

Programming the 65816

Including the 6502, 65C02 and 65802

Distributed and published under

COPYRIGHT LICENSE AND PUBLISHING AGREEMENT
with

Authors David Eyes and Ron Lichty
EFFECTIVE APRIL 28, 1992

Copyright © 2007 by The Western Design Center, Inc.

2166 E. Brown Rd. Mesa, AZ 85213
480-962-4545 (p) 480-835-6442 (f)

www.westerndesigncenter.com

The Western Design Center

2

Table of Contents

1) Chapter One .. 12
Basic Assembly Language Programming Concepts..12

Binary Numbers .. 12
Grouping Bits into Bytes... 13
Hexadecimal Representation of Binary .. 14
The ACSII Character Set ... 15
Boolean Logic.. 16

Logical And .. 16
Logical Or .. 17
Logical Exclusive Or... 17
Logical Complement... 17

Signed Numbers .. 18
Storing Numbers in Decimal Form... 19
Computer Arithmetic.. 20
Microprocessor Programming.. 20

Machine Language.. 20
Assembly Language .. 22

Writing in Assembly Language .. 22
Basic Programming Concepts... 23

Selection Between Paths.. 24
Looping .. 24
Subroutines ... 24

2) Chapter Two .. 26
Architecture of the 6502 ..26

Microprocessor Architecture.. 26
The 6502 Registers .. 26

The Accumulator .. 27
The X and Y Index Registers... 29
The Status Register ... 29
Abbrev.. 30
Name.. 31
The Stack Pointer.. 31
The Program Counter .. 33

Addressing Modes ... 33
Instructions ... 35
The 6502 System Design.. 38

Pipelining ... 38
Memory Order of Multiple-Byte Values .. 39
Memory-Mapped Input/Output.. 39
Interrupts .. 39

NMOS Process .. 40
Bugs and Quirks ... 40

3) Chapter Three ... 41
Architecture of the 65C02 ...41

The 65C02 Architecture.. 41
Addressing Modes ... 41
Instructions ... 42
CMOS Process .. 42
Bugs and Quirks ... 42

4) Chapter Four... 44
Sixteen-Bit Architecture The 65816 and the 65802...44

The Western Design Center

3

Power-On Status: 6502 Emulation Mode..45

The Full-Featured 65x Processor: The 65816 in Native Mode ..45
The Program Bank Register ... 47
The Data Bank Register.. 48
The Direct Page Register .. 48
The Stack Pointer.. 48
Accumulator and Index Registers .. 48
Switching Registers Between Eight and Sixteen Bits.. 50
The Status Register ... 50
6502/65C02 Addressing Modes on the 65816.. 51
New 65816 Addressing Modes .. 52
Instructions ... 54
Interrupts .. 55

The 65802 Native Mode ...55
Emulation Mode.. 58
Emulation Mode Registers.. 60

Switching Between 6502 Emulation and Native Modes..61
Switching from Emulation to Native Mode .. 61
Switching from Native to Emulation Mode .. 61

65802/65816 Bugs and Quirks ...62

5) Chapter Five.. 64
SEP, REP, and Other Details ..64

The Assembler Used in This Book .. 66
Address Notation... 68

6) Chapter Six.. 69
First Examples: Moving Data..69

Loading and Storing Registers ... 71
Effect of Load and Store Operations on Status Flags.. 73
Moving Data Using the Stack .. 73
Push.. 74
Pushing the Basic 65x Registers .. 76
Pull ... 76
Pulling the Basic 65x Registers ... 76
Pushing and Pulling the 65816’s Additional Registers.. 78
Pushing Effective Addresses.. 79
Other Attributes of Push and Pull .. 79

Moving Data Between Registers ... 79
Transfers... 79
Exchanges... 86

Storing Zero to Memory ... 86
Block Moves .. 87

7) Chapter Seven ... 89
SimpleAddressing Modes ..89

Immediate Addressing .. 90
Absolute Addressing ... 92
Direct Page Addressing... 94
Indexing... 95
Absolute Indexed with X and Absolute Indexed with Y Addressing ... 98
Direct Page Indexed with X and Direct Page Indexed with Y Addressing .. 101
Accumulator Addressing .. 103
Implied Addressing ... 103
Stack.. 104
Direct Page Indirect Addressing... 104
Absolute Long Addressing .. 105

The Western Design Center

4

Absolute Long Indexed with X Addressing .. 108
Direct Page Indirect Long... 109
Block Move.. 110

8) Chapter Eight .. 111
The Flow of Control...111

Jump Instructions ... 112
Conditional Branching.. 114

Branching Based on the Zero Flag... 115
Branching Based on the Carry Flag ... 117
Branching Based on the Negative Flag .. 118
Branching Based on the Overflow Flag.. 119
Limitations of Conditional Branches.. 119

Unconditional Branching .. 119

9) Chapter Nine ... 122
Built-In Arithmetic Functions ...122

Description ...122
Increment and Decrement .. 123
Addition and Subtraction: Unsigned Arithmetic .. 127
Comparison ... 130
Signed Arithmetic ... 134
Signed Comparisons.. 136
Decimal Mode ... 137

10) Chapter Ten.. 139
Logic and Bit Manipulation Operations ...139

Logic Functions ... 139
Logical AND .. 140
Logical OR ... 142
Logical Exclusive-Or .. 143

Bit Manipulation ... 145
Shifts and Rotates ... 146

11) Chapter Eleven ... 154
The Complex Addressing Modes...154

Relocating the Direct Page.. 155
Assembler Addressing Mode Assumptions... 156
Direct Page Indirect Indexed With Y Addressing .. 158
Direct Page Indexing Indirect Addressing ... 161
Absolute Indexed Indirect Addressing ... 163
Direct Page Indirect Long Indexed with Y Addressing.. 165
Stack Relative Addressing .. 166
Stack Relative Indirect Indexed Addressing .. 168
Push Effective Instructions ... 169

12) Chapter Twelve... 174
The Basic Building Block: ...174

The Subroutine.. 174
The Jump-To-Subroutine Instruction .. 175
The Return-from-Subroutine Instruction .. 175
JRS Using Absolute Indexed Indirect Addressing ... 177
The Long Jump to Subroutine .. 178
Return from Subroutine Long .. 178
Branch to Subroutine.. 179
Coding a Subroutine: How and When.. 180

6502 Eight-Bit Negation – A Library Example .. 180
65C02, 65802, and 65816 Eight-Bit Negation.. 181

The Western Design Center

5

6502 Sixteen-Bit Negation .. 181
65802 and 65816 Sixteen-Bit Negation.. 181

Parameter Passing .. 182

13) Chapter Thirteen .. 192
Interrupts and System Control Instructions...192

Interrupts .. 192
Processing Interrupts... 197
Interrupt Response Time ... 200

Status Register Control Instruction.. 201
No Operation Instructions .. 202

14) Chapter Fourteen ... 204
Selected Code Samples...204

Multiplication.. 204
6502 Multiplication... 205
65C02 Multiplication .. 205
65802 and 65816 Multiplication .. 205

Division.. 208
6502 Division ... 209
65C02 Division... 211
65802/65816 Division ... 211

Calling an Arbitrary 6502 Routine ... 213
Testing Processor Type ... 219
Compiler-Generated 65816 Code for a RecursiveProgram ... 220

The Same Example Hand-Coded in Assembly Language ... 224
The Sieve of Eratosthenes Benchmark ... 226

15) Chapter Fifteen .. 230
DEGUG16 – A 65816 Programming Tool...230

Declarations... 232
LIST .. 234
FLIST .. 236
FRMOPRND... 238
POB ... 243
STEP ... 244
PUTHEX ... 246
CLRLN.. 248
UPDATE ... 249
PRINTLN .. 251
TRACE.. 252
EBRKIN .. 254
CHKSPCL... 259
DUMPREGS ... 263
PUTRTEG8... 265
TABLES .. 266

16) Chapter Sixteen .. 276
Design and Debugging ...276

Debugging Checklist ... 276
Decimal Flag .. 276
Adjusting Carry Prior to Add / Subtract ... 276
65x Left-to-Right Syntax... 276
65x Branches .. 277
6502 Jump Bug ... 277
Interrupt-Handling Code.. 277
65802/65816: Emulation Versus Native Mode ... 277
65802/65816: Eight-Bit Versus Sixteen-Bit Registers .. 278
65802/65816: The Direct Page .. 278

The Western Design Center

6

65802/65816: Stack Overruns Program or Data ... 278
65802/65816: JSR/JSL and RTS/RTL.. 278
65802/65816: MVN/MVP... 278
Return Address ... 279
Inconsistent Assembler Syntax .. 279

Generic Bugs: They Can Happen Anywhere.. 279
Uninitialized Variables.. 279
Missing Code .. 279
Failure to Increment the Index in a Loop.. 279
Failure to Clean Up Stack.. 280
Immediate Data Versus Memory Location... 280
Initializing the Stack Pointer from a Subroutine ... 280

Top-Down Design and Structured Programming .. 280
Documentation .. 281

17) Chapter Seventeen.. 283
The Addressing Modes ..283

Absolute Addressing ... 288
Absolute Indexed, X Addressing ... 289
Absolute Indexed, Y Addressing ... 290
Absolute Indexed Indirect Addressing ... 291
Absolute Indirect Addressing .. 292
Absolute Indirect Long Addressing ... 293
JMP [addr].. 293
Absolute Long Addressing .. 294
Absolute Long Indexed, X Addressing .. 295
Accumulator Addressing ... 296
Block Move Addressing .. 297
Direct Page Addressing ... 298
Direct Page Indexed, X Addressing ... 299
Direct Page Indexed, Y Addressing ... 300
Direct Page Indexed Indirect, X Addressing... 301
Direct Page Indirect Addressing .. 302
Direct Page Indirect Long Addressing ... 303
Direct Page Indirect Indexed, Y Addressing... 304
Direct Page Indirect Long Indexed, Y Addressing.. 305
Immediate Addressing... 306
Implied Addressing ... 307
Program Counter Relative Addressing ... 308
Program Counter Relative Long Address ... 309
Stack (Absolute) Addressing ... 310
Stack (Direct Page Indirect) Addressing .. 312
Stack (Interrupt) Addressing.. 314
Stack (Program Counter Relative) Addressing ... 316
Stack (Pull) Addressing... 317
Stack (Push) Addressing.. 319
Stack (RTI) Addressing... 321
Stack (RTL) Addressing.. 322
Stack (RTS) Addressing .. 323
Stack Relative Addressing... 324
Stack Relative Indirect Indexed, Y Addressing .. 325

18) Chapter Eighteen.. 326
The Instruction Sets...326

Add With Carry .. 327
Opcode ... 327
Bytes... 327
Cycles... 327

And Accumulator with Memory... 328
Second.. 328

The Western Design Center

7

Operand .. 328
Shift Memory or Accumulator Left.. 329
Branch if Carry Clear... 330
Branch if Carry Set... 331
Branch if Equal ... 332
Test Memory Bits against Accumulator ... 333
Branch if Minus .. 334
Branch if Not Equal .. 335
Branch if Plus.. 336
Branch Always .. 337
Software Break ... 338
Branch Always Long... 340
Branch if Overflow Clear ... 341
Branch if Overflow Set ... 342
Clear Carry Flag... 343
Clear Decimal Mode Flag ... 344
Clear Interrupt Disable Flag .. 345
Clear Overflow Flag.. 346
Compare Accumulator with Memory... 347
Co-Processor Enable... 349
Compare Index Register X with Memory... 350
Compare Index Register Y with Memory CPY.. 351
Decrement ... 352
Decrement Index Register X ... 353
Decrement Index Register Y... 354
Exclusive-OR Accumulator with Memory ... 355
Increment .. 357
Increment Index Register X.. 358
Increment Index Register Y.. 359
Jump.. 360
Jump to Subroutine Long (Inter-Bank) ... 361
Jump to Subroutine... 362
Load Accumulator from Memory... 363
Load Index Register X from Memory .. 364
Load Index Register Y from Memory .. 365
Logical Shift Memory or Accumulator Right... 366
Block Move Next ... 367
Block Move Previous... 368

MVP ...368
No Operation... 369
OR Accumulator with Memory .. 370
Push Effective Absolute Address .. 372
Push Effective Indirect Address ... 373
Push Effective PC Relative Indirect Address ... 374
PER ... 374
Push Accumulator... 375
Push Data Bank Register .. 376
Push Direct Page Register... 377
Push Program Bank Register ... 378
Push Processor Status Register... 379
Push Index Register .. 380
Push Index Register .. 381
Pull Accumulator .. 382
Pull Data Bank Register.. 383
Pull Direct Page Register .. 384
Pull Status Flags.. 385
Pull Index Register X from Stack ... 386
Pull Index Register Y from Stack ... 387
Reset Status Bits.. 388
Rotate Memory or Accumulator Left ... 389

The Western Design Center

8

Rotate Memory or Accumulator Right... 390
Return from Interrupt .. 391
Return from Subroutine Long .. 393
Return from Subroutine ... 394
Subtract with Borrow from Accumulator .. 395
Set Carry Flag... 397
Set Decimal Mode Flag ... 398
Set Interrupt Disable Flag .. 399
Set Status Bits ... 400
Store Accumulator to Memory ... 401
Stop the Processor... 402
Store Index Register X to Memory ... 403
Store Index Register Y to Memory ... 404
Store Zero to Memory... 405
Transfer Accumulator to Index Register X .. 406
Transfer Accumulator to Index Register Y .. 407
Transfer 16-Bit Accumulator to Direct Page Register ... 408
Transfer Accumulator to Stack Pointer ... 409
Transfer Direct Page Register to 16-Bit Accumulator ... 410
Test and Reset Memory Bits Against Accumulator.. 411
Test and Set Memory Bits Against Accumulator ... 412
Transfer Stack Pointer to 16-Bit Accumulator... 413
Transfer Stack Pointer to Index Register X ... 414
Transfer Index Register X to Accumulator .. 415
Transfer Index Register X to Stack Pointer ... 416
Transfer Index Register X to Y .. 417
Transfer Index Register Y to Accumulator .. 418
Transfer Index register Y to X.. 419
Wait for Interrupt... 420
Reserved for Future Expansion .. 421
Exchange the B and A Accumulators ... 422
Exchange Carry and Emulation Bits .. 423

19) Chapter Nineteen.. 424
Instruction Lists...424

Processor ... 434
Addressing mode box:... 434
Operation column: .. 434
Bytes, cycles, and status codes:.. 435

Op Code Matrix Legend ... 437

Table of Figures

FIGURE 1-1 BINARY REPRESENTATION... 13
FIGURE 1-2 BIT NUMBERS ... 14
FIGURE 1-3 ANDING BITS ... 16
FIGURE 1-4 ORING BITS .. 17
FIGURE 1-5 EXCLUSIVE ORING BITS .. 17
FIGURE 1-6 COMPLEMENTING BITS ... 18
FIGURE 1-7 COMPLEMENTING BITS USING EXCLUSIVE OR .. 18
FIGURE 1-8 MULTIPLE-PRECISION ARITHMETIC ... 21
FIGURE 1-9 TYPICAL ASSEMBLER SOURCE CODE ... 23
FIGURE 2-1 6502 PROGRAMMING MODEL .. 28
FIGURE 2-2 INITIALIZING THE STACK POINTER TO $FF ... 32
FIGURE 2-3 AFTER PUSHING THE ACCUMULATOR... 33
FIGURE 2-4 INDEXING: BASE PLUS INDEX .. 35
FIGURE 2-5 INDIRECTION: OPERAND LOCATES INDIRECT ADDRESS.. 36
FIGURE 4-1 65816 NATIVE MODE PROGRAMMING MODEL .. 46
FIGURE 4-2 RESULTS OF SWITCHING REGISTER SIZE.. 51

The Western Design Center

9

FIGURE 4-3 65802 NATIVE MODE PROGRAMMING MODEL .. 57
FIGURE 4-4 65816 EMULATION MODE PROGRAMMING MODEL.. 60
FIGURE 6-1 STACK MEMORY .. 75
FIGURE 6-2. PUSH .. 77
FIGURE 6-3 REGISTER TRANSFERS BETWEEN DIFFERENT-SIZED REGISTERS ... 83
FIGURE 7-1 IMMEDIATE ADDRESSING: 8 VS. 16 BITS .. 91
FIGURE 7-2 ABSOLUTE ADDRESSING... 93
FIGURE 7-3 ZERO PAGE ADDRESSING.. 94
FIGURE 7-4 INDEXING .. 97
FIGURE 7-5 INDEXING BEYOND THE END OF THE BANK ... 98
FIGURE 7-6 ABSOLUTE INDEXING WITH A GENERIC INDEX REGISTER ... 100
FIGURE 7-7 DIRECT PAGE INDEXING WITH A GENERIC INDEX REGISTER ... 102
FIGURE 7-8 DIRECT PAGE INDIRECT ADDRESSING ... 105
FIGURE 7-9 ABSOLUTE LONG ADDRESSING ... 108
FIGURE 7-10 DIRECT PAGE INDIRECT LONG ADDRESSING.. 110
FIGURE 8-1 JUMP’S ABSOLUTE INDIRECT ADDRESSING MODE ... 113
FIGURE 8-2. RELATIVE BRANCH CALCULATION .. 115
FIGURE 8-3. LINKED LIST ... 117
FIGURE 10-1 THE AND OPERATION.. 140
FIGURE 10-2 SHIFT AND ROTATE LEFT.. 148
FIGURE 10-3 SHIFT AND ROTATE RIGHT.. 149
FIGURE 11-1 POSTINDEXING ... 159
FIGURE 11-2 PREINDEXING... 162
FIGURE 11-3 ABSOLUTE INDEXED INDIRECT.. 165
FIGURE 11-4 POSTINDEXED LONG... 167
FIGURE 11-5 STACK RELATIVE ... 168
FIGURE 11-6 STACK RELATIVE INDIRECT INDEXED.. 169
FIGURE 11-7 PEA ADDRESSING.. 170
FIGURE 11-8 PEI ADDRESSING ... 171
FIGURE 11-9. PER ADDRESSING ... 172
FIGURE 12-1 JSR ... 176
FIGURE 12-2 RTS... 177
FIGURE 12-3 JSL.. 178
FIGURE 12-4 RTL .. 179
FIGURE 13-1 I/O MANAGEMENT: INTERRUPTS VS. POLLING.. 193
FIGURE 13-2 INTERRUPT PROCESSING ... 194
FIGURE 13-3BREAK SIGNATURE BYTE ILLUSTRATION .. 197
FIGURE 13-4 6522 VIA INTERRUPT FLAG REGISTER.. 198
FIGURE 14-1 STACK SNAPSHOT AFTER PEI (12) INSTRUCTION... 218
FIGURE 15-1 DISASSEMBLY OUTPUT... 231
FIGURE 15-2 TRACER OUTPUT.. 231
FIGURE 17-1 6502/65C02 PROGRAMMING MODEL .. 284
FIGURE 17-2. 65802 NATIVE MODE PROGRAMMING MODEL.. 285
FIGURE 17-3 65816 NATIVE MODE PROGRAMMING MODEL... 286
FIGURE 17-4 65816 EMULATION MODE PROGRAMMING MODEL .. 287
FIGURE 18-1 AND TRUTH TABLE ... 328
FIGURE 18-2 ASL .. 329
FIGURE 18-3 65802/65816 STACK AFTER BRK... 339
FIGURE 18-4 STACK AFTER COP... 349
FIGURE 18-5EXCLUSIVE OR TRUTH TABLE.. 355
FIGURE 18-6 LSR... 366
FIGURE 18-7 LOGICAL OR TRUTH TABLE ... 370
FIGURE 18-8 ROL.. 389
FIGURE 18-9 ROR.. 390
FIGURE 18-10NATIVE MODE STACK BEFORE RTI. .. 391
FIGURE 18-11 STACK BEFORE RTL... 393
FIGURE 18-12 STACK BEFORE RTS ... 394

The Western Design Center

10

Table of Tables

TABLE 1-1 DECIMAL AND HEX NUMBERS .. 15
TABLE 1-2 TRUTH TABLE FOR AND ... 17
TABLE 1-3 TRUTH TABLE FOR OR ... 17
TABLE 1-4 TRUTH TABLE FOR EXCLUSIVE OR ... 17
TABLE 1-5 TRUTH TABLE FOR COMPLEMENT .. 18
TABLE 1-6 THE EIGHT-BIT RANGE OF TWO’S-COMPLEMENT NUMBERS .. 19
TABLE 1-7 THE FIRST 16 BCD NUMBERS .. 20
TABLE 2-1 STATUS REGISTER CONDITION CODE FLAGS.. 30
TABLE 2-2 STATUS REGISTER MODE SELECT FLAGS... 31
TABLE 2-3 6502 ADDRESSING MODES .. 34
TABLE 2-4 6502 INSTRUCTIONS .. 37
TABLE 3-1 THE 65C02’S NEW ADDRESSING MODES... 41
TABLE 3-2. NEW 65C02 INSTRUCTIONS .. 42
TABLE 4-1 THE FOUR POSSIBLE NATIVE MODE REGISTER COMBINATIONS... 49
TABLE 4-2 ADDRESSING MODES: ZERO PAGE VS. DIRECT PAGE ... 52
TABLE 4-3 THE 65816/65802’S NEW ADDRESSING MODES .. 53
TABLE 4-4 NEW 65816/65802 INSTRUCTIONS ... 54
TABLE 4-5 INTERRUPT VECTOR LOCATIONS .. 55
TABLE 6-1 DATA MOVEMENT INSTRUCTION .. 70
TABLE 7-1 LIST OF SIMPLE ADDRESSING MODES... 89
TABLE 8-1. BRANCH AND JUMP INSTRUCTIONS.. 111
TABLE 9-1 ARITHMETIC INSTRUCTIONS .. 122
TABLE 9-2. EQUALITIES.. 131
TABLE 10-1 LOGIC INSTRUCTIONS .. 139
TABLE 11-1 COMPLEX ADDRESSING MODES ... 154
TABLE 11-2 COMPLEX PUSH INSTRUCTIONS .. 154
TABLE 11-3 ASSEMBLER SYNTAX FOR COMPLETE MEMORY ACCESS ... 157
TABLE 12-1 SUBROUTINE INSTRUCTIONS .. 174
TABLE 13-1. INTERRUPT AND SYSTEM CONTROL INSTRUCTIONS. ... 192
TABLE 13-2 INTERRUPT VECTORS... 195
TABLE 13-3 RESET INITIALIZATION... 201
TABLE 17-1 OPERAND SYMBOLS .. 284
TABLE 18-1 OPERAND SYMBOLS .. 326
TABLE 18-2 65X FLAGS .. 326

The Western Design Center

11

Part 1
Basics

The Western Design Center

12

1) Chapter One

Basic Assembly Language Programming Concepts

This chapter reviews some of the key concepts that must be mastered prior to learning to program a
computer in assembly language. These concepts include the use of the binary and hexadecimal number
systems; boolean logic; how memory is addressed as bytes of data; how characters are represented as ASCII
codes; binary-coded decimal (BCD) number systems, and more. The meaning of these terms is explained in
this chapter. Also discussed is the use of an assembler, which is a program used to write machine-language
programs, and programming techniques like selection, loops, and subroutines.

Since the primary purpose of this book is to introduce you to programming the 65816 and the other members of
the 65x family, this single chapter can only be a survey of this information rather than a complete guide.

Binary Numbers

In its normal, everyday work, most of the world uses the decimal, or base ten, number system, and
everyone takes for granted that this system is the “natural” (or even the only) way to express the concept of
numbers. Each place in a decimal number stands for a power of ten: ten to the 0 power is 1, ten to the 1st power
is ten, ten to the 2nd power is 100, and so on. Thus, starting from a whole number’s right-most digit and
working your way left, the first digit is multiplied by the zero power of ten, the second by the first power of ten,
and so on. The right-most digits are called the low-order or least significant digits in a positional notation
system such as this, because they contribute least to the total magnitude of the number; conversely, the leftmost
digits are called the high-order or most significant digits, because they add the most weight to the value of the
number. Such a system is called a positional notation system because the position of a digit within a string of
numbers determines its value.

Presumably, it was convenient and natural for early humans to count in multiples of ten because they
had ten fingers to count with. But it is rather inconvenient for digital computers to count in decimal; they have
the equivalent of only one finger, since the representation of numbers in a computer is simply the reflection of
electrical charges, which are either on or off in a given circuit. The all or nothing nature of digital circuitry
lends itself to the use of the binary, or base two, system of numbers, with one represented by “on” and zero
represented by “off”. A one or a zero in binary arithmetic is called a binary digit, or a bit for short.

Like base ten digits, base two digits can be strung together to represent numbers larger than a single
digit can represent, using the same technique of positional notation described for base ten numbers above. In
this case, each binary digit is such a base two number represents a power of two, with a whole number’s right-
most bit representing two to the zero power (ones), the next bit representing two to the first power (twos), the
next representing two to the second power (fours), and so on (Figure 1-1 Binary Representation)

The Western Design Center

13

Grouping Bits into Bytes

As explained, if the value of a binary digit, or bit, is a one, it is stored in a computer’s memory by
switching to an “on” or charged state, in which case the bit is described as being set; if the value of a given bit is
a zero, it is marked in memory by switching to an “off” state, and the bit is said to be reset.

While memory may be filled with thousands or even millions of bits, a microprocessor must be able to
deal with them in a workable size.

12
8’

s
Pl

ac
e

64
’s

 P
la

ce

32
’s

 P
la

ce

16
’s

 P
la

ce

8’
s

Pl
ac

e

4’
s

Pl
ac

e

2’
s

Pl
ac

e

1’
s

Pl
ac

e

0 1 1 0 0 1 1 0

2

4

32

64

102

Figure 1-1 Binary Representation

The smallest memory location that can be individually referenced, or addressed, is usually, and always
in the case of the 65x processors, a group of eight bits. This basic eight-bit unit of memory is known as a byte.
Different types of processors can operate on different numbers of bits at any given time, with most
microprocessors handling one, two, or four bytes of memory in a single operation. The 6502 and 65C02
processors can handle only eight bits at a time. The 65816 and 65802 can process either eight or sixteen bits at
a time.

Memory is organized as adjacent, non-overlapping bytes, each of which has its own specific address.
An address is the unique, sequential identifying number used to reference the byte at a particular location.
Addresses start at zero and continue in ascending numeric order up to the highest addressable location.

As stated, the 65802 and 65816 can optionally manipulate two adjacent bytes at the same time; a
sixteen-bit data item stored in two contiguous bytes is called a double byte in this book. A more common but
misleading usage is to describe a sixteen-bit value as a word; the term word is more properly used to describe
the number of bits a processor fetches in a single operation, which may be eight, sixteen, thirty-two, or some
other number of bits depending on the type of processor.

It turns out that bytes – multiples of eight bits – are conveniently sized storage units for programming
microprocessors. For example, a single byte can readily store enough information to uniquely represent all of
the characters in the normal computer character set. An eight-bit binary value can be easily converted to two
hexadecimal (base sixteen) digits; this fact provides a useful intermediate notation between the binary and
decimal number systems. A double byte can represent the entire range of memory addressable by the 6502,
65C02, and 65802, and one complete bank – 64K bytes – on the 65816. Once you’ve adjusted to it, you’ll find
that there is a consistent logic behind the organization of a computer’s memory into eight-bit bytes.

Since the byte is one of the standard units of a computer system, a good question to ask at this point
would be just how large a decimal number can you store in eight bits? The answer is 255. The largest binary
number you can store in a given number of bits is the number represented by that many one-bits. In the case of

The Western Design Center

14

the byte, this is 11111111, or 255 decimal (or 28 - 1). Larger numbers are formed by storing longer bit-strings
in consecutive bytes.

The size of a computer’s memory is typically expressed in bytes, which makes sense because the byte is
the smallest addressable unit. And since a byte is required to store the representation of a single alphanumeric
character, you can get an easy visualization of about how much storage 64K of memory is by thinking of that
many characters. The K stands for one thousand (from the Greek kilo meaning thousand, as in kilogram or
kilometer); however, since powers of two are always much more relevant when discussing computer memories,
the symbol K in this context actually stands for 1024 bytes, the nearest power-of-two approximation of 1000, so
64K is 65,536 bytes, 128K is 131,072 bytes, and so on. Within a given byte (or double byte) it is often
necessary to refer to specific bits within the word. Bits are referred to by number. The low-order, or right-most
bit, is called bit zero; this corresponds to the one’s place. The next-higher-order bit is bit one, and so on. The
high-order bit of a byte is therefore bit seven; of a double byte, bit fifteen. The convention of calling the lower-
order bit the “right-most” is consistent with the convention used in decimal positional notation; normal decimal
numbers are read from left to right, from high-order to low-order. Figure 1.2 illustrates the bit numbers for
bytes and double bytes, as well as the relative weights of each bit position.

Double-Byte
 Byte

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

High-Order Low-Order

Figure 1-2 Bit Numbers

Hexadecimal Representation of Binary

While binary is a convenient number system for computers to use, it is somewhat difficult to translate a
series of ones and zeros into a number that is meaningful. Any number that can be represented by eight binary
bits can also be represented by two hexadecimal (or hex for short) digits. Hexadecimal numbers are base
sixteen numbers. Since base two uses the digits zero through one, and base ten the digits zero through nine,
clearly base sixteen must use digits standing for the numbers zero through fifteen. Table 1.1 is a chart of the
sixteen possible four-bit numbers, with their respective decimal and hexadecimal representations.

The Western Design Center

15

Binary Decimal Hexadecimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

Table 1-1 Decimal and Hex Numbers

Because the positional notation convention reserves only a single place for each multiplier of the power of that base, the
numbers ten through fifteen must be represented by a single base-sixteen digit. Rather than create entirely new symbols for
digits, the first six letters of the alphabet were chosen to represent the numbers ten through fifteen. Each of the sixteen hex
digits corresponds to one of the possible combinations of four binary digits.

Binary numbers larger than 1111 are converted to hexadecimal by first separating the bits into groups of
fur, starting from the right-most digit and moving left. Each group of four bits is converted into its
corresponding hex equivalent. It is generally easier to work with a hexadecimal number like F93B than its
binary counterpart 111100100111011. Hexadecimal numbers are often used by machine language
programming tools such as assemblers, monitors, and debuggers to represent memory addresses and their
contents. The value of hexadecimal numbers is the ease with which they can be converted to and from their
binary equivalents once the table has been memorized.

While a hexadecimal 3 and a decimal 3 stand for the same number, a hexadecimal 23 represents two
decimal sixteen’s plus 3, or 35 decimal. To distinguish a multiple-digit hex number from a decimal one, either
the word hexadecimal should precede or follow it, or a ‘$’ should prefix it, as in $23 for decimal 35, or $FF to
represent 255. A number without any indication of base is presumed to be decimal. An alternative notation for
hexadecimal numbers is to use the letter H as a suffix to the number (for example, FFH); however, the dollar-
sign prefix is generally used by assemblers for the 65x processors.

The ASCII

Characters – letters, numbers, and punctuation – are stored in the computer as number values, and
translated to and from readable form on input or output by hardware such as keyboards, printers, and CRTs.
There are 26 English-language lower-case letters, another 26 upper-case ones, and a score or so of special
characters, plus the ten numeric digits, any of which might be typed from a keyboard or displayed on a screen or
printer, as well as stored or manipulated internally. Further, additional codes may be needed to tell a terminal or
printer to perform a given function, such as cursor or print head positioning. These control codes including
carriage return, which returns the cursor or print head to the beginning of a line; line feed, which moves the
cursor or print head down a line; bell, which rings a bell; and back space, which moves the cursor or print head
back one character.

The American Standard Code for Information Interchange abbreviated ASCII and pronounced AS
key, was designed to provide a common representation of characters for all computers. An ASCII code is
stored in the low-order seven bits of a byte; the most significant bit is conventionally a zero, although a system
can be designed either to expect it to be set or to ignore it. Seven bits allow the ASCII set to provide 128
different character codes, one for each English letter and number, most punctuation marks, the most commonly
use mathematical symbols, and 32 control codes.

The Western Design Center

16

The use of different bit values, or numbers, to store character codes, is entirely analogous to the
“decoder ring” type of cipher: the letter ‘A’ is one, ‘B’ is two, and so on; but in the case of the ASCII character
set, the numbers assigned to the letters of the alphabet are different, and there are different codes for upper- and
lower-case letters.

There is an ASCII chart in Appendix F of this book. Notice that since the decimal digits 0 through 9
are represented by $30 to $39, they can be easily converted between their binary representations and their actual
values by the addition or subtraction of $30. The letters are arranged in alphabetical order, the capital letters
from A through Z represented by $41 through $5A and the lower-case letters from a through z represented by
$61 through $7A. This allows letters to be placed in alphabetical order by numerically sorting their ASCII
values, and characters to be converted between upper- and lower-case by the addition or subtraction of $20.
Finally, notice that the control characters from Ctrl-@ and Ctrl-A through Ctrl-Z and on to Ctrl-_ run from zero
to $1F and allow easy conversion between the control characters and the equivalent printing characters by the
addition or subtraction of $40.

To print a character on an output device, you must send it the ASCII value of the character: to print an
‘A’, you must send $41 to the screen, not $A, which is the ASCII code for a line feed; and to print an ’8’, you
must send $38, not $8, which is the ASCII code for a backspace. The space character, too, has and ASCII code:
$20.

Since any memory value – take $41 for example – could represent either an ASCII code (for ‘A’ in this
case) or a number (decimal 65), the interpretation of the data is defined by the code of the program itself and
how it treats each piece of data it uses within a give context.

Boolean Logic

Logical operations interpret the binary on/off states of a computer’s memory as the values true and
false rather than the numbers one and zero. Since the computer handles data one or two bytes at a time, each
logical operation actually manipulates a set of bits, each with its own position.

Logical operations manipulate binary “flags”. There are three logical operations that are supported by
65x microprocessor instructions, each combining two operands to yield a logical (true or false) result: and, or,
and exclusive or.

Logical And

The AND operator yields true only if both of the operands are themselves true; otherwise, it yields
false. Remember, true is equivalent to one, and false equivalent to zero. Within the 65x processors, two strings
of eight, or in the case of the 65816, eight or sixteen, individual logical values may be ANDed, generating a
third string of bits; each bit in the third set is the result of ANDing the respective bit in each of the first two
operands. As a result, the operation is called bitwise.

When considering bitwise logical operations, it is normal to use binary representation. When
considered as a numeric operation on two binary numbers, the result given in Figure 1.3 makes little sense. By
examining each bit of the result, however, you will see that each has been determined by ANDing the two
corresponding operand bits.

11011010 $DA
AND 01000110 $45

equals 01000010 $42

Figure 1-3 ANDing Bits

The Western Design Center

17

A truth table can be drawn for two-operand logical operations. You find the result of ANDing two bits
by finding the setting of one bit on the left and following across until you’re under the setting of the other bit.
Table 1.2 shows the truth table for AND.

Second Operand
 0 1

First Operand
 0 0 0
 1 0 1

Table 1-2 Truth Table for AND

Logical Or

The OR operator yields a one or true value if either (or both) of the operands is true. Taking the same
values as before, examine the result of the logical OR operation in Figure 1.4. The truth table for the OR
function is shown in Table 1.3.

11011010 $DA
OR 01000110 $45

equals 11011110 $DE

Figure 1-4 ORing Bits

Logical Exclusive Or

The exclusive OR operator is similar to the previously-described OR operation; in this case, the result
is true only if one or the other of the operands is true, but not if both are true or (as with OR) neither is true.
That is, the result is true only if the operands are different, as Figure 1.5 illustrates using the same values as
before. The truth table for exclusive OR is shown in Table 1.4.

Second Operand
 0 1

First Operand
 0 0 1
 1 1 1

Table 1-3 Truth Table for OR

11011010 $DA
EOR 01000110 $45

equals 10011100 $9C

Figure 1-5 EXCLUSIVE ORing Bits

Second Operand
 0 1

First Operand
 0 0 1
 1 1 0

Table 1-4 Truth Table for EXCLUSIVE OR

Logical Complement

As Figure 1.6 shows, the logical complement of a value is its inverse: the complement of true is false,
and the complement of false is true.

The Western Design Center

18

11011010 $DA

COMPLEMENTED

equals 00100101 $25

Figure 1-6 COMPLEMENTing Bits

While the 65x processors have no complement or not function built in, exclusive ORing a value with a
string of ones ($FF or $FFFF) produces the complement, as Figure 1.7 illustrates.

11011010 $DA
EOR 11111111 $FF

equals Complement 00100101 $25

Figure 1-7 COMPLEMENTing Bits Using Exclusive OR

Since complement has only one operand, its truth table, drawn in Table 1.5, is simpler than the other
truth tables.

operand result
0 1
1 0

Table 1-5 Truth Table for COMPLEMENT

Signed Numbers

Many programs need nothing more than the whole numbers already discussed. But others need to store
and perform arithmetic on both positive and negative numbers.

Of the possible systems for representing signed numbers, most microprocessors, among them those in
the 65x family, use two’s complement. Using two’s-complement form, positive numbers are distinguished
from negative ones by the most significant bit of the number: a zero means the number is positive; a one means
it is negative.

To negate a number in the two’s-complement system, you first complement each of its bits, then add
one. For example, to negate one (to turn plus-one into minus-one):

00000001 To negate +1,
11111110 complement each bit
 +1 and add one.

11111111 The result is – 1.

So $FF if the two’s-complement representation of minus-one. When converting to two’s complement
by hand, an easier technique than the two-step process is to copy zeroes from the right (least significant bit)
until the first one is reached; copy that one, and then change every zero to a one and every one to a zero as you
continue to the left. Try it on the example above.

Now, instead of using eight bits to represent the integers from zero to 255, two’s-complement
arithmetic uses eight bits to represent signed numbers from –128 ($80) to + 127 ($7F), as Table 1.6 shows.
There is always one more negative than positive number in a two’s-complement system.

