EightBit/M6502/src/mos6502.cpp

617 lines
26 KiB
C++

#include "stdafx.h"
#include "../inc/mos6502.h"
EightBit::MOS6502::MOS6502(Bus& bus) noexcept
: LittleEndianProcessor(bus) {
RaisedPOWER.connect([this](EventArgs) {
X() = Bit7;
Y() = 0;
A() = 0;
P() = RF;
S() = Mask8;
lowerSYNC();
lowerRW();
});
}
DEFINE_PIN_LEVEL_CHANGERS(NMI, MOS6502)
DEFINE_PIN_LEVEL_CHANGERS(SO, MOS6502)
DEFINE_PIN_LEVEL_CHANGERS(SYNC, MOS6502)
DEFINE_PIN_LEVEL_CHANGERS(RDY, MOS6502)
DEFINE_PIN_LEVEL_CHANGERS(RW, MOS6502)
int EightBit::MOS6502::step() noexcept {
resetCycles();
ExecutingInstruction.fire(*this);
if (LIKELY(powered())) {
tick(); // A cycle is used, whether RDY is high or not
if (UNLIKELY(lowered(SO())))
handleSO();
if (LIKELY(raised(RDY()))) {
lowerSYNC(); // Instruction fetch beginning
// Read the opcode within the existing cycle
assert(cycles() == 1 && "An extra cycle has occurred");
// Can't use fetchByte, since that would add an extra tick.
raiseRW();
opcode() = BUS().read(PC()++);
assert(cycles() == 1 && "BUS read has introduced stray cycles");
// Instruction fetch has now completed
raiseSYNC();
// Priority: RESET > NMI > INT
if (UNLIKELY(lowered(RESET())))
handleRESET();
else if (UNLIKELY(lowered(NMI())))
handleNMI();
else if (UNLIKELY(lowered(INT()) && !interruptMasked()))
handleINT();
else
execute();
}
}
ExecutedInstruction.fire(*this);
ASSUME(cycles() > 0);
return cycles();
}
// Interrupt (etc.) handlers
void EightBit::MOS6502::handleSO() noexcept {
raiseSO();
P() |= VF;
}
void EightBit::MOS6502::handleRESET() noexcept {
raiseRESET();
interrupt(RSTvector, hardware, reset);
}
void EightBit::MOS6502::handleNMI() noexcept {
raiseNMI();
interrupt(NMIvector);
}
void EightBit::MOS6502::handleINT() noexcept {
raiseINT();
interrupt(IRQvector);
}
void EightBit::MOS6502::interrupt(uint8_t vector, interrupt_source_t source, interrupt_type_t type) noexcept {
if (type == reset) {
dummyPush();
dummyPush();
dummyPush();
} else {
pushWord(PC());
push(P() | (source == hardware ? 0 : BF));
}
set_flag(IF); // Disable IRQ
jump(Processor::getWordPaged(0xff, vector));
}
//
void EightBit::MOS6502::busWrite() noexcept {
tick();
lowerRW();
LittleEndianProcessor::busWrite();
}
uint8_t EightBit::MOS6502::busRead() noexcept {
tick();
raiseRW();
return LittleEndianProcessor::busRead();
}
//
void EightBit::MOS6502::execute() noexcept {
switch (opcode()) {
case 0x00: swallow_fetch(); interrupt(IRQvector, software); break; // BRK (implied)
case 0x01: AM_IndexedIndirectX(); orr(); break; // ORA (indexed indirect X)
case 0x02: jam(); break; // *JAM
case 0x03: AM_IndexedIndirectX(); slo(); break; // *SLO (indexed indirect X)
case 0x04: AM_ZeroPage(); break; // *NOP (zero page)
case 0x05: AM_ZeroPage(); orr(); break; // ORA (zero page)
case 0x06: AM_ZeroPage(); MW(asl); break; // ASL (zero page)
case 0x07: AM_ZeroPage(); slo(); break; // *SLO (zero page)
case 0x08: swallow(); php(); break; // PHP (implied)
case 0x09: AM_Immediate(); orr(); break; // ORA (immediate)
case 0x0a: swallow(); A() = asl(A()); break; // ASL A (implied)
