EightBit/Z80/inc/Z80.h
2020-02-09 11:51:58 +00:00

459 lines
13 KiB
C++
Raw Blame History

#pragma once
#include <cstdint>
#include <cassert>
#include <stdexcept>
#include <Bus.h>
#include <IntelProcessor.h>
#include <EventArgs.h>
#include <Signal.h>
#include <Register.h>
#include <EightBitCompilerDefinitions.h>
namespace EightBit {
class Z80 final : public IntelProcessor {
public:
struct refresh_t {
bool high : 1;
uint8_t variable : 7;
refresh_t(const uint8_t value)
: high(!!(value & Bit7)),
variable(value & Mask7)
{ }
operator uint8_t() const {
return (high << 7) | variable;
}
auto& operator++() {
++variable;
return *this;
}
};
enum StatusBits {
SF = Bit7,
ZF = Bit6,
YF = Bit5,
HC = Bit4,
XF = Bit3,
PF = Bit2,
VF = Bit2,
NF = Bit1,
CF = Bit0,
};
Z80(Bus& bus);
Signal<Z80> ExecutingInstruction;
Signal<Z80> ExecutedInstruction;
int execute() final;
int step() final;
[[nodiscard]] register16_t& AF() final;
[[nodiscard]] register16_t& BC() final;
[[nodiscard]] register16_t& DE() final;
[[nodiscard]] register16_t& HL() final;
[[nodiscard]] auto& IX() { return m_ix; }
[[nodiscard]] auto& IXH() { return IX().high; }
[[nodiscard]] auto& IXL() { return IX().low; }
[[nodiscard]] auto& IY() { return m_iy; }
[[nodiscard]] auto& IYH() { return IY().high; }
[[nodiscard]] auto& IYL() { return IY().low; }
// ** From the Z80 CPU User Manual
// Memory Refresh(R) Register.The Z80 CPU contains a memory refresh counter,
// enabling dynamic memories to be used with the same ease as static memories.Seven bits
// of this 8-bit register are automatically incremented after each instruction fetch.The eighth
// bit remains as programmed, resulting from an LD R, A instruction. The data in the refresh
// counter is sent out on the lower portion of the address bus along with a refresh control
// signal while the CPU is decoding and executing the fetched instruction. This mode of refresh
// is transparent to the programmer and does not slow the CPU operation.The programmer
// can load the R register for testing purposes, but this register is normally not used by the
// programmer. During refresh, the contents of the I Register are placed on the upper eight
// bits of the address bus.
[[nodiscard]] auto& REFRESH() { return m_refresh; }
[[nodiscard]] auto& IV() { return iv; }
[[nodiscard]] auto& IM() { return m_interruptMode; }
[[nodiscard]] auto& IFF1() { return m_iff1; }
[[nodiscard]] auto& IFF2() { return m_iff2; }
void exx() {
m_registerSet ^= 1;
}
void exxAF() {
m_accumulatorFlagsSet ^= 1;
}
bool requestingIO() { return lowered(IORQ()); }
bool requestingMemory() { return lowered(MREQ()); }
bool requestingRead() { return lowered(RD()); }
bool requestingWrite() { return lowered(WR()); }
DECLARE_PIN_INPUT(NMI)
DECLARE_PIN_OUTPUT(M1)
// ** From the Z80 CPU User Manual
// RFSH.Refresh(output, active Low). RFSH, together with MREQ, indicates that the lower
// seven bits of the system<65>s address bus can be used as a refresh address to the system<65>s
// dynamic memories.
DECLARE_PIN_OUTPUT(RFSH)
DECLARE_PIN_OUTPUT(MREQ)
DECLARE_PIN_OUTPUT(IORQ)
DECLARE_PIN_OUTPUT(RD)
DECLARE_PIN_OUTPUT(WR)
protected:
void handleRESET() final;
void handleINT() final;
void pushWord(const register16_t destination) override {
tick();
IntelProcessor::pushWord(destination);
}
void memoryWrite() final;
uint8_t memoryRead() final;
void busWrite() final;
uint8_t busRead() final;
private:
enum { BC_IDX, DE_IDX, HL_IDX };
std::array<std::array<register16_t, 3>, 2> m_registers;
int m_registerSet = 0;
std::array<register16_t, 2> m_accumulatorFlags;
int m_accumulatorFlagsSet = 0;
register16_t m_ix = 0xffff;
register16_t m_iy = 0xffff;
refresh_t m_refresh = 0x7f;
uint8_t iv = 0xff;
int m_interruptMode = 0;
bool m_iff1 = false;
bool m_iff2 = false;
bool m_prefixCB = false;
bool m_prefixDD = false;
bool m_prefixED = false;
bool m_prefixFD = false;
int8_t m_displacement = 0;
bool m_displaced = false;
void handleNMI();
[[nodiscard]] uint16_t displacedAddress() {
assert(m_displaced);
return MEMPTR().word = (m_prefixDD ? IX() : IY()).word + m_displacement;
}
void fetchDisplacement() {
m_displacement = fetchByte();
}
// ** From the Z80 CPU User Manual
// Figure 5 depicts the timing during an M1 (op code fetch) cycle. The Program Counter is
// placed on the address bus at the beginning of the M1 cycle. One half clock cycle later, the
// MREQ signal goes active. At this time, the address to memory has had time to stabilize so
// that the falling edge of MREQ can be used directly as a chip enable clock to dynamic
// memories. The RD line also goes active to indicate that the memory read data should be
// enabled onto the CPU data bus. The CPU samples the data from the memory space on the
// data bus with the rising edge of the clock of state T3, and this same edge is used by the
// CPU to turn off the RD and MREQ signals. As a result, the data is sampled by the CPU
// before the RD signal becomes inactive. Clock states T3 and T4 of a fetch cycle are used to
// refresh dynamic memories. The CPU uses this time to decode and execute the fetched
// instruction so that no other concurrent operation can be performed.