The Western Design Center

19

Decimal Hexadecimal Binary
+127 $7F 0111 1111
+126 $7E 0111 1110
+125 $7D 0111 1101

. . .

. . .

. . .
+1 1 0000 0001

0 0 0000 0000
-1 $FF 1111 1111
-2 $FE 1111 1110
-3 $FD 1111 1101

. . .

. . .

. . .
-126 $82 1000 0010
-127 $81 1000 0001
-128 $80 1000 0000

Table 1-6 The Eight-Bit Range of Two’s-Complement Numbers

Another practical way to think of negative two’s-complement numbers is to think of negative numbers
as the (unsigned) value that must be added to the corresponding positive number to produce zero as the result.
For example, in an eight-bit number system, the value that must be added to one to produce zero (disregarding
the carry) is $FF; 1+$FF=$100, or 0 if only the low-order eight bits is considered. $FF must therefore be the
two’s-complement value for minus one.

The introduction of two’s-complement notation creates yet another possibility in interpreting the data
stored at an arbitrary memory location. Since $FF could represent either the unsigned number 255 or the
negative integer minus-one, it’s important to remember that it is only the way in which a program interprets the
data stored in memory that gives it its proper value – signed or unsigned.

Storing Numbers in Decimal Form

Computers use numbers in binary form most efficiently. But when a program calls for decimal
numbers to be entered or output frequently, storing numbers in their decimal form – rather than converting them
to binary and back – may be preferable. Further, converting floating-point decimal numbers to a binary
floating-point form and back can introduce errors: for example, 8 minus 2.1 could result in 5.90000001 rather
than the correct answer, 5.9.

As a result, some programs, such as accounting applications, store numbers in decimal form, each
decimal digit represented by four bits, yielding two decimals digits per byte, as Table 1.7 shows. This form is
called binary-coded decimal BCD lies somewhere between the machine’s native binary and abstractions such
as the ASCII character codes for numbers.

Since four bits can represent the decimal numbers from zero to fifteen, using the same number of bits to
represent only the numbers from zero through nine wastes six combinations of the binary digits. This less than
optimal use of storage is the price of decimal accuracy and convenience.

The Western Design Center

20

Binary Hexadecimal Decimal BCD
0000 0000 0 0 0000 0000
0000 0001 1 1 0000 0001
0000 0010 2 2 0000 0010
0000 0011 3 3 0000 0011
0000 0100 4 4 0000 0100
0000 0101 5 5 0000 0101
0000 0110 6 6 0000 0110
0000 0111 7 7 0000 0111
0000 1000 8 8 0000 1000
0000 1001 9 9 0000 1001
0000 1010 A 10 0001 0000
0000 1011 B 11 0001 0001
0000 1100 C 12 0001 0010
0000 1101 D 13 0001 0011
0000 1110 E 14 0001 0100
0000 1111 F 15 0001 0101

Table 1-7 The First 16 BCD Numbers

The 65x processors have a special decimal mode which can be set by the programmer. When decimal
mode is set, numbers are added and subtracted with the assumption that they are BCD numbers: in BCD mode,
for example, 1001+1 (9+1) yields the BCD results of 0001 0000 rather than the binary result of 1010 (1010 has
no meaning in the context of BCD number representation).

Obviously, in different context 0001 0000 could represent either 10 decimal or $10 hexadecimal (16
decimal); in this case, the interpretation is dependent on whether the processor is in decimal mode or not.

Computer Arithmetic

Binary arithmetic is just like decimal arithmetic, except that the highest digit isn’t nine, it’s one. Thus
1+0=1, while 1+1=0 with a carry of 1, or binary 10. Binary of 10 is equivalent of a decimal 2. And 1-0=1,
while during the subtraction of binary 1 from binary 10, the 1 can’t be subtracted from the 0, so a borrow is
done, getting the 1 from the next position (leaving it 0); thus, 10-1=1.

Addition and subtraction are generally performed in one or more main processor registers, called
accumulators. On the 65x processors, they can store either one or, optionally on the 65802 and 65816, two
bytes. When two numbers are added that cause a carry from the highest bit in the accumulator, the result is
larger than the accumulator can hold. To account for this, there is a special one-bit location, called a carry bit,
which holds the carry out of the high bit from an addition. Very large numbers can be added by adding the low-
order eight or sixteen bits (whichever the accumulator holds) of the numbers, and then adding the next set of bit
plus the carry from the previous addition, and so on. Figure 1.8 illustrates this concept of multiple-precision
arithmetic.

Microprocessor Programming

You have seen how various kinds of data are represented and, in general, how this data can be
manipulated. To make those operations take place, a programmer must instruct the computer on the steps it
must take to get the data, the operations to perform on it, and finally the steps to deliver the results in the
appropriate manner. Just as a record player is useless without a record to play, so a computer is useless without
a program to execute.

Machine Language

The microprocessor itself speaks only one language, its machine language, which inevitably is just
another form of binary data. Each chip design has its own set of machine language instructions, called its
instruction set, which defines the function that it can understand and execute. Whether you program in
machine language, in its corresponding assembly language, or in a higher level language like BASIC or Pascal,
the instructions that the microprocessor ultimately executes are always machine language instructions.
Programs in assembly and higher-level languages are translated (by assemblers, compilers and interpreters) to
machine language before the processor can execute them.

The Western Design Center

21

Each machine language instruction in the 65x series of microprocessors is one to four bytes long. The
first byte of each instruction is called the operation code (opcode for short); it specifies the operation the
computer is to do. Any additional bytes in the instruction make up the operand, typically all or part of an
address to be accessed, or a value to be processed.

0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1

 $38 $83

1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1

 Plus $A5 Plus $A5

PLUS CARRY 1

1 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0

Equal $DE Equals
$28

Carry = 1

$3883 Plus $A5A5 Equals $DE28

Figure 1-8 Multiple-Precision Arithmetic

The Western Design Center

22

Assembly Language

Writing long strings of hexadecimal or binary instructions to program a computer is obviously not
something you would want to do if you could at all avoid it. The 65816’s 256 different opcodes, for example,
would be difficult to remember in hexadecimal form – and even harder in binary form. Assembly language,
and programs which translate assembly language to machine code (called assemblers) were devised to simplify
the task of machine programming.

Assembly language substitutes a short word – known as a mnemonic (which means memory aid) – for
each binary machine code instruction. So while the machine code instruction 1010 1010, which instructs the
65x processor to transfer the contents of the A accumulator to the X index register, may be hard to remember,
its assembler mnemonic TAX (for “Transfer A to X”) is much easier.

The entire set of 65x opcodes are covered alphabetically by mnemonic label in Chapter Eighteen, while
Chapter Five through Thirteen discuss them in functional groups, introducing each of them, and providing
examples of their use.

To write an assembly language program, you first use a text editing program to create a file containing
the series of instruction mnemonics and operands that comprise it; this is called the source program, source
code or just source. You then use this as the input to the assembler program, which translates the assembler
statements into machine code, storing the generated code in an output file. The machine code is either in the
form of executable object code, which is ready to be executed by the computer, or (using some development
systems), a relocatable object module, which can be linked together with other assembled object modules
before execution.

If this were all that assembly language provided, it would be enough to make machine programming
practical. But just as the assembler lets you substitute instruction mnemonics for binary operation codes, it lets
you use names for the memory locations specified in operands so you don’t have to remember or compute their
addresses. By naming routines, instructions which transfer control to them can be coded without having to
know their addresses. By naming constant data, the value of each constant is stated only in one place, the place
where it is named. If a program modification requires you to change the values of the constants, changing the
definition of the constant in that one place changes the value wherever the name has been used in the program.
These symbolic names given to routines and data are known as labels.

As your source program changes during development, the assembler will resolve each label reference
anew each time an assembly is performed, allowing code insertions and deletions to be made. If you hard-
coded the addresses yourself, you would have to recalculate them by hand each time you inserted or deleted a
line of code.

The use of an assembler also lets you comment your program within the source file – that is, to explain
in English what it is you intend the adjacent assembly statements to do and accomplish.

More sophisticated macro assemblers take symbol manipulation even further, allowing special labels,
called macro instructions (or just macros for short), to be assigned to a whole series of instructions. Macro is
a Greek word meaning long, so a macro instruction is a “long” instruction. Macros usually represent a series of
instructions which will appear in the code frequently with slight variations. When you need the series, you can
type in just the macro name, as though it were an instruction mnemonic; the assembler automatically “expand”
the macro instruction to the previously-defined string of instructions. Slight variations in the expansion are
provided for by a mechanism that allows macro instructions to have operands.

Writing in Assembly Language

In addition to understanding the processor you’re working with, you must also have a good knowledge
of the particular assembler you are using to program in assembly language. While the specific opcodes used are
carved in the silicon die of the processor itself, the mnemonics for those opcodes are simple conventions and
may vary slightly from one assembler to another (although the mnemonics proposed by a processor’s
manufacturer will tend to be seen as the standard). Varying even more widely are assembler directives –
assembler options which can be specified in the midst of code. These options tell the assembler such things as
where to locate the program in memory, which portions of the source listing to print, or what labels to assign to
constants.

The Western Design Center

23

Nevertheless, most microcomputer assemblers have a great deal in common. They generally provide
four columns, or fields, for different types of information about an operation: a label which can be used to
symbolically identify the location of the code; the opcode; the operand; and space for comments. Figure 1.9
illustrates some typical assembler source code, with the different fields highlighted.

While an opcode or directive appears in every assembler statement, the operand field may or may not be
required by any particular opcode, since there are several one-byte instructions which consist solely of an
opcode. The label and comment field are optional, added to make the program easier to read, write, debug, and
modify later.

During assembly, the assembler checks the fields to be sure the information there is complete, of the
proper type, and not out of order, and issues error messages to warn you problems. It also checks to be sure you
have not tried to define the same label twice, and that you have not used a label you did not define.

Basic Programming Concepts

There are several concepts which, in general terms, characterize the different ways a program can
execute.

The most obvious concept is that of straight-line execution: a program starts in low memory and steps
a few bytes higher into memory with execution of each new instruction until it reaches the end, never doubling
back or jumping forward. Straight-line execution is clean and clear: it begins at the beginning, executes every
instruction in the program once, and ends at the end. This type of execution is the default execution mode. The
65x processors have register called the program counter, which is automatically updated at the end of each
instruction so that it contains the address of the next instruction to be executed.

Label
Field

Opcode
Field

Operand
Field

Comment
Field

REP #$10
LONGI ON

SEP #$20
LONGA OFF

LDY #0
LOOP LDA (1,S),Y get character from first string

BEQ PASS if zero, end of string: match
CMP (3,S),Y compare to corresponding char in 2nd string
BNE FAIL bra if not equal; probably failure
INY else do not pair
BRA LOOP

; matches shortest string

PASS PLP they match up to shortest string;
CLC restore status, but clear carry
BRA EXIT

FAIL LDA (3,S),Y was last failure due to end of string2?
BEQ PASS yes; let it pass
PLP restore status, but set carry (no match)
SEC

Figure 1-9 Typical Assembler Source Code

The Western Design Center

24

Selection Between Paths

Real-life problems – the kind you want to write computer programs to solve – are seldom straight and
simple. A computer would be very limited with only straight-line execution capability, that is, if it could not
make choices between different courses of action based on the conditions that exist while it is executing.
Selection between paths provides computers with their decision-making capabilities. The 65x microprocessors
carry out selection between paths by means of conditional branch instructions.

An example of selection between paths would be a tic-tac-toe program. Playing second, the program
must choose where to place its first token from eight different squares. If the opponent has taken the center
square, the program must respond differently than if a side square were taken.

Execution still begins at the beginning and ends at the end, in a single pass through the code, but whole
groups of instructions on paths not taken are not executed.

Looping

Let’s say you write a program to convert a Fahrenheit temperature to Celsius. If you had only one
temperature to convert, you wouldn’t spend the time writing a program. What you want the program to do is
prompt for a Fahrenheit temperature, convert it to Celsius, print out the result, then loop back and prompt for
another Fahrenheit temperature, and so on – until you run out of temperatures to convert. This program uses a
program concept called looping or iteration, which is simply the idea that the same code can be reexecuted
repeatedly – with different values for key variables – until a given exit condition. In this case the exit condition
might be the entry of a null or empty input string.

Often, it’s not the whole program that loops, but just a portion of it. While a poker program could deal
out 20 cards, one at a time, to four players, it would use much less program memory to deal out one card to each
of the players, then loop back to do the same thing over again four more times, before going on to take bets and
play the poker hands dealt.

Looping saves writing repetitive code over and over again, which is both tedious and uses up memory.
The 65x microprocessors execute loops by means of branch and jump instructions.

Looping almost always uses the principle of selection between paths to handle exiting the loop. In the
poker program, after each set of four cards has been dealt to the four players, the program must decide if that
was the fifth set of four cards or if there are more to deal. Four times it will select to loop back and deal another
set; the fifth time, it will select another path – to break out of the loop to begin prompting for bets.

Subroutines

Even with loops, programmers could find themselves writing the same section of code over and over
when it appears in a program not in quick succession but rather recurring at irregular intervals throughout the
program. The solution is to make the section of code a subroutine, which the program can call as many times
and from as many locations as it needs to by means of a jump-to-subroutine instruction. The program, on
encountering the subroutine call, makes note of its current location for purposes of returning to it, then jumps to
the beginning of the subroutine code. At the end of the subroutine code, a return-from-subroutine instruction
tells the program to return from the subroutine to the instruction after the subroutine call. There are several
different types of calls and returns available on the different 65x processors; all of them have a basic call and
return instruction in common.

Programmers often build up large libraries of general subroutines that multiply, divide, output
messages, send bytes to and receive bytes from a communications line, output binary numbers in ASCII,
translate numbers from keyboard ASCII into binary, and so on. Then when one of these subroutines is needed,
the programmer can get a copy from the library or include the entire library as part of his program.

The Western Design Center

25

Part 2
Architecture

The Western Design Center

26

2) Chapter Two
Architecture of the 6502

This chapter, and the two which follow, provide overviews of the architecture of the four 65x family
processors: the 6502, the 65C02, and the 65802/65816. Each chapter discusses the register set and the function
of the individual registers, the memory model, the addressing modes, and the kinds of operations available for
each respective processor. Because each successive processor is a superset of the previous one, each of the next
two chapters will build on the material already covered. Much of what is discussed in this chapter will not be
repeated in the next two chapters because it is true of all 65x processors. As the original 65x machine, the 6502
architecture is particularly fundamental, since it describes a great number of common architectural features.

Microprocessor Architecture

The number, kinds, and sizes of registers, and the types of operations available using them, defines the
architecture of a processor. This architecture determines the way in which programming problems will be
solved. An approach which is simple and straightforward on one processor may become clumsy and inefficient
on another if the architectures are radically different.

A register is a special memory location within the processor itself, where intermediate results,
addresses, and other information which must be accessed quickly are stored. Since the registers are within the
processor itself, they can be accessed and manipulated much faster than external memory. Some instructions
perform operations on only a single bit within a register; others on two registers at once; and others move data
between a register within the processor and external memory. (Although the registers are indeed a special kind
of memory, the term memory will be used only to refer to the addressable memory external to the
microprocessor registers.)

The 6502 is not a register-oriented machine. As you will see, it has a comparatively small set of
registers, each dedicated to a special purpose. The 6502 instead relies on its large number of addressing modes,
particularly its direct-page indirect addressing modes, to give it power.

An addressing mode is a method, which may incorporate several intermediate calculations involving
index registers, offset, and base addresses, for generating an instruction’s effective address – the memory
address at which data is read or written. Many 6502 instructions, such as those for addition, have many
alternate forms, each specifying a different addressing mode. The selection of the addressing mode by you, the
programmer, determines the way in which the effective address will be calculated.

There are three aspects to learning how to program the 6502 or any processor. Learning the different
addressing modes available and how to use them is a big part. Learning the available instructions and
operations, such as addition, subtraction, branching, and comparing, is another. But to make sense of either,
you must begin by understanding what each of the different registers is and does, and how the memory is
organized.

If you compare the different processors in the 65x family – the eight-bit 6502 and 65C02 and the
sixteen-bit 65816 and 65802 – you will find they all have a basic set of registers and a basic set of addressing
modes in common: the 6502’s.

The 6502 Registers

The 6502 registers are:
• The accumulator, or A register, is the primary user register and generally holds one of the operands, as well

as the result, of any of the basic data-manipulation instructions.
• The X and Y index registers are used chiefly in forming effective addresses for memory accesses and as loop

counters.
• The processor status, or P, register contains bit-fields to indicate various conditions, modes, and results

within the processor.
• The stack pointer, or S register, is a pointer to the next available location on the system stack, a special area

of memory for temporary data storage. In addition to being available to the user, the stack pointer and stack
are also used automatically every time a subroutine is called or an interrupt occurs to store return information.

The Western Design Center

27

• Finally, the program counter, or PC, is a pointer to the memory location of the instruction to be executed
next.

These six basic 6502 registers are depicted in the programmer model diagrammed in Figure 2.1.
Notice that, with the exception of the program counter (PC), all of them are eight-bit registers. Because they
can contain only eight bits, or one byte, of data at a time, they can only perform operations, such as addition, on
one byte at a time. Hence the 6502 is characterized as an “eight-bit” processor.

Although the user registers of the 6502 are only eight bits wide, all of the external addresses generated
are sixteen bits. This gives the 6502 an address space of 64K (216=65,536). In order to access data located
anywhere in that 64K space with an eight bit processor, one instruction operand in calculating effective
addresses is almost always found in memory – either in the code itself following an instruction, or at a specified
memory location – rather than in a register, because operands in memory have no such limits. All that is needed
to make a memory operand sixteen bits are two adjacent memory locations to put them in.

To allow programs longer than 256 bytes, the program counter, which always points to the location of
the next instruction to be executed, is necessarily sixteen bits, or two bytes, wide. You may therefore locate a
6502 program anywhere within its 64K address space.

Now each of the 6502 registers will be described in more detail.

The Accumulator

The accumulator (A) is the primary register in the 65x processor. Almost all arithmetic and most local
operations are performed on the data in the accumulator, with the result of the operation being stored in the
accumulator. For example to add two numbers which are stored in memory, you must first load one of them
into the accumulator. Then you add the other to it and the result is automatically stored in the accumulator,
replacing the value previously loaded there.

Because the accumulator is the primary user register, there are more addressing modes for accumulator operations
than for any other register.

The 6502 accumulator is an eight-bit register. Only one byte is ever fetched from memory when the accumulator
is loaded, or for operations which use two values – one from memory and the other in the accumulator (as in the addition
example above).

The Western Design Center

28

 6502 Programming Model

7 0

Accumulator (A)

X Index Register (X)

Y Index Register (Y)
15

Stack Pointer (S)

Program Counter (PC)

Processor Status Register (P)

n v b d i z c

Carry 1= Carry

Zero 1= Result Zero

IRQ Disable 1= Disable

Decimal Mode 1= Decimal Mode

Break Instruction
1= Break caused
 interrupt

Overflow 1= Overflow

Negative 1= Negative

Figure 2-1 6502 Programming Model

The Western Design Center

29

The X and Y Index Registers

The index registers are generally used either as components in generating effective addresses when any of the
indexed addressing modes are used, or as loop counters. They can be easily incremented or decremented; that is, the
value in the index registers can, by means of a single instruction, be increased or decreased by the number one. They are,
therefore, useful in accessing successive table locations, moving memory, and counting loop iterations. Unlike the
accumulator, no logical or arithmetic operations (other than incrementing, decrementing, and comparing) may be
performed upon them.

The use of indexing allows easy access to continuous series of memory locations, such as a multiple-
byte objects. Indexing is performed by adding one of several forms of base addresses, specified in the operand
field of an instruction, to the contents of an index register. While a constant operand is fixed when a program is
created, the index registers are variable and their contents can be changed readily during the execution of a
program. As a result, indexing provides an extremely flexible mechanism for accessing data in memory.

Although the X and Y index registers are basically similar, their capabilities are not identical. Certain
instructions and addressing modes work only with one or the other of these registers. The indirect indexed
addressing modes require the Y register. And while the X is primarily used with direct page indexed and
absolute indexed addressing, it has its own unique (though infrequently used) indexed indirect addressing
mode. These differences will become clear as you learn more about the different addressing modes.

The Status Register

The status register (also called the P register, for processor status) contains a number of flags which
describe, in part, the status of the microprocessor and its operations. A flag is, in this case, a single bit within
the status register. Its value, set (a one) or reset (a zero), indicates one of two conditions. While the 6502’s
eight-bit status register could provide eight one-bit flags, only seven of them are used.

Figure 2.1 showed the 6502 P status register; Tables 2.1 and 2.2 describe the functions of its flags.
Table 2.1 describes the five status register condition code flags – negative, zero, overflow, carry, and

break. Their values indicate various conditions that result from the execution of many 6502 instructions. Some
instructions affect none of the condition code flags, others affect only some, and still others affect all. The
effect that an instruction has on the condition flags is an important part of describing what the instruction does.
These condition code flags are used to determine the success or failure of the branch on condition instructions.

Notice particularly the zero flag (z). It can sometimes confuse assembly programmers because a zero
flag setting of one indicates a zero result while a zero flag setting of zero indicates a non-zero result.

The Western Design Center

30

Name Abbrev Bit
Explicitly

set or clear
Set or cleared to

Reflect an operation result

negative n 7 - Reflects most significant bit results
(the sign of a two’s-complement binary number):
 0= High bit clear (positive result)
 1= high bit set (negative result)

zero z 1 - Indicates zero or non-zero results:
 0= non-zero result
 1- zero result

overflow v 6 Clear to reverse
“set-overflow”
hardware input

Indicates invalid carry into high bit of arithmetic
result (tow’s-complement overflow):
 0= two’s-compliment result ok
 1= error if two’s-complement arithmetic

carry c 0 Clear before starting
 addition
Set before starting
 subtraction

Arithmetic overflow:
 addition: carry out of high bit:
 0= no carry
 1= carry
 subtraction: borrow required to subtract:
 0= borrow required
 1= no borrow required
Logic:
 receives bit shifted or rotated out;
 source of bit rotated in

break b 4 Status register itself: no function; value unknown.
Pushed status register after interrupt:
 indicates source of interrupt:
 0= hardware interrupt
 1= software interrupt (BRK) instruction)

Table 2-1 Status Register Condition Code Flags

In connection with the carry flag, it is important to know that the 6502 add operation has been designed
to always add in the carry, and the subtract operation to always use the carry as a borrow flag, making it
possible to do multiple-precision arithmetic where you add successively higher sets of bytes plus the previous
adds carry or subtract successfully higher sets of bytes taking into the operation that previous subtract’s borrow.
The drawback to this scheme is that the carry must be zeroed before starting an add and set before starting a
subtraction.

In the case of subtraction, the 6502’s carry flag is an inverted borrow, unlike that of most other
microprocessors. If a borrow occurred during the last operation, it is cleared; if a borrow did not result, it is set.

Finally, notice that in the status register itself, the break bit has no function. Only when an interrupt
pushes the statue register onto the stack is the break bit either cleared or set to indicate the type of interrupt
responsible.

Table 2.2 describes the other two P register flags, the mode select flags: by explicitly setting or clearing
them, you can change the operational modes of the processor.

The Western Design Center

31

Name Abbrev Bit
Reason to explicitly

set or clear
decimal d 3 Determines mode for add & subtract (not increment/decrement, through):

 Set to force decimal operations (BCD)
 Clear to return to binary operation

interrupt i 2 Enables or disables processor’s IRQ interrupt line:
 Set to disable interrupts by masking the IRQ line
 Clear to enable IRQ interrupts

Table 2-2 Status Register Mode Select Flags

The decimal mode flag toggles add and subtract operations (but not increment or decrement
instructions) between binary and decimal (BCD). Most processors require a separate decimal-adjust operation
after numbers represented in decimal format have been added or subtracted. The 65x processors do on-the-fly
decimal adjustment when the decimal flag is set.

The IRQ disable or interrupt disable flag, toggles between enabling and diabling interrupts.
Typically, the interrupt mask is set during time-critical loops, during certain I/O operations, and while servicing
another interrupt.

The Stack Pointer

The stack pointer (S) implements directly in hardware a data structure known as a stack or push-down
stack. The stack is a dedicated area of memory which is accessed by the user via push and pull instructions.
Push stores the contents of a register onto the stack; pull retrieves a data item from the stack, storing it into a
register.

The 6502’s stack is limited to 256 bytes by the eight-bit width of its stack pointer. The chip confines it
in memory between $100 and $1FF by fixing the high-order byte of the stack address at $01. Software power-
up routines generally initialize the 6502 stack pointer to $FF, resulting in an initial stack location of $1FF (see
Figure 2.2).

The push and pull instructions are one-byte instructions: the instruction itself specifies the register
affected and the value in the stack pointer register, added to $100, specifies the stack memory location to be
accessed.

When a push instruction is executed, data is moved from the register specified by the instructions
opcode to the stack address pointed to by the stack pointer. As Figure 2.3 shows, the value in the stack pointer
is then decremented so that it points to the next memory location – the location to which the next push
instruction encountered will store its data.

The pull instruction reverses the process and retrieves data from the stack. When a pull instruction is
executed, first the stack pointer is incremented, the register specified in the instruction opcode is loaded with the
data at the incremented address point to by SP.

The Western Design Center

32

Initializing the Stack Pointer to $FF:
Resulting Initial Stack of $1FF

Stack Pointer = $FF

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

Stack
$01FF

(1st available)

$01FE

$01FD

$01FC

$01FB

Figure 2-2 Initializing the Stack Pointer to $FF

In addition to being available as a temporary storage area, the stack is also used by the system itself in
processing interrupts, subroutine calls, and returns. When a subroutine is called the current value of the
program counter is pushed automatically onto the stack; the processor executes a return instruction by reloading
the program counter with the value on the top of the stack.

While data is pushed into subsequently lower memory locations on the 65x stacks, the location of the
last data pushed is nonetheless referred to an the top of the stack.

The Western Design Center

33

After Pushing the Accumulator

Stack Pointer = $FE
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0

Stack

$01FF A A A A A A A A

$01FE
(next available)

$01FD

$01FC

$01FB

Accumulator

A A A A A A A A

Figure 2-3 After Pushing the Accumulator

The Program Counter

The program counter (PC) contains the address of the next byte in the instruction stream to fetch.
Execution of a program begins when the program counter is set to the program’s entry point (typically the
address at which it is loaded). The processor fetches an instruction opcode from location, and proceeds to
execute it. Based on the given opcode, the processor will need to fetch zero, one, or two bytes of operand from
the successive locations following the instruction. When the operand has been fetched, the instruction is
executed. The program counter is normally incremented to point to the next instruction in memory, except in
the case of jump, branch, and call instructions, which pass control to a new location within the program by
storing the new location to the program counter.

The 6502 program counter is sixteen bits wide, allowing for programs of up to 64K byte. If the program counter
is still incremented past $FFFF, it wraps around to $0000.

Addressing Modes

The fourteen different addressing modes that may be used with the 6502 are shown in Table 2.3. The
availability of this many different addressing modes on the 6502 gives it much of its power: Each one allows a
given instruction to specify its effective address – the source of the data it will reference – in a different manner.

Not all addressing modes are available for all instructions; but each instruction provides a separate
opcode for each of the addressing modes its supports.

The Western Design Center

34

Addressing Mode Syntax Example
Opcode Operand

Implied DEX
Accumulator ASL A
Immediate LDA #55
Absolute LDA $2000
Program Counter Relative BEQ LABEL12
Stack PHA
Zero Stack LDA $81
Absolute Indexed with X LDA $2000,X
Absolute Indexed with Y LDA $2000,Y
Zero Page Indexed with X LDA $55,X
Zero Page Indexed with Y LDX $55,Y
Absolute Indirect JMP ($1020)
Zero Page Indirect Indexed with Y (Postindexed) LDA ($55),Y
Zero Page Indexed Indirect with X (Preindexed) LDA ($55,X)

Table 2-3 6502 Addressing Modes

For some of the 6502 addressing modes, the entire effective address is provided in the operand field of
the instruction; for many of them, however, formation of the effective address involves an address calculation,
that is, the addition of two or more values. The addressing mode indicates where these values are to come from
and how they are to be added together to form the effective address.

Implied addressing instructions, such as DEY and INX, need no operands. The register that is the
source of the data is named in the instruction mnemonic and is specified to the processor by the opcode.
Accumulator addressing, in which data to be referenced is in the accumulator, is specified to the assembler by
the operand A. Immediate addressing, used to access data which is constant throughout the execution of a
program, causes the assembler to store the data right into the instruction stream. Relative addressing provides
the means for conditional branch instructions to require only two bytes, one byte less than jump instructions
take. The one-byte operand following the branch instruction is an offset from the current contents of the
program counter. Stack addressing encompasses all instructions, such as push or pull instructions, which use
the stack pointer register to access memory. And absolute addressing allows data in memory to be accessed by
means of its address.

Like the 6800 processor, the 6502 treats the zero page of memory specially. A page of memory is an
address range $100 bytes (256 decimal) long: the high bytes of the addresses in a given page are all the same,
while the low bytes run from $00 through $FF. The zero page is the first page of memory, from $0000 through
$00FF (the high byte of each address in the zero page is zero). Zero page addressing, a short form of absolute
addressing, allows zero page operands to be referenced by just one byte, the lower-order byte, resulting both in
fewer code bytes and in fewer clock cycles.

While most other processors provide for some form of indexing, the 6502 provides some of the
broadest indexing possibilities. Indexed effective addresses are formed from the addition of a specified base
address and index, as shown in Figure 2.4. Because the 6502’s index registers (X and Y) can hold only eight
bits, they are seldom used to hold index bases; rather, they are almost always used to hold the indexes
themselves. The 6502’s four simplest indexing modes add the contents of the X or Y register to an absolute or
zero page base.

Indirection (Figure 2.5) is less commonly found in microprocessor repertoires, particularly among
those microprocessors of the same design generation as the 6502. It lets the operand specify an address at
which another address, the indirect address, can be found. It is at this second address that data will be
referenced. The 6502 not only provides indirection for its jump instruction, allowing jumps to be vectored and
revectored, but it also combines indirection with indexing to give it real power in accessing data. It’s as though
the storage cells for the indirect addresses are additional 6502 registers, massively extending the 6502’s register
set and possibilities. In one addressing mode, indexing is performed before indirection; in another, after. The
first provides indexing into an array of indirect addresses and the second provides indexing into array which is
located by the indirect address.

The full set of 65x addressing modes are explained in detail in Chapters 7 and 11 and are reviewed in
the Reference Section

The Western Design Center

35

.
Indexing: Base plus Index

For example Base = $2000
Index Register X = $ 03

Effective Address = $2003
Base = $2000

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

$2000
$2001
$2002

$2004

X = $03
0 0 0 0 0 0 1 1

Figure 2-4 Indexing: Base Plus Index

Instructions

The 6502 has 56 operation mnemonics, as listed in Table 2.4, which combine with its many addressing
modes to make 151 instructions available to 6502 programmers.

Arithmetic instructions are available, including comparisons, increment, and decrement. But missing
are addition or subtraction instructions which do not involve the carry; as a result, you must clear the carry
before beginning an add and set it before beginning subtraction.

$2003

The Western Design Center

36

Indirection: Operand Locates Indirect Address

For Example: Zero Page Operand = $20

Data at $20.21 (Indirect Address) = $3458

Effective Address = $3458

 Zero Page

Operand = $20

0 0 1 0 0 0 0 0

Memory

$001F

0 1 0 1 1 0 0 0 $58

$0021
0 0 1 1 0 1 0 0 $34

$0022

$0023

$3456

$3457

$3458

$3459

$345A

Figure 2-5 Indirection: Operand Locates Indirect Address

$0020

$3458

The Western Design Center

37

Instruction
Mnemonic Description
ADC Add memory and carry to accumulator
AND And accumulator with memory
ASL Shift memory or accumulator left one bit
BCC Branch if carry clear
BCS Branch if carry set
BEQ Branch if equal
BIT Test memory bits against accumulator
BNE Branch if negative
BPL Branch if not equal
BRK Branch if plus Software break (interrupt)
BVC Branch if overflow clear
BVS Branch if overflow set
CLC Clear carry flag
CLD Clear decimal mode flag
CLI Clear interrupt-disable flag
CLV Clear overflow flag
CMP Compare accumulator with memory
CPX Compare index register X with memory
CPY Compare index register Y with memory
DEC Decrement
DEX Decrement index register X
DEY Decrement index register Y
EOR Exclusive-OR accumulator with memory
INC Increment
INX Increment index register X
INY Increment index register Y
JMP Jump
JSR Jump to subroutine
LDA Load accumulator from memory
LDX Load index register X from memory
LDY Load index register Y from memory
LSR Logical shift memory or accumulator right
NOP No operation
ORA OR accumulator with memory
PHA Push accumulator onto stack
PHP Push status flags onto stack
PLA Pull accumulator from stack
PLP Pull status flags from stack
ROL Rotate memory or accumulator left one bit
ROR Rotate memory or accumulator fight one bit
RTI Return from interrupt
RTS Return from subroutine
SBC Subtract memory with borrow from accumulator
SEC Set carry flag
SED Set decimal mode flag
SEI Set interrupt-disable flag
STA Store accumulator to memory
STX Store index register X to memory
STY Store index register Y to memory
TAX Transfer accumulator to index register X
TAY Transfer accumulator to index register Y
TSX Transfer stacker point to index register X
TXA Transfer index register X to accumulator
TXS Transfer index register X to stack pointer
TYA Transfer index register Y to accumulator

Table 2-4 6502 Instructions

The Western Design Center

38

Logic instructions available include shifts and rotates, as well as an instruction for bit comparing.
Branch instructions are entirely flag-based, not arithmetic-operation based, so there are no single

branch-on-greater-than, branch-on-less-than-or-equal, or signed arithmetic branches. There is also no
unconditional branch and no branch-to-subroutine. The unconditional branch can be imitated by first executing
one of the 6502’s many clear- or set- flag instructions, then executing a branch-on-the-flag’s-condition
instruction.

All three of the main user registers can be loaded from and stored to memory, but only the accumulator
(not the index register) can be pushed onto and pulled from the stack (although the flags can also be pushed and
pulled). On the other hand, single instructions let the accumulator value be transferred to either index register
or loaded from either index register. One more transfer instruction is provided for setting the value of the stack
pointer to the value in the X index register.

The 6502 System Design

There are a number of other features of the 6502’s design which make it unique and make systems
designed with it stand apart from systems designed with other microprocessors.

Pipelining

The 65x microprocessors have the capability of doing two things at once: the 6502 can be carrying on
an internal activity (like an arithmetic or logical operation) even as it’s getting the next instruction byte from the
instruction stream or accessing data in memory.

A processor is driven by a clock signal which synchronizes events within the processor with memory
accesses. A cycle is a basic unit of time within which a single step of an operation can be performed. The
speed with which an instruction can be executed is expressed in the number of cycles required to complete it.
The actual speed of execution is a function both of the number of cycles required for completion and the
number of timing signals provided by the clock every second. Typical clock values for 65x processors start at
one million cycles per second and go up from there.

As a result of the 6502’s capability of performing two different but overlapping phases of a task within
a single cycle, which is called pipelining, the 65x processors are much faster than non- pipelined processors.

Take the addition of a constant to the 6502’s eight-bit accumulator as an example.This requires five
distinct steps:

Step 1: Fetch the instruction opcode ADC.
Step 2: Interpret the opcode to be ADC of a constant.
Step 3: Fetch the operand, the constant to be added.
Step 4: Add the constant to the accumulator contents.
Step 5: Store the result back to the accumulator.

Pipelining allows the 6502 to execute steps two and three in a single cycle: after getting an opcode, it
increments the program counter, puts the new program address onto the address bus, and gets the next program
byte, while simultaneously interpreting the opcode. The completion of steps four and five overlaps the next
instruction’s step one, eliminating the need for two additional cycles.

So the 6502’s pipelining reduces the operation of adding a constant from five cycles to two!
The clock speed of a microprocessor has often been incorrectly presumed to be the sole determinant of

its speed. What is most significant, however, is the memory cycle time. The 68000, for example, which
typically operates at 6 to 12 megahertz (MHz, or millions of cycles per second) requires four clock periods to
read or write data to and from memory. The 65x processors require only one clock period. Because the 6502
requires fewer machine cycles to perform the same functions, a one-megahertz 6502 has a throughput unmatched
by the 8080 and Z80 processors until their clock rates are up to about four MHz.

The true measure of the relative speeds of various microprocessors can only be made by comparing
how long each takes, in its own machine code, to complete the same operation.

The Western Design Center

39

Memory Order of Multiple-Byte Values

Multiple-byte values could be stored in memory in one of two ways: low-order byte first, followed by
successively high order bytes; or high-order bytes first, followed by successively lower order bytes. The 6502,
like the Intel and Zilog chip (the 8080, Z80, 8086, and so on), but unlike the Motorola chips (the 6800, 6809,
68000, and so on), puts the low-order byte first, into the lower memory address.

This seemingly unnatural order of the placement of multiple-byte values in memory as a $30 followed
by $FE is not $30FE but rather $FE30. Multiple-byte values are written high-order first, to read from left to
right; this is the opposite of how the bytes are placed in memory. This memory order, however, contributes to
the success and speed of pipelining. Consider, as an example, the loading of the accumulator using absolute
indexed addressing (two lines for a cycle indicate simultaneous operations due to pipelining):

Cycle 1:Fetch the instruction opcode, LDA.
Cycle 2:Fetch the operand byte, the low byte of an array base.

Interpret the opcode to be LDA absolute indexed.
Cycle 3:Fetch the second operand byte, the high array base byte.

Add the contents of the index register to the low byte.
Cycle 4:Add the carry from the low address add to the high byte.
Cycle 5:Fetch the byte at the new effective memory address.