case 0x0b: AM_Immediate(); anc(); break; // *ANC (immediate)
case 0x0c: Address_Absolute(); break; // *NOP (absolute)
case 0x0d: AM_Absolute(); orr(); break; // ORA (absolute)
case 0x0e: AM_Absolute(); MW(asl); break; // ASL (absolute)
case 0x0f: AM_Absolute(); slo(); break; // *SLO (absolute)
case 0x10: branch(negative() == 0); break; // BPL (relative)
case 0x11: AM_IndirectIndexedY(); orr(); break; // ORA (indirect indexed Y)
case 0x12: jam(); break; // *JAM
case 0x13: Address_IndirectIndexedY(); fixupR(); slo(); break; // *SLO (indirect indexed Y)
case 0x14: AM_ZeroPageX(); break; // *NOP (zero page, X)
case 0x15: AM_ZeroPageX(); orr(); break; // ORA (zero page, X)
case 0x16: AM_ZeroPageX(); MW(asl); break; // ASL (zero page, X)
case 0x17: AM_ZeroPageX(); slo(); break; // *SLO (zero page, X)
case 0x18: swallow(); reset_flag(CF); break; // CLC (implied)
case 0x19: AM_AbsoluteY(); orr(); break; // ORA (absolute, Y)
case 0x1a: swallow(); break; // *NOP (implied)
case 0x1b: Address_AbsoluteY(); fixupR(); slo(); break; // *SLO (absolute, Y)
case 0x1c: Address_AbsoluteX(); fixup(); break; // *NOP (absolute, X)
case 0x1d: AM_AbsoluteX(); orr(); break; // ORA (absolute, X)
case 0x1e: Address_AbsoluteX(); fixupR(); MW(asl); break; // ASL (absolute, X)
case 0x1f: Address_AbsoluteX(); fixupR(); slo(); break; // *SLO (absolute, X)
case 0x20: jsr(); break; // JSR (absolute)
case 0x21: AM_IndexedIndirectX(); andr(); break; // AND (indexed indirect X)
case 0x22: jam(); break; // *JAM
case 0x23: AM_IndexedIndirectX(); rla();; break; // *RLA (indexed indirect X)
case 0x24: AM_ZeroPage(); bit(); break; // BIT (zero page)
case 0x25: AM_ZeroPage(); andr(); break; // AND (zero page)
case 0x26: AM_ZeroPage(); MW(rol); break; // ROL (zero page)
case 0x27: AM_ZeroPage(); rla();; break; // *RLA (zero page)
case 0x28: swallow(); plp(); break; // PLP (implied)
case 0x29: AM_Immediate(); andr(); break; // AND (immediate)
case 0x2a: swallow(); A() = rol(A()); break; // ROL A (implied)
case 0x2b: AM_Immediate(); anc(); break; // *ANC (immediate)
case 0x2c: AM_Absolute(); bit(); break; // BIT (absolute)
case 0x2d: AM_Absolute(); andr(); break; // AND (absolute)
case 0x2e: AM_Absolute(); MW(rol); break; // ROL (absolute)
case 0x2f: AM_Absolute(); rla();; break; // *RLA (absolute)
case 0x30: branch(negative()); break; // BMI (relative)
case 0x31: AM_IndirectIndexedY(); andr(); break; // AND (indirect indexed Y)
case 0x32: jam(); break; // *JAM
case 0x33: Address_IndirectIndexedY(); fixupR(); rla();; break; // *RLA (indirect indexed Y)
case 0x34: AM_ZeroPageX(); break; // *NOP (zero page, X)
case 0x35: AM_ZeroPageX(); andr(); break; // AND (zero page, X)
case 0x36: AM_ZeroPageX(); MW(rol); break; // ROL (zero page, X)
case 0x37: AM_ZeroPageX(); rla();; break; // *RLA (zero page, X)
case 0x38: swallow(); set_flag(CF); break; // SEC (implied)
case 0x39: AM_AbsoluteY(); andr(); break; // AND (absolute, Y)
case 0x3a: swallow(); break; // *NOP (implied)
