
}
std::pair<EightBit::register16_t, uint8_t> EightBit::MOS6502::Address_IndirectIndexedY() {
const auto address = Address_ZeroPageIndirect();
const auto page = address.high;
return { address + Y(), page };
}
EightBit::register16_t EightBit::MOS6502::Address_relative_byte() {
return PC() + (int8_t)fetchByte();
}
// Addressing modes, read
uint8_t EightBit::MOS6502::AM_Immediate() {
return fetchByte();
}
uint8_t EightBit::MOS6502::AM_Absolute() {
return memoryRead(Address_Absolute());
}
uint8_t EightBit::MOS6502::AM_ZeroPage() {
return memoryRead(Address_ZeroPage());
}
uint8_t EightBit::MOS6502::AM_AbsoluteX(const PageCrossingBehavior behaviour) {
const auto [address, page] = Address_AbsoluteX();
auto possible = getBytePaged(page, address.low);
if ((behaviour == PageCrossingBehavior::AlwaysReadTwice) || UNLIKELY(page != address.high))
possible = memoryRead(address);
return possible;
}
uint8_t EightBit::MOS6502::AM_AbsoluteY() {
const auto [address, page] = Address_AbsoluteY();
auto possible = getBytePaged(page, address.low);
if (UNLIKELY(page != address.high))
possible = memoryRead(address);
return possible;
}
uint8_t EightBit::MOS6502::AM_ZeroPageX() {
return memoryRead(Address_ZeroPageX());
}
uint8_t EightBit::MOS6502::AM_ZeroPageY() {
return memoryRead(Address_ZeroPageY());
}
uint8_t EightBit::MOS6502::AM_IndexedIndirectX() {
return memoryRead(Address_IndexedIndirectX());
}
uint8_t EightBit::MOS6502::AM_IndirectIndexedY() {
const auto [address, page] = Address_IndirectIndexedY();
auto possible = getBytePaged(page, address.low);
if (page != address.high)
possible = memoryRead(address);
return possible;
}
////
void EightBit::MOS6502::branch(const int condition) {
const auto destination = Address_relative_byte();
if (condition) {
memoryRead();
const auto page = PC().high;
jump(destination);
if (UNLIKELY(PC().high != page))
getBytePaged(page, PC().low);
}
}
////
uint8_t EightBit::MOS6502::sbc(const uint8_t operand, const uint8_t data) noexcept {
const auto returned = sub(operand, data, ~P() & CF);
const auto difference = m_intermediate;
adjustNZ(difference.low);
P() = setBit(P(), VF, (operand ^ data) & (operand ^ difference.low) & NF);
P() = clearBit(P(), CF, difference.high);
return returned;
}
uint8_t EightBit::MOS6502::sub(const uint8_t operand, const uint8_t data, const int borrow) noexcept {
return decimal() ? sub_d(operand, data, borrow) : sub_b(operand, data, borrow);
}
uint8_t EightBit::MOS6502::sub_b(const uint8_t operand, const uint8_t data, const int borrow) noexcept {
m_intermediate.word = operand - data - borrow;
return m_intermediate.low;
}
uint8_t EightBit::MOS6502::sub_d(const uint8_t operand, const uint8_t data, const int borrow) noexcept {
m_intermediate.word = operand - data - borrow;
uint8_t low = lowNibble(operand) - lowNibble(data) - borrow;
const auto lowNegative = low & NF;
if (lowNegative)
low -= 6;
uint8_t high = highNibble(operand) - highNibble(data) - (lowNegative >> 7);
const auto highNegative = high & NF;
if (highNegative)
high -= 6;
return promoteNibble(high) | lowNibble(low);
}
uint8_t EightBit::MOS6502::adc(const uint8_t operand, const uint8_t data) noexcept {
const auto returned = add(operand, data, carry());
adjustNZ(m_intermediate.low);
return returned;
}
uint8_t EightBit::MOS6502::add(uint8_t operand, uint8_t data, int carry) noexcept {
return decimal() ? add_d(operand, data, carry) : add_b(operand, data, carry);
}
uint8_t EightBit::MOS6502::add_b(uint8_t operand, uint8_t data, int carry) noexcept {
m_intermediate.word = operand + data + carry;
P() = setBit(P(), VF, ~(operand ^ data) & (operand ^ m_intermediate.low) & NF);
P() = setBit(P(), CF, m_intermediate.high & CF);
return m_intermediate.low;
}
uint8_t EightBit::MOS6502::add_d(uint8_t operand, uint8_t data, int carry) noexcept {
m_intermediate.word = operand + data + carry;
uint8_t low = lowNibble(operand) + lowNibble(data) + carry;
if (low > 9)
low += 6;