(NOTE: The 6502 also does a fetch during Cycle 4, before it checks to see if there was any carry; if there is no
carry into the high byte of the address, as is often true, then the address fetched from was correct and there is no
cycle five; the operation is a four-cycle operation in this case. Absolute indexed writes, however, always
require five cycles.)

The low-high memory order means that the first operand byte, which the 6502 fetches before it even
knows that the opcode is LDA and the addressing mode is absolute indexed, is the low byte of the address base,
the byte which must be added to the index register value first; it can do that add while getting the high-byte.

Consider how high-low memory order would weaken the benefits of pipelining and slow the process
down:

Cycle 1:Fetch the instruction opcode, LDA.
Cycle 2:Fetch an operand byte, the high byte of an array base.

 Interpret the opcode to be LDA absolute indexed.
Cycle 3:Fetch the second operand byte, the low array base byte.

 Store the high byte temporarily.
Cycle 4:Add the contents of the index register to the low byte.
Cycle 5:Add the carry from the low address add to the high byte.
Cycle 6:Fetch the byte at the new effective memory address.

Memory-Mapped Input/Output

The 65x family (like Motorola’s but unlike Zilog’s and Intel’s) accomplishes input and output not with
special opcodes, but by assigning each input/output device a memory location, and by reading from or writing
to that location. As a result, there’s virtually no limit to the number of I/O devices which may be connected to a
65x system. The disadvantage of this method is that memory in a system is reduced by the number of locations
which are set for I/O functions.

Interrupts

Interrupts tell the processor to stop what it is doing and to take care of some more pressing matter
instead, before returning to where it left off in regular program code. An interrupt is much like a doorbell:
having one means you don’t have to keep going to the door every few minutes to see if someone is there; you
can wait for it to ring instead.

An external device like a keyboard, for example, might cause an interrupt to present input. Or a clock
might generate interrupts to toggle the processor back and forth between two or more routines, letting it do
several tasks “at once.” A special kind of interrupt is reset (the panic button), which is generally used out of

The Western Design Center

40

frustration to force the processor into re-initialization. Reset generally does not return to the interrupted code
after it has been served, however.

The 6502 has three interrupt vectors – memory addresses that hold the locations of routines which are
automatically executed upon recognition of an interrupt by the processor. The first of these is used for reset.

The second vector is used both by maskable interrupts – those which you can force the processor to
ignore, either temporarily or permanently, by setting the i interrupt bit in the status register - and by software
interrupts - which are caused by the execution of the break instruction (BRK). If any hardware can cause a
maskable interrupt, the interrupt service routine pointed to by this vector must still determine the source of the
interrupt. It must poll a status flag on each possible hardware source as well as check the stacked register’s b
flag, which is set and pushed when a break instruction is executed. When it finds the source of the interrupt, it
must then branch to a routine which will respond to the interrupt in a way appropriate to the source (getting a
character from a communications port, for example).

The third vector is used by nonmaskable interrupts, those which interrupt regardless of the i bit in the
status register. The non-maskable interrupt is usually reserved for a single high-priority or time-critical
interrupt, such as refresh of a CRT screen or to warn of impending power failure.

The 6502 was designed to service interrupts as fast as possible. Because interrupts cannot be served
until the current instruction is completed (so no data is lost), the worst case is the longest instruction time and
the 6502’s instructions each take very few cycles to execute. As a result, the 6502 and its successors have the
lowest interrupt latency – the time between interrupt occurrence and interrupt-handling response – of any eight-
bit or sixteen-bit processors.

NMOS Process

The 6502 is fabricated using the NMOS (pronounced “EN moss”) process (for N-channel Metal-Oxide
Semiconductor). Still one of the most common of the technologies used in large-scale and very-large-scale
integrated circuits, NMOS was, at the time the 6502 was designed and for many years after, the most cost-
efficient of the MOS technologies and the easiest process for implementation of relatively high-speed parts.
This made NMOS popular among designers of microcomputers and other devices in which hardware was an
important design factor.

Most of the current generation of 8-, 16-, and 32-bit processors were originally implemented in NMOS.
Some, like the 6502, are still only available in NMOS process versions. Others, like all of the recently designed
members of the 65x family (65C02, 65802, and 65816) were produced exclusively using the CMOS process.

Bugs and Quirks

The 6502 has a number of features which the less enthusiastic might be inclined to call bugs or quirks.
The one most clearly a bug involves using indirect addressing with the jump instruction, when its

operand ends in $FF. To use an example,
JMP ($20FF)

should cause the program counter to get, as its new low byte, the contents of $20FF, and as its new high byte,
the contents of $2100. However, while the 6502 increments the low byte of the indirect address from $FF to 00,
it fails to add the carry into the high byte, and as a result gets the program counter’s new high byte from $2000
rather than $2100.

You can also run into trouble trying to execute an unused opcode, of which the 6502 has many. The
results are unpredictable, but can include causing the processor to “hang”.

Finally, the decimal mode is not as easy to use as it might be. The negative, overflow, and zero flags in
the status register are not valid in decimal mode and the setting of the decimal flag, which toggles the processor
between binary and decimal math, is unknown after the processor has received a hardware “reset”.

The Western Design Center

41

3) Chapter Three

Architecture of the 65C02

The 65C02 microprocessor is an enhanced version of the 6502, implemented using a silicon-gate
CMOS process. The 65C02 was designed primarily as a CMOS replacement for the 6502. As a result, the
significant differences between the two products are few. While the 65C02 adds 27 new opcodes and two new
addressing modes (in addition to implementing the original 151 opcodes of the 6502), its register set, memory
model, and types of operations remain the same.

The 65C02 is used in the AppleIIc and, since early 1985, in the AppleIIe, ands it has been provided as
an enhancement kit for earlier IIe’s.

Remember that even as the 65C02 is a superset of the 6502, the 65802 and 65816, described in the next
chapter, are supersets of the 65C02. All of the enhancements found in the 65C02 are additionally significant in
that they are intermediate to the full 65816 architecture. The next chapter will continue to borrow from the
material covered in the previous ones, and generally what is covered in the earlier of these three architecture
chapters is not repeated in the subsequent ones, since it is true for all 65x processors.

The 65C02 Architecture

Both the 65C02 and the 6502 are eight-bit processors, with a 64K address space and exactly the same
register set.

The 65C02 features some small but highly desirable improvements in the use of the status register flags:
it gives valid negative, overflow, and zero flags while in decimal mode, unlike the 6502; and it resets the
decimal flag to zero after reset and interrupt.

The 65C02 has slightly different cycle counts on a number of operations from the 6502, some shorter
and a few longer. The longer cycle counts are generally necessary to correct or improve operations from the
6502.

Addressing Modes

The 65C02 introduces the two new addressing modes shown in table 3.1, as well as supporting all the
6502 addressing modes. All of them will be explained in detail in Chapters 7 and 11, and will be reviewed in
the Reference Section.

 Addressing Mode Syntax Example
Opcode Operand

Zero Page Indirect LDA ($55)
Absolute Indexed Indirect JMP ($2000,X)

Table 3-1 The 65C02’s New Addressing Modes.

Zero page indirect provides an indirect addressing mode for accessing data which requires no indexing
(the 6502’s absolute indirect mode is available only to the jump instructions). 6502 programmers commonly
simulate indirection by loading an index register with zero (losing its contents and taking extra steps), then
using the preindexed or postindexed addressing modes to indirectly reference the data.

On the other hand, combining indexing and indirection proved so powerful for accessing data on the
6502 that programmers wanted to see this combination made available for tables of jump vectors. Absolute
indexed indirect, available for jump instruction only, provides this multi-directional branching capability,
which can be very useful for case or switch statements common to many languages.

The Western Design Center

42

Instructions

While the 65C02 provides 27 new opcodes, there are only eight new operations. The 27 opcodes result
from providing four different addressing modes for one on the new mnemonics and two for two others, and also
from expanding the addressing modes for twelve 6502 instructions. The most significant expansion of a 6502
instruction by combining it with a 6502 addressing mode it did not previously use is probably the addition of
accumulator addressing for the increment and decrement instructions.

The new 65C02 operations, shown in Table 3.2, answer many programmer’s prayers: an unconditional
branch instruction, instructions to push and pull the index registers, and instructions to zero out memory cells.
These may be small enhancements, but they make programming the 65C02 easier, more straightforward, and
clearer to document. Two more operations allow the 65C02 to set or clear any or all of the bits in a memory
cell with a single instruction.

Instruction
Mnemonic Description

BRA Branch always (unconditional)
PHX Push index register X onto stack
PHY Push index register Y onto stack
PLX Pull index register X form stack
PLY Pull index register Y from stack
STZ Store zero to memory
TRB Test and reset memory bits against accumulator
TSB Test and set memory bits against accumulator

Table 3-2. New 65C02 Instructions

CMOS Process

Unlike the 6502, which is fabricated in NMOS, the 65C02 is a CMOS (pronounced “SEE
moss”) part. CMOS stands for Complementary Metal-Oxide Semiconductor.

The most exciting feature of CMOS is its low power consumption, which has made portable,
battery-operated computers possible. Its low power needs also result in lower heat generation, which
means parts can be placed closer together and heat-dissipating air space minimized in CMOS-based
computer designs.

CMOS technology is not a new process. It’s been around for about as long as other MOS
technologies. But higher manufacturing costs during the early days of the technology made CMOS
impractical for the highly competitive microcomputer market until the mid 1980s, so process
development efforts were concentrated on NMOS and not applied to CMOS until 1980 or 1981.

CMOS technology has reached a new threshold in that most of its negative qualities, such as the
difficulty with which smaller geometries are achieved relative to the NMOS process, have been overcome.
Price has become competitive with the more established NMOS as well.

Bugs and Quirks

The 65C02 fixes all of the known bugs and quirks in the 6502. The result of executing unused opcodes
is now predictable-they do nothing (that is, they act like no-operation instructions). An interesting footnote is
that, depending on the unimplemented instruction that is executed, the number of cycles consumed by the no-
operation is variable between one and eight cycles. Also, the number of bytes the program counter is
incremented by is variable. It is strongly recommended that this feature not be exploited, as its use will produce
code incompatible with the next-generation 65802 and 65816.

The jump indirect instruction has been fixed to work correctly when its operand crosses a page
boundary (although at the cost of an execution cycle). The negative overflow, and zero flags have been
implemented to work in decimal mode (also at the cost of an execution cycle). The decimal mode is now reset
to binary after a hardware reset or an interrupt.

The Western Design Center

43

Finally, a fix which is generally transparent to the programmer, but which eliminates a possible cause of
interference with memory-mapped I/O devices on the 6502, is the elimination of an invalid address read while
generating an indexed effective address when a page boundary is crossed.

The quirk unique to the 65C02 results from trying to eliminate the quirks of the 6502. The timing
improvements of a number of instructions and the bug fixes from the 6502 make the 65c02 an improvement
over the 6502, but not quite fully compatible on a cycle-by-cycle basis. This is only a consideration during the
execution of time-critical code, such as software timing loops. As a practical example, this has affected very
little software being ported from the Apple IIe to the IIc.

The Western Design Center

44

4) Chapter Four

Sixteen-Bit Architecture The 65816 and the 65802

While the 65C02 was designed more as a CMOS replacement for the 6502 than an enhancement of it,
the 65802 and 65816 were created to move the earlier designs into the world of sixteen-bit processing.
Although the eight-bit 6502 had been a speed demon when first released, it’s competition changed over the
years as processing sixteen bits at a time became common, and as the memory new processors could address
started at a megabyte.

The 65816 and the 65802 were designed to bring the 65x family into line with the current generation of
advanced processors. First produced in prototypes in the second half of 1984, they were released
simultaneously early in 1985. The 65816 is a full-featured realization of the 65x concept as a sixteen-bit
machine. The 65802 is its little brother, with the 65816’s sixteen-bit processing packaged with the 6502’s
pinout for compatibility with existing hardware.

The two processors are quite similar. They are, in fact, two different versions of the same basic design.
In the early stages of the chip fabrication process they are identical and only assume their distinct
“personalities” during the final (metalization) phase of manufacture.

The two processors provide a wealth of enhancements: another nine addressing modes, 78 new
opcodes, a “hidden” second accumulator in eight-bit mode, and zero page which, renamed the direct page, can
be relocated to any contiguous set of $100 bytes anywhere within the first 64K of memory (which in the case of
the 65802 is anywhere in its address space). The most dramatic of all the enhancements common to both 65802
and 65816, though, is the expansion of the primary user registers – the accumulator, index register, and stack
pointer – to sixteen-bit word size. The accumulator and index registers can be toggled to sixteen bits from
eight, and back to eight when needed. The stack, pointed to by an expanded-to-sixteen-bit stack register, can be
relocated from page one to anywhere in a 64K range.

The primary distinction between the two processors is the range of addressable memory: the 65816 can
address up to sixteen megabytes; the 65802 is constrained by its 6502 pinout to 64K.

A secondary distinction between the two processors is that the 65816’s new pinout also provides several
significant new signals for the hardware designer. While outside the primary scope of this book, these new
signals are mentioned in part in this chapter and described in some detail in Appendix C.

It is important to remember that the 65802 is in fact a 65816 that has been coerced to live in the
environment designed originally for the 6502 and 65C02. Outside of the memory and signal distinctions just
listed, the 65816 and the 65802 are identical. Both have a native mode, in which their registers can be used for
either eight- or sixteen-bit operations. Both have a 6502 emulation mode, in which the 6502’s register set and
instruction timings emulate the eight-bit 6502 (not the 65C02) exactly (except they correct a few 6502 bugs).
All existing 6502 software can be run by the new processor – as can virtually all 65C02 software – even as most
of the native mode’s enhancements (other than sixteen-bit register) are programmable in emulation mode, too.

To access sixteen megabytes, the signals assigned to the various pins of the 65816’s 40-pin package are
different from the 6502, and the 65C02 and the 65802, so it cannot be installed in existing 65x computers as a
replacement upgrade. The 65802, on the other hand, has a pinout that is identical to that of the 6502 and 65C02
and can indeed be used as a replacement upgrade.

This makes the 65802 a unique, pin-compatible, software-compatible sixteen-bit upgrade chip. You
can pull a 6502 out of its socket in any existing 6502 system, and replace it with a 65802 because it powers-on
in the 6502 emulation mode. It will run existing applications exactly the same as the 6502 did. Yet new
software can be written, and 6502 programs rewritten, to take advantage of the 65802’s sixteen-bit capabilities,
resulting in programs which take up much less code space and which run faster. Unfortunately, even with a
65802 installed, an older system will remain unable to address memory beyond the original 64K limits of the
6502. This is the price of hardware compatibility.

The information presented in this chapter builds directly on the information in the previous two
chapters; it should be considered as a continuous treatment of a single theme. Even in native mode with
sixteen-bit registers, the 65802 and 65816 processors utilize many of the 6502 and 65C02 instructions, registers,
and addressing modes in a manner which differs little from their use on the earlier processors. If you are

The Western Design Center

45

already familiar with the 6502 or the 65C02, you will discover that the 65802 and 65816 logically expand on
these earlier designs.

Power-On Status: 6502 Emulation Mode

When the 65816 and 65802 are powered on, they initialize themselves into 6502 emulation mode in
which, with the exception of fixing several 6502 bugs, they exactly emulate the 6502. The stack is confined to
page one, just like the 6502 stack pointer. The registers are configured to eight bits, to model the 6502’s
registers. Every 6502 instruction is implemented identically. The timing of each instruction is exactly the same
as on the original NMOS 6502. The direct page of the 65802 and 65816, which as you will learn can be
relocated using the sixteen-bit direct page register, is initialized to page zero, making direct page addressing
exactly equivalent to the 6502 zero page addressing. The program and data bank registers, which as you will
learn provide efficient access in the 65816 to any one or two 64K banks of memory at a time, are initialized to
the zero bank.

Unlike the NMOS 6502, which has undefined results when unimplemented opcodes are executed, and
the 65C02, which treats unimplemented opcodes as variously-timed and –sized no-operations, the 65802
instruction set implements every one of the 256 possible one-byte opcodes. These additional instructions are
available in emulation mode as well as in native mode.

Among the newly implemented opcodes are ones that allow the processors to be switched to their native
mode – sixteen-bit operation. While there is more to say about 6502 emulation mode, it will be easier to
understand in then context of native mode.

The Full-Featured 65x Processor: The 65816 in Native Mode

The 65816 in its native mode (as opposed to its 6502 emulation mode) has it all: sixteen-bit registers,
24-bit addressing, and all the rest. The 65802’s native mode is a subset of this, as are the emulation modes of
both processors.

The Western Design Center

46

65816 Native Mode Programming Model
(16-bit accumulator & index register modes: m=0 & x=0)

23 15 7 0
Accumulator (B) (A) or (C) Accumulator (A)

Data Bank Register (DBR)

X Index Register (X)

Y Index Register (Y)

0 0 0 0 0 0 0 0 Direct Page Register (D)

0 0 0 0 0 0 0 0 Stack Pointer (S)

Program Bank Register (PBR) Program Counter (PC)

Processor Status Register (P)
7 0

e Emulation 0 = Native Mode

n v m x d i z c

Carry 1 = Carry
Zero 1 = Result Zero

IRQ Disable 1 = Disabled
Decimal Mode 1 = Decimal, 0 = Binary

Index Register Select 1 = 8-bit, 0 = 16-bit
Memory/Accumulator Select 1 = 8-bit, 0 = 16-bit

Overflow 1 = Overflow
Negative 1 = Negative

Figure 4-1 65816 Native Mode Programming Model

Figure 4.1 shows the programming model for the 65816 in native mode. While the accumulator is
shown as a sixteen-bit register, it may be set to be either a single sixteen-bit accumulator (A or C) or two eight-
bit accumulators, one accessible (A) and the other hidden but exchangeable (B). While the index registers are
shown as sixteen-bit registers, they may be set, as a pair, to be either sixteen-bit registers or eight-bit registers –
their high bytes are zeroed when they are set to eight-bits. The obvious advantage of switching from a
processor with eight-bit registers to one with sixteen-bit registers is the ability to write programs which are from
25 to 50 percent shorter, and which run 25 to 50 percent faster due to the ease with which sixteen-bit data is
manipulated.

The feature that most clearly distinguishes the current generation of advanced microcomputer systems,
however, is the ability to address lots of memory. It is this increased memory addressability which has ushered
in the new era of microcomputer applications possibilities, such as large spreadsheets, integrated software,
multi-user systems, and more. In this regard, the 65816 stands on or above par with any of the other high-
performance microprocessors, such as the 68000, the 8086, or their successors.

There are two new eight-bit registers called bank registers. One, called the data bank register, is
shown placed above the index registers and the other, called the program bank register, is appended to the
program counter. The 65816 uses the two bank registers to provide 24-bit addressing.

A bank of memory is much like a page; just as a page is a range of memory that can be defined by
eight bits (256 bytes), a bank is a range of memory that can be defined by sixteen bits (64K bytes). For
processors like the 6502, which have only sixteen-bit addressing, a 64K bank is not a relevant concept, since the
only bank is the one being currently addressed. The 65816, on the other hand, partitions its memory range into
64K banks so that sixteen-bit registers and addressing modes can be used to address the entire range of memory.

The Western Design Center

47

Bank zero, for example, is that 64K range for which, when addressed using 24 bits, the highest byte
(also called the bank byte) is zero. Similarly, a highest byte of nine in a 24-bit address would address a
location somewhere in bank nine. This highest byte is called the bank byte so that the high byte can still be
used to refer to the byte that determines the page address. In other words, “high byte” is used on the 65816 as it
is on the 6502, 65C02, and 65802, where addresses are only sixteen bits.

Another new register shown in Figure 4.1 is the direct page register. Much like the 6800’s special
zero page became the 6809’s direct page, the 6502’s and 65C02’s zero page has been transformed into the
65802’s and 65816’s direct page. This direct page is, as Figure 4.1 shows, limited to bank zero, shown in the
programming model by the implied zero as its bank byte. The direct page register can be set to any 256-byte
page starting on any byte boundary within bank zero. All of the 6502 instructions that use zero page addressing
use an expanded form called direct page addressing on the 65816 and 65802; however, when the direct page
register value is zero, the two modes are operationally identical.

Figure 4.1 also shows that the stack pointer has been unbound from page one to float anywhere in bank
zero by making it a sixteen-bit register.

While figure 4.1 doesn’t show the interrupt vectors, they too are located in bank zero, and they point to
interrupt handling routines which also must be located in bank zero.

Finally, the status register is different from the 6502’s and 65C02’s (compare Figure 4.1 with Figure 2.1
in chapter 2). The first obvious difference is the single bit labeled e for emulation hanging off the top of the
carry flag. Accessible only through the carry flag, its contents determine whether the processor is in native or
6502 emulation mode. Here it holds a zero to indicate the processor is in native mode. The second difference is
the m and x flags replace the 6502’s break and unused flags: m indicates the size of the accumulator (eight or
sixteen bits) as well as the size and memory accesses; x indicates the size of the two index registers (eight or
sixteen bits). Changing the contents of either of these two new flags toggles the size of the corresponding
registers. The b flag is no longer necessary to distinguish the BRK software interrupt from hardware interrupts
because native mode provides a new interrupt vector for software interrupts, separate from the hardware
interrupt vector.

Native mode also provides one timing improvement over the 6502: one cycle is saved during a cross-
page branch.

The Program Bank Register

The 65816’s sixteen-bit program counter is concatenated to its eight-bit program counter bank register
(PBR, or K when used in instruction mnemonics) to extend its instruction-addressing capability to 24 bits.
When the 65816 gets an instruction from memory, it gets it from the location pointed to by the concatenation of
the two registers. In many ways, the net effect is a 24-bit program counter; for example, when an interrupt
occurs, all 24 bits (program counter plus program counter bank) are pushed onto the stack. Likewise, when a
return-from-interrupt occurs, 24 bits (both registers) are pulled from the stack.

All previous instructions that jumped to sixteen-bit absolute addresses still work by staying within the
same bank. Relative branches stay in the same bank; that is, you can’t branch across bank boundaries. Program
segments cannot cross bank boundaries; if the program counter increments past $FFFF, it rolls over to $0000
without incrementing the program counter bank.

New instructions and addressing modes were added to let you transfer control between banks: jump
absolute long (jump to a specified 24-bit address), jump indirect long (the operand is an absolute address in
bank zero pointing to a 24-bit address to which control is transferred), jump to subroutine long (to a specified
24-bit address, with the current program counter and program bank register pushed onto the stack first), and a
corresponding return from subroutine long, which re-loads the bank register as well as the program counter.
(The addressing modes are among those listed in Table 4.3, the instructions in Table 4.4.)

These instructions that specify a complete 24-bit address to go to, along with native mode’s software
interrupt and return from interrupt instructions, are the only ones that modify the value in the program bank
register. The program bank can be pushed onto the stack so it can be pulled into another register and be
examined or tested. But there is no instruction for pulling the program bank register from the stack, since that
would change the bank the next instruction would come from – certain to be catastrophic. To avoid such
“strange” branches across banks, the program counter bank register can only be changed when the program
counter is changed at the same time.

The Western Design Center

48

The Data Bank Register

The data bank register (DBR or, when used as part of a mnemonic, B) defines the default bank to be
used for reading or writing data whenever one of the addressing modes that specifies (only) a sixteen-bit address
is used, such as the absolute, indirect, or indexed instructions found on the 6502. Such sixteen-bit effective
addresses as used with the 6502 are concatenated with the value in the data bank register to form a 24-bit
address, much as the program counter is concatenated with the program bank register. An important difference
is that, unlike the program counter bank register, the data bank register can be temporarily incremented by
instructions which use indexed addressing; in other words, bank boundaries do not confine indexing, which
crosses them into the next bank.

As already mentioned, direct page and stack-based values are always accessed in bank zero, since the
implied bank used with the direct page and stack is zero. But indirect addresses pulled out of the direct page or
off stack (when used with addressing modes that do not further specify the bank value) point to locations in the
current data bank.

The existence of the data bank register on the 65816 provides a convenient way to access a large range
of data memory without having to resort to 24-bit address operands for every operation.

The Direct Page Register

The direct page register (D) points to the beginning of direct page memory, which replaces zero page
memory as the special page used for short-operand addressing. All of the 6502 instructions that use zero page
addressing use and expanded form called direct page addressing on the 65816 and 65802. If the direct page
register is set to zero, the direct page memory is the zero page, and direct page addressing is operationally
identical to zero page addressing.

One effect of having a direct page register is that you can set up and alternate between multiple
direct page areas, giving each subroutine or task its own private direct page of memory, which can
prove both useful and efficient.

The Stack Pointer

The native mode stack pointer holds a sixteen-bit address value. This means it can be set to point to any
location in bank zero. It also means the stack is no longer limited in length to just $100 bytes, nor limited to
page one ($100 to $1FF). Page one therefore loses its character as a “special” memory area and may be treated
like any other page while running the 65802 or 65816 in the native mode.

Accumulator and Index Registers

The key difference between the 65816/65802 and the earlier processors in the series is that the 65816’s
three primary user registers – the accumulator and the X and Y index registers – can be toggled between eight
and sixteen bits. You can select which size (eight or sixteen bits) you wish to use by executing special control
instructions that modify the new m and x flags.

This enhances the basic processing power of the chip tremendously. A simple subtraction of sixteen-bit
numbers, for example, illustrates the difference. The eight-bit 6502 must be programmed to load the low byte
of the first sixteen-bit number, subtract the low byte of the second number, then save the result, load the first
number’s high byte, subtract the second number’s, and finally, save the high result. The sixteen-bit processors,
on the other hand, can load one sixteen-bit value, subtract the other then save the sixteen-bit result. Three steps
replace six.

With its ability to change register size, the 65816 functions equally well with eight bits or sixteen.
From the programmer’s point of view, it is a dual word size machine. The machine word size – the basic unit of
data the machine processes in a given instruction cycle – may be either byte or double byte, that is eight or
sixteen.

In the terminology used in describing other sixteen-bit processors, the term word is used specifically to
refer to sixteen-bit data, and byte to refer to eight-bit data. But other sixteen-bit processors generally have

The Western Design Center

49

different mechanisms for selecting byte or double byte data to operate upon. The terminology appropriate to the
65802 and 65816 is to refer to sixteen-bit data as double byte, rather than word, since their word size alternates

between eight bits and sixteen, and since they can operate in either byte mode or double byte mode with equal
effectiveness. They are hybrid processors.

The width of the accumulator and the width of the index registers are independently controlled by
setting and resetting the two special flag bits within the status register, the index register select (x) and
memory/accumulator select (m) flags. When both are set, the eight-bit register architecture of the 6502 is in
force. While very similar to the emulation mode, this eight-bit native mode is subtly different in important
ways: a BRK vector is available in the native mode; interrupt processing is different between emulation and
native mode in general; and of course sixteen-bit processing can be called up with a single instruction. Yet the
65802 and 65816 will execute a good deal of existing 6502 programs without modification in this mode.

When either or both the index register select or memory select flags are cleared, the word size of the
corresponding register(s) is expanded from eight bits to sixteen.

The four possible modes of operation are shown in Table 4.1.

eight-bit accumulator (m bit is set)

eight-bit index registers (x bit is set)

eight-bit accumulator (m bit is set)

sixteen-bit index registers (x bit is clear)

sixteen-bit accumulator (m bit is clear)

eight-bit index registers (x bit is set)

sixteen-bit accumulator (m bit is clear)

sixteen-bit index registers (x bit is clear)

Table 4-1 The Four Possible Native Mode Register Combinations

When the opcode for a given instruction is fetched from memory during program execution, the
processor may respond differently based upon the setting of the register select flags. Their settings may be
thought of as extensions to the opcode. For example, consider the following instruction:

object
code instruction

BD00B0 LDA $B000 X

which loads the accumulator with data from the effective address formed by the sum of $B000 and the contents
of the X register. The X register contents can be either eight bits or sixteen, depending upon the value of the
index select flag. Furthermore, the accumulator will be loaded from the effective address with either eight or
sixteen bits of data, depending upon the value of the memory/accumulator select flag.

The instruction and addressing mode used in the example are found also on the 6502 and 65C02; the opcode byte
($BD) is identical on all four processors. The 65816’s new mode flags greatly expand the scope of the 6502’s instructions.
For programmers already familiar with the 6502, the understanding of this basic principle – how one opcode can have up to
four different effects based on the flag settings – is the single most important principle to grasp in moving to a quick
mastery of the 65802 or 65816.

The Western Design Center

50

Switching Registers Between Eight and Sixteen Bits

The two register select flags are set or cleared by two new instructions provided for modifying the
status register: one of the instructions, SEP, (set P) can be used to set any bit or bits in the P status register; the
other, REP, (reset P) can be used to reset any bit or bits in the status register.

Figure 4.2 shows the results of changing the index registers and accumulator between eight and sixteen
bits. When a sixteen-bit index register is switched to eight bits, the high byte is lost irretrievably and replaced
by a zero. On the other hand, when an eight-bit index register is switched to sixteen bits, its unsigned value is
retained by concatenating fit to a zero high byte; that is, the eight-bit unsigned index already in the register is
extended to sixteen bits.

Unlike the index operations, switching the accumulator’s size either direction is reversible. The
accumulator is treated differently due to its function, not as an index register, but as the register of arithmetic
and logic. In this role, it is often called upon to operate on eight-bit values with sixteen-bit ones and vice versa.

When the sixteen-bit A accumulator is switched to eight bits, the low byte becomes the new eight-bit A
accumulator while the high bit becomes the eight-bit “hidden” B accumulator. B may be seen as an annex to
the A accumulator, accessible only through a new instruction which exchanges the values in the two
accumulators (making B useful for temporarily storing of the eight-bit value in A). Conversely, when the
accumulator is switched from eight bits to sixteen, the new sixteen-bit A accumulator has, as its low byte, the
previous eight-bit A accumulator and, as its high byte, the previous hidden B accumulator.

Certain instructions that transfer the accumulator to or from other sixteen-bit registers refer to the
sixteen-bit accumulator as C to emphasize that all sixteen accumulator bits will be referenced regardless of
whether the accumulator is set to eight- or sixteen-bit mode. Again, this is illustrated in Figure 4.2.

The Status Register

Because the emulation bit is a “phantom” bit, it cannot be directly tested, set, or cleared. The flag that it
“phantoms” or overlays is the carry bit; there is a special instruction, XCE, that exchanges the contents of the
two flags. This is the “trapdoor” through which the emulation mode is entered and exited.

The Western Design Center

51

Results of Switching Register Sizes
(L = bits in low byte; H = bits in high byte)

Index Registers: 16 Bits to 8

HHHH HHHH LLLL LLLL 0000 0000 LLLL LLLL

x = 0 x = 1

Index Register: 8 Bits to 16

0000 0000 LLLL LLLL 0000 0000 LLLL LLLL

x = 1 x = 0

Accumulator: 16 Bits to 8
A B A

HHHH HHHH LLLL LLLL HHHH HHHH LLLL LLLL

m = 0 m = 1

(also C) (also C)

Accumulator: 8 Bits to 16
B A A

HHHH HHHH LLLL LLLL HHHH HHHH LLLL LLLL

m = 1 m = 0

(also C) (also C)

Figure 4-2 Results of Switching Register Size

Two status register bits were required for the two-flag eight-or-sixteen-bit scheme. While the 6502’s
status register has only one unused status register bit available, its break flag is used only for interrupt
processing, not during regular program execution, to flag whether an interrupt comes from a break instruction or
from a hardware interrupt. By giving the break instruction its own interrupt vector in native mode, the 65816’s
designers made a second bit available for the m and x register select flags.

6502/65C02 Addressing Modes on the 65816

All of the 6502 and 65C02 addressing modes are available to the 65816/65802, but native mode’s
sixteen-bit features mean you need to expand your thinking about what they will do. For example, the 65816’s
direct page, which can be located anywhere in memory, replaces the earlier zero page as the special page for
short-operand addressing modes. All 6502/65C02 zero page addressing modes become direct page addressing
modes, as shown in Table 4.2.

The Western Design Center

52

6502/65C02 65802/65816 Syntax Example Common to Both

Zero Page Addressing Mode Direct Page Addressing Mode Opcode Operand

Zero Page Direct Page LDA $55

Zero Page Indexed with X Direct Page Indexed with X LDA $55, X

Zero Page Indexed with Y Direct Page Indexed with Y LDX $55, Y

Zero Page Indirect Indexed with Y

 (Postindexed) Direct Page Indirect Indexed with Y LDA ($55), Y

Zero Page Indirect Indexed with X

 (Preindexed) Direct Page Indexed Indirect with X LDA ($55, X)

Zero Page Indirect Direct Page Indirect LDA ($55)

Table 4-2 Addressing Modes: Zero Page vs. Direct Page

Notice in Table 4.2 that the assembler syntax for each direct page addressing mode (not to mention the
object bytes themselves) is the same as its zero page counterpart. The names and the results of the addressing
modes are what differ. Direct page addressing, like the 6502/65C02 zero page addressing, allows a memory
location to be addressed using only an eight-bit operand. In case of the 6502, a sixteen-bit zero page effect
address is formed from an eight-bit offset by concatenating a zero high byte to it. In the 65802/65816, the direct
page effective address is formed by adding the eight-bit offset to the sixteen-bit value in the direct register. This
lets you relocate the direct page anywhere in bank zero, on any byte boundary. Note, however, that it is most
efficient to start the direct page on a page boundary because this saves one cycle for every direct page
addressing operation.

When considering the use of 6502/65C02 zero page instructions as 65802/65816 direct page
instructions, remember that a direct page address of $23 is located in memory at location $0023 only if the
direct page register is set to zero; if the direct page register holds $4600, for example, the direct page address
$23 is located at $4623. The direct page is essentially an array which, when it was the zero page, began at
address zero, but which on the 65816 and 65802 can be set to begin at any location.

In the 6502/65C02, the effective address formed using zero page indexed addressing from a zero page
base address of $F0 and an index of $20 is $10; that is, zero page indexed effective addresses wrap around to
always remain in the zero page. In the emulation mode this is also true. But in native mode, there is no page
wraparound: a direct page starting at $2000 combined with a direct page base of $20 and a sixteen-bit index
holding $300 results in an effective address of $2320.

The three main registers of the 65802/65816 can, in native mode, be set to hold sixteen bits. When a
register is set to sixteen bits, then the data to be accessed by that register will also be sixteen bits.

For example, shifting the accumulator left one bit, an instruction which uses the accumulator addressing
mode, shifts sixteen bits left rather than eight if the accumulator is in sixteen-bit mode. Loading a sixteen-bit
index register with a constant using immediate addressing means that a sixteen-bit value follows the instruction
opcode. Loading a sixteen-bit accumulator by using absolute addressing means that the sixteen-bit value stored
starting at the absolute address, and continuing into location at the next address, is loaded into the accumulator.

Sixteen-bit index registers give new power to the indexed addressing modes. Sixteen-bit index registers
can hold values ranging up to 64K; no longer must the double-byte base of an array be specified as a constant
with the index register used for the index. A sixteen-bit index can hold the array base with the double-byte
constant specifying the (fixed) index.

Finally, the 65816 has expanded the scope of 6502 and 65C02 instructions by mixing and matching
many of them with more of the 6502/65C02 addressing modes. For example, the jump-to-subroutine instruction
can now perform absolute indexed indirect addressing, a mode introduced on the 65C02 solely for jump
instruction.

New 65816 Addressing Modes

Not only do the 65802 and 65816 provide all the 6502 and 65C02 addressing modes, but they also offer
nine new addressing modes of there own, in both emulation and native modes. They are shown in Table 4.3.

The Western Design Center

53

Addressing Mode Syntax Example
Opcode Operand

Program Counter Relative Long BRL JMPLABEL
Stack Relative LDA 3, S
Stack Relative Indirect Indexed with Y LDA (5,S), Y
Block Move MVP 0,0
Absolute Long LDA $02F000
Absolute Long Indexed with X LDA $12D080, X
Absolute Indirect Long JMP [$2000]
Direct Page Indirect Long LDA [$55]
Direct Page Indirect Long Indexed with Y LDA [$55], Y

Table 4-3 The 65816/65802’s New Addressing Modes

There are six new addressing modes that use the word “long”, but with two very different meanings.
Five of the “long” modes provide 24-bit addressing for intrabank accesses. Program counter relative long
addressing, on the other hand, provides an intrabank sixteen-bit form of relative addressing for branching. Like
all the other branch instructions, its operand is an offset from the current contents of the program counter, but
branch long’s operand is sixteen bits instead of eight, which expands relative branching from plus 127 or minus
128 bytes to plus 32767 or minus 32768. This and other features greatly ease the task of writing position-
independent code. The use of the word “long” in the description of this addressing mode means “longer than an
eight bit offset”, whereas the word “long” used with the other four addressing modes means “longer than
sixteen bits”.

Stack relative addressing and Stack relative indirect indexed with Y addressing treat the stack like
an array and index into it. The stack pointer register holds the base of the array, while a one-byte operand
provides the index into it. Since the stack register points to the next available location for data, a zero index is
meaningless: data and addresses which have been pushed onto the stack start at index one. For stack relative,
this locates the data; for stack relative indirect indexed, this locates an indirect address that points to the base of
an array located elsewhere. Both give you the means to pass parameters on the stack in a clean, efficient
manner. Stack relative addressing is a particularly useful capability, for example, in generating code for
recursive high-level languages such as Pascal or C, which store local variables and parameters on a “stack
frame”.

Block move addressing is the power behind two new instructions that move a block of bytes – up to
64K of them – from one memory location to another all at once. The parameters of the move are held in the
accumulator (the count), the index registers (the source and destination addresses), and a unique double operand
(source and destination addresses in the operand specify the source and destination banks for the move
operation).