case 0x3b: Address_AbsoluteY(); fixupR(); rla();; break; // *RLA (absolute, Y)
case 0x3c: Address_AbsoluteX(); fixup(); break; // *NOP (absolute, X)
case 0x3d: AM_AbsoluteX(); andr(); break; // AND (absolute, X)
case 0x3e: Address_AbsoluteX(); fixupR(); MW(rol); break; // ROL (absolute, X)
case 0x3f: Address_AbsoluteX(); fixupR(); rla();; break; // *RLA (absolute, X)
case 0x40: swallow(); rti(); break; // RTI (implied)
case 0x41: AM_IndexedIndirectX(); eorr(); break; // EOR (indexed indirect X)
case 0x42: jam(); break; // *JAM
case 0x43: AM_IndexedIndirectX(); sre(); break; // *SRE (indexed indirect X)
case 0x44: AM_ZeroPage(); break; // *NOP (zero page)
case 0x45: AM_ZeroPage(); eorr(); break; // EOR (zero page)
case 0x46: AM_ZeroPage(); MW(lsr); break; // LSR (zero page)
case 0x47: AM_ZeroPage(); sre(); break; // *SRE (zero page)
case 0x48: swallow(); push(A()); break; // PHA (implied)
case 0x49: AM_Immediate(); eorr(); break; // EOR (immediate)
case 0x4a: swallow(); A() = lsr(A()); break; // LSR A (implied)
case 0x4b: AM_Immediate(); asr(); break; // *ASR (immediate)
case 0x4c: Address_Absolute(); jump(BUS().ADDRESS()); break; // JMP (absolute)
case 0x4d: AM_Absolute(); eorr(); break; // EOR (absolute)
case 0x4e: AM_Absolute(); MW(lsr); break; // LSR (absolute)
case 0x4f: AM_Absolute(); sre(); break; // *SRE (absolute)
case 0x50: branch(overflow() == 0); break; // BVC (relative)
case 0x51: AM_IndirectIndexedY(); eorr(); break; // EOR (indirect indexed Y)
case 0x52: jam(); break; // *JAM
case 0x53: Address_IndirectIndexedY(); fixupR(); sre(); break; // *SRE (indirect indexed Y)
case 0x54: AM_ZeroPageX(); break; // *NOP (zero page, X)
case 0x55: AM_ZeroPageX(); eorr(); break; // EOR (zero page, X)
case 0x56: AM_ZeroPageX(); MW(lsr); break; // LSR (zero page, X)
case 0x57: AM_ZeroPageX(); sre(); break; // *SRE (zero page, X)
case 0x58: swallow(); reset_flag(IF); break; // CLI (implied)
case 0x59: AM_AbsoluteY(); eorr(); break; // EOR (absolute, Y)
case 0x5a: swallow(); break; // *NOP (implied)
case 0x5b: Address_AbsoluteY(); fixupR(); sre(); break; // *SRE (absolute, Y)
case 0x5c: Address_AbsoluteX(); fixup(); break; // *NOP (absolute, X)
case 0x5d: AM_AbsoluteX(); eorr(); break; // EOR (absolute, X)
case 0x5e: Address_AbsoluteX(); fixupR(); MW(lsr); break; // LSR (absolute, X)
case 0x5f: Address_AbsoluteX(); fixupR(); sre(); break; // *SRE (absolute, X)
case 0x60: swallow(); rts(); break; // RTS (implied)
case 0x61: AM_IndexedIndirectX(); adc(); break; // ADC (indexed indirect X)
case 0x62: jam(); break; // *JAM
case 0x63: AM_IndexedIndirectX(); rra(); break; // *RRA (indexed indirect X)
case 0x64: AM_ZeroPage(); break; // *NOP (zero page)
case 0x65: AM_ZeroPage(); adc(); break; // ADC (zero page)
case 0x66: AM_ZeroPage(); MW(ror); break; // ROR (zero page)
case 0x67: AM_ZeroPage(); rra(); break; // *RRA (zero page)
case 0x68: swallow(); swallow_stack(); A() = through(pop()); break; // PLA (implied)
case 0x69: AM_Immediate(); adc(); break; // ADC (immediate)
case 0x6a: swallow(); A() = ror(A()); break; // ROR A (implied)