uint8_t high = highNibble(operand) + highNibble(data) + (low > 0xf ? 1 : 0);
P() = setBit(P(), VF, ~(operand ^ data) & (operand ^ promoteNibble(high)) & NF);
if (high > 9)
high += 6;
P() = setBit(P(), CF, high > 0xf);
return promoteNibble(high) | lowNibble(low);
}
uint8_t EightBit::MOS6502::andr(const uint8_t operand, const uint8_t data) noexcept {
return through(operand & data);
}
uint8_t EightBit::MOS6502::asl(const uint8_t value) noexcept {
P() = setBit(P(), CF, value & Bit7);
return through(value << 1);
}
void EightBit::MOS6502::bit(const uint8_t operand, const uint8_t data) noexcept {
P() = setBit(P(), VF, data & VF);
adjustZero(operand & data);
adjustNegative(data);
}
void EightBit::MOS6502::cmp(const uint8_t first, const uint8_t second) noexcept {
const register16_t result = first - second;
adjustNZ(result.low);
P() = clearBit(P(), CF, result.high);
}
uint8_t EightBit::MOS6502::dec(const uint8_t value) noexcept {
return through(value - 1);
}
uint8_t EightBit::MOS6502::eorr(const uint8_t operand, const uint8_t data) noexcept {
return through(operand ^ data);
}
uint8_t EightBit::MOS6502::inc(const uint8_t value) noexcept {
return through(value + 1);
}
void EightBit::MOS6502::jsr() {
const auto low = fetchByte();
getBytePaged(1, S()); // dummy read
pushWord(PC());
PC().high = fetchByte();
PC().low = low;
}
uint8_t EightBit::MOS6502::lsr(const uint8_t value) noexcept {
P() = setBit(P(), CF, value & Bit0);
return through(value >> 1);
}
uint8_t EightBit::MOS6502::orr(const uint8_t operand, const uint8_t data) noexcept {
return through(operand | data);
}
void EightBit::MOS6502::php() {
push(P() | BF);
}
void EightBit::MOS6502::plp() {
P() = (pop() | RF) & ~BF;
}
uint8_t EightBit::MOS6502::rol(const uint8_t operand) noexcept {
const auto carryIn = carry();
P() = setBit(P(), CF, operand & Bit7);
const uint8_t result = (operand << 1) | carryIn;
return through(result);
}
uint8_t EightBit::MOS6502::ror(const uint8_t operand) noexcept {
const auto carryIn = carry();
P() = setBit(P(), CF, operand & Bit0);
const uint8_t result = (operand >> 1) | (carryIn << 7);
return through(result);
}
void EightBit::MOS6502::rti() {
getBytePaged(1, S()); // dummy read
plp();
ret();
}
void EightBit::MOS6502::rts() {
getBytePaged(1, S()); // dummy read
ret();
fetchByte();
}
// Undocumented compound instructions
void EightBit::MOS6502::anc(const uint8_t value) noexcept {
A() = andr(A(), value);
P() = setBit(P(), CF, A() & Bit7);
}
void EightBit::MOS6502::arr(const uint8_t value) noexcept {
A() = andr(A(), value);
A() = ror(A());
P() = setBit(P(), CF, A() & Bit6);
P() = setBit(P(), VF, ((A() & Bit6) >> 6) ^((A() & Bit5) >> 5));
}
void EightBit::MOS6502::asr(const uint8_t value) noexcept {
A() = andr(A(), value);
A() = lsr(A());
}
void EightBit::MOS6502::axs(const uint8_t value) noexcept {
X() = through(sub(A() & X(), value));
P() = clearBit(P(), CF, m_intermediate.high);
}
void EightBit::MOS6502::dcp(const uint8_t value) {
memoryReadModifyWrite(dec(value));
cmp(A(), BUS().DATA());
}
void EightBit::MOS6502::isb(const uint8_t value) {
memoryReadModifyWrite(inc(value));
A() = sbc(A(), BUS().DATA());
}
void EightBit::MOS6502::rla(const uint8_t value) {
memoryReadModifyWrite(rol(value));
A() = andr(A(), BUS().DATA());
}
void EightBit::MOS6502::rra(const uint8_t value) {
memoryReadModifyWrite(ror(value));
A() = adc(A(), BUS().DATA());
}
void EightBit::MOS6502::slo(const uint8_t value) {
memoryReadModifyWrite(asl(value));
A() = orr(A(), BUS().DATA());
}
void EightBit::MOS6502::sre(const uint8_t value) {
memoryReadModifyWrite(lsr(value));
A() = eorr(A(), BUS().DATA());
}
//
void EightBit::MOS6502::sta_AbsoluteX() {
const auto [address, page] = Address_AbsoluteX();
getBytePaged(page, address.low);
memoryWrite(address, A());
}
void EightBit::MOS6502::sta_AbsoluteY() {
const auto [address, page] = Address_AbsoluteY();
getBytePaged(page, address.low);
memoryWrite(address, A());
}