The five remaining “long” addressing modes provide an alternative to the use of bank registers for
referencing the 65816’s sixteen-megabyte address space. They let you temporarily override the data bank
register value to address memory anywhere within the sixteen-megabytes address space. Absolute long
addressing, for example, is just like absolute addressing except that, instead of providing a two-byte absolution
address to be accessed in the data bank, you provide a three-byte absolute address which overrides the databank.
Absolute long indexed with X, too, is four bytes instead of three. On the other hand, it is the memory locations
specified by absolute indirect long, direct page indirect long, and direct page indirect long indexed with Y
that hold three-byte indirect addresses instead of two-byte ones. Three-byte addresses in memory appear in
conventional 65x order; that is, the low byte is in the lower memory locations, the middle byte (still referred to
in 6502 fashion as the “high” byte) is in the next higher location, and the highest (bank) byte is in the highest
location.

The Western Design Center

54

Instructions

There are 78 new opcodes put into use through the 28 new operations listed in Table 4.4, as well as
through giving the previous processors’ operations additional addressing modes.

Instruction
Mnemonic Description

BRL Branch always long
COP Co-processor empowerment
JML Jump long (interbank)
JSL Jump to subroutine long(interbank)
MVN Block move negative
MVP Block move positive
PEA Push effective absolute address onto stack
PEI Push effective indirect address onto stack
PER Push effective program counter relative address onto stack
PHB Push data bank register onto stack
PHD Push direct page register onto stack
PHK Push program bank register onto stack
PLB Pull data bank register from stack
PLD Pull direct page register from stack
REP Reset status bits
RTL Return from subroutine long
SEP Set status bits
STP Stop the processor
TCD Transfer 16-bit accumulator to direct page register
TCS Transfer accumulator to stack pointer
TDC Transfer direct page register to 16-bit accumulator
TSC Transfer stack pointer to 16-bit accumulator
TXY Transfer index registers X to Y
TYX Transfer index registers Y to X
WAI Wait for interrupt
WDM Reserved for future two-byte opcodes
XBA Exchange the B and A accumulators
XCE Exchange carry and emulation bits

Table 4-4 New 65816/65802 Instructions

Five of the new push and pull instructions allow the new registers to be stored on the stack; the other
three let you push constants and memory values onto the stack without having to first load them into a register.
PER is unique in that it lets data be accessed relative to the program counter, a function useful when writing
relocatable code.

There are also instructions to transfer data between new combinations of the registers; including
between the index registers – a long-wished-for operation; to exchange the two bytes of the sixteen-bit
accumulator; and to exchange the carry and emulation bits, the only method for toggling the processor between
emulation and native modes.

There are new jump, branch, return, and move instructions already described in the section on
addressing modes. There’s a new software interrupt provided for sharing a system with a co-processor. There
are two instructions for putting the processor to “sleep” in special low-power states. And finally, there’s a
reserved opcode, called WDM (the initials of the 65816’s designer, William D. Mensch, Jr.), reserved for some
future compatible processor as the first byte of a possible 256 two-byte opcodes.

The Western Design Center

55

Interrupts

Native mode supplies an entire set of interrupt vectors at different locations from the emulation mode
(and earlier 6502/65C02) ones to service native mode and emulation mode interrupts differently. Shown in
Table 4.5, all are in bank zero; in addition, the sixteen-bit contents of each vector points to a handling routine
which must be located in bank zero.

Emulation Mode Native Mode
IRQ FFFE,FFFF FFEE,FFEF
RESET FFFC,FFFD -
NMI FFFA,FFFB FFEA,FFEB
ABORT FFF8,FFF9 FFE8,FFE9
BRK - FFE6,FFE7
COP FFF4,FFF5 FFE4,FFE5

All locations are in bank zero.

Table 4-5 Interrupt Vector Locations

As discussed earlier in this chapter, native mode frees up the b bit in the status register by giving the
break instruction its own vector. When the BRK is executed, the program counter and the status register are
pushed onto the stack and the program counter is loaded with the address at $FFE6, the break instruction vector
location.

The reset vector is only available in emulation mode because reset always returns the processor to that
mode.

The 65816/65802, both emulation and native modes, also provides a new co processor interrupt
instruction to support hardware co processing, such as by a floating point processor. When the COP instruction
is encountered, the 65802’s interrupt processing routines transfer control to the co-processor vector location.

Finally, the pinout on the 65816 provides a new abort signal. This lets external hardware prevent the
65816 from updating memory or registers while completing the current instruction, useful in sophisticated
memory-management schemes. An interrupt-like operation then occurs, transferring control through the special
abort vector.

The 65802 Native Mode

For all that the 65816 is, it is not pin-compatible with the 6502 and 65C02. You can’t just replace the
earlier chips with it. It is here that the other version of this chip, the 65802, comes to its glory. The price, of
course, is that the 65802 has the same addressability limitations as the 6502 and 65C02.

Figure 4.3 shows the programming model for the 65802’s native mode. The bank registers, while they
exist, do not modify addressability, so they are shown as eight-bit entities. All registers have been scaled back
to sixteen bits. There is only one bank a 65802 can address; since it holds the direct page, the stacker point, and
the interrupt vectors (bank-zero features on the 65816), you can consider the 65802’s bank to be bank zero.
Otherwise, the programming model is identical to the 65816’s.

The bank registers are an anomaly. They have no function because the packaging provides no pins to
connect them to. But they exist because, inside the package, the chip itself is a 65816. In fact, you can change
their value just as you would on the 65816, with a pull instruction, a long jump or JSR, an interrupt, or a long
return, either from subroutine or from interrupt. Furthermore, every interrupt and return from interrupt pushes
the program bank byte onto the stack or pulls it off, just like the 65816 does. But the bank register values are
ignored (stripped from 24-bit addresses when they’re sent to the sixteen-bit output pins).

The long addressing modes also seem misplaced here. You can execute instructions using long
addressing on the 65802, but the bank addresses are, again, ignored. They are certainly an inefficient method
for undertaking intrabank accesses and transfers, since they take up extra bytes for the bank address, and use up
extra cycles in translation. Still, they cause the 65802 no problems, as long as you understand that the bank
value is disregarded and only the remaining sixteen bits of address are effective in pointing to an address in the
65802’s single addressable bank of memory.

The Western Design Center

56

Five of the new push and pull instructions allow the new registers to be stored on the stack; the other
three let you push constants and memory values onto the stack without having to first load them into a register.
PER is unique in that it lets data be accessed relative to the program counter, a function useful when writing
relocatable code.

The Western Design Center

57

65802 Native Mode Programming Model
(16-bit accumulator & index register modes: m=0 & x=0)

15 7 0
Accumulator (B) (A or C) Accumulator (A)

X Index Register (X)

Y Index Register (Y)

Direct Page Register (D)

Stack Pointer (S)

Program Counter (PC)

Data Bank Register (DBR)

Program Bank Register (PBR)

Processor Status Register (P)
7 0

e Emulation 0 = Native Mode

n v m x d i z c

Carry 1 = Carry

Zero 1 = Result Zero

IRQ Disable 1 = Disabled

Decimal Mode 1 = Decimal, 0 = Binary

Index Register Select 1 = 8-bit, 0 = 16-bit

Memory/Accumulator Select 1 = 8-bit, 0 = 16-bit

Overflow 1 = Overflow

Negative 1 = Negative

Figure 4-3 65802 Native Mode Programming Model

Finally, the bank bytes specified to the block move instructions are ignored, too. Block moves are by
necessity entirely intrabank on the 65802.

Because the abort signal was designed into the 65816 by virtue of its redesigned pinout, its vector exists
on the 65802 but has no connection to the outside world. Since there is no way to abort an instruction without
using the external pin, the abort operation can never occur on the 65802.

In all other respects, the 65802 and the 65816 are identical, so the 65802 can almost be thought of as a
65816 in a system with only 64K of physical memory installed. Table 4.6 summarizes the differences between
the 65802 and 65816 native modes and the 6502 and 65C02.

The Western Design Center

58

Emulation Mode

That the 65802 provides a pinout the same as the 6502’s and the 65C02’s is not enough to run all the
software written for the earlier two processors. For one thing, the eight-bit software expects interrupt handlers
to distinguish break instructions by checking the stacked break flag, and the 65802’s native mode has no break
flag, having replaced both it and the 6502’s unused flag with the m and x flags. For another, 6502 instructions
that use eight-bit registers to set the stack would set only half of the sixteen-bit stack. The native mode interrupt
vectors are only half of the sixteen-bit stack. The native mode interrupt vectors are different from their
6502/65C02 counterparts, as Table 4.5 showed. There are also little differences; for example, while the direct
page can be set to the zero page, direct page indexed addresses can cross pages in native mode, but wrap on the
6502 and 65C02.

Reaching beyond hardware compatibility to software compatibility was clearly so important that the
designers of the 65802 and 65816 devised the 6502 emulation mode scheme. Both processors power-on in
emulation mode, with the bank registers and the direct page register initialized to zero. As a result of both this
and having the same pinout, a 65802 can be substituted for a 6502 in any application and will execute the
existing software the same. Furthermore, it is possible to design second-generation 65816 systems compatible
with existing 6502 designs which, provided the computer’s designers do as good a job in providing
compatibility as the 65816’s designers have, could run all existing software of the first generation system in
emulation mode, yet switch into native mode for sixteen-bit power and 24-bit addressing.

It is important to realize, however, that 6502 emulation mode goes far beyond emulating the 6502. It
embodies all the addressing mode and instruction enhancements of both the 65C02 and the 65802/65816; it has
a fully relocatable direct page register; it provides the stack relative addressing modes; and in the 65816’s
emulation mode, it can switch between banks to use 24-bit addressing. The primary differences between native
and emulation modes are limitations placed on certain emulation mode registers and flags so that existing
programs are not surprised (and crashed) by non-6502-like results. These differences are summarized in Table
4.6.

The Western Design Center

59

unused opcodes

stack

special page

m
nem

onics

interrupts

instructions

index registers

flags after reset

flags after interrupt

direct page indexed

decim
al m

ode flag

break flag

block m
oves

bank registers

address space

addressing m
odes

accum
ulator

abort signal

6502 tim
ing

6502 pinout

could crash

page 1

zero page

56 FFFA
, FFFF

151

8 bits

D
 unknow

n

D
 not m

odified

w
raps

N
, V

, Z
 invalid

yes

none

none

64K

14 8 bits

no yes

yes

6502

N
O

P

page 1

zero page

64 FFFA
, FFFF

178

8 bits

D
 =

 0

D
 =

 0

w
raps

N
, V

, Z
 invalid

yes

none

none

64K

16 8 bits

no no yes

65C
02

none

bank 0

direct page

92 FFE
4, FFE

F

256

8 or 16 bits

D
 =

 0

D
 =

 0

crosses page

N
, V

, Z
 valid

no yes

not connected

64K

25 16 or 8/8 bits

no no yes

65802 N
ative

none

page 1

direct page

92 FFF4, FFFF

256

8 bits

D
 not m

odified

D
 not m

odified

w
raps

N
, V

, Z
 valid

yes

of little use

not connected

64K

25 8/8 bits

no yes

yes

65802 E
m

ulation

none

bank 0

direct page

92 FFE
4, FFE

F

256

8 or 16 bits

D
 =

 0

D
 =

 0

crosses page

N
, V

, Z
 valid

no yes

yes

16M

25 16 or 8/8 bits

yes

no no 65816 N
ative

none

page 1

direct page

92 FFF4, FFFF

256

8 bits

D
 not m

odified

D
 not m

odified

w
raps

N
, V

, Z
 valid

yes

of little use

yes

16M

25 8/8 bits

yes

yes

no 65816 E
m

ulation

T
able 4-6 M

ajor D
offerences B

etw
een P

rocessors and M
odes

The Western Design Center

60

The pair of 65816 instructions have little use in emulation mode are the block move instructions.
Because the source and destination parameters for moves are passed to the instruction in the index registers,
their eight-bit limits confine the instruction to the zero page: a block can only be moved from one zero page
location to another.

Only in emulation mode do 65802/65816 interrupt vectors match their 6502/65C02 counterparts.
Native mode interrupt vectors have their own locations, as Table 4.5 showed.

Emulation Mode Registers

The 65802/65816, under emulation mode, has the same six registers as the 6502/65C02. In addition, all
of the new 65802/65816 registers are available in some form, although some of these on a limited basis. Figure
4.4 shows the result.

The primary accumulator A is always limited to eight bits by lack of an m flag, but hidden eight-bit
accumulator B is available, as with the native mode eight-bit accumulator setting. For certain register-transfer
operations, the two are combined to form the sixteen-bit register C, just as in native mode. The index registers
are limited to eight bits by lack of a x flag. The direct page register is fully functional, although direct page
indexing wraps rather than crossing into the next page. The stack pointer is curtailed to page one, as on the
6502 and 65C02; if a sixteen-bit value is used to set it, the high bit is ignored. Finally there are two bank
registers, which are initialized to zero, but which can be changed to point to other banks.

Now look at the P status register. In addition to the eight bits of the standard 6502/65C02 status
register, you’ll see the ninth “phantom” e bit, which contains a one; this setting puts the processor into its 6502
emulation mode.

65816 Emulation Mode Programming Model
23 15 7 0

Accumulator (B) © Accumulator (A)

Data Bank Register (DBR)
X Index Register (X)

Y Index Register (Y)
0 0 0 0 0 0 0 0 Direct Page Register (D)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Stack Pointer (S)

Program Bank Register (PBR) Program Counter (PC)

 Processor Status Register (P)
 7 0

e Emulation 1=6502 Emulation Mode

n v b d i z c

Carry 1=Carry
Zero 1=Result Zero

IRQ Disable 1=Disabled
Decimal Mode 1=Decimal, 0=Binary

Break Instruction 1=Break caused
interrupt

Overflow 1=Overflow

Negative 1=Negative

Figure 4-4 65816 Emulation Mode Programming Model

The Western Design Center

61

The A and B registers, which together make up the native mode sixteen-bit accumulator, are used
together in emulation mode as C solely for transferring values to and from the direct page register and the stack.

The direct page register (D) points to the beginning of direct page memory. You’ll probably normally
set it to zero in the emulation mode to make the direct page identical to 6502 zero page memory. This is
particularly true if your 65802 program is running within a 6502 or 65C02 operating system. The operating
system will have stored values to zero page memory; if you change the direct page to point to another page, then
call an operation system routine, the operating system will load its information from the wrong direct page (any
page other than the zero page) and fail miserably.

Switching Between 6502 Emulation and Native Modes

As you’ve seen, the native mode and the 6502 emulation mode embody a number of significant
differences. When running the 65802 in an older machine, such as Apple II c, II e, or II Plus, you will probably
call your 65802 programs from a 6502 operating system or program. Your 65802 code can immediately switch
the processor into native mode, so you can take advantage of the additional power. You must, however, switch
back to emulation mode to use any I/O routines, or to call the 6502-based operating system.

Understanding the transitions between the two modes is critical, particularly in an environment where
you are switching back and forth between 6502 systems programs and your own 65802 code.

Switching from Emulation to Native Mode

When the 65802 is switched from emulation to native mode, the value in the status register’s carry bit
winds up being toggled. Native mode is set by sweeping a cleared carry bit with the current value in the
emulation bit (which was a one if the processor was in emulation mode). The m and x flags in the status
register are switched into place (replacing the b break flag) and the processor automatically forces the flags to
one which leaves the accumulator and index registers as eight-bit registers, the same as they were in emulation
mode. The rest of the bits in the status register remain the same.

While the emulation mode stack pointer register is only eight-bit register, it can be thought of as a
sixteen-bit register with its high byte hard-wired to one, so that the emulation stack is always in page one.
When the 65802 is switched from emulation to native mode, the sixteen-bit native mode stack pointer assumes
the same value the emulation mode stack pointer has been pointing to - page one address.

All other registers make the transition unchanged.

Switching from Native to Emulation Mode

Switching from native to emulation mode also toggles the carry. The carry bit is set, then exchanged
with the emulation bit to force the processor back into emulation mode. Provided the processor was previously
in native mode, the carry flag is cleared. The status register’s m and x bits disappear, forcing the accumulator
and index registers back to eight bits. If the index registers were in sixteen-bit mode, they keep their low bytes,
but their high bytes are permanently lost. If, on the other hand, the accumulator was in sixteen-bit mode, the
low byte remains in accumulator A while the high byte remains accessible as the hidden accumulator B. The m
bit (bit five) returns to its emulation role as the break flag; the x bit (bit four) becomes once again an unused
flag.

The stack is truncated from sixteen to eight bits, with its high byte forced to a one; that is, the stack is
forced to page one. Any value in the high byte of the stack pointer register is permanently lost, which means
you must be very careful not to “lose” a non-page-one stack. Solving this and other sticky problems involved
with calling an emulation mode routine from native mode is the goal of one of the routines in Chapter 14.

All other registers make the transition unchanged.

The Western Design Center

62

65802/65816 Bugs and Quirks

As on the 65C02, the 6502’s bugs are corrected by the 65802. Unlike the 65C02, however, the 65802
fixes the bug either only in native mode or without modifying the 6502’s cycle counts (as the 65C02 in some
cases does). There are no unused opcodes on the 65802, although there is an opcode which, while technically
“used”, is really reserved. If executed, it acts like a no-operation instruction.

The most anomolous feature of the 65816 is the behavior of new opcodes while in the 6502 emulation
mode. While strict 6502 compatibility is enforced for all 6502 and 65C02 opcodes, this is not the case with new
opcodes. For example, although the high byte of the stack registers is always set to one, wrapping of the stack
during the execution of a single non-6502 instruction is not supported. These issues are discussed more fully in
Chapter 16.

Because the 65802 fixes the 6502’s bugs and quirks while leaving that chip’s timing cycles untouched,
the 65802 is in fact a hair more compatible as an upgrade chip than it the 65C02.

The Western Design Center

63

Part 3
Tutorial

The Western Design Center

64

5) Chapter Five

SEP, REP, and Other Details

Part Three is devoted to a step by step survey of all 92 different 65816 instructions and the 25 different
types of addressing modes which, together, account for the 256 operation codes of the 65802 and 65816. As a
matter of course, this survey naturally embraces the instruction sets of the 6502 and 65C02 as well.

The instructions are grouped into six categories: data movement, flow of control, arithmetic, logical and
bit manipulation, subroutine calls, and system control instructions. A separate chapter is devoted to each group,
and all of the instructions in a group are presented in their respective chapter.

The addressing modes are divided into two classes, simple and complex. The simple addressing modes
are those that form their effective address directly - that is, without requiring any, or only minimal, combination
or addition of partial addresses from several sources. The complex addressing modes are those that combine
two or more of the basic addressing concepts, such as indirection and indexing, as part of the effective address
calculation.

Almost all of the examples found in this book are intended to be executed on a system with either a
65802 or 65816 processor, and most include 65816 instructions, although there are some examples that are
intentionally restricted to either the 6502 or 65C02 instructions set for purpose of comparison.

Because of the easy availability of the pin-compatible 65802, there is a good chance that you may, in
fact, be executing your first sample programs on a system originally designed as a 6502-based system, with
system software such as machine-level monitors and operating systems that naturally support 6502 code only.
All of the software in this book was developed and tested on just such systems (AppleII computers with either
65802s replacing the 6502, or with 65816 processor cards installed).

It is assumed that you will have some kind of support environment allowing you to develop programs
and load them into memory, as well as a monitor program that lets you examine and modify memory, such as
that found in the Apple II firmware. Since such programs were originally designed to support 6502 code, the
case of calling a 65816 program from a 6502-based system program must be given special attention.

A 65802 or 65816 system is in the 6502 emulation mode when first initialized at power-up.
This is quite appropriate if the system software you are using to load and execute the sample programs
is 6502-based, as it would probably not execute correctly in the native 65816 mode.

Even though almost all of the examples are for the 65816 native mode of operation, the early examples
assume that the direct page register, program counter bank register, and data register are all in their default
condition - set to zero - in which case they provide an environment that corresponds to the 64K programming
space and zero page addressing of the 6502 and 65C02. Aside from keeping the examples simple, it permits
easy switching between the native mode and the emulation mode. If you have just powered up your 65816 or
65802 system, nothing needs be done to alter these default values.

The one initialization you must do is switch from the emulation to the native mode. To switch out of
the 6502 emulation mode, which is the default condition upon powering up a system, the code in Fragment 5.1
must be executed once.

0000 18 CLC clear carry flag
0001 FB XCE exchange carry with e bit (clears e bit)

Fragment 5.1.

This clears the special e flag, putting the processor into the 65816 native mode.
If you are using a 65802 processor in an old 6502 system, the above code needs to be executed each

time an example is called. Further, before exiting a 65816 program to return to a 6502 calling program, the
opposite sequence in Fragment 5.2 must be executed.

The Western Design Center

65

0000 38 SEC set carry flag
0001 FB XCE exchange carry with e bit (set e bit)

Fragment 5.2.

Even if you are running your test programs from a fully supported 65816 or 65802 environment, you
should include the first mode-switching fragment, since the operating mode may be undefined on entry to a
program. Execution of the second should be acceptable since the system program should reinitialize itself to the
native mode upon return from a called program.

A further requirement to successfully execute the example programs is to provide a means for returning
control to the calling monitor program. In the examples, the RTS (return from subroutine) instruction is used.
The RTS instruction is not explained in detail until Chapter 12; however, by coding it at the end of each
example, control will normally return to the system program that called the example program. So to exit a
program, you will always code the sequence in Fragment 5.3.

0000 38 SEC set carry flag
0001 FB XCE exchange carry with e bit (sets e bit)
0002 60 RTS

Fragment 5.3.

Some systems may have a mechanism other than RTS to return control to the system; consult your
system documentation.

In addition to these two details, a final pair of housekeeping instructions must be mastered early in
order to understand the examples.

These two instructions are SEP and REP (set P and reset P). Although they are not formally
introduced until Chapter 13, their use is essential to effective use of the 65802 and 65816. The SEP and REP
instructions have many uses, but their primary use is to change the value of the m and x flags in the status
register. As you recall from Chapter 4, the m and x registers determine the size of the accumulator and index
registers, respectively. When a flag is set (has a value of one), the corresponding register is eight bits; when a
flag is clear, the corresponding register is sixteen bits. SEP, which sets bits in the status register, is used to
change either accumulator, or index registers, or both, to eight bits; REP, which clears bits, is used to change
either or both to sixteen bits. Whenever a register changes size, all of the operations that move data in and out
of the register are affected as well. In this sense, the flag bits are extensions to the opcode, changing their
interpretation by the processor.

The operand following the SEP and REP instructions is a “mask” of the flags to be modified. Since bit
five of the status register is the m memory/accumulator select flag, an instruction of the form:

REP #%00100000

makes the accumulator size sixteen bits; a SEP instruction with the same argument (or its hexadecimal
equivalent, $20) would make it eight bits. The binary value for modifying the x flag is %00010000, or $10; the
value for modifying both flags at once is %00110000, or $30. The sharp (#) preceding the operand signifies the
operand is immediate data, stored in the byte following the opcode in program memory; the percent (%) and
dollar ($) signs are special symbols signifying either binary or hexadecimal number representation, respectively,
as explained in Chapter 1.

Understanding the basic operation of SEP and REP is relatively simple. What takes more skill is to
develop a sense of their appropriate use, since there is always more than one way to do things. Although there
is an immediate impulse to want to use the sixteen-bit modes for everything, it should be fairly obvious that the
eight-bit accumulator mode will, for example, be more appropriate to applications such as character
manipulation. Old 6502 programmers should resist the feeling that if they’re not using the sixteen-bit modes
“all the time” they’re not getting full advantage from their 65802 or 65816. The eight-bit accumulator and
index register size modes, which correspond to the 6502 architecture, can be used to do some of the kinds of

The Western Design Center

66

things the 6502 was doing successfully before the option of using sixteen-bit registers was provided by the
65816. Even in eight-bit mode, the 65802 or 65816 will provide numerous advantages over the 6502.

What is most important is to develop a sense of rhythm; it is undesirable to be constantly switching
modes. Since the exact order in which a short sequence of loosely related instructions is executed is somewhat
arbitrary, try to do as many operations in a single mode as possible before switching modes. At the same time,
you should be aware that the point at which an efficiency gain is made by switching to a more appropriate mode
is reached very quickly. By examining the various possibilities, and experimenting with them, a sense that
translates into an effective rhythm in coding can be developed.

Finally, a word about the examples as they appear in this book. Two different styles are used: Code
Fragments, and complete Code Listings.

Code Fragments are the kinds of examples used so far in this chapter. Code Listings, on the other hand,
are self-contained programs, ready to be executed. Both appear in boxes, and are listed with the generated
object code as produced by the assembler. Single-line listings are included in the text.

The Assembler Used in This Book

The assembly syntax used in this book is that recommended by the Western Design Center in their data
sheet (see Appendix F). The assembler actually used in the ProDOS ORCA / M assembler for the Apple II
computer, by Byteworks, Inc. Before learning how to code the 65816, a few details about some of the
assembler directives need to be explained.

Full-line comments are indicated by starting a line with an asterisk or a semicolon.
If no starting address is specified, programs begin by default at $2000. That address can be changed by

using the origin directive, ORG. The statement

ORG $7000

When included in a source program, will cause the next byte of code generated to be located at memory location
$7000, with subsequently generated bytes following it.

Values can be assigned labels with the global equate directive, GEQU. For example, in a card-playing
program, spades might be represented by the value $7F; the program is much easier to code (and read) if you
can use label SPADE instead of remembering which of four values goes with which of the four suits, as seen in
Fragment 5.4.

0000 SPADE GEQU $7F
0000 HEART GEQU $FF
0000 CLUB GEQU $3F
0000 DIAMOND GEQU $1F

Fragment 5.4.

Now rather than loading the A accumulator by specifying a hard-to-remember value,

A97F LDA #$7F

You can load it by specifying the easier-to-remember label:

A900 LDA #SPADE

Once you have defined a label using GEQU, the assembler automatically substitutes the value assigned
whenever the label is encountered.

The # sharp or pound sign is used to indicate that the accumulator is to be loaded with an immediate
constant.

The Western Design Center

67

In addition to being defined by GEQU statements, labels are also defined by coded in the label field -
starting in the first column of a source line, right in front of an instruction or storage-defining directive. When
coded in front of an instruction:

A905 BEGIN LDA #5

The label defines an entry point for a branch or jump to go to; when an instruction such as is assembled,

4C0400 JMP BEGIN

the assembler automatically calculates the value of BEGIN and uses that value as the operand of the JMP
instruction.

Variable and array space can be set aside and optionally labelled with the define storage directive, DS
directive sets aside one byte at $1000 for the variable FLAG1; the second DS directive sets aside 20 bytes
starting at $1001 for ARRAY1.

0000 ORG $1000
0000 MAIN START
0000 00 FLAG1 DS 1
0001 00000000 ARRAY1 DS 20
0015 END

Fragment 5.5

The value stored at FLAG1 can be loaded into the accumulator by specifying FLAG1 as the operand of
the LDA instruction:

AD0010 LDA FLAG1

Program constants, primarily default values for initializing variables, prompts, and messages, are located in
memory and optionally given a label by the declare constant directive, DC. The first character(s) of its operand
specifies a type (A for two-byte addresses, I1 for one-byte integers, H for hex bytes and C for character strings,
for example) followed by the value or values to be stored, which are delimited by single quotes.

Fragment 5.6 gives an example. The first constant, DFLAG1, is a default value for code in the
program to assign to the variable FLAG1. You may realize that DFLAG1 could be used as a variable; with a
label, later values of the flag could be stored here and then there would be no need for any initialization code.
But good programming practice suggests otherwise: once another value is stored into DFLAG1, its initial value
is lost, which keeps the program from being restarted from memory. On the other hand, using a GEQU to set
up DFLAG1 would prevent you from patching the location with a different value should you change your mind
about its initial value after the code has been assembled.

0000 FE DFLAG1 DC I1 ‘ $FE ‘
0001 0010 COUNT DC A ‘ $1000 ‘
0003 496E7365 PROMPT DC C ’ Insert disk into drive 1 ’
001B 00 DC I1 ‘ 0 ‘

Fragment 5.6

Defining COUNT as a declared constant allows it, too, to patched in object as well as edited in source.
PROMPT is a message to be written to the screen when the program is running. The assembler lists

only the first four object bytes generated (‘496E7365‘) to save room, but generates them all. The zero on the
next line acts as a string terminator.

Sometimes it is useful to define a label at a given point in the code, but not associate it with a particular
source line; the ANOP (assembler no-operation) instruction does this. The value of the label will be the

The Western Design Center

68

location of the code resulting from the next code-generating source line. One use of this feature is to define two
labels with the same value, as shown in Fragment 5.7.

0000 BLACK ANOP
0000 0000 WHITE DS 2

Fragment 5.7

The two bytes of variable storage reserved may now be referred to as either BLACK or WHITE; their value is
the same.

Address Notation

The 16-megabyte address space of the 65816 is divided into 256 64K banks. Although it is possible to
treat the address space in a linear fashion - the range of bytes from $000000 to $FFFFFF - it is often desirable
and almost always easier to read if you distinguish the bank component of a 24-bit address by separating it with
a colon:

 $00:FFF0
 $xx:1234
 $01:XXXX

In these examples, the X characters indicate that that address component can be any legal value; the
thing of interest is the specified component.

Similarly, when specifying direct page addresses, remember that a direct page address is only an offset;
it must be added to the value in the direct page register:

 dp:$30
 $1000:30

The dp in the first example is used to simply indicate the contents of the direct page register, whatever
it may be; in the second case, the value in the direct page register is given as $1000. Note that this notation is
distinguished from the previous one by the fact that the address to the left of the colon is a sixteen-bit value, the
address on the right is eight. Twenty-four-bit addresses are the other way around.

A third notation used in this book describes ranges of address. Whenever two addresses appear together
seperated by a single dot, the entire range of memory location between and including the two addresses is being
referred to. For example, $2000.2001 refers to the double-byte starting at $2000. If high bytes of the second
address are omitted, they are assumed to have the same value as the first address. Thus, $2000.03 refers to the
addresses between $2000 and $2003 inclusive.

The Western Design Center

69

6) Chapter Six

First Examples: Moving Data

Most people associate what a computer does with arithmetic calculations and computations. That is
only part of the story. A great deal of compute time in any application is devoted to simply moving data around
the system: from here to there in memory, from memory into the processor to perform some operation, and from
the processor to memory to store a result or to temporarily save an intermediate value. Data movement is one of
the easiest computer operations to grasp and is ideal for learning the various addressing modes (there are more
addressing modes available to the data movement operations than to any other class of instructions). It,
therefore, presents a natural point of entry for learning to program the 65x instruction set.

On the 65x series of processors - the eight-bit 6502 and 65C02 and their sixteen-bit successors, the
65802 and 65816 - you move data almost entirely using the microprocessor registers.

This chapter discusses how to load the registers with data and store data from the registers to memory
(using one of the simple addressing modes as an example), how to transfer and exchange data between registers,
how to move information onto and off of the stack, and how to move blocks (or strings) of data from one
memory location to another (see Table 6-1).

The Western Design Center

70

Available on:
Mnemonic 6502 65C02 65802/816 Description
Load/Store Instructions:

LDA x x x load the accumulator
LDX x x x load the X index register
LDY x x x load the Y index register
STA x x x store the accumulator
STX x x x store the X index register
STY x x x store the Y index register

Push Instructions:
PHA x x x push the accumulator
PHP x x x push status register (flags)
PHX x x push X index register
PHY x x push Y index register
PHB x push data bank register
PHK x push program bank register
PHD x push direct page register

Push Instructions Introduced:
PEA x push effective absolute address
PEI x push effective indirect address
PER x push effective relative address

Pull Instructions:
PLA x x x pull the accumulator
PLP x x x pull status register (flags)
PLX x x pull X index register
PLY x x pull Y index register
PLB x pull data bank register
PLD x pull direct page register

Transfer Instructions:
TAX x x x transfer A to X
TAY x x x transfer A to Y
TSX x x x transfer S to X
TXS x x x transfer X to S
TXA x x x transfer X to A
TYA x x x transfer Y to A
TCD x transfer C accumulator to D
TDC x transfer D to C accumulator
TCS x transfer C accumulator to S

(Continued)
TSC x transfer S to C accumulator
TXY x transfer X to Y
TYX x transfer Y to X

Exchange Instructions:
XBA x exchange B & A accumulator
XCE x exchange carry & emulation bits

Store Zero to Memory:
STZ x x store zero to memory

Block Moves:
MVN x move block in negative direction
MVP x move block in positive direction

Table 6-1 Data Movement Instruction

The Western Design Center

71

When programming the 6502, whether you’re storing a constant value to memory or moving data from
one memory location to another, one of the registers is always intermediate. The same is generally true for the
other 65x processors, with a few exceptions: the 65816’s two block move instructions, three of its push
instructions, and an instruction first introduced on the 65C02 to store zero to memory.

As a result, two instructions are required for most data movement: one to load a register either with a
constant value from program memory or with a variable value from data memory; the second to store the value
to a new memory location.

Most data is moved via the accumulator. This is true for several reasons. First, the accumulator can
access memory using more addressing modes than any of the other registers. Second, with a few exceptions,
it’s only in the accumulator that you can arithmetically or logically operate on data (although the index
registers, in keeping with their role as loop counters and array pointers, can be incremented, decremented, and
compared). Third, data movement often takes places inside of loops, program structures in which the index
registers are often dedicated to serving as counters and pointers.

Loading and Storing Registers

To provide examples of the six basic data-movement instructions - LDA, LDX, LDY (load
accumulator or index registers) and STA, STX, and STY (store accumulator or index registers) - requires
introducing at least one of the 65x addressing modes. Except for certain instructions - such as push and pull,
which use forms of stack addressing - the absolute addressing mode will generally be used in this chapter.
Absolute addressing, available on all four 65x processors, is one of the simplest modes to understand. It
accesses data at a known, fixed memory location.

For example, to move a byte from one absolute memory location to another, load a register from the
first location, then store that register to the other location. In Listing 6.1, the eight-bit value $77 stored at the
absolute location identified by the label SOURCE is first loaded into the accumulator, then saved to the
absolute location DEST. Note the inclusion of the mode-switching code described in the previous chapter.

The code generated by the assembler, when linked, will begin at the default origin location, $2000. The
example generates 13 ($0D) bytes of actual code (the address of the RTS instruction is at memory location
$200C). The assembler then automatically assigns the next available memory location, $200D, to the label on
the following line, SOURCE. This line contains a DC (define constant) assembler directive, which causes the
hexadecimal value $77 to be stored at that location in the code file ($200D). Since only one byte of storage is
used, the data storage location reserved for the label DEST on the next line is $200E.

The syntax for absolute addressing lets you code, as an instruction’s operand, either a symbolic label or
an actual value. The assembler converts a symbolic operand to its correct absolute value, determined from its
context that absolute addressing is intended, and generates the correct opcode for the instruction using absolute
addressing. The assembler-generated hexadecimal object code listed to the left of the source code shows that
the assembler filled in addresses $000D and $000E as the operands for the LDA and STA instructions,
respectively (they are, of course, in the 65x’s standard low-high order and relative to the $0000 start address the
assembler assigns to its relocatable modules; the linker will modify these addresses to $200D and $200E when
creating the final loadable object).

As Chapter 4 explained, the 65816’s accumulator can be toggled to deal with either eight-bit or sixteen-
bit quantities, as can its index registers, by setting or resetting the m (memory/accumulator select) or x (index
register select) flag bits of the status register. You don’t need to execute a SEP or REP instruction before every
instruction or every memory move, provided you know the register you intend to use is already set correctly.
But always be careful to avoid making invalid assumptions about the modes currently in force, particularly
when transferring control from code in one location to code in another.

The load and store instructions in Listing 6.1 will as easily move a double byte as they did a
byte, if the register you use is in sixteen-bit mode, as in Listing 6.2.

The Western Design Center

72

0001 0000 KEEP KL.6.1
0002 0000 65816 ON
0003 0000
0004 0000 MAIN START
0005 0000
0006 0000 ; code to switch from 6502 emulation to native mode
0007 0000
0008 0000 18 CLC clear carry flag
0009 0001 FB XCE exchange carry with E bits (clear E bit)
0010 0002
0011 0002 ; main example code
0012 0002
0013 0002 E220 SEP #%00100000 set 8-bit data mode
0014 0004 AD0D00 LDA SOURCE load byte from memory location SOURCE
0015 0007 8D0E00 STA DEST store byte to memory location DEST
0016 000A
0017 000A ; code to return to 6502 emulation mode
0018 000A
0019 000A 38 SEC set carry flag
0020 000B FB XCE exchange carry with E bit (set E bit)
0021 000C ;
0022 000C 60 RTS
0023 000D
0024 000D 77 SOURCE DC H’77’
0025 000E 00 DEST DS 1
0026 000F
0027 000F END

Listing 6.1.

Note that the source data in the define constant statement is now two bytes long, as is storage reserved
by the define storage statement that follows. If you look at the interlisted hexadecimal code generated by the
assembler, you will see that the address of the label DEST is now $200F. The assembler has automatically
adjusted for the increase in the size of the data at SOURCE, which is the great advantage of using symbolic
labels rather than fixed addresses in writing assembler programs.

The load and store instructions are paired here to demonstrate that, when using identical addressing
modes, the load and store operations are symmetrical. In case, though, a value loaded into a register will be
stored many instructions later, or never at all, or stored using an addressing mode different from that of the load
instruction.

The Western Design Center

73

0001 0000 KEEP KL.6.2
0002 0000 65816 ON
0003 0000
0004 0000 MAIN START
0005 0000
0006 0000 ; switch from 6502 emulation to native mode
0007 0000 18 CLC
0008 0001 FB XCE
0009 0002 ;
0010 0002 C220 REP #%00100000 reset accumulator to 16-bit mode
0011 0004 AD0D00 LDA SOURCE load double byte from memory location SOURCE
0012 0007 8D0F00 STA DEST store double byte to memory location DEST
0013 000A
0014 000A ; switch back to emulation mode
0015 000A 38 SEC
0016 000B FB XCE
0017 000C ;
0018 000C 60 RTS
0019 000D ;
0020 000D 7F7F SOURCE DC A’$7F7F’
0021 000F 0000 DEST DS 2
0022 0011 END

Listing 6.2.