case 0x6b: AM_Immediate(); arr(); break; // *ARR (immediate)
case 0x6c: Address_Indirect(); jump(BUS().ADDRESS()); break; // JMP (indirect)
case 0x6d: AM_Absolute(); adc(); break; // ADC (absolute)
case 0x6e: AM_Absolute(); MW(ror); break; // ROR (absolute)
case 0x6f: AM_Absolute(); rra(); break; // *RRA (absolute)
case 0x70: branch(overflow()); break; // BVS (relative)
case 0x71: AM_IndirectIndexedY(); adc(); break; // ADC (indirect indexed Y)
case 0x72: jam(); break; // *JAM
case 0x73: Address_IndirectIndexedY(); fixupR(); rra(); break; // *RRA (indirect indexed Y)
case 0x74: AM_ZeroPageX(); break; // *NOP (zero page, X)
case 0x75: AM_ZeroPageX(); adc(); break; // ADC (zero page, X)
case 0x76: AM_ZeroPageX(); MW(ror); break; // ROR (zero page, X)
case 0x77: AM_ZeroPageX(); rra(); break; // *RRA (zero page, X)
case 0x78: swallow(); set_flag(IF); break; // SEI (implied)
case 0x79: AM_AbsoluteY(); adc(); break; // ADC (absolute, Y)
case 0x7a: swallow(); break; // *NOP (implied)
case 0x7b: Address_AbsoluteY(); fixupR(); rra(); break; // *RRA (absolute, Y)
case 0x7c: Address_AbsoluteX(); fixup(); break; // *NOP (absolute, X)
case 0x7d: AM_AbsoluteX(); adc(); break; // ADC (absolute, X)
case 0x7e: Address_AbsoluteX(); fixupR(); MW(ror); break; // ROR (absolute, X)
case 0x7f: Address_AbsoluteX(); fixupR(); rra(); break; // *RRA (absolute, X)
case 0x80: AM_Immediate(); break; // *NOP (immediate)
case 0x81: Address_IndexedIndirectX(); memoryWrite(A()); break; // STA (indexed indirect X)
case 0x82: AM_Immediate(); break; // *NOP (immediate)
case 0x83: Address_IndexedIndirectX(); memoryWrite(A() & X()); break; // *SAX (indexed indirect X)
case 0x84: Address_ZeroPage(); memoryWrite(Y()); break; // STY (zero page)
case 0x85: Address_ZeroPage(); memoryWrite(A()); break; // STA (zero page)
case 0x86: Address_ZeroPage(); memoryWrite(X()); break; // STX (zero page)
case 0x87: Address_ZeroPage(); memoryWrite(A() & X()); break; // *SAX (zero page)
case 0x88: swallow(); Y() = dec(Y()); break; // DEY (implied)
case 0x89: AM_Immediate(); break; // *NOP (immediate)
case 0x8a: swallow(); A() = through(X()); break; // TXA (implied)
case 0x8b: AM_Immediate(); ane(); break; // *ANE (immediate)
case 0x8c: Address_Absolute(); memoryWrite(Y()); break; // STY (absolute)
case 0x8d: Address_Absolute(); memoryWrite(A()); break; // STA (absolute)
case 0x8e: Address_Absolute(); memoryWrite(X()); break; // STX (absolute)
case 0x8f: Address_Absolute(); memoryWrite(A() & X()); break; // *SAX (absolute)
case 0x90: branch(carry() == 0); break; // BCC (relative)
case 0x91: Address_IndirectIndexedY(); fixup(); memoryWrite(A()); break; // STA (indirect indexed Y)
case 0x92: jam(); break; // *JAM
case 0x93: Address_IndirectIndexedY(); fixup(); sha(); break; // *SHA (indirect indexed, Y)
case 0x94: Address_ZeroPageX(); memoryWrite(Y()); break; // STY (zero page, X)
case 0x95: Address_ZeroPageX(); memoryWrite(A()); break; // STA (zero page, X)
case 0x96: Address_ZeroPageY(); memoryWrite(X()); break; // STX (zero page, Y)