uint8_t readInitialOpCode() {
tick();
lowerM1();
const auto returned = IntelProcessor::memoryRead(PC());
raiseM1();
BUS().ADDRESS() = { REFRESH(), IV() };
lowerRFSH();
lowerMREQ();
raiseMREQ();
raiseRFSH();
return returned;
}
uint8_t fetchInitialOpCode() {
const auto returned = readInitialOpCode();
++PC();
return returned;
}
[[nodiscard]] auto& HL2() {
if (LIKELY(!m_displaced))
return HL();
if (m_prefixDD)
return IX();
// Must be FD prefix
return IY();
}
[[nodiscard]] auto& RP(const int rp) {
ASSUME(rp >= 0);
ASSUME(rp <= 3);
switch (rp) {
case 0:
return BC();
case 1:
return DE();
case 2:
return HL2();
case 3:
return SP();
default:
UNREACHABLE;
}
}
[[nodiscard]] auto& RP2(const int rp) {
ASSUME(rp >= 0);
ASSUME(rp <= 3);
switch (rp) {
case 0:
return BC();
case 1:
return DE();
case 2:
return HL2();
case 3:
return AF();
default:
UNREACHABLE;
}
}
[[nodiscard]] auto R(const int r) {
ASSUME(r >= 0);
ASSUME(r <= 7);
switch (r) {
case 0:
return B();
case 1:
return C();
case 2:
return D();
case 3:
return E();
case 4:
return HL2().high;
case 5:
return HL2().low;
case 6:
return IntelProcessor::memoryRead(UNLIKELY(m_displaced) ? displacedAddress() : HL().word);
case 7:
return A();
default:
UNREACHABLE;
}
}
void R(const int r, const uint8_t value) {
ASSUME(r >= 0);
ASSUME(r <= 7);
switch (r) {
case 0:
B() = value;
break;
case 1:
C() = value;
break;
case 2:
D() = value;
break;
case 3:
E() = value;
break;
case 4:
HL2().high = value;
break;
case 5:
HL2().low = value;
break;
case 6:
IntelProcessor::memoryWrite(UNLIKELY(m_displaced) ? displacedAddress() : HL().word, value);
break;
case 7:
A() = value;
break;
default:
UNREACHABLE;
}
}
void R2(const int r, const uint8_t value) {
ASSUME(r >= 0);
ASSUME(r <= 7);
switch (r) {
case 0:
B() = value;
break;
case 1:
C() = value;
break;
case 2:
D() = value;
break;
case 3:
E() = value;
break;
case 4:
H() = value;
break;
case 5:
L() = value;
break;
case 6:
IntelProcessor::memoryWrite(HL(), value);
break;
case 7:
A() = value;
break;
default:
UNREACHABLE;
}
}
[[nodiscard]] static uint8_t adjustHalfCarryAdd(uint8_t f, const uint8_t before, const uint8_t value, const int calculation) {
return setBit(f, HC, calculateHalfCarryAdd(before, value, calculation));
}
[[nodiscard]] static uint8_t adjustHalfCarrySub(uint8_t f, const uint8_t before, const uint8_t value, const int calculation) {
return setBit(f, HC, calculateHalfCarrySub(before, value, calculation));
}
[[nodiscard]] static uint8_t adjustOverflowAdd(uint8_t f, const uint8_t before, const uint8_t value, const uint8_t calculation) {
return adjustOverflowAdd(f, before & SF, value & SF, calculation & SF);
}
[[nodiscard]] static uint8_t adjustOverflowAdd(uint8_t f, const int beforeNegative, const int valueNegative, const int afterNegative) {
const auto overflow = (beforeNegative == valueNegative) && (beforeNegative != afterNegative);
return setBit(f, VF, overflow);
}
[[nodiscard]] static uint8_t adjustOverflowSub(uint8_t f, const uint8_t before, const uint8_t value, const uint8_t calculation) {
return adjustOverflowSub(f, before & SF, value & SF, calculation & SF);
}
[[nodiscard]] static uint8_t adjustOverflowSub(uint8_t f, const int beforeNegative, const int valueNegative, const int afterNegative) {
const auto overflow = (beforeNegative != valueNegative) && (beforeNegative != afterNegative);
return setBit(f, VF, overflow);
}
[[nodiscard]] static bool convertCondition(uint8_t f, int flag);