Effect of Load and Store Operations on Status Flags

One of the results of the register load operations - LDA, LDY, and LDX - is their effect on certain
status flags in the status register. When a register is loaded, the n and z flags are changed to reflect two
conditions: whether the value loaded has its high bit set (is negative when considered as a signed, two’s-
complement number); and whether the number is equal to zero. The n flag is set when the value loaded is
negative and cleared otherwise. The z flag is set when the value loaded is zero and cleared otherwise. How you
use these status flags will be covered in detail in Chapter 8, Flow of Control.

The store operation does not change any flags, unlike the Motorola 68xx store instructions. On the
other hand, Intel 808x programmers will discover the 65x processors use load and store instructions instead of
the 808x’s all-encompassing MOV instruction. The 808x move instruction changes no flags whatsoever, unlike
the 65x load instruction, which does.

Moving Data Using the Stack

All of the 65x processors have a single stack pointer. (This is a typical processor design, although there
are designs that feature other stack implementations, such as providing separate stack pointers for the system
supervisor and the user.) This single stack is therefore used both by the system for automatic storage of address
information during subroutine calls and of address and register information during interrupts, and by user
programs for temporary storage of data. Stack use by the system will be covered in later chapters.

As the architecture chapters in Part II discussed. The S register (stack pointer) points to the next
available stack location; that is, S holds the address of the next available stack location. Instructions using stack
addressing locate their data storage either at or relative to the next available stack location.

The stack pointers of the 6502 and 65C02 are only eight bits wide; the eight-bit value in the stack
pointer is added to an implied base of $100, giving the actual stack memory of $100 to $1FF; the stack is
confined to page one. The 65816’s native mode stack pointer, on the other hand, is sixteen bits wide, and may
point to any location in bank zero (the first 64K of memory). The difference is illustrated in Figure 6.1.

The Western Design Center

74

Push

Push instructions store data, generally located in a register, onto the stack. Regardless of a register’s
size, the instruction that pushes it takes only a single byte.

When a byte is pushed onto the stack, it is stored to the location pointed to by the stack pointer, after
which the stack pointer is automatically decremented to point to the next available location.

When double-byte data or a sixteen-bit address is pushed onto the stack, first its high-order byte is
stored to the location pointed to by the stack pointer, the stack pointer is decremented, the low byte is stored to
the new location pointed to by the stack pointer, and finally the stack pointer is decremented once again,
pointing past both bytes of pushed data. The sixteen-bit value ends up on the stack in the usual 65x memory
order: low byte in the lower address, high byte in the higher address.

In both cases, the stack grows downward, and the stack pointer points to the next available (unused)
location at the end of the operation.

The Western Design Center

75

Figure 6-1 Stack Memory

65816/65802
native mode stack pointer:
16-bit range
$0000-$FFFF

MEMORY

$ffff

$0200

$0100

$0000

6502/65C02
and
65816/65802
emulation mode
stack pointer:
8-bit range
$0100-$01FF

The Western Design Center

76

Pushing the Basic 65x Registers

On the 6502, only the contents of the accumulator and the status register can be pushed directly onto the
stack in a single operation, using the PHA and PHP instructions, respectively. The 65C02 adds instructions to
push the index registers onto the stack: PHX and PHY.

The 65816 and 65802 let double-byte data as well as single bytes be pushed onto the stack. Figure 6.2
shows the results of both. In the case of the accumulator and index registers, the size of the data pushed onto
the stack depends on the settings of the m memory/accumulator select and x index register select flags. Since
the accumulator and index registers are of variable size (eight bits or sixteen), the PHA, PHX, and PHY
instructions have correspondingly variable effects.

Pull

Pull instructions reverse the effects of the path instructions, but there are fewer pull instructions, all of them
single-bit instructions that pull a value off the stack into a register. Unlike the Motorola and Intel processors (68xx and
808x), the 65x pull instructions set the n and z flags. So programmers used to using pull instructions between a test and a
branch on the other processors should exercise caution with the 65x pull instructions.

Pulling the Basic 65x Registers

The 6502 pull instructions completely complement its push instructions. PLP increments the stack
pointer, then loads the processor status register (the flags) from the page one address pointed to by the offset in
the stack pointer (of course, this destroys the previous contents of the status register). PLA pulls a byte from
the stack into the accumulator, which affects the n and z flags in the status register just as a load accumulator
instruction does.

As instructions for pushing the index registers were added to the 65C02, complementary pull
instructions were added, too - that is, PLX and PLY. The pull index register instructions also affect the n and z
flags.

On the 65802 and 65816, the push and pull instructions for the primary user registers - A, X, and Y -
have been augmented to handle sixteen-bit data when the appropriate select flag (memory/accumulator or index
register) is clear. Code these three pull instructions carefully since the stack pointer will be incremented one or
two bytes per pull depending on the current settings of the m and x flags.

The Western Design Center

77

8-Bit or Low Byte
of 16-Bit Register

High Low

·
·

Old Stack Pointer ·
8 Bit Data

Next Stack Location
New Stack Pointer

·
·
·

Stack

Memory

16-Bit Register
High Low

·
·

Old Stack Pointer ·
Data High
Data Low

Next Stack Location
New Stack Pointer ·

·
·

Stack
Memory

Figure 6-2. Push

The Western Design Center

78

Pushing and Pulling the 65816’s Additional Registers

The 65816 adds one-byte push instructions for all its new registers, and pull instructions for all but one
of them. In fact, the bank registers can only be accessed using the stack. PHB pushes the contents of the data
bank register, an eight-bit register, onto the stack. PLB pulls an eight-bit value from the stack into the data
bank register. Two most common uses for PHB are, first, to let a program determine the currently active data
bank, and second, to save the current data bank prior to switching to another bank.

Fragment 6.1 is a 65816 code fragment which switches between two data banks. While OTHBNK is
declared just once, it represents two different memory cells, both with the same sixteen-bit address of $FFF3,
but in two different 64K banks: one is in the data bank that is current when the code fragment is entered; the
second is in the data bank switched to by the code fragment. The code fragment could be executed a second
time and the data bank would be switched back to the original bank.

0000 OTHBNK GEQU $FFF3 location of other bank stored here
0000
0000 .
0000 .
0000 .
0000 E220 SEP #%00100000 set accumulator to 8-bit mode
0002
0002 ADF3FF LDA OTHBNK get location of bank to switch to
0005
0005 8B PHB push current data bank onto stack
0006 48 PHA push other data bank onto stack
0007
0007 AB PLB pull data bank: make other data bank current
0008 68 PLA get original data bank into accum
0009
0009 8DF3FF STA OTHBNK store it in 2nd bank so can be restored
000C .
000C .
000C .
000C

Fragment 6.1.

Similar to PHB, the PHK instruction pushes the value in the eight-bit program counter bank register
onto the stack. Again, the instruction can be used to let you locate the current bank; this is useful in writing
bank-independent code, which can be executed out of any arbitrarily assigned bank.

You’re less likely to use PHK to preserve the current bank prior to changing banks (as in the case of
PHB above) because the jump to subroutine long instruction automatically pushes the program counter bank
as it changes it, and because there is no complementary pull instruction. The only way to change the value in
the program counter bank register is to execute a long jump instruction, and interrupt, or a return from
subroutine or interrupt. However, you can use PHK to synthesize more complex call and return sequences, or
to set the data bank equal to the program bank.

Finally, the PHD instruction pushes the sixteen-bit direct page register onto the stack, and PLD pulls a
sixteen-bit value from the stack into the direct page register. PHD is useful primarily for preserving the direct
page location before changing it, while PLD is an easy way to change or restore it. Note that PLB and PLD
also affect the n and z flags.

The Western Design Center

79

Pushing Effective Addresses

The 65816 also provides three instructions which can push data onto the stack without altering any
registers. These three push effective address instructions - PEA, PEI, and PER - push absolute, indirect, and
relative sixteen-bit addresses or data directly onto the stack from memory. Their use will be explained when
their addressing modes are presented in detail in Chapter 11 (Complex Addressing Modes).

Other Attributes of Push and Pull

The types of data that can be pushed but not pulled are effective addresses and the K (or more
commonly PBR) program bank register.

PLD and PLB are typically used to restore values from a previous state.
Finally, you should note that even though the push and pull operations are largely symmetrical, data

that is pushed onto the stack from one register does not need to be pulled off the stack into the same register.
As far as the processor is concerned, data pulled off the stack does not have to be the same size as was pushed
onto it. But needless to say, the stack can quickly become garbled if you are not extremely careful.

Moving Data Between Registers

Transfers

The accumulator is the most powerful of the user registers, both in the addressing modes available to
accumulator operations and in its arithmetic and logic capabilities. As a result, addresses and indexes that must
be used in one of the index registers must often be calculated in the accumulator. A typical problem on the
6502 and 65C02, since their registers are only eight bits wide, is that sixteen-bit values such as addresses must
be added or otherwise manipulated eight bits at a time. The other half of the value, the high or low byte, must
meanwhile be stored away for easy retrieval and quick temporary storage of register contents in a currently
unused register is desirable.

For these reasons as well as to transfer a value to a register where a different operation or addressing
mode is available, all 65x processors implement a set of one-byte implied operand instructions which transfer
data from one register to another:

TAX transfers the contents of the accumulator to the X index register
TAY transfers the contents of the accumulator to the Y index register
TSX transfers the contents of the stack pointer to the X index register
TXS transfers the contents of the X index register to the stack pointer
TXA transfers the contents of the X index register to the accumulator
TYA transfers the contents of the Y index register to the accumulator

Like the load instructions, all of these transfer operations except TXS set both the n and z flags. (TXS
does not affect the flags because setting the stack is considered an operation in which the data transferred is
fully known and will not be further manipulated.)

The availability of these instructions on the 65802/65816, with its dual-word-size architecture, naturally
leads to some questions when you consider transfer of data between registers of different sizes. For example,
you may have set the accumulator word size to sixteen bits, and the index register size to eight. What happens
when you execute a TAY (transfer A to Y) instruction?

The first rule to remember is that the nature of the transfer is determined by the destination register. In
this case, only the low-order eight bits of the accumulator will be transferred to the eight-bit Y register. A
second rule also applies here: when the index registers are eight bits (because the index register select flag is
set), the high byte of each index register is always forced to zero upon return to sixteen-bit size, and the low-
order value of each sixteen-bit index register contains its previous eight-bit value.

Listing 6.3 illustrates these rules with TAY. In this example, the value stored at the location DATA2 is
$0033; only the low order byte has been transferred from the accumulator, while the high byte has been zeroed.

The accumulator, on the other hand, operates differently. When the accumulator word size is switched
from sixteen bits to eight, the high-order byte is preserved in a “hidden” accumulator, B. It can even be

The Western Design Center

80

accessed without changing modes back to the sixteen-bit accumulator size by executing the XBA (exchange B
with A) instructions, described in the following section. Listing 6.4 illustrates this persistence of the
accumulator’s high byte. After running it, the contents of locations RESULT. RESULT+1 will be $7F33, or
33 7F, in low-high memory order. In other words, the value in the high byte of the sixteen-bit accumulator,
$7F, was preserved across the mode switch to eight-bit word size.

Now consider the case where the sixteen-bit Y register is transferred to an eight-bit accumulator, as
shown in Listing 6.5. The result in this case is $33FF, making it clear that the high byte of the Y register has
not been transferred into the inactive high-order byte of the accumulator. The rule is that operations on the
eight-bit A accumulator affect only the low-order byte in A, not the hidden high byte in B. Transfers into the A
accumulator fall within the rule.

Figure 6.3 summarizes the effects of transfers between registers of different sizes.

0001 0000 KEEP KL.6.3
0002 0000
0003 0000 65816 ON
0004 0000
0005 0000
0006 0000 MAIN START
0007 0000 ; switch-to-native-mode code
0008 0000 18 CLC clear carry flag
0009 0001 FB XCE exchange carry with e bit (clear e bit)
0010 0002
0011 0002 C220 REP #$20 set accum to 16
0012 0004 E210 SEP #$10 set index to 8
0013 0006 AD1200 LDA DATA
0014 0009 A8 TAY
0015 000A C210 REP #$10 set index to 16
0016 000C 8C1400 STY DATA2
0017 000F
0018 000F ; return to 6502 emulation mode
0019 000F 38 SEC set carry flag
0020 0010 FB XCE exchange carry with e bit (set e bit)
0021 0011
0022 0011 60 RTS
0023 0012
0024 0012 33FF DATA DC A’$FF33’
0025 0014 0000 DATA2 DS 2
0026 0016
0027 0016 END

Listing 6.3.

There are also rules for transfers from eight-bit to a sixteen-bit register. Transfers out of the eight-bit
accumulator into a sixteen-bit index register transfer both eight-bit accumulators.

In Listing 6.6, the value saved to RESULT is $7FFF, showing that not only is the eight-bit A
accumulator transferred to become the low byte of the sixteen-bit index register, but the hidden B accumulator
is transferred to become the high byte of the index register. This means you can form a sixteen-bit index in the
eight-bit accumulator one byte at a time, then transfer the whole thing to the index register without having to
then transfer the whole thing without having to switch the accumulator to sixteen bits first. However, take care
not to inadvertently transfer an unknown hidden value when doing transfers from the eight-bit accumulator to a
sixteen-bit index register.

The Western Design Center

81

0001 0000 KEEP
0002 0000 65816
0003 0000
0004 0000 MAIN START
0005 0000
0006 0000 ; switch-to-native-mode code
0007 0000 18 CLC clear carry flag
0008 0001 FB XCE exchange carry with e bit (clear e bit)
0009 0002
0010 0002 C230 REP #$30 set accum and index size to 16
0011 0004 AD1400 LDA DATA16 load accum with 16-bit value at DATA16
0012 0007 E220 SEP #$20 set accum to eight bits
0013 0009 AD1600 LDA DATA8 load 8-bit value at DATA8
0014 000C C220 REP #$20 make accum 16 again
0015 000E 8D1700 STA RESULT save accum lo.hi in RESULT.RESULT+1
0016 0011
0017 0011 ; return to 6502 emulation mode
0018 0011 38 SEC set carry flag
0019 0012 FB XCE exchange carry with e bit (set e bit)
0020 0013
0021 0013 60 RTS
0022 0014
0023 0014 FF7F DATA16 DC A’$7FFF’
0024 0016 33 DATA8 DC H’33’
0025 0017 0000 RESULT DS 2
0026 0019
0027 0019 END

Listing 6.4

The Western Design Center

82

Transfers from eight-bit index register to the sixteen-bit accumulator result in the index register
being transferred into the accumulator’s low byte while the accumulator’s high byte is zeroed. This is
consistent with the zeroing of the high byte when eight-bit index registers are switched to sixteen bits.

In Listing 6.7, the result is $0033, demonstrating that when an eight-bit index register is transferred to
the sixteen-bit accumulator, a zero is concatenated as the high byte of the new accumulator value.

0001 0000 KEEP KL.6.5
0002 0000 65816 ON
0003 0000
0004 0000 MAIN START
0005 0000
0006 0000 ; switch to native mode
0007 0000
0008 0000 18 CLC clear carry flag
0009 0001 FB XCE exchange carry with e bit (clear e bit)
0010 0002
0011 0002 C230 REP #$30 set accum, index size to 16
0012 0004 AC1500 LDY DATA16 load Y-reg with 16-bit value at DATA16
0013 0007 AD1700 LDA DATA2 load accum with 16-bit value at DATA2
0014 000A E220 SEP #$20 set accum to eight bits
0015 000C 98 TYA transfer Y register’s value to A
0016 000D C220 REP #$20 make accum 16 again
0017 000F 8D1900 STA RESULT save accum lo.hi in RESULT>RESULT+1
0018 0012
0019 0012 ; return to 6502 emulation mode
0020 0012
0021 0012 38 SEC set carry flag
0022 0013 FB XCE exchange carry with e bit (set e bit)
0023 0014
0024 0014 60 RTS
0025 0015
0026 0015 FF7F DATA16 DC A’$7FFF’
0027 0017 4433 DATA2 DC A’$3344’
0028 0019 0000 RESULT DS 2
0029 001B
0030 001B END

Listing 6.5.

In the 65816, transfers between index registers and the stack also depend on the setting of the destination register.
For example, transferring the sixteen-bit stack to an eight-bit register, as in Fragment 6.2, results in the transfer of just the
low byte. Obviously, though, you’ll find few reasons to transfer only the low byte of the sixteen-bit stack pointer. As
always, you need to be watchful of the current modes in force in each of your routines.

The 65816 also adds new transfer operations to accommodate direct transfer of data to and from the new 65816
environment-setting registers (the direct page register and the sixteen-bit stack register), and also to complete the set of
possible register transfer instructions for the basic 65x user register set:

The Western Design Center

83

 (L = bits in low byte; H = bits in high byte; P = previous bits unmodified by transfer)
16-Bit Index Register-------------------to-------------------8-Bit Accumulator A

HHHH HHHH LLLL LLLL 1 byte PPPP PPPP LLLL LLLL
X or Y B A

 only transfer low byte (hidden B accumulator not affected)

16-Bit Accumulator A-----------------to-------------------8-Bit Index Register
HHHH HHHH LLLL LLLL 1 byte 0000 0000 LLLL LLLL

A X or Y
only transfer low byte

16-Bit Stack Pointer----------------------to-------------------8-Bit Index Register X
HHHH HHHH LLLL LLLL 1 byte 0000 0000 LLLL LLLL

S X
of little use: only transfers address-low

8-Bit Register----------------------------to-------------------16-Bit Accumulator A
0000 0000 LLLL LLLL 2 bytes 0000 0000 LLLL LLLL

X or Y A
high byte transferred is 0

8-Bit Accumulator A------------------to-------------------16-Bit index Register
HHHH HHHH LLLL LLLL 2 bytes HHHH HHHH LLLL LLLL

B A X or Y
transfer both accumulators

8-Bit index Register X----------------to-------------------16-Bit Stack Pointer
0000 0000 LLLL LLLL 2 bytes 0000 0000 LLLL LLLL

X S
sets stack to page 0 value

Figure 6-3 Register Transfers Between Different-Sized Registers

The Western Design Center

84

0001 0000 KEEP KL.6.6
0002 0000 65816 ON
0003 0000
0004 0000 MAIN START
0005 0000
0006 0000 ; switch to native mode
0007 0000
0008 0000 18 CLC clear carry flag
0009 0001 FB XCE exchange carry with e bit (clear e bit)
0010 0002
0011 0002 C230 REP #$30 set accum, index size to 16 bits
0012 0004 AD1300 LDA DATA16 load accum with 16-bit value at DATA16
0013 0007 AC1500 LDY DATA2 load Y-reg with 16-bit value at DATA2
0014 000A E220 SEP #$20 set accum to eight bits
0015 000C A8 TAY transfer accum to Y
0016 000D 8C1700 STY RESULT save 16-bit index into RESULT.RESULT+1
0017 0010
0018 0010 ; return to 6502 emulation mode
0019 0010
0020 0010 38 SEC set carry flag
0021 0011 FB XCE exchange carry with e bit (set e bit)
0022 0012
0023 0012 60 RTS
0024 0013
0025 0013
0026 0013 FF7F DATA16 DC A’$7FFF’
0027 0015 4433 DATA2 DC A’$3344’
0028 0017 0000 RESULT DS 2
0029 0019
0030 0019 END

Listing 6.6

The Western Design Center

85

0001 0000 KEEP KL.6.7
0002 0000 65816 ON
0003 0000
0004 0000
0005 0000 MAIN START
0006 0000
0007 0000 ; switch-to-native-mode code
0008 0000
0009 0000 18 CLC clear carry flag
0010 0001 FB XCE exchange carry with e bit (clear e bit)
0011 0002
0012 0002 E210 SEP #$10 set index size to 8 bits
0013 0004 C220 REP #$20 set accum to 16 bits
0014 0006 AD1300 LDA DATA16 load accum with 16-bit value at DATA16
0015 0009 AC1500 LDY DATA8 load Y-reg with 8-bit value at DATA8
0016 000C 98 TYA transfer Y to accumulator
0017 000D 8D1600 STA RESULT save 16-bit accum into RESULT.RESULT+1
0018 0010
0019 0010 ; return to 6502 emulation mode
0020 0010
0021 0010 38 SEC set carry flag
0022 0011 FB XCE exchange carry with e bit (set e bit)
0023 0012
0024 0012 60 RTS
0025 0013
0026 0013
0027 0013 FF7F DATA16 DC A’$7FFF’
0028 0015 33 DATA8 DC H’33’
0029 0016 0000 RESULT DS 2
0030 0018
0031 0018 END

Listing 6.7

0000 E210 SEP #%00010000 set index mode to 8 bits
0002 BA TSX transfer low byte of stack ptr to 8-bit x

Fragment 6.2

TCD transfers the contents of the sixteen-bit accumulator C to the D direct page register. The use of
the letter C in this instruction’s mnemonic to refer to the accumulator indicates that this
operation is always is a sixteen-bit transfer, regardless of the setting of the memory select flag.
For such a transfer to be meaningful, of course, the high-order byte of the accumulator must
contain a valid value.

TDC transfer the contents of the D direct page register to the sixteen-bit accumulator. Again, the use
of the letter C in the mnemonic to name the accumulator indicates that the sixteen-bit
accumulator is always used, regardless of the setting of the memory select flag. Thus, sixteen
bits are always transferred, even if the accumulator size is eight bits, in which case the high
byte is stored to the hidden B accumulator.

TCS transfers the contents of the sixteen-bit C accumulator to the S stacker pointer register, thereby
relocating the stack. Since sixteen bits will be transferred regardless of the accumulator word
size, the high byte of the accumulator must contain valid data.

TSC transfer the contents of the sixteen-bit S stacker pointer register to the sixteen-bit accumulator,
C, regardless of the accumulator word size.

TXY transfers the contents of the X index register to the Y index register. Since X and Y will always
have the same register size, there is no ambiguity.

TYX transfers the contents of the Y index register to the X index register. Both will always be the
same size.

The Western Design Center

86

Transfer instructions take only one byte, with the source and destination both specified in the opcode
itself. In all transfers, the data remains intact in the original register as well as being copied into the new
register.

Using TCS and TCD can be dangerous when the accumulator is in eight-bit mode, unless the
accumulator was recently loaded in sixteen-bit mode so that the high byte, hidden when the switch was made to
eight-bit mode, is still known. Transferring an indeterminate hidden high byte of the accumulator along with its
known low byte into a sixteen-bit environment register such as the stack pointer will generally result in disaster.

As always, you need to be watchful of the modes currently in force in each of your routines.

Exchanges

The 65802 and 65816 also implement two exchange instructions, neither available on the 6502 or
65C02. An exchange differs from a transfer in the two values are swapped, rather than one value being copied
to a new location.

The first of the two exchange instructions, XBA, swaps the high and low bytes of the sixteen-bit
accumulator (the C accumulator).

The terminology used to describe the various components of the eight-or-sixteen bit accumulator is: to
use A to name the accumulator as a register that may be optionally eight or sixteen bits wide (depending on the
m memory/accumulator select flag); to use C when the accumulator is considered to be sixteen bits regardless
of the setting of the m flag; and, when A is used in eight-bit mode to describe the low byte only, to use B to
describe the hidden high byte of the sixteen-bit accumulator. In the latter case, when the accumulator size is set
to eight bits, only the XBA instruction can directly access the high byte of the sixteen-bit “double accumulator”,
B. This replacement of A for B and B for A can be used to simulate two eight-bit accumulators, each of which,
by swapping, “shares” the actual A accumulator. It can also be used in the sixteen-bit mode for inverting a
double-byte value. The XBA instruction is exceptional in that the n flag is always set on the basis of bit seven
of the resulting accumulator A, even if the accumulator is sixteen bits.

The second exchange instruction, XCE, is the 65816’s only, method for toggling between 6502
emulation mode and 65816 native mode. Rather than exchange register values, it exchanges two-bits - the carry
flag, which is bit zero of the status register, and the e bit, which should be considered a kind of appendage to the
status register and which determines the use of several of the other flags.

Fragment 6.3 sets the processor to 6502 emulation mode. Conversely, native mode can be set by
replacing the SEC with a CLC clear carry instruction.

0010 38 SEC
0011 FB XCE

Fragment 6.3

Because the exchange stores the previous emulation flag setting into the carry, it can be saved and
restored later. It can also be evaluated with the branch-on-condition instructions to be discussed in Chapter 8
(Flow of Control) to determine which mode the processor was just in. A device driver routine that needs to set
the emulation bit, for example, can save its previous value for restoration before returning.

The selection of the carry flag for the e bit exchange instruction is in no way connected to the normal
use of the carry flag in arithmetic operations. It was selected because it is easy to set and reset, it is less
frequently used than the sign and zero flags, and there are branch-on-conditions instructions which test it. The
primary use of the SEC and CLC instructions for arithmetic will be covered in upcoming chapters.

Storing Zero to Memory

The STZ instructions, introduced on the 65C02, lets you clear either a single or double byte memory
word zero, depending, as usual, on the current memory/accumulator select flag word size. Zero has long been
recognized as one of the most commonly stored values, so a “dedicated” instruction to store zero to memory can
improve the efficiency of many 65x programs. Furthermore, the STZ instruction lets you clear memory without
having to first load one of the registers with zero. Using STZ results in fewer bytes of code, faster execution,
and undisturbed registers.

The Western Design Center

87

Block Moves

The two block move instructions, available only on the 65802 and the 65816, let entire blocks (or
strings) of memory be moved at once.

Before using either instruction, all three user registers (C,X, and Y) must be set up with values which
serve as parameters.

The C accumulator holds the count of the number of bytes to be moved, minus one. It may take some
getting used to, but this “count” is numbered from zero rather than one. The C accumulator is always sixteen
bits: if the m mode flag is set to eight bits, the count is still the sixteen-bit value in C, the concatenation of B
and A.

X and Y specify either the top or the bottom addresses of the two blocks, depending on which of the
two versions of the instruction you choose. In Listing 6.8, $2000 bytes of data are moved from location $2000
to $4000.

0001 0000 KEEP KL.6.8
0002 0000 65816 ON
0003 0000
0004 0000 MAIN START
0005 0000
0006 0000 18 CLC
0007 0001 FB XCE
0008 0002
0009 0002 C230 REP #$30 reset data and index mode to 16 bits
0010 0004 LONGA ON
0011 0004 LONGI ON
0012 0004
0013 0004 AD1300 LDA COUNT load 16-bit C accum with # bytes to be moved
0014 0007 AE1500 LDX SOURCE load 16-bit X reg with address of source
0015 000A AC1700 LDY DEST load 16-bit Y reg with address of destination
0016 000D
0017 000D 540000 MVN 0,0
0018 0010
0019 0010 38 SEC
0020 0011 FB XCE
0021 0012 60 RTS
0022 0013
0023 0013 FF1F COUNT DC A’$1FFF’
0024 0015 0020 SOURCE DC A’$2000’
0025 0017 0040 DEST DC A’$4000’
0026 0019
0027 0019 END

Listing 6.8.

The MVN instruction uses X and Y to specify the bottom (or beginning) addresses of the two blocks of
memory. The first byte is moved from the address in X to the address in Y; then X and Y are incremented, C is
decremented, and the next byte is moved, and so on, until the number of bytes specified by the value in C is
moved (that is, until C reaches $FFFF). If C is zero, a single first byte is moved, X and Y are each incremented
once, and C is decremented to $FFFF.

The MVP instruction assumes X and Y specify the top (or ending) addresses of the two blocks of
memory. The first byte is moved from the address in X to the address in Y; the X, Y and C are decremented,
the next byte is moved , and so on, until the number of bytes specified by the value in C is moved (until C
reaches $FFFF).

The need for two distinct block move instructions becomes apparent when the problem of memory
overlap is considered. Typically, when a block of memory starting at location X is to be moved to location Y,
the intention is to replace the memory locations from Y to Y + C with the identical contents of the range X
through X + C. However, if these two ranges overlap, it is possible that as the processor blindly transfers
memory one byte at a time, it may overwrite a value in the source range before that value has been transferred.

The rule of thumb is, when the destination range is a lower memory address than the source range, the
MVN instruction should be used (thus “Move Next”) to avoid overwriting source bytes before they have been
copied to the destination. When the destination range is a higher memory location than the source range, the
MVP instruction should be used (“Move Previous”).

The Western Design Center

88

While you could conceivably move blocks with the index registers set to eight bits (your only option in
emulation mode), you could only move blocks in page zero to other page zero location. For all practical
purposes, you must reset the x mode flag to sixteen bits before setting up and executing a block move.

Notice that assembling an MVN or MVP instruction generates not only an opcode, but also two bytes
of operand. The operand bytes specify the 64K bank from which and to which data is moved. When operating
in the 65816’s sixteen-megabyte memory space, this supports the transfer of up to 64K of memory from one
bank to another. In the object code, the first byte following the opcode is the bank address of the destination
and the second byte is the bank address of the source.

But while this order provides microprocessor efficiency, assembler syntax has always been the more
logical left to right, source to destination (TAY, for example, transfers the accumulator to the Y index register).
As a result, the recommended assembler syntax is to follow the mnemonic first with a 24-bit source address
then with a 24-bit destination address - or more commonly with labels representing code or data addresses. The
assembler strips the bank byte from each address (ignoring the rest) and inserts them in the correct object code
sequence. (Destination bank, source bank.) For example:

440102 MVP SOURCE, DEST move from bank of source(02) to bank of dest(01)

The bank byte of the label SOURCE is 02 while the bank byte of the label DEST is 01. As always, the
assembler does the work of converting the more human-friendly assembly code to the correct object code
format for the processor.

If the source and destination banks are not specified, some assemblers will provide a user-specified
default bank value.

The assembler will translate the opcode to object code, then supply its bank value for both of the
operand bytes:

440000 MVP

If either bank is different from the default value, both must be specified.

The Western Design Center

89

7) Chapter Seven

SimpleAddressing Modes

The term addressing mode refers to the method by which the processor determines where it is to get
the data needed to perform a given operation. The data used by a 65x processor may come either from memory
or from one or another of the processor’s register’s. Data for certain operations may optionally come from
either location, some from only one or the other. For those operations which take one of their operands from
memory, there may be several ways of specifying a given memory location. The method best suited in a
particular instance is a function of the overall implementation of a chosen problem-solving algorithm. Indeed,
there are so many addressing modes available on the 65x processors that there is not necessarily a single
“correct” addressing mode in each situation.

This chapter deals with those addressing modes which may be described as the “simple” addressing
modes. You have already seen some of these used in the examples of the previous chapter; the simple
addressing modes are listed in Table 7.1. Each of these addressing modes is straightforward. Those addressing
modes that require more than a simple combination of values from several memory locations or registers are
described as “complex modes” in Chapter 11.

Available on all 65x processors: Example Syntax
immediate LDA #$12
absolute LDA $1234
direct page (zero page) LDA $12
accumulator ASL A
implied TAY
stack PHA

Available on the 65C02, 65802, and 65816 only:

direct page (zero page) indirect LDA ($12)

Available on the 65802 and 65816 only:

absolute long LDA $123456
direct page indirect long LDA [$12]
block move MVN SOURCE, DEST

Table 7-1 List of Simple Addressing Modes

In addition to solving a given problem, the processor must spend a great deal of its time simply
calculating effective addresses. The simple addressing modes require little or no effective address computation,
and therefore tend to be the fastest executing. However, the problem-solving and memory efficiencies of the
complex addressing modes, which will be described in subsequent chapters, can make up for their effective
address calculation overhead. In each case, the nature of the problem at hand determines the best addressing
mode to use.

The Western Design Center

90

Immediate Addressing

Immediate data is data found embedded in the instruction stream of a program itself, immediately
following the opcode which uses the data. Because it is part of the program itself, it is always a constant value,
known at assembly time and specified when you create the program. Typically, small amounts of constant data
are handled most efficiently by using the immediate addressing mode to load either the accumulator or an index
register with specific value. Note that the immediate addressing mode is not available with any of the store
instructions (STA, STX, or STY), since it makes no sense to store a value to the operand location within the
code stream.

To specify the immediate addressing mode to a 65x assembler, prefix the operand with a # (pound or
sharp) sign. The constant operand may be either data or an address.

For example,

A912 LDA #$12

loads the hexadecimal value $12 into the accumulator.
The 6502 and 65C02, their registers limited to only eight bits, permit only an eight-bit operand to

follow the load register immediate opcodes. When the constant in an assembly source line is a sixteen-bit
value, greater-than and less-than signs are used to specify whether the high- or low-order byte of the double-
byte value are to be used. A less-than indicates that the low byte is to be used, and thus:

A234 LDX #<$1234

causes the assembler to generate the LDX opcode followed by a one-byte operand, the low byte of the source
operand, which is $34. It’s equivalent to:

A234 LDX #$34

The use of a greater-than sign would cause the value $12 to be loaded. If neither the less-than nor
greater-than operator is specified, most assemblers will default to the low byte when confronted with a double-
byte value.

When assembling 65816 source code, the problem becomes trickier. The 6502 and 65C02 neither have
nor need an instruction to set up the eight-bit mode because they are always in it. But the 65816’s accumulator
may be toggled to deal with eight- or sixteen-bit quantities, as can its index registers, by setting or resetting the
m (memory/accumulator select) or x (index select) flag bits of the status register. Setting the m bit puts the
accumulator in eight-bit mode; resetting it puts it in sixteen-bit mode. Setting the x bit puts the index registers
in eight-bit mode; resetting it puts them in sixteen-bit mode.

The m and x flags may be set and reset many times throughout a 65816 program. But while assembly
code is assembled from beginning to end, it rarely executes in that fashion. More commonly, it follows a
circuitous route of execution filled with branches, jumps, and subroutine calls. Except for right after the m or x
flag has been explicitly set or reset, the assembler has no way of knowing the correct value of either: your
program may branch somewhere, and re-enter with either flag having either value, quite possibly an incorrect
one.

While the programmer must always be aware of the proper values of these two flags, for most
instructions the assembler doesn’t need to know their status in order to generate code. Most instructions
generated are the same in both eight- or sixteen-bit mode. Assembling a load accumulator absolute instruction,
for example, puts the same opcode value and the same absolute address into the code stream regardless of
accumulator size; it is at execution time that the m bit setting makes a difference between whether the
accumulator is loaded with one or two bytes from the absolute address.

But a load register immediate instruction is followed by the constant to be loaded. As Figure 7.1 shows,
if the register is set to eight-bit mode at the point the instruction is encountered, the 65816 expects a one-byte
constant to follow before it fetches the next opcode. On the other hand, if the register is set to sixteen-bit mode
at the point the instruction is encountered , the 65816 expects a double-byte constant to follow before it fetches
the next opcode. The assembler must put either a one-byte or two-byte constant operand into the code
following the load register immediate opcode based on the status of a flag which it doesn’t know.

The Western Design Center

91

Immediate Addressing: 8 bit vs. 16

8-Bit Data [all processors]: Data: operand byte.

Instruction:
Opcode Data = Operand

16-Bit Data (65802/65816. native mode, applicable mode flag m or x=0)
Data High: Second operand byte
Data Low: First operand byte
Instruction:

Opcode
Data Low =
 Operand Low

Data High =
 Operand High

Figure 7-1 Immediate Addressing: 8 vs. 16 bits

Two assembler directives have been designed to tell the assembler which way to go: LONGA and
LONGI, each followed with the value ON or OFF. LONGA ON indicates the accumulator is in sixteen-bit
mode, LONGA OFF in eight-bit mode. LONGI ON tells the assembler that the index registers are in sixteen-
bit mode, LOGI OFF that they are in eight-bit mode. Load register immediate instructions are assembled on
the basis of the last LONGA or LONGI directive the assemble has seen - that is, the one most immediately
preceding it in the source file. For example,

LONGA ON
LONGI ON

tells the assembler that both accumulator and index registers are set to sixteen bits. Now, if it next encounters
the following two instructions

A93412 LDA #$1234
A05600 LDY #$56

then the first puts a LDA immediate opcode followed by the constant $1234 into the code, and the second a
LDY immediate opcode followed by the constant $0056, again two bytes of operand, the high byte padded with
zero.

On the other hand,

LONGA OFF
LONGI OFF

tells the assembler that both accumulator and index registers are set to eight bits. Now,

A934 LDA #$1234
A056 LDY #$56

puts LDA immediate opcode followed by the constant $34 into code, and the second a LDY immediate opcode
followed by the constant $56, each one byte of operand.

Like the flags themselves, of course, one directive may be ON and the other OFF at any time. They
also do not need to both be specified at the same time.

The setting of the LONGA and LONGI directives to either ON or OFF simply represent a promise by
you, the programmer, that the flags will, in fact, have these values at execution time. The directives do nothing
by themselves to change the settings of the actual m and x flags; this is typically done by using the SEP and
REP instructions, explained earlier. (Note, incidentally, that these two instructions use a special form of the
immediate addressing mode, where the operand is always eight bits.) Nor does setting the flags change the

The Western Design Center

92

settings of the directives. You must therefore exercise to set the LONGA and LONGI flags to correctly
represent the settings of the m or x flags, and to be sure never to branch into the code with the m or x flag set
differently. If, for example, the assembler generated a LDA #$1234 instruction with LONGA set ON, only to
have the m accumulator flag set to eight bits when the code is executed, the processor would load the
accumulator with $34, then see the $12 which follows as the next opcode and try to execute it, resulting in
program failure.

Absolute Addressing

There are two categories of simple addressing modes available for accessing data in a known memory location:
absolute and direct page. The first of these, absolute addressing, is used to load or store a byte to or from a fixed memory
location (within the current 65K data bank on the 65816, which defaults to bank zero on power up). You specify the
sixteen-bit memory location in the operand field (following the opcode) in your assembly language source line, as Figure
7.1 loads the eight-bit constant $34 into the accumulator, then stores it to memory location $B100 in the current data bank.