case 0x97: Address_ZeroPageY(); memoryWrite(A() & X()); break; // *SAX (zero page, Y)
case 0x98: swallow(); A() = through(Y()); break; // TYA (implied)
case 0x99: Address_AbsoluteY(); fixup(); memoryWrite(A()); break; // STA (absolute, Y)
case 0x9a: swallow(); S() = X(); break; // TXS (implied)
case 0x9b: Address_AbsoluteY(); fixup(); tas(); break; // *TAS (absolute, Y)
case 0x9c: Address_AbsoluteX(); fixup(); sya(); break; // *SYA (absolute, X)
case 0x9d: Address_AbsoluteX(); fixup(); memoryWrite(A()); break; // STA (absolute, X)
case 0x9e: Address_AbsoluteY(); fixup(); sxa(); break; // *SXA (absolute, Y)
case 0x9f: Address_AbsoluteY(); fixup(); sha(); break; // *SHA (absolute, Y)
case 0xa0: AM_Immediate(); Y() = through(); break; // LDY (immediate)
case 0xa1: AM_IndexedIndirectX(); A() = through(); break; // LDA (indexed indirect X)
case 0xa2: AM_Immediate(); X() = through(); break; // LDX (immediate)
case 0xa3: AM_IndexedIndirectX(); A() = X() = through(); break; // *LAX (indexed indirect X)
case 0xa4: AM_ZeroPage(); Y() = through(); break; // LDY (zero page)
case 0xa5: AM_ZeroPage(); A() = through(); break; // LDA (zero page)
case 0xa6: AM_ZeroPage(); X() = through(); break; // LDX (zero page)
case 0xa7: AM_ZeroPage(); A() = X() = through(); break; // *LAX (zero page)
case 0xa8: swallow(); Y() = through(A()); break; // TAY (implied)
case 0xa9: AM_Immediate(); A() = through(); break; // LDA (immediate)
case 0xaa: swallow(); X() = through(A()); break; // TAX (implied)
case 0xab: AM_Immediate(); atx(); break; // *ATX (immediate)
case 0xac: AM_Absolute(); Y() = through(); break; // LDY (absolute)
case 0xad: AM_Absolute(); A() = through(); break; // LDA (absolute)
case 0xae: AM_Absolute(); X() = through(); break; // LDX (absolute)
case 0xaf: AM_Absolute(); A() = X() = through(); break; // *LAX (absolute)
case 0xb0: branch(carry()); break; // BCS (relative)
case 0xb1: AM_IndirectIndexedY(); A() = through(); break; // LDA (indirect indexed Y)
case 0xb2: jam(); break; // *JAM
case 0xb3: AM_IndirectIndexedY(); A() = X() = through(); break; // *LAX (indirect indexed Y)
case 0xb4: AM_ZeroPageX(); Y() = through(); break; // LDY (zero page, X)
case 0xb5: AM_ZeroPageX(); A() = through(); break; // LDA (zero page, X)
case 0xb6: AM_ZeroPageY(); X() = through(); break; // LDX (zero page, Y)
case 0xb7: AM_ZeroPageY(); A() = X() = through(); break; // *LAX (zero page, Y)
case 0xb8: swallow(); reset_flag(VF); break; // CLV (implied)
case 0xb9: AM_AbsoluteY(); A() = through(); break; // LDA (absolute, Y)
case 0xba: swallow(); X() = through(S()); break; // TSX (implied)
case 0xbb: Address_AbsoluteY(); maybe_fixup(); las(); break; // *LAS (absolute, Y)
case 0xbc: AM_AbsoluteX(); Y() = through(); break; // LDY (absolute, X)
case 0xbd: AM_AbsoluteX(); A() = through(); break; // LDA (absolute, X)
case 0xbe: AM_AbsoluteY(); X() = through(); break; // LDX (absolute, Y)
case 0xbf: AM_AbsoluteY(); A() = X() = through(); break; // *LAX (absolute, Y)