static uint8_t subtract(uint8_t& f, uint8_t operand, uint8_t value, int carry = 0);
void executeCB(int x, int y, int z);
void executeED(int x, int y, int z, int p, int q);
void executeOther(int x, int y, int z, int p, int q);
[[nodiscard]] static uint8_t increment(uint8_t& f, uint8_t operand);
[[nodiscard]] static uint8_t decrement(uint8_t& f, uint8_t operand);
void di();
void ei();
void retn();
void reti();
void returnConditionalFlag(uint8_t f, int flag);
void jrConditionalFlag(uint8_t f, int flag);
void callConditionalFlag(uint8_t f, int flag);
void jumpConditionalFlag(uint8_t f, int flag);
[[nodiscard]] register16_t sbc(uint8_t& f, register16_t operand, register16_t value);
[[nodiscard]] register16_t adc(uint8_t& f, register16_t operand, register16_t value);
[[nodiscard]] register16_t add(uint8_t& f, register16_t operand, register16_t value, int carry = 0);
[[nodiscard]] static uint8_t add(uint8_t& f, uint8_t operand, uint8_t value, int carry = 0);
[[nodiscard]] static uint8_t adc(uint8_t& f, uint8_t operand, uint8_t value);
[[nodiscard]] static uint8_t sub(uint8_t& f, uint8_t operand, uint8_t value, int carry = 0);
[[nodiscard]] static uint8_t sbc(uint8_t& f, uint8_t operand, uint8_t value);
[[nodiscard]] static uint8_t andr(uint8_t& f, uint8_t operand, uint8_t value);
[[nodiscard]] static uint8_t xorr(uint8_t& f, uint8_t operand, uint8_t value);
[[nodiscard]] static uint8_t orr(uint8_t& f, uint8_t operand, uint8_t value);
static void compare(uint8_t& f, uint8_t operand, uint8_t value);
[[nodiscard]] static uint8_t rlc(uint8_t& f, uint8_t operand);
[[nodiscard]] static uint8_t rrc(uint8_t& f, uint8_t operand);
[[nodiscard]] static uint8_t rl(uint8_t& f, uint8_t operand);
[[nodiscard]] static uint8_t rr(uint8_t& f, uint8_t operand);
[[nodiscard]] static uint8_t sla(uint8_t& f, uint8_t operand);
[[nodiscard]] static uint8_t sra(uint8_t& f, uint8_t operand);
[[nodiscard]] static uint8_t sll(uint8_t& f, uint8_t operand);
[[nodiscard]] static uint8_t srl(uint8_t& f, uint8_t operand);
static void bit(uint8_t& f, int n, uint8_t operand);
[[nodiscard]] static uint8_t res(int n, uint8_t operand);
[[nodiscard]] static uint8_t set(int n, uint8_t operand);
[[nodiscard]] static uint8_t daa(uint8_t& f, uint8_t operand);
static void scf(uint8_t& f, uint8_t operand);
static void ccf(uint8_t& f, uint8_t operand);
static uint8_t cpl(uint8_t& f, uint8_t operand);
void xhtl(register16_t& exchange);
void blockCompare(uint8_t& f, uint8_t value, register16_t source, register16_t& counter);
void cpi(uint8_t& f, uint8_t value);
bool cpir(uint8_t& f, uint8_t value);
void cpd(uint8_t& f, uint8_t value);
bool cpdr(uint8_t& f, uint8_t value);
void blockLoad(uint8_t& f, uint8_t a, register16_t source, register16_t destination, register16_t& counter);
void ldi(uint8_t& f, uint8_t a);
bool ldir(uint8_t& f, uint8_t a);
void ldd(uint8_t& f, uint8_t a);
bool lddr(uint8_t& f, uint8_t a);
void blockIn(register16_t& source, register16_t destination);
void ini();
bool inir();
void ind();
bool indr();
void blockOut(register16_t source, register16_t& destination);
void outi();
bool otir();
void outd();
bool otdr();
[[nodiscard]] uint8_t neg(uint8_t& f, uint8_t operand);
void rrd(uint8_t& f, register16_t address, uint8_t& update);
void rld(uint8_t& f, register16_t address, uint8_t& update);
void portWrite(uint8_t port);
void portWrite();
uint8_t portRead(uint8_t port);
uint8_t portRead();
};
}