0000 E220 SEP #%00100000 set 8-bit accumulator/memory mode
0002 LONGA OFF tell assembler the accumulator mode
0002 A934 LDA #$34 load constant $34 as immediate data
0004 8D00B1 STA $B100 store byte to memory location $B100

Fragment 7.1.

The same memory move could be done with either of the index registers, as shown in Fragment 7.2
using the X register. Symbolic labels in the operand fields provide better self-documentation and easier
program modification.

0000 NUM1 GEQU $34 give this data byte a symbolic label
0000 DATA GEQU $B100 give this data byte a symbolic label
0000
0000 E210 SEP #%00010000 set index registers to 8-bit mode
0002 LONGI OFF tell assembler the index mode is 8-bit
0002 A234 LDX #NUM1 load constant $34 as immediate data
0004 8E00B1 STX DATA store byte to memory location $B100

Fragment 7.2

As you have seen, the 65816’s accumulator may be toggled to deal with either eight- or sixteen-bit
quantities, as can its index registers, by setting or resetting the m or x flag bits of the status register. Naturally,
you don’t need to execute a SEP or REP instructions nor a LONGA or LONGI assembler directive before
every routine, provided you know the register you intend to use is already set correctly, and the assembler
correctly knows that the setting. But you must always exercise extreme care when developing 65816 programs
to avoid making invalid assumptions about the modes currently in force or taking unintentional branches from
code in one mode to code in another.

The Western Design Center

93

Effective Address:
23 15 7 0

Bank High Low

Data Bank (DBR)

Instruction:
Opcode Operand Low Operand High

Figure 7-2 Absolute Addressing

As Fragment 7.3 shows, the load and store instructions above will as easily move sixteen bits of data as they did
eight bits; all that’s needed is to be sure the register used is in sixteen-bit mode, and that the assembler has
alerted to the setting.

0000 DATA GEQU $B100 give this location a symbolic label
0000
0000 C210 REP #%00010000 reset index registers to 16-bit mode
0002 LONGI ON tell assembler
0002 A23412 LDX #1234 load 16-bit constant $1234 immediate
0005 8E00B1 STX DATA store double byte to memory loc $B100

Fragment 7.3.

As indicated, absolute addresses are sixteen-bit addresses. On the 6502, 65C02, and 65802, with
memory space limited to 64K, sixteen bits can specify any fixed location within the entire address space of the
processor. Therefore, the term absolute addressing was appropriate.

The 65816, on the other hand, with its segmentation into 256 possible 64K banks, requires a 24-bit
address to specify any fixed location within its address space. However, the same opcodes that generate 24-bit
addresses on the 65816 by concatenating the value of the data bank register with the sixteen-bit value in the
operand field of the instruction. (Instructions that transfer control, to be discussed in Chapter 8, substitute the
program bank register value for the data bank register value.)

Absolute addressing on the 65816 is therefore actually an offset from the base of the current bank;
nevertheless, the use of the term absolute addressing has survived on the 65816 to refer to sixteen-bit fixed
addresses within the current 64K data bank.

So long as the programmer needs to access only the contents of the current data bank, (sixteen-bit)
absolute addressing is the best way to access data at any known location in that bank.

The Western Design Center

94

Direct Page Addressing

One of the most powerful and useful features of the 6502 and 65C02 processors is their zero page
addressing modes. A page of memory on a 65x processor consists of 256 memory locations, starting at an
address which is an integer multiple of $100 hexadecimal, that is, $0000, $0100, $0200, and so on. Generally,
pages are numbered in hexadecimal, so their range within a 64K bank is $00 through $FF. Zero page
addressing is made even more powerful and generalized as direct page addressing on the 65802 and 65816.

The zero page is the first of the 256 pages found within the 64K address space of the 6502 and 65C02 -
memory addresses $0000 to $00FF. These addresses may be accessed one byte cheaper than absolute memory
accesses. Whereas loading or storing data from an absolute location will require three bytes of code, loading or
storing a byte from a zero page location requires only two bytes, as Figure 7.3 shows.

Effective Address:
High Low

0 0 0 0 0 0 0 0

Instruction:
Opcode Operand

Figure 7-3 Zero Page Addressing.

Since all of the addresses in the zero page are less than $0100 (such as $003F, for example) it follows
that, if the computer knew enough to assume two leading hexadecimal zeroes, a zero page address could be
represented in only one byte, saving both space and time. But if absolute addressing is used, the processor has
to assume that two bytes follow an instruction to represent the operand, regardless of whether the high-order
byte is zero or not.

This concept of expressing a zero page address with a single-byte operand was implemented on the
6502 and 65C02 by reserving separate opcodes for the various instructions using zero page addressing. Since
an instruction’s opcode for using zero page addressing is unique (as opcodes are for all of the different modes of
a given instruction), the processor will fetch only one operand byte from the code stream, using it in effect as a
displacement from a known base ($0000, in the case of the 6502 and 65C02). Since only one byte need be
fetched from the instruction stream to determine the effective address, the execution time is faster by one cycle.
The result is a form of addressing that is shorter, both in memory use and execution time, than regular sixteen-
bit absolute addressing.

Clearly, locating your most often accessed variables in zero page memory results in considerably
shorter code and faster execution time.

The limitation of having this special area of memory available to the zero page addressing mode
instructions is that there are only 256 bytes of memory available for use in connection with it. That is, there are
only 256 zero page addresses. Resident system programs, such as operating systems and language interprets,
typically grab large chunks of page zero for their own variable space; applications programmers must carefully
step around the operating system’s variables, limiting assignment of their own program’s zero page variables to
some fraction of the zero page.

This problem is overcome on the 65816 by letting its direct page be set up anywhere within the first
64K of system memory (bank zero), under program control. No longer limited to page zero, it is referred to as
direct page addressing. The result is, potentially, multiple areas of 256 ($100) bytes each, which can be
accessed one byte and one cycle cheaper than absolute memory. Setting the direct page anywhere is made
possible by the 65816’s direct page register, which serves as the base pointer for the direct page area of

The Western Design Center

95

memory. Expressed in terms of the 65816’s direct page concept, it can be said that on the 6502 (and 65C02),
the direct page is fixed in memory to be the zero page.

So 6502 and 65C02 zero page addressing opcodes become direct page opcodes on the 65802 and
65816; and when they are executed, the “zero page address” - the single byte that the processor fetches
immediately after the opcode fetch - becomes instead a direct page offset. This means that instead of simply
pointing to a location in the range $0000 to $00FF as it would on the 6502 and 65C02, the direct page offset is
added to the sixteen-bit value in the direct page register to form the effective direct page address, which can be
anywhere in the range $00;0000 to $00;FFFF.

For purposes of this chapter, however, the discussion of the direct page addressing will be limited to the
default case, where the value in the direct page register is zero, making it functionally identical to the 6502 and
65C02 zero page addressing mode. Since it requires the effective address to be computed, relocation of the
direct page will be considered as a form of complex addressing, and will be covered in future chapters. While
“direct page offset” is more correct, it is also more abstract; the term direct page address is most commonly
used. However, it is essential to remember that it is, in fact, an offset relative to a previously established direct
page value (again, as used in this chapter, $0000).

An example of the use of direct page addressing to store a constant value to memory is as follows:

A9F0 LDA #$FO
8512 STA $12

This stores the one-byte value $F0 at address $0012. Note that the object code generated for the store requires
only one byte for the opcode and one for operand.

A9F0 LDA #$FO
8D0081 STA $B100

This stores the same one-byte value at the address $B100. In this case, the store requires one byte for the
opcode and two bytes for the operand.

Notice how the assembler automatically assumes that if the value of the operand can be expressed in
eight bits - if it is a value less than $100, whether coded as $34 or $000034 - the address is a direct page
address. It therefore generates the opcode for the direct page addressing form of the instruction, and puts only a
one-byte operand into the direct page address to store to is $12. One result of the assembler’s assumption that
values less than $100 are direct page offsets is that physical addresses in the range $xx:0000 to $xxx:00FF
cannot be referenced normally when either the bank (the “xx”) register is other than zero or the direct page
register is set to other than $0000. For example, assembler syntax like:

A4FO LDY $FO

or

A4FO LDY $00FO

is direct page syntax. It will not access absolute address $00F0 if the direct page register holds a value other
than zero; nor will it access $00F0 in another bank, even if the data bank register is set to the other bank. Both
are evaluated to the same $F0 offset in the direct page. Instead, to access physical address $xx00F0, you must
force absolute addressing by using the vertical bar or exclamation point in your assembler source line:

ACF000 LDY !$F0 load Y absolute (not direct page) from $00F0

Indexing

An array is a table or list in memory of sequentially stored data items of the same type and size.
Accessing any particular item of data in an array requires that you specify both location of the base of the array
and the item number within the array. Either your program or the processor must translate the item number into
the byte number within the array (they are the same if the items are bytes) and add it to the base location to find
the address of the item to be accessed (see Figure 7.4).

The Western Design Center

96

Sometimes an array might be a table of addresses, either of data to be accessed or of the locations of
routines to be executed. In this case, the size of each item is two bytes; the first address is at locations zero and
one within the array, the second at locations two and three, the third at locations four and five and so on. You
must double the item number,

The Western Design Center

97

Indexing: Base plus Index

For example: Base = $2000
Index Register X = $ 03

Effective Address = $2003

Base = $2000
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

$2000

$2001

$2002
$2003

$2004

X = $03
0 0 0 0 0 0 1 1

Figure 7-4 Indexing

resulting in the values 0, 2, 4, . . . from the array indicates 0, 1, 2, and so on, to create an index into this
array of two-byte data items.

The 65x processors provide a wide range of indexing addressing modes that provide automatic
indexing capability. In all of them, a value in one of the two index registers specifies the unsigned (positive
integer) index into the array, while the instruction’s operand specifies either the base of the array or a pointer to
an indirect address at which the base may be found. Each addressing mode has a special operand field syntax
for specifying the addressing mode to the assembler. It selects the opcode that will correctly instruct the
processor where to find both the base and index.

Some early processors (the 6800, for example) had only one index register; moving data from one array
to another required saving off the first index and loading the second before accessing the second array, then
incrementing the second index and saving it before reloading the first index to again access the first array. The
65x processors were designed with two index registers so data can be quickly moved from an array indexed by
one to a second array indexed by the other.

The Western Design Center

98

 Correct Result
 on 65816

 $4000

 $FFFF

Figure 7-5 Indexing Beyond the End of the Bank

Often, the index registers are used simultaneously as indexes and as counters within loops in which consecutive
memory locations are accessed.

The 65802 and 65816 index registers can optionally specify sixteen-bit offsets into an array, rather than
eight-bit offsets, if the x index register select flag is clear when an indexed addressing mode is encountered.
This lets simple arrays and other structured data elements be as large as 64K.

On the 6502, 65C02, and 65802, if an index plus its base would exceed $FFFF, it wraps to continue
from the beginning of the 64K bank zero; that is, when index is added to base, any carry out of the low-order
sixteen bits lost. (See Figure 7.5.)

On the 65816, the same is true of direct page indexing: because the direct page is always located in
bank zero, any time the direct page, plus an offset into the direct page, plus an index exceeds $FFFF, the
address wraps to remain in bank zero.

But as Figure 7.5 shows, whenever a 65816 base is specified by a 24-bit (long) address, or the base is
specified by sixteen bits and assumes the data bank as its bank, then, if an index plus the low-order sixteen bits
of its base exceeds $FFFF, it will temporarily (just for the current instruction) increment the bank. The 65816
assumes that the array being accessed extends into the next bank.

Absolute Indexed with X and Absolute Indexed with Y Addressing

Absolute addresses can be indexed with either the X (referred to as Asolute,X addressing) or the Y
(referred to as Absolute,Y addressing) index register; but indexing with X is available to half again as many
instructions as indexing with Y.

The base in these modes is specified by the operand, a sixteen-bit absolute address in the current data
bank (Figure 7.6). The index is specified by the value in the X or Y register; the assembler picks the correct
opcode on the basis of which index register the syntax specifies.

B
A

N
K

 T
W

O
B

A
N

K
 O

N
E

INDEX
=
Index =

$8000

Base =
$C000

“Wrapped” result
on 65802

$4000

$0000

The Western Design Center

99

In Fragment 7.4, the X register is used to load the accumulator from $2200 plus 5, or $2205. If run on
the 65816 in native mode, then if the accumulator is set to sixteen-bit mode, two bytes will be loaded from
$2205 and $2206 in the current data bank.

0000 A20500 LDX #5 load an index value of five
0003 BD0022 LDA $2200,X load the accumulator from $2205

Fragment 7.4

If the 65816 is in native mode and the index registers are set to sixteen-bit mode, indexes greater than
$FF can be used, as Fragment 7.5 illustrates.

0000 A00501 LDY #$105 load an index value of $105
0003 B90022 LDA $2200,Y load the accumulator from $2305

Fragment 7.5

If the index register plus the constant base exceeds $FFFF, the result will continue beyond the end of
the current 64K data bank into the next bank (the bank byte of the 24-bit address is temporarily incremented by
one). So an array of any length (up to 64K bytes) can be started at any location and absolute indexed addressing
will correctly index into the array, even across a bank boundary. 65802 arrays, however, wrap at the 64K
boundary, since effectively there is only the single 64K bank zero.

Loading the index register with an immediate constant, as in the previous two examples, is of limited
use: if, when writing a program, you know that you want the accumulator from $2305, you will generate far
fewer bytes by using absolute addressing:

AD0523 LDA $2305 load the accumulator from $2305

The usefulness of indexed addressing becomes clear when you don’t know, as you write a program, what the
index into the array will be. Perhaps the program will select among indexes, or calculate one, or retrieve it from
a variable, as in Fragment 7.6.

The Western Design Center

100

Effective Address:
23 15 7 0

Bank High Low

Instructions:
Opcode Operand Low Operand High

65816 Registers:
Bank High Low

23 15 7 0

Data Bank (DBR)

Index Register
x = 1
x = 0

Figure 7-6 Absolute Indexing with a Generic Index Register

0000 AE0600 LDX INDEX get previously calculated index from memory
0003 BD0022 LDA $2200,X load the accumulator from the array, X
0006 .
0006 .
0006 .
0006 0000 INDEX DS 2

Fragment 7.6.

It can be useful to be able to put the base of an array into the index register and let it vary, while
keeping the index into the array constant. This is seldom possible with the eight bits of the 6502’s and 65C02’s
index registers, since they limit the base addresses they can hold to the zero page, but it is a useful capability of
the 65802 and 65816.

For example, suppose, as in Fragment 7.7, you’re dealing with dozens (or hundreds) of records in
memory. You need to be able to update the fifth byte (which is a status field) of an arbitrary record. By loading
the base address of the desired record into an index register, you can use a constant to access the status field.
The index into the array, five, is fixed; the array base varies.

Because the index is less than $100, the assembler would normally generate direct page indexing. To
force the assembler to generate absolute indexing, not direct page indexing, you must use the vertical bar (or
exclamation point) in front of the five, as Fragment 7.7 shows. That way, the five is generated as the double-
byte operand $0005, an absolute address to which the address in the index register is added to form the absolute
effective address.

+

The Western Design Center

101

0000 STATUS GEQU 5
0000 OK GEQU 1
0000 BAD GEQU 0
0000
0000 18 CLC
0001 FB XCE
0002
0002 C210 REP #$10 set index registers to 16 bits
0004 LONGI ON
0004
0004 E220 SEP #$20
0006 LONGA OFF
0006
0006 AE0E00 LDX REC get location of record to update
0006 AE0E00 LDX #OK load A with ok status token
0009 A901 LDA !STATUS,X store to status field
000B 9D0500 STA force absolute,X addressing
000E ;
000E .
000E .
000E .
000E 0030 REC DC a’$3000’ loc of 1st record (in data bank)

Fragment 7.7

Had the Y index register been used instead of the X in Fragment 7.7, the vertical bar would have been
acceptable but not necessary; direct page, Y addressing, as you will learn in the next section, can only be used
with the LDX and STX instructions, so the assembler would have been forced to use absolute,Y addressing
regardless.

Both absolute,X and absolute,Y can be used by what are called the eight Group I instructions, the
memory-to-accumulator instructions which can use more addressing modes than any others: LDA, STA, ADC,
SBC, CMP, AND, ORA, and EOR. In addition, absolute,X can be used for shifting data in memory,
incrementing and decrementing data in memory, loading the Y register, and for other instructions; but
absolute,Y has only one other use – to load the X register.

Direct Page Indexed with X and Direct Page Indexed with Y Addressing

Arrays based in the direct page (the zero page on the 6502 and 65C02) can be indexed with either the X
register (called Direct Page,X addressing) or the Y register (called Direct Page,Y addressing). However, direct
page,Y addressing is available only for the purpose of loading and storing the X register, while direct page,X is
full-featured.

As is standard with indexed addressing modes, the index, which is specified by the index register, is
added to the array base specified by the operand. Unlike the absolute indexed modes, array always starts in the
direct page. So the array base, a direct page offset, can be specified with a single byte. The sum of the base and
the index, a direct page offset, must be added to the value in the direct page register to find its absolute address,
as shown in Figure 7.7.

In Fragment 7.8, the accumulator is loaded from a direct page offset base of $32 plus index of $10, or
an offset of $42 from the direct page register’s setting.

0000 A21000 LDX #$10 set up an index of $10
0003 B532 LDA $32,X load accumulator from dp:$42

Fragment 7.8

Remember that the effective address is an offset of $42 from the direct page register and is always in
bank zero. It will correspond to an absolute address of $0042 only when the direct page register is equal to zero

The Western Design Center

102

(the default here in this chapter). Chapter 11, which covers the complex addressing modes, details relocation of
the direct page.

When the index registers are set to eight bits, you can code the index and the array base interchangeably
– they are both the same size. So the index, if it is a constant, may be specified as the operand, with the array
base in the index register. Using the last example, the $10 in the index register could be the direct page base of
the array; the operand, $32, would then be the index into an array in the direct page which begins at the direct
page offset $10.

On the 6502 and 65C02, and in they 6502 emulation modes of the two sixteen-bit processors, indexing
past the end of the direct page wraps to the beginning of the direct page, as Fragment 7.9 shows. The index and
the direct page array base are added, but only the low eight bits of the sum specify the direct page offset of the
effective address. So in Fragment 7.9, while the base of $32 plus the index of $F0 equals $122, only the $22 is
kept, and the accumulator is loaded from dp:$22.

A2FO LDX #$F0 set up an index of $F0
B532 LDA $32,X load accumulator from dp:$22

Fragment 7.9

In 65802 and 65816 native mode, however, indexes can be sixteen bits, so direct page indexing was
freed of the restriction that the effective address be within the direct page. Arrays always start in the direct
page, but indexing past the end of the direct page extends on through bank zero, except that it wraps when the
result is greater than $FFFF to remain in bank zero (unlike absolute indexing, which temporarily allows access
into the next higher bank).

Effective Address:
23 15 7 0

Bank High Low

Instruction: 0 0 0 0 0 0 0 0
Opcode Operand

65816 Registers:
Bank High Low

23 15 7 0 +
0000 0000 Direct Page Register (D)

+

Index Register
x = 1
x = 0

Figure 7-7 Direct Page Indexing with a Generic Index Register

In Fragment 7.10, the accumulator is loaded from the value in the direct page register plus the direct
page base of $12 plus index of $FFF0, or dp:$0002. Note this is in bank zero, not bank one.

The Western Design Center

103

0000 C230 REP #$30 set index and accumulator 16-bit modes
0002 LONGA ON
0002 LONGI ON
0002
0002
0002 A2F0FF LDX #$FFF0
0005 B512 LDA $12,X load accum from $0002

Fragment 7.10

If the index registers are set to sixteen bits and the array indexes you need to use are all known
constants less than $100, then you can use direct page indexing to access arrays beginning, not just in the direct
page, but anywhere in bank zero memory: load the index register with the sixteen-bit base of the array and
specify the index into the array as the operand constant. This technique would generally only be useful if the
direct page register has its default value of zero.

Accumulator Addressing

Accumulator addressing is only available for the read-modify-write instructions such as shifts and
rotates. The instructions themselves will be explained in subsequent chapters, and use of accumulator
addressing with them will be reviewed in detail.

As a simple addressing mode, accumulator addressing is included in this chapter for the sake of
completeness even though the instructions which use it have not yet been introduced.

Generally, most operations take place upon two operands, one of which is stored in the accumulator, the
other in memory, with the result being stored in the accumulator. Read-modify-write instructions, such as the
shifts and rotates, are “unary” operations; that is, they have only a single operand, which in the case of
accumulator addressing, is located in the accumulator. There is no reference to external memory in the
accumulator addressing modes. As usual, the result is stored in the accumulator.

The syntax for accumulator addressing, using the ASL (arithmetic shift left) instruction as an example,
is:

OA ASL A

Implied Addressing

In implied addressing, the operand of the instruction is implicit in the operation code itself; when the
operand is a register, it is specified in the opcode’s mnemonic. Implied operand instructions are therefore
single-byte instructions consisting of opcode only, unlike instructions that reference external memory and as a
result must have operands in subsequent bytes of the instruction.

You have already encountered implied addressing in the previous chapter in the form of the register
transfer instructions and exchanges. Since there are a small number of registers, it is possible to dedicate an
opcode to each specific registers transfer operation. Other instructions that use implied addressing are the
register increments and decrements.

As one-byte instructions, there is no assembler operand field to be coded: You simply code the
assembler mnemonic for the given instruction, as below:

7B TDC transfer direct page register to double accumulator
AA TAX transfer A to X
9B TXY transfer X to Y

The Western Design Center

104

Stack

Stack addressing references the memory location pointed to by the stack register. Typical use of the
stack addressing mode is via the push and pull instructions, which add or remove data to or from the stack area
of memory and which automatically decrement or increment the stack pointer. Examples of the use of push and
pull instructions were given in the previous chapter.

Additionally, the stack is used by the jump to subroutine, return from subroutine, interrupt, and return
from interrupt instructions to automatically store and retrieve addresses and in some cases also the status
register. This form of stack addressing will be covered in Chapter 12, Subroutines, and Chapter 13, System
Control.

The assembler syntax of the push and pull instructions is similar to that of implied instructions; no
operand field is coded, since the operation will always access memory at the stack pointer location.

Direct Page Indirect Addressing

Direct page indirect addressing, or, as it is known on the 65C02, zero page indirect, is unavailable on
the 6502; it was first introduced on the 65C02.

Indirect addressing was designed for the 65C02 as a simplification of two often-used complex forms of
addressing available on the 6502 known as zero page indirect indexed and zero page indexed indirect
addressing (these forms of addressing on the 65816 are of course direct page indirect indexed or indexed
indirect addressing; they are explained in Chapter 11, Complex Addressing Modes). It was found that
programmers were tolerating the overhead inherent in these two complex addressing modes to simulate
indirection.

The concept of simple indirect addressing lies on the borderline between the simple and complex
addressing modes. An understanding of it forms the basis for understanding several of the more complex
indexed modes which use indirection as well.

An indirect address is an address stored in memory which points to the data to be accessed; it is
located by means of the operand, an address which points to the indirect address, as shown in Figure 7.8.
Except in the case of indirect jump instructions, explained in Chapter 8, Flow of Control, this pointer is always
a direct page address.

The use of indirect addresses brings great flexibility to the addressing options available to you. There
is, however, a penalty in execution speed, imposed by the fact that, in addition to the operand fetch from the
code stream, the actual effective address must also be fetched from memory before the data itself can be
accessed. For this reason, direct page addresses are used as the pointers to the indirect addresses since, as you
will remember from the discussion of direct page addressing, the direct page offset itself can be determined with
only a single memory fetch.

The syntax for indirect addressing is to enclose in parentheses, as the operand, the direct page pointer to
the indirect address.

B280 LDA ($80)

This means, as figure 7.8 illustrates, “go to the direct page address $80 and fetch the absolute (sixteen-bit)
address stored there, and then load the accumulator with the data at the address.” The low-order byte of the
indirect address is stored at dp:$80, the high-order byte at dp:$81 – typical 65x low/high fashion. Remember, in
the default case where DP equals $0000, the direct page address equals the zero page address, namely
$00:0080.

As explained above, the indirect address stored at the direct page location (point to by the instruction
operand) is a sixteen-bit address.

The Western Design Center

105

Effective Address:
23 15 7 0

Bank High Low

Instruction:
Opcode Operand

65816 Registers:
Bank High Low

23 15 7 0

Data Bank (DBR)

High Indirect Address

Low Indirect Address

Bank 0

Figure 7-8 Direct Page Indirect Addressing

The general rule for the 65816 is that when an addressing mode only specifies sixteen bits of the
address, then the bank byte (bits 16-23) of the address is provided by the data bank register. This rule applies
here; but you must first note that the direct page offset which points to the indirect address is itself always
located in bank zero because the direct page itself is always located in bank zero. The examples, however, were
simplified to assume both the data bank and the direct page register to by zero.

The use of indirect addressing allows an address that is referenced numerous times throughout a routine
and is subject to modification – for example, a pointer to a data region – to be modified in only one location and
yet alter the effective address of many instructions.

In Listing 7.1, the data $1234 is moved from location VAR1 to VAR2. Note that the load and store
instructions had the same operand: the symbol DPA, which had been given a value of $80. The indirect address
stored at that location was different in each case, however, resulting in the data being copied from one location
to another. While this example in itself is an inefficient way to move a double-byte word to another location, it
does illustrate the basic method of indirect addressing, which will become quite useful as looping and counting
instructions are added to your working set of 65x instructions.

Absolute Long Addressing

This is the first of the simple addressing modes that are available only on the 65816 and 65802
processors.

Absolute long addressing is an extension of (sixteen-bit) absolute addressing – that is, addressing at a
known location. Remember that on the 6502 and 65C02, address space is limited to 64K, and any location
within the entire memory range can be specified with a sixteen-bit address. This is not the case with the 65816,
which can address up to sixteen megabytes of memory. Thus 24 bits are required to specify a given memory
location.

In general, there are two ways by which a 24-bit data address is generated. In the case of sixteen-bit
absolute addressing, a 64K memory context is defined by the value of the data bank register; the bank byte of

+
+1

0000 0000 Direct Page Register (D)

The Western Design Center

106

the 24-bit address is derived directly from that register via simple concatenation (connecting together) of the
data bank value and the sixteen-bit address. The alternative method is to specify a complete 24-bit effective
address for a given instruction. The absolute long address-bit effective address for a given instruction. The
absolute long addressing mode is one of the means for doing this.

As the name should imply, this addressing mode specifies a known, fixed location within the sixteen-
megabyte addressing space of the 65816, just as sixteen-bit absolute addressing specifies a known, fixed
location within either the 64K space of the 6502, 65C02,
or 65802, or else the 64K data space determined by the 65816’s data bank register. Just as the sixteen-bit
absolute addressing operations are three-byte instructions, consisting of opcode, address low, and address high,
the instructions that use the 24-bit absolute long addressing modes are four-byte instructions, comprised of
opcode, low byte of address, high byte of address, and bank byte of address, as shown in Figure 7.9. The value
in bits 8-15 of the effective address is described as the high byte, and 16-23 as the bank byte, because this most
clearly reflects both the parallels with the 6502 and 65C02 and bank-oriented memory segmentation of the
65816 architecture.

The Western Design Center

107

0001 0000 KEEP KL.7.1
0002 0000
0003 0000 65816 ON
0004 0000
0005 0000 MAIN START
0006 0000
0007 0000 DPA EQU $80 give memory cell at $80 a label
0008 0000
0009 0000 ; switch from 6502 emulation to native mode
0010 0000
0011 0000 18 CLC clear carry flag
0012 0001 FB XCE exchange carry with e bit (clear e bit)
0013 0002
0014 0002 C230 REP #$30 set 16-bit registers
0015 0004 LONGA ON
0016 0004 LONGI ON
0017 0004
0018 0004 A01500 LDY #VAR1 get the address where $1234 is stored
0019 0007 8480 STY DPA and store it as an indirect address at $80
0020 0009 8280 LDA (DPA) now load $1234 indirectly
0021 000B A01700 LDY #VAR2 change the indirect address DPA
0022 000E 8480 STY DPA to point to VAR2
0023 0010 9280 STA (DPA) and store $1234 by overwriting the $0000 there
0024 0012
0025 0012 ; return to 6502 emulation mode
0026 0012
0027 0012 38 SEC set carry flag
0028 0013 FB XCE exchange carry with e bit (set e bit)
0029 0014
0030 0014 60 RTS
0031 0015
0032 0015 3412 VAR1 DC A’$1234’
0033 0017 0000 VAR2 DC A’000’
0034 0019
0035 0019 END

Listing 7.1

When absolute long addressing is used, the bank address in the operand of the instruction temporarily
overrides the value in the data bank register for the duration of a single instruction. Thus, it is possible to
directly address any memory location within the entire sixteen-megabyte address space.

You will likely find, however, that this form of addressing is one of the less frequently used. There are
two reasons for this: first, it is more efficient to use the shorter sixteen-bit addressing modes, provided that the
data bank register has been appropriately set; second, it is generally undesirable to hard code fixed 24-bit
addresses into an application, as this tends to make the application dependent on being run in a fixed location
within a fixed bank. (An exception to this is the case where the address referenced is an I/O location, which is
fixed by the given system hardware configuration.)

The 65x processors, in general, do not lend themselves to writing entirely position-independent code,
although the 65816 certainly eases this task compared to the 6502 and 65C02. There is, however, no reason
why code should not be written on the 65816 and 65802 to be bank-independent – that is, capable of being
executed from an arbitrary memory bank. But using absolute long addressing will tend to make this difficult if
not impossible.

If you are using a 65802 in an existing system, it is important to note that although the address space of
the 65802 is limited to 64K at the hardware level, internally the processor still works with 24-bit addresses.
One thing this means is that it is legal to use the long addressing modes such as absolute long. But using them
is futile, even wasteful: an extra address byte is required for the bank, but the bank address generated is ignored.
There are cases where use of forms of long addressing other than absolute long should be used if you are
targeting your code for both the 65802 and the 65816. But generally there is little reason to use the absolute

The Western Design Center

108

long addressing mode on the 65802, except perhaps for fine-tuning a timing loop (the absolute long addressing
mode requires and extra cycle to execute in order to fetch the bank address in the fourth byte of the instruction).

The assembler syntax to indicate the absolute long addressing mode is simply to code a value in the
operand field greater than $FFFF. To force long addressing for bank zero addresses ($00:0000 to $00:FFFF),
use the greater sign (>) as a prefix to the operand (similar to the use of the vertical bar to force sixteen-bit
absolute addressing) as shown in Fragment 7.11.

Effective Address:
23 15 7 0

Bank High Low

Instruction:
Opcode Operand Low Operand High Operand Bank

Figure 7-9 Absolute Long Addressing

Note that the first STA instruction in Fragment 7.11 generates a four-byte instruction to store the
accumulator to a bank zero address, while the second STA instruction generates a three-byte instruction to store
the accumulator to the same sixteen-bit displacement but within bank two, the current data bank. Also note that
for both the load and the first store instructions, absolute long addressing causes the current data bank register,
which is set to two, to be overridden.

0000 E220 SEP #$20 set 8 bit accumulator
0002 LONGA OFF
0002
0002 A902 LDA #$02 set data bank
0004 48 PHA to bank two
0005 AB PLB
0006
0006 AF9DA303 LDA $03A39D absolute long at $03:A39D
000A 8F7F2E00 STA >$2E7F store data to $00:2E7F
000E 8D7F2E STA $2E7F store data to $02:2E7F

Fragment 7.11

Absolute Long Indexed with X Addressing

Absolute long indexed with X, or absolute long indexed, uses the X register for its index, and an
absolute long address as its base. It lets you index into an array located in a bank other than the data bank.

Instructions using absolute long indexed addressing are four bytes in length, since three bytes are
needed to express 24-bit absolute-long operands. The bank byte, being the highest byte in the operand, is the
fourth byte of the instruction. The contents of the X index register are added to the absolute-long operand to
form the 24-bit effective address at which data will be accessed.

For example, Fragment 7.12 gets a character from a text buffer starting at $3000 in bank zero and stores
it into buffers starting at $1000 in bank two and at $E000 in bank three. Because the character to be loaded is in
bank zero, its long address is expressed in sixteen bits. You must preface a reference to it with the greater-than
sign to override the assembler assumption that a sixteen-bit operand is in the data bank, and force the assembler
to instead use long addressing. The next instruction stores to the data bank, requiring only absolute indexing;
the assembler assumes simple sixteen-bit operands are located in the data bank. Finally, storing into bank three

The Western Design Center

109

requires no special specification: since $03E000 cannot be expressed in sixteen bits, long addressing is
assumed.

0000 E220 SEP #$20 set accumulator to 8 bits
0002 LONGA OFF
0002 C210 REP #$10 set indexes to 16 bits
0004 LONGI ON
0004
0004 A902 LDA #2 set the data bank to bank 2
0006 AB48 PHA
0007 AB PLB
0008
0008 AE0080 LDX BUFIDX get 16 bit buffer index
000B BF003000 LDA >$3000,X force long indexed abbr:bank0
000F 9D0010 STA $1000,X store into data bank (bank 2)
0012 9F00E003 STA $03E000,X store into bank 3

Fragment 7.12

Direct Page Indirect Long

Direct page indirect long is another case of long (24-bit) addressing, where the effective address
generated temporarily overrides the current value in the data bank register. Unlike the previous two long
addressing modes, however, the 24-bit address is not contained in the operand itself. The instruction is two
bytes long, much like regular direct page indirect addressing. The operand of the instruction is, like its non-long
counterpart, a direct page offset acting as an indirect pointer; the difference in this case is that rather than
pointing to a sixteen-bit address in the data bank, it points to a 24-bit address. If, for example, the direct page
address is $80, as in Figure 7.10, the processor will fetch the low byte of the effective address from dp:$80, the
high byte from dp:$81, and the bank byte from dp:$82. The bank byte temporarily overrides the value in the
data bank register.

Fragment 7.13 shows the use of both direct page indirect addressing and direct page indirect long, using
the latter to access the data as set up in Figure 7.10. The syntax for indirect long addressing is similar to that for
direct page indirect, except left and right square brackets rather than parentheses enclose the direct page address
to indicate the indirect address is long.

In this example, a sixteen-bit accumulator size is used with eight-bit index registers. The
simultaneous availability of both an eight-bit and a sixteen-bit register in this mode simplifies the manipulation
of long addresses. First, a value of $04 is loaded into the eight-bit Y register using immediate addressing.
Since the LONGI OFF directive has been coded, the assembler automatically generates an eight-bit operand
for this instruction. This is pushed onto the stack, and then pulled into the bank register. Next, Y is loaded with
#$02, the bank component of the indirect address, which is stored to dp:$82. The sixteen-bit accumulator is
then used to load an immediate $2000 (high/low of the indirect and the indirect long addresses), which is stored
at dp:$80. This results in the following values in memory: at dp:$80 is $00, at dp:$81 is $20, and at dp:$82 is
$02. The data bank register contains the indirect address $2000, while the memory at locations dp:$80.81
contains the indirect address $2000, while the memory at locations dp:$80.82 contains the indirect long address
$02:2000. The load indirect instruction uses the data bank register to form the bank address, and so loads
double-byte data from $04:2000. The store indirect long stores the double-byte data at $02:2000. The
overlapping of the low and high bytes of the indirect address in location dp:$80 and dp:$81 highlights the
difference in the source of the bank byte using the two addressing modes.

The Western Design Center

110

Effective Address:
23 15 7 0

Bank High Low

Instruction:
Opcode Operand = $80

+ 2 dp:$82

+ 1 dp:$81

0000 0000 Direct Page Register (D) + dp:$80

Bank Indirect Address

High Indirect Address

Low Indirect Address

Bank 0

Figure 7-10 Direct Page Indirect Long Addressing

0000 C220 REP #$20 set accum/memory size to 16 bits
0002 LONGA ON
0002
0002 E210 SEP #$10 set index size to eight bits
0004 LONGI OFF
0004
0004 A004 LDY #$04 set data bank
0006 5A PHY to bank 4
0007 AB PLB
0008 ;
0008 A002 LDA #$02 bank of indirect address
000A 8482 STA $82
000C ;
000C A90020 LDA #$2000 high/low of indirect address
000F 8580 STA $80
0011 ;
0011 B280 LDA ($80) load indirect from $04:2000
0013 8780 STA [$80] store indirect long to $02:2000

Fragment 7.13

Block Move

Block move addressing is a dedicated addressing mode, available only for two instructions, MVN and
MVP, which have no other addressing modes available to them. These operations were explained in the
previous chapter.

The Western Design Center

111

8) Chapter Eight

The Flow of Control

Flow of control refers to the way in which a processor, as it executes a program, makes its way through
the various sections of code. Chapter 1 discussed four basic types of execution: straight-line, selection between
paths, looping, and subroutines. This chapter deals with those instructions that cause the processor to jump or
branch to other areas of code, rather than continuing the default straight-line flow of execution. Such
instructions are essential to selection and looping.

The jump and branch instructions alter the default flow of control by causing the program counter to
be loaded with an entirely new value. In sequential execution, on the other hand, the program counter is
incremented as each byte from the code stream – opcode or operand – is fetched.

The 65x processors have a variety of branch and jump instructions, as shown in Table 8.1. Of these,
when coding in the larger-than-64K environment of the 65816, only the three jumping-long instructions (jump
indirect long, jump absolute long, and jump subroutine long) and the return from subroutine long instruction are
capable of changing the program bank register – that is, of jumping to a segment of code in another bank. All
of the other branch or jump instructions simply transfer within the current bank. In fact, the interrupt
instructions (break, return from interrupt, and coprocessor instructions) are the only others which can change the
program bank; there is no direct way to modify the program counter bank without at the same time modifying
the program counter register because the program counter would still point to the next instruction in the old
bank.