case 0xc0: AM_Immediate(); cmp(Y()); break; // CPY (immediate)
case 0xc1: AM_IndexedIndirectX(); cmp(A()); break; // CMP (indexed indirect X)
case 0xc2: AM_Immediate(); break; // *NOP (immediate)
case 0xc3: AM_IndexedIndirectX(); dcp(); break; // *DCP (indexed indirect X)
case 0xc4: AM_ZeroPage(); cmp(Y()); break; // CPY (zero page)
case 0xc5: AM_ZeroPage(); cmp(A()); break; // CMP (zero page)
case 0xc6: AM_ZeroPage(); MW(dec); break; // DEC (zero page)
case 0xc7: AM_ZeroPage(); dcp(); break; // *DCP (zero page)
case 0xc8: swallow(); Y() = inc(Y()); break; // INY (implied)
case 0xc9: AM_Immediate(); cmp(A()); break; // CMP (immediate)
case 0xca: swallow(); X() = dec(X()); break; // DEX (implied)
case 0xcb: AM_Immediate(); axs(); break; // *AXS (immediate)
case 0xcc: AM_Absolute(); cmp(Y()); break; // CPY (absolute)
case 0xcd: AM_Absolute(); cmp(A()); break; // CMP (absolute)
case 0xce: AM_Absolute(); MW(dec); break; // DEC (absolute)
case 0xcf: AM_Absolute(); dcp(); break; // *DCP (absolute)
case 0xd0: branch(zero() == 0); break; // BNE (relative)
case 0xd1: AM_IndirectIndexedY(); cmp(A()); break; // CMP (indirect indexed Y)
case 0xd2: jam(); break; // *JAM
case 0xd3: Address_IndirectIndexedY(); fixupR(); dcp(); break; // *DCP (indirect indexed Y)
case 0xd4: AM_ZeroPageX(); break; // *NOP (zero page, X)
case 0xd5: AM_ZeroPageX(); cmp(A()); break; // CMP (zero page, X)
case 0xd6: AM_ZeroPageX(); MW(dec); break; // DEC (zero page, X)
case 0xd7: AM_ZeroPageX(); dcp(); break; // *DCP (zero page, X)
case 0xd8: swallow(); reset_flag(DF); break; // CLD (implied)
case 0xd9: AM_AbsoluteY(); cmp(A()); break; // CMP (absolute, Y)
case 0xda: swallow(); break; // *NOP (implied)
case 0xdb: Address_AbsoluteY(); fixupR(); dcp(); break; // *DCP (absolute, Y)
case 0xdc: Address_AbsoluteX(); fixup(); break; // *NOP (absolute, X)
case 0xdd: AM_AbsoluteX(); cmp(A()); break; // CMP (absolute, X)
case 0xde: Address_AbsoluteX(); fixupR(); MW(dec); break; // DEC (absolute, X)
case 0xdf: Address_AbsoluteX(); fixupR(); dcp(); break; // *DCP (absolute, X)
case 0xe0: AM_Immediate(); cmp(X()); break; // CPX (immediate)
case 0xe1: AM_IndexedIndirectX(); sbc(); break; // SBC (indexed indirect X)
case 0xe2: AM_Immediate(); break; // *NOP (immediate)
case 0xe3: AM_IndexedIndirectX(); isb(); break; // *ISB (indexed indirect X)
case 0xe4: AM_ZeroPage(); cmp(X()); break; // CPX (zero page)
case 0xe5: AM_ZeroPage(); sbc(); break; // SBC (zero page)
case 0xe6: AM_ZeroPage(); MW(inc); break; // INC (zero page)
case 0xe7: AM_ZeroPage(); isb(); break; // *ISB (zero page)
case 0xe8: swallow(); X() = inc(X()); break; // INX (implied)
case 0xe9: AM_Immediate(); sbc(); break; // SBC (immediate)
case 0xea: swallow(); break; // NOP (implied)
case 0xeb: AM_Immediate(); sbc(); break; // *SBC (immediate)
case 0xec: AM_Absolute(); cmp(X()); break; // CPX (absolute)
case 0xed: AM_Absolute(); sbc(); break; // SBC (absolute)
case 0xee: AM_Absolute(); MW(inc); break; // INC (absolute)
case 0xef: AM_Absolute(); isb(); break; // *ISB (absolute)
case 0xf0: branch(zero()); break; // BEQ (relative)
case 0xf1: AM_IndirectIndexedY(); sbc(); break; // SBC (indirect indexed Y)
case 0xf2: jam(); break; // *JAM
case 0xf3: Address_IndirectIndexedY(); fixupR(); isb(); break; // *ISB (indirect indexed Y)
case 0xf4: AM_ZeroPageX(); break; // *NOP (zero page, X)
case 0xf5: AM_ZeroPageX(); sbc(); break; // SBC (zero page, X)
case 0xf6: AM_ZeroPageX(); MW(inc); break; // INC (zero page, X)
case 0xf7: AM_ZeroPageX(); isb(); break; // *ISB (zero page, X)
case 0xf8: swallow(); set_flag(DF); break; // SED (implied)
case 0xf9: AM_AbsoluteY(); sbc(); break; // SBC (absolute, Y)
case 0xfa: swallow(); break; // *NOP (implied)
case 0xfb: Address_AbsoluteY(); fixupR(); isb(); break; // *ISB (absolute, Y)
case 0xfc: Address_AbsoluteX(); fixup(); break; // *NOP (absolute, X)
case 0xfd: AM_AbsoluteX(); sbc(); break; // SBC (absolute, X)
case 0xfe: Address_AbsoluteX(); fixupR(); MW(inc); break; // INC (absolute, X)
case 0xff: Address_AbsoluteX(); fixupR(); isb(); break; // *ISB (absolute, X)
}
}
////
void EightBit::MOS6502::push(uint8_t value) noexcept {
lowerStack();
memoryWrite(value);
}
uint8_t EightBit::MOS6502::pop() noexcept {
raiseStack();
return memoryRead();
}
void EightBit::MOS6502::dummyPush() noexcept {
lowerStack();
tick(); // In place of the memory write
}
////
void EightBit::MOS6502::branch(const int condition) noexcept {
AM_Immediate();
if (condition) {
const auto relative = int8_t(BUS().DATA());
swallow();
const auto address = PC() + relative;
noteFixedAddress(address);
jump(address);
maybe_fixup();
}
}
////
void EightBit::MOS6502::sbc() noexcept {
const auto operand = A();
A() = sub(operand, carry(~P()));
const auto difference = m_intermediate;
adjustOverflow_subtract(operand, BUS().DATA(), difference.low);
adjustNZ(difference.low);
reset_flag(CF, difference.high);
}
uint8_t EightBit::MOS6502::sub(const uint8_t operand, const int borrow) noexcept {
const auto data = BUS().DATA();
return decimal() ? sub_d(operand, data, borrow) : sub_b(operand, data, borrow);
}
uint8_t EightBit::MOS6502::sub_b(const uint8_t operand, const uint8_t data, const int borrow) noexcept {
m_intermediate.word = operand - data - borrow;
return m_intermediate.low;
}
uint8_t EightBit::MOS6502::sub_d(const uint8_t operand, const uint8_t data, const int borrow) noexcept {
m_intermediate.word = operand - data - borrow;
uint8_t low = lowNibble(operand) - lowNibble(data) - borrow;
const auto lowNegative = negative(low);
if (lowNegative)
low -= 6;
uint8_t high = highNibble(operand) - highNibble(data) - (lowNegative >> 7);
const auto highNegative = negative(high);
if (highNegative)
high -= 6;
return promoteNibble(high) | lowNibble(low);
}
void EightBit::MOS6502::adc() noexcept {
A() = add(A(), carry());
}
uint8_t EightBit::MOS6502::add(uint8_t operand, int carrying) noexcept {
const auto data = BUS().DATA();
return decimal() ? add_d(operand, data, carrying) : add_b(operand, data, carrying);
}
uint8_t EightBit::MOS6502::add_b(uint8_t operand, uint8_t data, int carrying) noexcept {