Available on:
Mnemonic 6502 65C02 65802/816 Description

BEQ x x x branch on condition instruction
(eight)

JMP x x x jump absolute
JMP x x x jump indirect
JSR x x x jump subroutine absolute
RTS x x x return from subroutine
BRA x x branch always (unconditional)
JMP x x jump absolute indexed indirect
BRL x branch long always

(unconditional, 64K range)
JSR x jump to subroutine absolute

indexed indirect
JMP x jump indirect long (interbank)
JMP x jump absolute long (interbank)
JSL x jump subroutine long

(interbank)
RTL x return from subroutine long

(interbank)

Table 8-1. Branch and Jump Instructions

As you many have noticed, all of the flow-of-control instructions (except the return instructions) can be
divided into two categories: jump-type instructions and branch-type instructions. This division is based on
addressing modes: branch instructions use program counter relative addressing modes; jump instructions don’t.

Jump instruction can be further split into two groups: those which transfer control to another section of
code, irreversibly, and those which transfer control to a subroutine, a section of code which is meant to
eventually return control to the original (calling) section of code, at the instruction following the jump-to-
subroutine instruction.

The Western Design Center

112

The jump instructions will be covered in this chapter first, then the branches; jump-to-subroutine
instructions will be discussed in Chapter 12, which deals with subroutines.

Jump Instructions

The jump inst
ruction (JMP) can be used with any one of five different 65816 addressing modes (only two of these are
available on the 6502, a third is available on the 65C02) to form an effective address; control then passes to that
address when the processor loads the program counter with it. For example,

4C0020 JMP $2000 jump absolute to the code at location $2000

uses absolute addressing, a mode available to all 65x processors, to pass control to the code located at $2000 in
the current program bank. (Notice that using absolute addressing to access data in the last chapter used the data
bank in place of the program bank.)

In addition to absolute addressing, all of the 65x processors provide a jump instruction with absolute
indirect addressing. While this form of indirect addressing is unique to the jump instruction, it is quite similar
to the direct page indirect addressing mode described in Chapter 7. In this case, the sixteen-bit operand is the
address of a double-byte variable located in bank zero containing the effective address; the effective address is
loaded into the program counter. As with absolute addressing, the program bank remains unchanged (Figure
8.1).

For example, the jump instruction in Fragment 8.1 causes the processor to load the program counter
with the value in the double-byte variable located at $00:2000. Unlike direct page indirect addressing, the
operand is an absolute address rather than a direct page offset. Furthermore, this form of absolute addressing is
unusual in that it always references a location in bank zero, not the current data bank.

0000 LONGA ON
0000 C220 REP #$20 set 16-bit accumulator
0002 A93412 LDA #$1234 load sixteen-bit accumulator with$1234
0005 8F002000 STA >$2000 store long to location $00:2000
0009 6C0020 JMP ($2000) jump to location $1234 in program bank

Fragment 8.1

The 65C02 added the absolute indexed indirect addressing mode to those available to the jump
instruction. This mode is discussed further in Chapter 12, The Complex Addressing Modes. Although its
effective address calculation is not as simple as the jump absolute or jump absolute indirect, its result is the
same: a transfer of control to a new location.

The 65802 and 65816 added long (24-bit) versions of the absolute and indirect addressing modes. The
absolute long addressing mode has a three-byte operand; the first two bytes are loaded into the program counter
as before, while the third byte is loaded into the program bank register, giving the jump instruction a full 24-bit
absolute addressing mode. For example,

5C4423FF JMP $FF2344

causes the program counter to be loaded with $2344 and the program bank counter with $FF. Note
that on that 65802, even though the bank address is effectively ignored; the jump is to the same
location as the equivalent (sixteen-bit) absolute jump.

The Western Design Center

113

Effective Address:
23 15 7 0

Bank High Low

Program Bank (PBR)

Instruction:
Opcode Operand Low Operand High

High Indirect Address
+ 1

Low Indirect Address

Bank 0

Figure 8-1 Jump’s Absolute Indirect Addressing Mode

When the target of a long jump is in bank zero, say to $00A030, then the assembler has a problem. It
assumes a jump to any address between zero and $FFFF (regardless of whether it’s written as $A030 or
$00A030) is a jump within the current program bank, not to another bank, so it will generate an absolute jump,
not a long jump. There are two solutions. One is to use the greater-than sign (>) in front of the operand, which
forces the assembler to override its assumptions and use long addressing:

5C30A000 JMP >$A030 long jump from current program bank to $00:A030

The alternative is to use the JML alias, or alternate mnemonic, which also forces a jump to be long, even if the
value of the operand is less than $10000:

5C30A000 JML $A030 jump from current bank to $00:A030

The final form of the jump instruction is a 24-bit (long) jump using absolute indirect addressing. In the
instruction,

DC0020 JMP [$2000] jump to the 24-bit address stored at $00:2000

the operand is the bank zero double-byte address $2000, which locates a triple-byte value; the program counter
low is loaded with the byte at $2000 and the program counter high with the byte at $2001; the program bank
register is loaded with the byte at $2002. A standard assembler will allow the JML (jump long) alias here as
well.

Notice that absolute indirect long jumps are differentiated from absolute indirect jumps within the same
bank by using parentheses for absolute indirect jumps within the same bank by using parentheses for absolute
direct and square brackets for absolute indirect long. In both cases the operand, an absolute address, points to a
location in bank zero.

The jump instructions change no flags and affect no registers other than the program counter.

The Western Design Center

114

Conditional Branching

While the jump instructions provide the tools for executing a program made up of disjoined code
segments or for looping, they provide no way to conditionally break out of a loop or to select between paths.
These are the jobs of the conditional branch instructions.

The jump instruction requires a minimum three bytes to transfer control anywhere in a 64K range. But
selection between paths is needed so frequently and for the most part for short hops that using three bytes would
tend to be unnecessarily costly in memory usage. To save memory, branches use an addressing mode called
program counter relative, which requires just two bytes; the branch opcode is followed by a one-byte operand –
a signed, two’s-complement offset from the current program location.

When a conditional branch instruction is encountered, the processor first tests the value of a status
register flag for the condition specified by the branch opcode. If the branch condition is false, the processor
ignores the branch instruction and goes on to fetch and execute the next instruction from the next sequential
program location. If, on the other hand, the branch condition is true, then the processor transfers control to the
effective address formed by adding the one-byte signed operand to the value currently in the program counter
(Figure 8.2).

As Chapter 1 notes, positive numbers are indicated by a zero in the high bit (bit seven), negative
numbers by a one in the high bit. Branching is limited by the signed one-byte operands to 127 bytes forward or
128 bytes backward, counting from the end of the instruction. Because a new value for the program counter
must be calculated if the branch is taken, an extra execution cycle is required. Further, the 6502 and 65C02
(and 65802 and 65816 in emulation mode) require an additional cycle if the branch crosses a page boundary.
The native mode 65802 and 65816 do not require the second additional cycle, because they use a sixteen-bit
(rather than eight-bit) adder to make the calculation.

The program counter value to which the operand is added is not the address of the branch instruction
but rather the address of the opcode following the branch instruction. Thus, measured from the branch opcode
itself, branching is limited to 129 bytes forward and 126 bytes backward. A conditional branch instruction with
an operand of zero will continue with the next instruction regardless of whether the condition tested is true or
false. A branch with an operand of zero is thus a two-byte no-operation instruction, with a variable (by one
cycle) execution time, depending on whether the branch is or isn’t taken.

The 65x processors have eight instructions which let your programs branch based on the settings of four
of the condition code flag bits in the status register: the zero flag, the carry flag, the negative flag, and the
overflow flag.

None of the conditional branch instructions change any of the flags, nor do they affect any registers
other than the program counter, which they affect only if the condition being tested for is true. The most recent
flag value always remains valid until the next flag-modifying instruction is executed.

The Western Design Center

115

Effective Address:
23 15 7 0

Bank High Low

Instruction:

Opcode Operand

65816 Registers: sign extended to 16 bits

Bank High Low

23 15 7 0

Program Bank (PBR) Program Counter (PC) +

Figure 8-2. Relative Branch Calculation

Branching Based on the Zero Flag

The zero bit in the status register indicates whether or not the result of an arithmetic, logical, load, pull,
or transfer operation is zero. A zero result causes the bit to be set; a non-zero result causes the bit to be reset.

The BEQ instruction is used to branch when a result is zero – that is, when the zero bit is set. Its
mnemonic meaning, that of branch if equal (to zero), describes what the processor does. Alternatively, it may
be considered a mnemonic for branch if (comparison) equal because it is often used after two values are
compared or subtracted; if the two values are equal, then the result of the comparison (subtraction) is zero (no
difference), and the branch is taken.

The BNE instruction is used to branch when a result is not zero. Also, any non-zero value which is
loaded into a register will clear the zero flag. It is a mnemonic for branch if not equal; it too is used to branch
after a comparison or subtraction if the two values are not equal.

Zero is often used as a terminator, indicating the end list, or that a loop counter has counted down to the
end of the loop. Fragment 8.2 is a short routine to search for the end of a linked list of records, and then insert a
new element at the end. Each element in the list contains a pointer to the next element in the chain. The last
element in the chain contains a zero in its link field, indicating that the end of the list has been reached.

The Western Design Center

116

0000
; traverse linked list searching for end of chain

0000
0000 AC0080 LDY NEXTNODE nextnode contains address of next
0003 ; data element to be inserted.
0003 A90080 LDA #ROOT ROOT contains the address of
0006 ; the link field of the first
0006 ; record in the chain.
0006 AA LOOP TAX use fetched address to bet next link
0007 B500 LDA 0,x
0009 D0FB BNE LOOP if not zero, use value to go to next
000B ; record
000B 98 TYA
000C 6500 STA 0,x store address of next record
000E ; in link field of current record
000E AA TAX
000F 7400 STZ 0,x now store zero to link field of
0011 ; new record, which is now end

Fragment 8.2

The routine hinges on the BNE instruction found half-way through the code; until the zero element is
reached. the processor continues looping through as many linked records as exist. Notice that the routine has
no need to know how many elements there are or to count them as it adds a new element. Figure 8.3 pictures
such a linked list.

The Western Design Center

117

$1204 X $1254 -

Data $1203 X $1253 -

$1202 X $1252 -

$1201 $12 $1251 $00
Link Field

$1200 $50 $1250 $00

End
of

List

$1254 Y $1304 -

Inserted Data $1253 Y $1303 -

$1252 Y $1302 -

$1251 $13 $1301 $00
New Link Field

$1250 $00 $1300 $00

 New End
of List

Figure 8-3. Linked List

The two conditional branch instructions that check the zero flag are also frequently used following a
subtraction or comparison to evaluate the equality or inequality of two values. Their use in arithmetic, logical,
and relational expressions will be covered in more detail, with examples, in the next few chapters.

Branching Based on the Carry Flag

The carry flag in the status register is affected by addition, subtraction, and shift instructions, as well as
by two implied-addressing instructions that explicitly set or clear the carry (SEC and CLC) and, on the
65802/65816, by the emulation and carry swapping XCE instruction, and the SEP and REP instructions.

The BCC instruction (branch on carry clear) is used to branch when the carry flag is a zero. The BCS
instruction (branch on carry set) is used to branch when the carry flag is a one.

The carry flag bit is the only condition code flag for which there are explicit instructions both to clear
and to set it. (The decimal flag, which can also be set and cleared explicitly, is a mode-setting flag; there are no
instructions to branch on the status of the decimal flag.) This can come in handy on the 6502, which has no
branch-always instruction (only the non-relocatable absolute jump): branch-always can be faked by setting the
carry, then branching on carry set:

38 SEC set carry bit in status register
B0EB BCS NEWCODE always document a BCS being used as branch-always

Since the code which follows this use of the BCS instruction will never be executed due to failure of the
condition test, it should be documented as acting like a branch-always instruction.

The 6502 emulation mode of the 65802 and 65816 can be toggled on or off only by exchanging the
carry bit with the emulation bit; so the only means of testing whether the processor is in emulation mode or
native mode is to exchange the emulation flag with the carry flag and test the carry flag, as in Fragment 8.3.
Note that CLC, XCE, and BCS instructions themselves always behave the same regardless of mode.

The Western Design Center

118

0000 .
0000 .
0000 18 CLC shift to native mode
0001 FB XCE swap previous emulation bit value into carry
0002 B0FC BCS EMHAND if was emulation, branch to emulation handler
0004 .
0004 . else processor in native mode
0004 .
0004

Fragment 8.3

Arithmetic and logical uses of branching based on the carry flag will be discussed in the next two
chapters.

Branching Based on the Negative Flag

The negative flag bit in the status register indicates whether the result of arithmetic, logical, load, pull,
or transfer operation is negative or positive when considered as a two’s-complement number. A negative result
causes the flag to be set; a zero or positive result causes the flag to be cleared. The processor determines the
sign of a result by checking to see if the high-order bit is set or not. A two’s-complement negative number will
always have its high-order bit set, a positive number always has it clear.

The BMI (branch-minus) instruction is used to branch when a result is negative, or whenever a specific
action needs to be taken if the high-order (sign) bit of a value is set. Execution of the BPL (branch-plus)
instruction will cause a branch whenever a result is positive or zero – that is, when the high-order bit is clear.

The ease with which these instructions can check the status of the high order-bit has not been lost on
hardware designers. For example, the AppleII keyboard is read by checking a specific memory location
(remember, the 65x processor use memory-mapped I/O). Like most computer I/O devices, the keyboard
generates ASCII codes in response to key presses. The code returned by the keyboard only uses the low-order
seven bits; this leaves the eight bit free to be used as a special flag to determine if a key has been pressed since
the last time a key was retrieved. To wait for a keypress, a routine (see Fragment 8.4) loops until the high-order
bit of the keyboard I/O location is set.

0000 KEYBD GEQU $C000
0000 KSTRB GEQU $C010
0000
0000 ; wait until a character is pressed at the keyboard
0000
0000 E230 SEP #$30 eight-bit words are used for I/O
0002
0002 AD00C0 LOOP LDA KEYBD
0005 10FB BPL LOOP loop until high order bit is set
0007 8D10C0 STA KSTRB got one; reset keyboard
000A .
000A . continue execution having fetched key
000A . from keyboard
000A

Fragment 8.4

The STA KSTRB instruction that follows a successful fetch is necessary to tell the hardware that a key
has been read; it clears the high-order bit at the KEYBD location so that the next time the routine is called, it
will again loop until the next key is pressed.

Remember that the high-order or sign bit is always bit seven on a 6502 or 65C02 or, on the 65802 and
65816, if the register loaded is set to an eight-bit mode. If a register being used an the 65802 or 65816 is set to
sixteen-bit mode, however, then the high bit – the bit that affects the negative flag – is bit fifteen.

The Western Design Center

119

Branching Based on the Overflow Flag

Only four instructions affect the overflow (v) flag on the 6502 and 65C02: adding, subtracting, bit-
testing, and an instruction dedicated to explicitly clearing it. The 65802/65816’s SEP and REP instructions can
set and clear the overflow flag as well. The next chapter will discuss the conditions under which the flag is set
or cleared.

The BVS instruction is used to branch when a result sets the overflow flag. The BVC instruction is
used to branch when a result clears the overflow flag.

Additionally, there is a hardware input on the 6502, 65C02, and 65802 that causes the overflow flag to
be set in response to a hardware signal. This input pin is generally left unconnected in most personal computer
systems. It is more likely to be useful in dedicated control applications.

Limitations of Conditional Branches

If you attempt to exceed the limits (+127 and –128) of the conditional branches by coding a target
operand that is out of range, an error will result when you try to assemble it. If you should need a conditional
branch with a longer reach, one solution is to use the inverse branch; if you would have used BNE, test it
instead for equal to zero using BEQ. If the condition is true, target the next location past a jump to your real
target. For example, Fragment 8.5 shows the end of a fairly large section of code, at the point at which it is
necessary to loop back to the top (TOP) of the section if the value in location CONTROL is not equal to zero.
You would use the code like Fragment 8.5 if TOP is more than 128 bytes back.

0000 AD0080 LDA CONTROL
0003 F003 BEQ DONE done processing; skip over loop back
0005 4C0080 JMP TOP control not equal to zero; loop again
0008 DONE ANOP go on to next phase of processing
0008 .
0008 .

Fragment 8.5

The price of having efficient two-byte short branches is that you must use five bytes to simulate a long
conditional branch.

Many times it is possible and sensible to branch to another nearby flow of control statement and
use it to puddle-jump to your final target. Sometimes you will find the branch or jump statement you
need for puddle jumping already within your code because it’s not unusual for two or more segments
of code to conditionally branch to the same place. This method costs you no additional code, but you
should document the intermediate branch, nothing that it’s being used as a puddle-jump. Should you
change it later, you won’t inadvertently alter its use by the other branch.

Each of the 65x branch instructions is based on a single status bit. Some arithmetic conditions,
however, are based on more than one flag being changed. There are no branch instructions available for the
relations of unsigned greater than and unsigned less than or equal to, these relations can only be determined by
examining more than one flag bit. There are also no branch instructions available for signed comparisons, other
than equal and not equal. How to synthesize these options is described in the following chapter.

Unconditional Branching

The 65C02 introduced the BRA branch always (or unconditional branch) instruction, to the relief of
6502 programmers; they had found that a good percentage of the jump instructions coded were for short
distance within the range of a branch instruction.

Having an unconditional branch available makes creating relocatable code easier. Every program must
have a starting address, or origin, specified, which tells the assembler where in memory the program will be

The Western Design Center

120

loaded. This is necessary so that the assembler will be able to generate the correct values for locations defined
by labels in the source code.

Consider Fragment 8.6, the beginning of a program that specifies an origin of $2000. In order to make
patching certain variables easier, they have been located right at the beginning of the program. When this
program is assembled, location $2000 holds a jump instruction, and the assembler gives its operand the value of
the location of BEGCODE, that is, $2005. If this program were then loaded at $2200, instead of $2000 as was
“promised” by the ORG directive, it would fail because the very first instruction executed, at $2200, would be
the jump to $2005. since the program has now been loaded at $2200, the contents of $2005 are no longer as
expected, and the program is in deep trouble.

By substituting an unconditional branch instruction for the jump, as in Fragment 8.7, the operand of the
branch is now a relative displacement (the value two), and the branch instruction will cause two to be added to
the current value of the counter program counter, whatever it may be. The result is that execution continues at
BEGCODE, the same relative location the jump instruction transferred control to in the fixed-position version.

The code is now one byte shorter. Most importantly, though, this section of the
0000 ORG $2000
0000 MAIN START
0000 4C0500 JMP BEGCODE jump around data to beginning code
0003 77 DATA1 DC H’77’
0004 88 DATA2 DC H’88’
0005 BEGCODE ANOP
0005 .
0005 .
0005 .

Fragment 8.6

program is now position-independent. If executed at $2000, the branch is located at $2000; the program counter
value before the branch’s operand is added is $2002; the result of the addition is $2004, the location of
BEGCODE. Load and execute the program instead at $2200, and the branch is located at $2200; the program
counter value before the branch operand is added is $2202; the result of the addition is $2204, which is the new
location of BEGCODE.

0000 ORG $2000
0000 MAIN START
0000 8002 BRA BEGCODE branch around data to beginning code
0002 77 DATA1 DC H’77’
0003 88 DATA2 DC H’88’
0004 AD0200 BEGCODE LDA DATA1
0007 .
0007 .
0007 .
0007

Fragment 8.7

Because the operand of a branch instruction is always relative to the program counter, its effective
address can only be formed by using the program counter. Programs that use branches rather than jump may be
located anywhere in memory.

6502 programmers in need of relocatability get around the lack of an unconditional branch instruction
by using the technique described earlier of setting a flag to a known value prior to executing a branch-on-that-
condition instruction.

Even with the unconditional branch instruction, however, relocatability can still be a problem if the
need for branching extends beyond the limits imposed by its eight-bit operand. There is some help available on
the 6502 and 65C02 in the form of the absolute indirect jump, which can be loaded with a target that is
calculated at run time.

The Western Design Center

121

The 65802 and 65816 introduce the BRL unconditional branch long instruction. This is the only 65x
branch instruction which does not take an eight-bit operand: its operand, being sixteen bits, lets it specify a
target anywhere within the current 64K program bank. It is coded like any other branch, except that the target
label can be outside the range of the other branches. Obviously, a two-byte displacement is generated by the
assembler, making this branch a three-byte instruction. If the effective address that results when the sixteen-bit
displacement is added to the current program counter would extend beyond the 64K limit of the current program
bank.

The BRL instruction can replace entirely the absolute JMP instruction in a relocatable program; the
price is an extra execution cycle per branch.

The Western Design Center

122

9) Chapter Nine
Built-In Arithmetic Functions

With this chapter you make your first approach to the heart of the beast: the computer as an automated
calculator. Although their applications cover a broad range of functions, computers are generally associated
first and foremost with their prodigious calculating abilities. Not without reason, for even in chapter oriented
applications such as word processing, the computer is constantly calculating. At the level of the word processor
itself, everything from instructions decoding to effective address generation is permeated by arithmetic or
arithmetic-like operations. At the software implementation level, the program is constantly calculating
horizontal and vertical cursor location, buffer pointer locations, indents, page numbers, and more.

But unlike dedicated machines, such as desk-top or pocket calculators, which are merely calculators, a
computer is a flexible and generalized system which can be programmed and reprogrammed to perform an
unlimited variety of functions. One of the keys to this ability lies in the computer’s ability to implement control
structures, such as loops, and to perform comparisons and select an action based on the result. Because this
chapter introduces comparison, the elements necessary to demonstrate these features are complete. The other
key element, the ability to branch on condition, was presented in the previous chapter. This chapter therefore
contains the first examples of these control structures, as they are implemented on the 65x processor.

Armed with the material presented in Chapter 1 about positional notation as it applies to the binary and
hexadecimal number systems, as well as the facts concerning two’s-complement binary numbers and binary
arithmetic, you should posses the background required to study the arithmetic instructions available on the 65x
series of processors.

Consistent with the simple design approach of the 65x family, only elementary arithmetic functions are
provided, as listed in Table 9.1, leaving the rest to be synthesized in software. There are, for example, no built-
in integer multiply or divide. More advanced examples presented in later chapters will show how to synthesize
these more complex operations.

Available on:
Mnemonic 6502 65C02 65802/816 Description

Increment Instructions:
DEC x x x decrement
DEX x x x decrement index register X
DEY x x x decrement index register Y
INC x x x increment
INX x x x increment index register X
INY x x x increment index register Y

Arithmetic Instructions:
ADC x x x add with carry
SBC x x x subtract with borrow

Compare with Memory Instructions:
CMP x x x compare accumulator
CPX x x x compare index register X
CPY x x x compare index register Y

Table 9-1 Arithmetic Instructions

The Western Design Center

123

Increment and Decrement

The simplest of the 65x arithmetic instructions are increment and decrement. In the case of the 65x
processors, all of the increment and decrement operations add or subtract one to a number. (Some other
processors allow you to increment or decrement by one, two, or more.)

There are several reasons for having special instructions to add or subtract one to a number, but the
most general explanation says it all: the number one tends to be, by far, the most frequently added number in
virtually any computer application. One reason for this is that indexing is used so frequently to access multi-
byte data structures, such as address tables, character strings, multiple-precision numbers, and most forms of
record structures. Since the items in a great percentage of such data structures are byte or double-byte wide, the
index counter step value (the number of bytes from one array item to the next) is usually one or two. The 65x
processors, in particular, have many addressing modes that feature indexing; that is, they use a value in one of
the index registers as part of the effective address.

All 65x processors have four instructions to increment and decrement the index registers: INX, INY,
DEX, and DEY. They are single-byte implied operand instructions and either add one to, or subtract one from,
the X or Y register. They execute quite quickly – in two cycles – because they access no memory and affect
only a single register.

All 65x processors also have a set of instructions for incrementing and decrementing memory, the INC
and DEC instructions, which operate similarly. They too are unary operations, the operand being the data
stored at the effective address specified in the operand field of the instruction. There are several addressing
modes available to these two instructions. Note that, unlike the register increment and decrement instructions,
the INC and DEC instructions are among the slowest-executing 65x instructions. That is because they are
Read-Modify-Write operations: the number to be incremented or decremented must first be fetched from
memory; then it is operated upon within the processor; and, finally, the modified value is written back to
memory. Compare this with some of the more typical operations, where the result is left in the accumulator.
Although read-modify-write instructions require many cycles to execute, each is much more efficient, both
byte- and cycle-wise, than the three instructions it replaces – load, modify, and store.

In Chapter 6, you saw how the load operations affected the n and z flags depending on whether the
loaded number was negative (that is, had its high bit set), or was zero. The 65x arithmetic functions, including
the increment and decrement operations, also set the n and z status flags to reflect the result of the operation.

In Fragment 9.1, one is added to the value in the Y register, $7FFF. The result is $8000, which, since
the high-order bit is turned on, may be interpreted as a negative two’s-complement number. Therefore the n
flag is set.

0000 C230 REP #$30 16-bit registers
0002 LONGA ON
0002 LONGI ON
0002 A0FF7F LDY #$7FFF $7FFF is a positive number
0005 C8 INY $8000 is a negative number;n=1

Fragment 9.1

In a similar example, Fragment 9.2, the Y register is loaded with the highest possible value which can
be represented in sixteen bits (all bits turned on).

0000 C230 REP #$30
0002 LONGA ON
0002 LONGI ON
0002 A0FFFF LDY #$FFFF
0005 C8 INY z = 1 in status register

Fragment 9.2

The Western Design Center

124

If one is added to the unsigned value $FFFF, the result is $10000:

1 one to be added
+ 1111 1111 1111 1111 binary equivalent of $FFFF
1 0000 0000 0000 0000 result is $10000

Since there are no longer any extra bits available in the sixteen-bit register, however, the low-order
sixteen bits of the number in Y (that is, zero) does not represent the actual result. As you will see later, addition
and subtraction instructions use the carry flag to reflect a carry out of the register, indicating that a number
larger than can be represented using the current word size (sixteen bits in the above example) has been
generated. While increment and decrement instructions do not affect the carry, a zero result in the Y register
after an increment (indicated by the z status flag being set) shows that a carry has been generated, even though
the carry flag itself does not indicate this.

A classic example of this usage is found in Fragment 9.3, which shows the technique commonly used
on the eight-bit 6502 and 65C02 to increment a sixteen-bit value in memory. Note the branch-on-condition
instruction, BNE, which was introduced in the previous chapter, is being used to indicate if any overflow from
the low byte requires the high byte to be incremented, too. As long as the value stored at the direct page
location ABC is non-zero following the increment operation, processing continues at the location SKIP. If
ABC is zero as a result of the increment operation, a page boundary has been crossed, and the high order byte of
the value must be incremented, the sixteen-bit value would “wrap around” within the low byte.

0000 EE0080 TOP INC ABC increment low byte
0003 D0FB BNE SKIP if no overflow, done
0005 EE0180 INC ABC+1 if overflow: increment high byte, too
0008 SKIP . continue
0008 .
0008 .
0008 .

Fragment 9.3

Such use of the z flag to detect carry (or borrow) is peculiar to the increment and decrement operations:
if you could increment or decrement by values other than one, this technique would not work consistently, since
it would be possible to cross the “threshold” (zero) without actually “landing” on it (you might, for example, go
from $FFFF to $0001 if the step value was 2).

A zero result following a decrement operation, on the other hand, indicates that the next decrement
operation will cause a borrow to be generated. In Fragment 9.4, the Y register is loaded with one, and then one
is subtracted from it by the DEY instruction. The result is clearly zero; however, if Y is decremented again,
$FFFF will result. If you are treating the number as a signed, two’s-complement number, this is just fine, as
$FFFF is equivalent to a sixteen-bit, negative one. But if it is an unsigned number, a borrow exists.

0000 C230 REP #$30 16-bit registers
0002 LONGA ON
0002 LONGI ON
0002 A00100 LDY #$0001 z = 0 in the status register
0005 88 DEY z = 1 in the status register

Fragment 9.4

Together with the branch-on-condition instructions introduced in the previous chapter, you can now
efficiently implement one of the most commonly used control structures in computer programming,, the
program loop.

A rudimentary loop would be a zero-fill loop; that is, a piece of code to fill a range of memory with
zeroes. Suppose, as in Listing 9.1, the memory area from $4000 to $5FFF was to be zeroed (for example, to
clear hi-res page two graphics memory in the AppleII). By loading an index register with the size of the area to
be cleared, the memory can be easily accessed by indexing from an absolute base of $4000.

The Western Design Center

125

The two lines at BASE and COUNT assign symbolic names to the starting address and length of the fill
area. The REP instruction puts the processor into the long index/long accumulator mode. The long index
allows the range of memory being zeroed to be greater than 256 bytes; the long accumulator provides for faster
zeroing of memory, by clearing two bytes with a single instruction.

The loop is initialized by loading the X register with the value COUNT, which is the number of bytes
to be zeroed. The assembler is instructed to subtract two from the total to allow for the fact that the array starts
at zero, rather than one, and for the fact that two bytes are cleared at a time.

The Western Design Center

126

0001 0000
0002 0000 KEEP KL.9.1
0003 0000 65816 ON
0004 0000 L91 START
0005 0000
0006 0000 18 CLC
0007 0001 FB XCE
0008 0002
0009 0002
0010 0002 BASE GEQU $4000 starting address of fill area
0011 0002 COUNT GEQU $2000 number of bytes to clear
0012 0002
0013 0002 C230 REP #$30 turn 16-bit modes on
0014 0004
0015 0004 LONGA ON
0016 0004 LONGI ON
0017 0004
0018 0004 A2FE1F LDX #COUNT-2 get the number of bytes to clear into x
0019 0007 ; minus two
0020 0007
0021 0007 9E0040 LOOP STZ BASE,X store zero to memory
0022 000A CA DEX
0023 000B CA DEX
0024 000C 10F9 BPL LOOP repeat loop again if not done
0025 000E
0026 000E 38 DONE SEC
0027 000F FB XCE
0028 0010 60 RTS
0029 0011
0030 0011 END

Listing 9.1

The loop itself is then entered for the first time, and the STZ instruction is used to clear the memory
location formed by adding the index register to the constant BASE. Next come two decrement instructions; two
are needed because the STZ instruction stored a double-byte zero. By starting at the end of the memory range
and indexing down, it is possible to use a single register for both address generation and loop control. A simple
comparison, checking to see that the index register is still positive, is all that is needed to control the loop.

Another concrete example of a program loop is provided in Listing 9.2, which toggles the built-in
speaker in an AppleII computer with increasing frequency, resulting in a tone of increasing pitch. It features an
outer driving loop (TOP), an inner loop that produces a tone of a given pitch, and an inner-most delay loop.
The pitch of the tone can be varied by using different initial values for the loop indices.

The Western Design Center

127

0001 0000 KEEP KL.9.2
0002 0000 65816 ON
0003 0000
0004 0000 L92 START
0005 0000 18 CLC
0006 0001 FB XCE
0007 0002 E230 SEP #$30 set 8-bit mode
0008 0004 LONGA OFF
0009 0004 LONGI OFF
0010 0004 BELL GEQU $C030
0011 0004
0012 0004 A200 LDX #0
0013 0006 8A TXA X, now in A, initializes the delay loop
0014 0007
0015 0007 9B TOP TXY initialize X & Y to 0
0016 0008
0017 0008 8D30C0 LOOP STA BELL accessing the tone generator pulses it
0018 000B
0019 000B 8A TXA diminishing delay loop
0020 000C
0021 000C 3A DELAY DEC A
0022 000D D0FD BNE DELAY loop 256 times before continuing
0023 000F
0024 000F
0025 000F 88 DEY
0026 0010 D0F6 BNE LOOP
0027 0012
0028 0012 CA DEX
0029 0013 D0F2 BNE TOP
0030 0015
0031 0015 38 SEC
0032 0016 FB XCE
0033 0017 60 RTS
0034 0018 END

Listing 9.2

Addition and Subtraction: Unsigned Arithmetic

The 65x processors have only two dedicated general purpose arithmetic instructions: add with carry,
ADC, and subtract with carry, SBC. As will be seen later, it is possible to synthesize all other arithmetic
functions using these and other 65x instructions.

As the names of these instructions indicate, the carry flag from the status register is involved with the
two operations. The role of the carry flag is to “link” the individual additions and subtractions that make up
multiple-precision arithmetic operations. The earlier example of the 6502 sixteen-bit increment was a special
case of the multiple-precision arithmetic technique used on the 65x processors, the link provided in that case by
the BNE instruction.

Consider the addition of two decimal numbers, 56 and 72. You begin your calculation by adding six to
two. If you are working the calculation out on paper, you place the result, eight, in the right-most column, the
one’s place:

56
72
8

The Western Design Center

128

Next you add the ten’s column; 5 plus 7 equals 12. The two is placed in the tens place of the sum, and the one
is a carry into the 100’s place. Normally, since you have plenty of room on your worksheet, you simply pencil
in the one to the left of the two, and you have the answer.

The situation within the processor when it adds two numbers is basically similar, but with a few
differences. First, the numbers added and subtracted in a 65x processor are normally binary numbers (although
there is also a special on-the-fly decimal adjust mode for adding and subtracting numbers in binary-coded
decimal format). Just as you began adding, the processor starts in the right-most column, or one’s place, and
continues adding columns to the left. The augend (the number added to) is always in the accumulator; the
location of the addend is specified in the operand field of the instruction. Since a binary digit can only be a zero
or a one, the addition of 2 ones results in a zero in the current column and a carry into the next column. This
process of addition continues until the highest bit of the accumulator has been added (the highest bit being
either bit seven or, alternatively on the 65802 / 65816, bit fifteen, if the m flag is cleared). But suppose that $82
is added to $AB in the eight-bit accumulator:

1 1 carry digits from previous addition to right
1000 0010 binary equivalent of $82

+ 1010 1011 binary equivalent of $AB
0010 1101

If you begin by adding the binary digits from the right and marking the sum in the proper column, and
then placing any carry that results at the top of the next column to the left, you will find that a carry results
when the ones in column seven are added together. However, since the accumulator is only eight bits wide,
there is no place to store this value; the result has “overflowed” the space allocated to it. In this case, the final
carry is stored in the carry flag after the operation. If there had been no carry, the carry flag would be reset to
zero.

The automatic generation of a carry flag at the end of an addition is complemented by a second feature
of this instruction that is executed at the beginning of the instruction: the ADC instruction itself always adds the
previously generated one-bit carry flag value with the right-most column of binary digits. Therefore, it is
always necessary to explicitly clear the carry flag before adding two numbers together, unless the numbers
being added are succeeding words of a multi-word arithmetic operation. By adding in a previous value held in
the carry flag, and storing a resulting carry there, it is possible to chain together several limited-precision (each
only eight or sixteen bits) arithmetic operations.

First, consider how you would represent an unsigned binary number greater than $FFFF (decimal
65,536) – that is, one that cannot be stored in a single double-byte cell. Suppose the number is $023A8EF1.
This would simply be stored in memory in four successive bytes, from low to high order, as follows, beginning
at $1000:

1000 - F1
1001 - 8E
1002 - 3A
1003 - 02

Since the number is greater than the largest available word size of the processor (double byte), any arithmetic
operations performed on this number will have to be treated as multiple-precision operations, where only one
part of a number is added to the corresponding part of another number at a time. As each part is added, and so
on, until all of the parts of the number have been added.

Multiple-precision operations always proceed from low-order part to high-order part because the carry
is generated from low to high, as seen in our original addition of decimal 56 to 72.

Listing 9.3 is an assembly language example of the addition of multi-precision numbers $023A8EF1 to
$0000A2C1. This example begins by setting the accumulator word size to sixteen bits, which lets you process
half of the four-byte addition in a single operation. The carry flag is then cleared because there must be no
initial carry when an add operation begins. The two bytes stored at BIGNUM and BIGNUM+1 are loaded into
the double-byte accumulator. Note that the DC 14 assembler directive automatically stores the four-byte
integer constant value in memory in low-to-high order. The ADC instruction is then executed, adding $8EF1 to
$A2C1.

The Western Design Center

129

0001 0000 KEEP KL.9.3
0002 0000 65816 ON
0003 0000
0004 0000 L93 START
0005 0000 18 CLC
0006 0001 FB XCE
0007 0002 S220 REP #$20 use sixteen-bit accumulator
0008 0004 LONGA ON
0009 0004 18 CLC make sure carry is clear to start
0010 0005 AD1A00 LDA BIGNUM load low-order two bytes
0011 0008 6D1E00 ADC NEXTNUM add to low-order two bytes of NEXTNUM
0012 000B 8D2200 STA RESULT save low-order result
0013 000E AD1C00 LDA BIGNUM+2 now load high-order two bytes
0014 0011 6D2000 ADC NEXTNUM+2 add to high order of NEXTNUM with carry
0015 0014 8D2400 STA RESULT+2 save result
0016 0017 38 SEC
0017 0018 FB XCE
0018 0019 60 RTS
0019 001A F18E3A02 BIGNUM DC I4’$023A8EF1’
0020 001E C1A20000 NEXTNUM DC I4’$0000A2C1’
0021 0022 00000000 RESULT DS 4
0022 0026 END

Listing 9.3

Examine the equivalent binary addition:
1 1 11 1 1 1 carry from addition of column to right

1000 1110 1111 0001 $8EF1
1010 0010 1100 0001 $A2C1
0011 0001 1011 0010 $31B2

The sixteen-bit result found in the accumulator after the ADC is executed is $31B2; however, this is clearly
incorrect. The correct answer, $13B2, requires seventeen bits to represent it, so an additional result of the ADC
operation in this case is that the carry flag in the status register is set. Meanwhile, since the value in the
accumulator consists of the correct low-order sixteen bits, the accumulator is stored at RESULT and
RESULT+1.