m_intermediate.word = operand + data + carrying;
adjustOverflow_add(operand, data, m_intermediate.low);
set_flag(CF, carry(m_intermediate.high));
adjustNZ(m_intermediate.low);
return m_intermediate.low;
}
uint8_t EightBit::MOS6502::add_d(uint8_t operand, uint8_t data, int carry) noexcept {
register16_t low = lowerNibble(operand) + lowerNibble(data) + carry;
register16_t high = higherNibble(operand) + higherNibble(data);
adjustZero((low + high).low);
if (low.word > 0x09) {
high += 0x10;
low += 0x06;
}
adjustNegative(high.low);
adjustOverflow_add(operand, data, high.low);
if (high.word > 0x90)
high += 0x60;
set_flag(CF, high.high);
return lowerNibble(low.low) | higherNibble(high.low);
}
void EightBit::MOS6502::andr() noexcept {
A() = through(A() & BUS().DATA());
}
void EightBit::MOS6502::bit() noexcept {
const auto data = BUS().DATA();
set_flag(VF, overflow(data));
adjustZero(A() & data);
adjustNegative(data);
}
void EightBit::MOS6502::cmp(const uint8_t first) noexcept {
const auto second = BUS().DATA();
const register16_t result = first - second;
adjustNZ(result.low);
reset_flag(CF, result.high);
}
uint8_t EightBit::MOS6502::dec(const uint8_t value) noexcept {
return through(value - 1);
}
void EightBit::MOS6502::eorr() noexcept {
A() = through(A() ^ BUS().DATA());
}
uint8_t EightBit::MOS6502::inc(const uint8_t value) noexcept {
return through(value + 1);
}
void EightBit::MOS6502::jsr() noexcept {
const auto low = fetchByte();
swallow_stack();
pushWord(PC());
PC() = { low, fetchByte() };
}
void EightBit::MOS6502::orr() noexcept {
A() = through(A() | BUS().DATA());
}
void EightBit::MOS6502::php() noexcept {
push(P() | BF);
}
void EightBit::MOS6502::plp() noexcept {
swallow_stack();
P() = (pop() | RF) & ~BF;
}
void EightBit::MOS6502::rti() noexcept {
plp();
ret();
}
void EightBit::MOS6502::rts() noexcept {
swallow_stack();
ret();
swallow_fetch();
}
// Undocumented compound instructions
void EightBit::MOS6502::anc() noexcept {
andr();
set_flag(CF, A() & NF);
}
void EightBit::MOS6502::arr() noexcept {
const auto value = BUS().DATA();
decimal() ? arr_d(value) : arr_b(value);
}
void EightBit::MOS6502::arr_d(const uint8_t value) noexcept {
// With thanks to https://github.com/TomHarte/CLK
// What a very strange instruction ARR is...
A() &= value;
auto unshiftedA = A();
A() = through((A() >> 1) | (carry() << 7));
set_flag(VF, overflow((A() ^ (A() << 1))));
if (lowerNibble(unshiftedA) + (unshiftedA & 0x1) > 5)
A() = lowerNibble(A() + 6) | higherNibble(A());
set_flag(CF, higherNibble(unshiftedA) + (unshiftedA & 0x10) > 0x50);
if (carry())
A() += 0x60;
}
void EightBit::MOS6502::arr_b(const uint8_t value) noexcept {
A() &= value;
A() = through((A() >> 1) | (carry() << 7));
set_flag(CF, A() & VF);
set_flag(VF, overflow((A() ^ (A() << 1))));
}
void EightBit::MOS6502::axs() noexcept {
X() = through(sub_b(A() & X(), BUS().DATA()));
reset_flag(CF, m_intermediate.high);
}
void EightBit::MOS6502::jam() noexcept {
BUS().ADDRESS() = PC()--;
memoryRead();
memoryRead();
}