With the partial sum of the last operation saved, the high-order sixteen bits of BIGNUM are loaded
(from BIGNUM+2) into the accumulator, followed immediately by the ADC NEXTNUM + 2 instruction,
which is not preceded by CLC this time. For all but the first addition of a multiple-precision operation, the
carry flag is not cleared; rather, the setting of the carry flag from the previous addition is allowed to be
automatically added into the next addition. You will note in the present example that the high-order sixteen bits
of NEXTNUM are zero; it almost seems unnecessary to add them. At the same time, remember that there was
a carry left over from the first addition; when the ADC NEXTNUM + 2 instruction is executed, this carry is
automatically added in; that is, the resulting value in the accumulator is equal to the carry flag (1) plus the
original value in the accumulator ($023A) plus the value at the address NEXTNUM + 2 ($0000), or $023B.
This is then stored in the high-order bytes of RESULT, which leaves the complete, correct value stored in
locations RESULT through RESULT + 3 in low-high order:

RESULT - B2
RESULT + 1 - 31
RESULT + 2 - 3B
RESULT + 3 - 02

Reading from high to low, the sum is $023B31B2.
This type of multiple precision addition is required constantly on the eight-bit 6502 and 65C02

processors in order to manipulate addresses, which are sixteen-bit quantities. Since the 65816 and 65802
provide sixteen-bit arithmetic operations when the m flag is cleared, this burden is greatly reduced. If you wish,

The Western Design Center

130

however, to manipulate long addresses on the 65816, that is , 24-bit addresses, you will similarly have to resort
to multiple precision. Otherwise, it is likely that multiple-precision arithmetic generally will only be required
on the 65802 or 65816 in math routines to perform number-crunching on user data, rather than for internal
address manipulation.

An interesting footnote to the multiple-precision arithmetic comparison between the 6502 and the
65816 is to observe that since the 6502 only has an eight-bit adder, even those instructions that automatically
perform sixteen-bit arithmetic (such as branch calculation and affective address generation) require an
additional cycle to perform the addition of the high-order byte of the address. The presence of a sixteen-bit
adder within the 65802 and 65816 explains how it is able to shave cycles off certain operations while in native
mode, such as branching across page boundaries, where an eight-bit quantity is added to a sixteen-bit value. On
the 6502, if a page boundary isn’t crossed, the high byte of the sixteen-bit operand is used as-is; if a carry is
generated by adding the two low bytes, a second eight-bit add must be performed, requiring an additional
machine cycle. On the 65816, the addition is treated as a single operation.

Subtraction on the 65x processors is analogous to addition, with the borrow serving a similar role in
handling multiple-precision subtractions. On the 65x processors, the carry flag is also used to store a
subtraction’s borrow. In the case of the addition operation, a one stored in the carry flag indicates that a carry
exists, and the value in the carry flag will be added into the next add operation. The borrow stored in the carry
flag is actually an inverted borrow: that is, the carry flag cleared to zero means that there is a borrow, while
carry set means that there is none. Thus prior to beginning a subtraction, the carry flag should be set so that no
borrow is subtracted by the SBC instruction.

Although you can simply accept this rule at face value, the explanation is interesting, The simple way to
understand the inverted borrow of the 65x series is to realize that, like most computers, a 65x processor has no
separate subtraction circuits as such; all it has is an adder, which serves for both addition and subtraction.
Obviously, addition of a negative number is the same as subtraction of a positive. To subtract a number, then,
the value which is being subtracted is inverted, yielding a one’s-complement negative number. This is then
added to the other value and, as is usual with addition on the 65x machines, the carry is added in as well.

Since the add operation automatically adds in the carry, if the carry is set prior to subtraction, this
simply converts the inverted value to two’s complement form. (Remember, two’s complement is formed by
inverting a number and adding one; in this case the added one is the carry flag.) If, on the other hand, the carry
was clear, this has the effect of subtracting one by creating a two’s-complement number which is one greater
than if the carry had been presented. (Assuming a negative number is being formed, remember that the more
negative a number is, the greater its value as an unsigned number, for example, $FFFF = -1, $8000 = -32767.)
Thus, if a borrow exists, a value which is more negative by one is created, which is added to the other operand,
effectively subtracting a carry.

Comparison

The comparison operation – is VALUE1 equal to VALUE2, for example – is implemented on the 65x,
as on most processors, as an implied subtraction. In order to compare VALUE1 to VALUE2, one of the values
is subtracted from the other. Clearly, if the result is zero, then the numbers are equal.

This kind of comparison can be made using the instructions you already know, as Fragment 9.5
illustrates. In this fragment, you can see that the branch to TRUE will be taken, and the INC VAL instruction
never executed, because $1234 minus 1234 equals zero. Since the results of subtractions condition the z flag,
the BEQ instruction (which literally means “branch if result equal to zero”), in this case, means “branch if the
compared values are equal.”

The Western Design Center

131

0000 C230 REP #$30 16-bit registers
0002 LONGA ON
0002 LONGI ON
0002
0002 9C1200 STZ VAL clear double-byte at VAL
0005 A93412 LDA #$1234 get one value
0008 38 SEC
0009 E93412 SBC #$1234 subtract another
000C F003 BEQ TRUE if they are the same, leave VAL zero
000E EE1200 INC VAL if they are different, set VAL
0011 60 TRUE RTS
0012 0000 VAL DS 2

Fragment 9.5

There are two undesirable aspects of this technique, however, if comparison is all that is desired rather
than actual subtraction. First, because the 65x subtraction instruction expects the carry flag to be set for single
precision subtractions, the SBC instruction must be executed before each comparison using SBC. Second, it is
not always desirable to have the original value in the accumulator lost when the result of the subtraction is
stored there.

Because comparison is such a common programming operation, there is a separate compare instruction,
CMP. Compare subtracts the value specified in the operand field of the instruction from the value in the
accumulator without storing the result; the original accumulator value remains intact. Status flags normally
affected by a subtraction – z, n, and c – are set to reflect the result of the subtraction just performed.
Additionally, the carry flag is automatically set before the instruction is executed, as it should be for a single-
precision subtraction. (Unlike the ADC and SBC instructions, CMP does not set the overflow flag,
complicating signed comparisons somewhat, a problem which will be covered later in this chapter.)

Given the flags that are set by the CMP instruction, and the set of branch-on-condition instructions, the
relations shown in Table 9.2 can be easily tested for. A represents the value in the accumulator, DATA is the
value specified in the operand field of the instruction, and Bxx is the branch-on-condition instruction that causes
a branch to be taken (to the code labelled TRUE) if the indicated relationship is true after a comparison.

Because the action taken after a comparison by the BCC and BCS is not immediately obvious from
their mnemonic names, the recommended assembler syntax standard allows the alternate mnemonics BLT, for
“branch on less than,” and BGE, for

BEQ TRUE branch if A = DATA
BNE TRUE branch if A < > DATA
BCC TRUE branch if A < DATA
BCS TRUE branch if A > = DATA

Table 9-2. Equalities

“branch if greater of equal,” respectively, which generate the identical object code.
Other comparisons can be synthesized using combinations of branch-on-condition instructions.

Fragment 9.6 shows how the operation “branch on greater than” can be synthesized.

0000 F002 BEQ SKIP branch to TRUE if
0002 B0FC BGE TRUE A > DATA
0004 SKIP ANOP

Fragment 9.6

Fragment 9.7 shows “branch on less or equal.”

The Western Design Center

132

0000 F0FE BEQ TRUE branch if
0002 90FC BCC TRUE A <= DATA

Fragment 9.7

Listing 9.4 features the use of the compare instruction to count the number of elements in a list which
are less than, equal to, and greater than a given value. While of little utility by itself, this type of comparison
operation is just a few steps away from a simple sort routine. The value the list will be compared against is
assumed to be stored in memory locations $88.89, which are given the symbolic name VALUE in the example.
The list, called TABLE, uses the DC I directive, which stores each number as a sixteen-bit integer.

The Western Design Center

133

0001 0000 KEEP KL.9.4
0002 0000 65816 ON
0003 0000
0004 0000 L94 START
0005 0000
0006 0000
0007 0000 LESS GEQU $82 counter
0008 0000 SAME GEQU $84 counter
0009 0000 MORE GEQU $86 counter
0010 0000
0011 0000 VALUE GEQU $88 value for list to be compared against
0012 0000
0013 0000 18 CLC
0014 0001 FB XCE
0015 0002 C230 REP #$30 turn on both 16-bit modes
0016 0004
0017 0004 LONGA ON
0018 0004 LONGI ON
0019 0004
0020 0004
0021 0004 6482 STZ LESS zero the counters
0022 0006 6484 STZ SAME
0023 0008 6486 STZ MORE
0024 000A
0025 000A
0026 000A A588 LDA VALUE get the comparison value
0027 000C A01A00 LDY #LAST-TABLE get a counter to # of list items
0028 000F
0029 000F
0030 000F D92700 TOP CMP TABLE,Y compare accum to first list item
0031 0012 F006 BEQ ISEQ
0032 0014 9008 BLT ISMORE
0033 0016 E682 INC LESS VALUE is less, bump LESS
0034 0018 8006 BRA LOOP
0035 001A E684 ISEQ INC SAME value is same; bump SAME
0036 001C 8002 BRA LOOP
0037 001E E686 ISMORE INC MORE VALUE is greater; bump MORE
0038 0020
0039 0020 88 LOOP DEY move pointer to next list item
0040 0021 88 DEY
0041 0022 10EB BPL TOP continue if there are any list items
0042 0024 ; left to compare
0043 0024
0044 0024 38 SEC
0045 0025 FB XCE
0046 0026 60 RTS
0047 0027
0048 0027 0C00009000 DC I’12,9,302,956,123,1234,98’
0049 0035 04116300 DC I’4356,99,11,40000,23145,562’
0050 0041 0F27 LAST DC I’9999”
0051 0043
0052 0043 END

Listing 9.4.

After setting the mode to sixteen-bit word/index size, the locations that will hold the number of
occurrences of each of the three possible relationships are zeroed. The length of the list is loaded into the Y
register. The accumulator is loaded with the comparison value.

The loop itself is entered, with a comparison to the first item in the list; in this and each succeeding
case, control is transferred to counter-incrementing code depending on the relationship that exists. Note that
equality and less-than are tested first, and greater-than is assumed if control falls through. This is necessary
since there is no branch on greater-than (only branch on greater-than-or-equal). Following the incrementing of
the selected relation-counter, control passes either via an unconditional branch, or by falling through, to the
loop-control code, which decrements Y twice (since double-byte integers are being compared). Control

The Western Design Center

134

resumes at the top of the loop unless all of the elements have been compared, at which point Y is negative, and
the routine ends.

In addition to comparing the accumulator with memory, there are instructions for comparing the values
in the two index registers with memory, CPX and CPY. These instructions come in especially handy when it is
not convenient or possible to decrement an index to zero – if instead you must increment or decrement it until a
particular value is reached. The appropriate compare index register instruction is inserted before the branch-on-
condition instruction either loops or breaks out of the loop. Fragment 9.8 shows a loop that continues until the
value in X reaches $A0.

0000 LOOP ANOP work to be done in the loop goes here
0000 .
0000 .
0000 .
0000 E8 INX
0001 E0A000 CPX #$A0
0004 D0FA BNE LOOP continue incrementing X until
0006 ANOP X = $A0, so loop ended

Fragment 9.8

Signed Arithmetic

The examples so far have dealt with unsigned arithmetic – that is, addition and subtraction of binary
numbers of the same sign. What about signed numbers?

As you saw in Chapter 1, signed numbers can be represented using two’s-complement notation. The
two’s complement of a number is formed by inverting it (one bits become zeroes, zeroes become ones) and then
adding one. For example, a negative one is represented by forming the two’s complement of one:

0000 0000 0000 0001 -binary one in sixteen-bit word
1111 1111 1111 1110 -complement word
0000 0000 0000 0001 -add one to complement
1111 1111 1111 1111 -result is two’s-complement

 representation of minus one

Minus one is therefore equivalent to a hexadecimal $FFFF. But as far as the processor is concerned, the
unsigned value $FFFF (65,535 decimal) and the signed value minus-one are equivalent. They both amount to
the same stream of bits stored in a register. It’s the interpretation of them given by the programmer which is
significant – an interpretation that must be consistently applied across each of the steps that perform a multi-step
function.

Consider all of the possible signed and unsigned numbers that can be represented using a sixteen-bit
register. The two’s complement of $0002 is $FFFE – as the positive numbers increase, the two’s-complement
(negative) numbers decrease (in the unsigned sense). Increasing the positive value to $7FFF (%0111 1111 1111
1111), the two’s complement is $8001 (%1000 0000 0000 0001); except for $8000, all of the possible values
have been used to represent the respective positive and negative numbers between $0001 and $7FFF.

Since their point of intersection, $8000, determines the maximum range of a signed number, the high-
order bit (bit fifteen will always be one if the number is negative, and zero if the number is positive. Thus the
range of possible binary values (%0000 0000 0000 0000 through %1111 1111 1111 1111, or $0000 . . $FFFF),
using two’s-complement form, is divided evenly between representations of positive numbers, and
representations of the corresponding range of negative numbers. Since $8000 is also negative, there seems to
be one more possible negative number than positive; for the purpose here, however, zero is considered positive.

The high-order bit is therefore referred to as the sign bit. On the 6502, with its eight-bit word size (or
the 65816 in an eight-bit register mode), bit seven is the sign bit. With sixteen-bit registers, bit fifteen is the
sign bit. The n or negative flag in the status register reflects whether or not the high-order bit of a given register
is set or clear after execution of operations which affect that register, allowing easy determination of the sign of
a signed number by using either the BPL (branch on plus) or BMI (branch if minus) instructions introduced in
the last chapter.

The Western Design Center

135

Using the high-order bit as the sign bit sacrifices the carry flag’s normal (unsigned) function. If the
high-order bit is used to represent the sign, then the addition or subtraction of the sign bits (plus a possible carry
out of the next-to-highest bit) results in a sign bit that may be invalid and that will erroneously affect the carry
flag.

To deal with this situation, the status register provides another flag bit, the v or overflow flag, which is
set or rest as the result of the ADC and SBC operations. The overflow bit indicates whether a signed result is
too large (or too small) to be represented in the precision available, just as the carry flag does for unsigned
arithmetic.

Since the high-order bit is used to store the sign, the penultimate bit (the next highest bit) is the high-
order bit as far as magnitude representation is concerned. If you knew if there was a carry out of this bit, it
would obviously be helpful in determining overflow or underflow.

However, the overflow flag is not simply the carry out bit six (if m = 1 for eight-bit mode) or bit
fourteen (if m = 0 for sixteen-bit mode). Signed generation of the v flag is not as straightforward as unsigned
generation of the carry flag. It is not automatically true that if there is a carry out of the penultimate bits that
overflow has occurred, because it could also mean that the sign has changed. This is because of the circular or
wraparound nature of two’s-complement representation.

Consider Fragment 9.9. Decimal values with sign prefixes are used for emphasis (and convenience) as
the immediate operands in the source program; their hexadecimal values appear in the left-hand column which
interlists the generated object code (opcode first, low byte, high byte). You can see that –10 is equivalent to
$FFF6 hexadecimal, while 20 is hexadecimal $0014. Examine this addition operation in binary:

0000 C230 REP #$30 16-bit registers
0002 LONGA ON
0002 LONGI ON
0002
0002 A9F6FF LDA #-10
0005 18 CLC
0006 691400 ADC #20

Fragment 9.9

Two things should become clear: that the magnitude of the result (10 decimal) is such that it will easily
fit within the number of bits available for its representation, and that there is a carry out of bit fourteen:

1 1111 1111 111 1 carry from previous bit
1111 1111 1111 0110 -10 decimal
0000 0000 0001 0100 +20 decimal

1 0000 0000 0000 1010 result is +10 decimal

In this case, the overflow flag is not set, because the carry out of the penultimate bit indicates wraparound
rather than overflow (or underflow). Whenever the two operands are different signs, carry out of the next-to-
highest bit indicates wraparound; the addition of a positive and a negative number (or vice versa) can result in a
number too large (try it), but it may result in wraparound.

Conversely, overflow exists in the addition of two negative numbers if no carry results from the
addition of the next-to-highest (penultimate) bits. If two negative numbers are added without overflow, they
will always wrap around, resulting in a carry out of the next-to-highest bit. When wraparound has occurred, the
sign bit is set due to the carry out of the penultimate bit. In the case of the two negative numbers being added
(which always produces a negative result), this setting of the sign bit results in the correct sign. In the case of
the addition of two positive numbers, wraparound never occurs, so a carry out of the penultimate bit always
means that the overflow flag will be set.

These rules likewise apply for subtraction; however, you must consider that subtraction is really an
addition with the sign of the addend inverted, and apply them in this sense.

In order for the processor to determine the correct overflow flag value, it exclusive-or’s the carry out of
the penultimate bit with the carry out of the high-order bit (the value that winds up in the carry flag), and sets or

The Western Design Center

136

resets the overflow according to the result. By taking the exclusive-or of these two values, the overflow flag is
set according to the rules above.

Consider the possible results:
• If both values are positive, the carry will be clear; if there is no penultimate carry, the overflow flag,

too, will be clear, because 0 XOR 0 equals 0; the value in the sign bit is zero, which is correct
because a positive number plus a positive number always equals a positive number. On the other
hand, if there is a penultimate carry, the sign bit will change. While there is still no final carry,
overflow is set. The final carry (clear) xor penultimate carry (set) equals one. Whenever overflow
is set, the sign bit of the result has the wrong value.

• If the signs are different, and there is a penultimate carry (which means wraparound in this case),
there will be a final carry. But when this is exlusive-or’d with the penultimate carry, it is canceled
out, resulting in overflow being cleared. If, though, there were no penultimate carry, there would be
no final carry; again, 0 XOR 0 = 0, or overflow clear. If the sign bit is cleared by the addition of a
penultimate carry and the single negative sign bit, since wraparound in this case implies the
translation from a negative to a positive number, the sign (clear) is correct. If there was no
wraparound, the result is negative, and the sign bit is also correct (set).

• Finally, if both signs are negative, there will always be a carry out of the sign bit. A carry out of
the penultimate bit means wraparound (with a correctly negative result), so carry (set) XOR
penultimate carry (set) equals zero and the overflow flag is clear. If, however, there is no carry,
overflow (or rather, underflow) has occurred, and the overflow is set because XOR no carry equals
one.

The net result of this analysis is that, with the exception of overflow detection, signed arithmetic is
performed in the same way as unsigned arithmetic. Multiple-precision signed arithmetic is also done in the
same way as unsigned multiple-precision arithmetic; the sign of the two numbers is only significant when the
high-order word is added.

When overflow is detected, it can be handled in three ways: treated as an error, and reported; ignored; or
responded to by attempting to extend the precision of the result. Although this latter case is not generally practical, you
must remember that, in this case, the value in the sign bit will have been inverted. Having determined the correct sign, the
precision may be expanded using sign extension, if there is an extra byte of storage available and your arithmetic routines
can work with a higher-precision variable. The method for extending the sign of a number involves the bit manipulation
instructions described in the next chapter; an example of it is found there.

Signed Comparisons

The principle of signed comparisons is similar to that of unsigned comparisons: the relation of one
operand to another is determined by subtracting one from the other. However, the 65x CMP instruction, unlike
SBC, does not affect the v flag, so does not reflect signed overflow/underflow. Therefore, signed comparisons
must be performed using the SBC instruction. This means that the carry flag must be set prior to the
comparison (subtraction), and that the original value in the accumulator will be replaced by the difference.
Although the value of the difference is not relevant to the comparison operation, the sign is. If the sign of the
result (now in the accumulator) is positive (as determined according to rules outlined above for proper
determination of the sign of the result of a signed operation), then the value in memory is less than the original
value in the accumulator; if the sign is negative, it is greater. If, though, the result of the subtraction is zero,
then the values were equal, so this should be checked for first.

The code for signed comparisons is similar to that for signed subtraction. Since a correct result need
not be completely formed, however, overflow can be tolerated since the goal of the subtraction is not to
generate a result that can be represented in a given precision, but only to determine the relationship of one value
to another. Overflow must still be taken into account in correctly determining the sign. The value of the sign
bit (the high-order bit) will be the correct sign of the result unless overflow has occurred. In that case, it is the
inverted sign.

Listing 9.5 does a signed comparison of the number stored in VAL1 with the number stored in VAL2,
and sets RELATION to minus one, zero, or one, depending on whether VAL1 < VAL2, VAL1 = VAL2 or
VAL1 > VAL2, respectively:

The Western Design Center

137

0001 0000 KEEP KL.9.5
0002 0000 65816 ON
0003 0000
0004 0000 COMPARE START
0005 0000
0006 0000 18 CLC
0007 0001 FB XCE
0008 0002 C230 REP #$30 turn 16-bit modes on
0009 0004
0010 0004 LONGA ON
0011 0004 LONGI ON
0012 0004
0013 0004 9C2500 STZ RELATION clear result cell
0014 0007 AD2100 LDA VAL1
0015 000A 38 SEC
0016 000B ED2300 SBC VAL2
0017 000E F00E BEQ SAME
0018 0010 7007 BVS INVERT if v set, invert meaning of sign
0019 0012 3007 BMI LESS bra if VAL1 is less than VAL2
0020 0014 EE2500 GREATER INC RELATION VAL1 is greater than VAL2
0021 0017 8005 BRA SAME
0022 0019 30F9 INVERT BMI GREATER invert: bra if minus: minus = greater
0023 001B CE2500 LESS DEC RELATION
0024 001E 38 SAME CLC
0025 001F FB XCE
0026 0020 60 RTS
0027 0021
0028 0021 0000 VAL1 DS 2
0029 0023 0000 VAL2 DS 2
0030 0025 0000 RELATION DS 2
0031 0027
0032 0027 END

Listing 9.5

Decimal Mode

All of the examples in this chapter have dealt with binary numbers. In certain applications, however,
such as numeric I/O programming, where conversion between ASCII and binary representation of decimal
strings is inconvenient, and business applications, in which conversion of binary fractions to decimal fractions
results in approximation errors, it is convenient to represent numbers in decimal form and, if possible, perform
arithmetic operations on them directly in this form.

Like most processors, the 65x series provides a way to handle decimal representations of numbers.
Unlike most processors, it does this providing a special decimal mode that causes the processor to use decimal
arithmetic for ADC, SBC, and CMP operations, with automatic “on the fly” decimal adjustment. Most other
microprocessors, on the other hand, do all arithmetic the same, requiring a second “decimal adjust” operation to
convert back to decimal form the binary result of arithmetic performed on decimal numbers. As you remember
from Chapter 1, binary-coded-decimal (BCD) digits are represented in four bits as binary values from zero to
nine. Although values from $A to $F (ten to fifteen) may also be represented in four bits, these bit patterns are
illegal in decimal mode. So when $03 is added to $09, the result is $12, not $0C as in binary mode.
Each four-bit field in a BCD number is a binary representation of a single decimal digit, the rightmost being the
one’s place, the second the ten’s, and so on. Thus, the eight-bit accumulator can represent numbers in the range
0 through 99 decimal, and the sixteen-bit accumulator can represent numbers in the range 0 through 9999.
Larger decimal numbers can be represented in multiple-precision, using memory variables to store the partial
results and the carry flag to link the component fields of the number together, just as multiple-precision binary
numbers are.

The Western Design Center

138

Decimal mode is set via execution of the SED instruction (or a SEP instruction with bit three set). This
sets the d or decimal flag in the status register, causing all future additions and subtractions to be performed in
decimal mode until the flag is cleared.

The default mode of the 65x processors is the binary mode with the decimal flag clear. It is important
to remember that the decimal flag may accidentally be set by a wild branch, and on the NMOS 6502, it is not
cleared on reset. The 65C02, 65802, and 65816 do clear the decimal flag on reset, so this is of slightly less
concern. Arithmetic operations intended to be executed in binary mode, such as address calculations, can
produce totally unpredictable results if they are accidentally executed in decimal mode.

Finally, although the carry flag is set correctly in the decimal mode allowing unsigned multiple-
precision operations, the overflow flag is not, making signed decimal arithmetic, while possible, difficult. You
must create your own sign representation and logic for handling arithmetic based on the signs of the operands.
Borrowing from the binary two’s-complement representation, you could represent negative numbers as those
(unsigned) values which, when added to a positive number result in zero if overflow is ignored. For example,
99 would equal –1, since 1 plus 99 equals 100, or zero within a two-digit precision. 98 would be –2, and so on.
The different nature of decimal representation, however, does not lead itself to signed operation quite as
conveniently as does the binary two’s-complement form.

The Western Design Center

139

10) Chapter Ten

Logic and Bit Manipulation Operations

The logical operations found in this chapter are the very essence of computer processing; even the
arithmetic functions, at the lowest level, are implemented as combinations of logic gates. Logic, or more
accurately, boolean logic, is concerned with the determination of “true” and “false”.

Computers can represent simple logical propositions and relationships as binary states: the bit-value
used to represent “1” in a given computer is considered equivalent to true; the bit-value which stands for “0” is
considered equivalent to false. This designation is in fact arbitrary, and the values could easily be reversed.
What matters is the consistent application of the convention. Alternative terms are “set” and “reset” (or
“clear”), “on” and “off,” “high” and “low,” “asserted” and “negated.” There is a tendency to equate all of these
terms; this is generally acceptable except when you are concerned with the actual hardware implementation of
these values, in which case the issue of positive logic (“on” means “true”) vs. negative logic (“off” means
“true”) becomes a consideration. But the intuitive assumption of a positive logic system (“1” equals “on”
equals “true”) seems the most natural, and may be considered conventional, so the terms listed above as
equivalent will be used interchangeably, as appropriate for a given context.

Before discussing these functions, it is important to remember the bit-numbering scheme described in
Chapter 1: bits are numbered right to left from least significant to most significant, starting with zero. So a
single byte contains bits zero through seven, and a double byte contains bits zero through fifteen. Bit zero
always stands for the “one’s place.” Bit seven stands for the “128ths place” and bit fifteen stands for the
“32768ths place,” except that the high bit of a signed number is, instead, the sign bit. A single bit (or string of
bits smaller than a byte or double byte) is sometimes called a bit-field, implying that the bits are just a part of a
larger data element like a byte or a double byte.

You’ll find two types of instructions discussed in this chapter: the basic logic functions, and the
shifts and rotates. They’re listed in Table 10.1.

Available on:
Mnemonic 6502 65C02 65802/816 Description

Logic Instruction:
AND x x x logical and
EOR x x x logical exclusive-or
ORA x x x logical or (inclusive or)

Bit Manipulation Instruction:
BIT x x x test bits
TRB x x test and reset bits
TSB x x test and set bits

Shift and Rotate Instructions:
ASL x x x shift bits left
LSR x x x shift bits right
ROL x x x rotate bits left
ROR x x x rotate bits right

Table 10-1 Logic Instructions

Logic Functions

The fundamental logical operations implemented on the 65x processor are and, inclusive or, and
exclusive or. These are implemented as the AND, ORA, and EOR machine instructions. These three logical
operators have two operands, one in the accumulator and the second in memory. All of the addressing modes

The Western Design Center

140

available for the LDA, STA, ADC, SBC, and CMP instructions are also available to the logical operations.
The truth tables for these operations are found in Chapter 1 and are repeated again in the descriptions of the
individual instructions in Chapter 18.

In addition to these instructions, there are also bit testing instructions that perform logical operations;
these are the BIT (test memory bits), TSB (test and set bits), and TRB (test and reset bits) instructions. These
three instructions set status flags of memory values based on the result of logical operations, rather than
affecting the accumulator.

The logical and bit manipulation instructions are broadly useful: for testing for a condition using
boolean logic (for example, if this is true and that is true then do this); for masking bit fields in a word, forcing
them to be on or off; for performing quick, simple multiplication and division functions, such as multiplying by
two or taking the modulus of a power of two (finding the remainder of a division by a power of two); for
controlling I/O devices; and for a number of other functions.

The most typical usage of the boolean or logical operators is probably where one of the two operands is
an immediate value. Immediate values will generally be used in these examples. Additionally, operands will
usually be represented in binary form (prefixed by a percent sign - %), since it makes the bit-pattern more
obvious. All of the logical operations are performed bitwise; that is, the result is determined by applying the
logical operation to each of the respective bits of the operands.

Logical AND

Consider, for example, the eight-bit AND operation illustrated in Figure 10.1.

bit number

7 6 5 4 3 2 1 0
0 1 1 1 0 1 1 0 $76

and 1 1 0 0 1 0 1 1 and $CB
0 1 0 0 0 0 1 0 $42 result

Figure 10-1 The AND Operation

The result, $42 or %0100 0010, is formed by ANDing bit zero of the first operand with bit zero of the second to
form bit zero of the result; bit one with bit one; and so on. In each bit, a one results only if there is a one in the
corresponding bit-fields of both the first operand and the second operand; otherwise zero results.

An example of the use of the AND instruction would be to mask bits out of a double-byte word to
isolate a character (single-byte) value. A mask is a string of bits, typically a constant, used as an operand to a
logic instruction to single out of the second operand a given bit or bit-field by forcing the other bits to zeroes or
ones. Masking characters out of double bytes is common in 65802 and 65816 applications where a “default”
mode of sixteen-bit accumulator and sixteen-bit index registers has been selected by the programmer, but
character data needs to be accessed as well. For some types of character manipulation, it is quicker to simply
mask out the extraneous data in the high-order byte than to switch into eight-bit mode. The code in Listing 10.1
is fragmentary in the sense that it is assumed that the core routine is inserted in the middle of other code, with
the sixteen-bit accumulator size already selected.

It may seem to be splitting hairs, but this routine, which compares the value in a string of characters
pointed to by the value in the memory variable CHARDEX to the letter ‘e’ is two machine cycles faster than
the alternative approach, which would be to switch the processor into the eight-bit accumulator mode, compare
the character, and then switch back into the sixteen-bit mode.

The Western Design Center

141

0001 0000 KEEP KL.10.1
0002 0000 65816 ON
0003 0000
0004 0000 MAIN START
0005 0000 PTR GEQU $80
0006 0000
0007 0000 18 CLC
0008 0001 FB XCE
0009 0002
0010 0002 C230 REP #$30 assume operation in 16-bit modes
0011 0004 LONGA ON
0012 0004 LONGI ON
0013 0004
0014 0004 AC4C00 LDY CHARDEX get index pointing to desired char
0015 0007 B91A00 LOOP LDA STRING,Y get the char & the one after it

0016 000A 29FF00 AND
#%000000001111
111

AND out the “next” char

0017 000D C96500 CMP #’e’ cmp low byte to ‘e’, high 0 byte to 0
0018 0010 D004 BNE NOMATCH
0019 0012
0020 0012 38 SEC return to emulation mode
0021 0013 FB XCE
0022 0014
0023 0014 38 SEC set carry indicates successful match
0024 0015 60 RTS
0025 0016
0026 0016 38 NOMATCH SEC return to emulation mode
0027 0017 FB XCE
0028 0018
0029 0018 18 CLC clear carry indicates unsuccessful match
0030 0019 60 RTS
0031 001A
0032 001A 54686573 STRING DC C ‘These characters’
0033 002A 61726520 DC C ‘are all packed next to’
0034 0040 65616368 DC C ‘each other’
0035 004A 0000 DC H ‘0000’
0036 004C 0000 CHARDEX DC 2 index to a particular char in STRING
0037 004E END

Listing 10.1

Each time the program is executed with a different value for CHARDEX, a different adjacent character
will also be loaded into the high byte of the accumulator. Suppose the value in CHARDEX were four; when
the LDA STRING,Y instruction is executed, the value in the low byte of the accumulator is $65, the ASCII
value for a lower-case ‘e’. The value in the high byte is $20, the ASCII value for the space character (the space
between “These” and “characters”). Even though the low bytes match, a comparison to ‘e’ would fail, because
the high byte of the CMP instruction’s immediate operand is zero, not $20 (the assembler having automatically
generated a zero as the high byte for the single-character operand ‘e’).

However, by ANDing the value in the accumulator wit %0000000011111111 ($00FF), no matter what
the original value in the accumulator, the high byte of the accumulator is zeroed (since none of the
corresponding bits in the immediate operand are set). Therefore the comparison in this case will succeed, as it
will for CHARDEX values of 2, 13, 18, 28, 32, 38, and 46, even though their adjacent characters, automatically
loaded into the high byte of the accumulator, are different.

The AND instruction is also useful in performing certain multiplication and division functions. For
example, it may be used to calculate the modulus of a power of two. (The modulus operation returns the
remainder of an integer division; for example, 13 mod 5 equals 3, which is the remainder of 13 divided by 5.)
This is done simply by ANDing with ones all of the bits to the right of the power of two you wish the modulus

The Western Design Center

142

of and masking out the rest. A program fragment illustrating this will be provided later in this chapter, where an
example of the use of the LSR instruction to perform division by powers of two will also be given.

In general, the AND operation is found in two types of applications: selectively turning bits off (byte
ANDing with zero), and determining if two logical values are both true.

Logical OR

The ORA instruction is used to selectively turn bits on by Oring them with ones, and to determine if
either (or both) of two logical values is true. A character-manipulation example (Listing 10.2) is used – this
time writing a string of characters, the high bit of each of which must be set, to the AppleII screen memory – to
demonstrate a typical use of the ORA instruction.

Since the video screen is memory-mapped, outputting a string is basically a string move. Since normal
Apple video characters must be stored in memory with their high-order bit turned on, however, the ORA
#%10000000 instruction is required to do this if the character string, as in the example, was originally stored in
normal ASCII, with the high-order bit turned off. Note that it clearly does no harm to OR a character with $80
(%10000000) even if its high bit is already set, so the output routine does not check characters to see if they
need to have set high bit, but rather routinely Ors them all with $80 before writing them to the screen. When
each character is first loaded into the eight-bit accumulator from STRING, its high bit is off (zero); the ORA
instruction converts each of the values - $48, $65, $6C, $6C, $6F – into the corresponding high-bit-set ASCII
values - $C8, $E5, $EC, $EC, and $EF, before storing them to screen memory, where they will be displayed as
normal, non-inverse characters on the video screen. In this case, the same effect (the setting of the high-order
bit) could have been achieved if $80 had been added to each of the characters instead; however, the OR
operation differs from addition in that even if the high bit of the character already had a value of one, the result
would still be one, rather than zero plus a carry as would be the case if addition were used. (Further a CLC
operation would also have been required prior to the addition, making ORA a more efficient choice as well.)

The Western Design Center

143

0001 0000 KEEP KL.10.2
0002 0000 65816 ON
0003 0000
0004 0000 L102 START
0005 0000 MSB OFF
0006 0000 SCREEN GEQU $400 start of AppleII screen memory
0007 0000
0008 0000 18 CLC
0009 0001 FB XCE
0010 0002
0011 0002 C210 REP #$10 16-bit index register
0012 0004 LONGI ON
0013 0004
0014 0004 E220 SEP #$20 8-bit accum
0015 0006 LONGA OFF
0016 0006
0017 0006 A00000 LDY #0 starting index into string & screen = 0
0018 0009
0019 0009 B91900 TOP LDA STRING,Y get char from string
0020 000C F008 BEQ DONE branch if at 0 terminator
0021 000E 0980 ORA #%10000000 set the high bit
0022 0010 990004 STA SCREEN,Y store the char into screen memory
0023 0013
0024 0013 C8 INY
0025 0014 80F3 BRA TOP
0026 0016
0027 0016 38 DONE SEC
0028 0017 FB XCE
0029 0018 60 RTS
0030 0019
0031 0019 48656C6C STRING DC C ‘Hello’
0032 001E 00 DC H ‘00’
0033 001F
0034 001F END

Listing 10.2

Logical Exclusive-Or

The third logical operation, Exclusive-OR, is used to invert bits. Just as inclusive-OR (ORA) will
yield a true result if either or both of the operands are true, exclusive-or yields true only if one operand is true
and the other is false; if both are true or both are false, the result is false. This means that by setting a bit in the
memory operand of an EOR instruction, you can invert the corresponding bit of the accumulator operand
(where the result is stored). In the preceding example, where the character constants were stored with their high
bits off, an EOR #$80 instruction would have had the same effect as ORA #$80; but like addition, if some of
the characters to be converted already had their high-order bits set, the EOR operation would clear them.

Two good examples of the application of the EOR operation apply to signed arithmetic. Consider the
multiplication of two signed numbers. As you know, the sign of the product is determined by the signs of the
multiplier and multiplicand according to the following rule: if both operands have the same sign, either positive
or negative, the result is always positive; if the two operands have different signs, the result is always negative.
You perform signed multiplication by determining the sign of the result, and then multiplying the absolute
values of both operands using the same technique as for unsigned arithmetic. Finally, you consider the sign of
the result: if it is positive, your unsigned result is the final result; if it is negative, you form the final result by
taking the two’s-complement of the unsigned result. Because the actual multiplication code is not included, this
example is given as two fragments, 10.1 and 10.2.

Fragment 10.1 begins by clearing the memory location SIGN, which will be used to store the sign of
the result. Then the two values to be multiplied are exclusive-OR’d, and the sign of the result is tested with the

The Western Design Center

144

BPL instruction. If the sign bit of the result is negative, you know that the sign bits of the two operands were
different, and therefore the result will be negative; a negative result is preserved by decrementing the variable
SIGN, making its value $FFFF.

Next, the two operands are converted to their absolute values by two’s complementing them if they are
negative. The technique for forming the two’s complement of a number is to invert it, and then add one. The
EOR operation is used again to perform the inversion; the instruction EOR #$FFFF will invert all of the bits in
the accumulator: ones become zeroes, and zeros become ones. An INC A instruction adds one. In the case of
NUM2, this result must be saved to memory before the accumulator is reloaded with NUM1, which is also
two’s complemented if negative.

0000 0000 NUM1 DS 2
0002 0000 NUM2 DS 2
0004
0004 C230 REP #$30 16-bit modes
0006 LONGA ON
0006 LONGI ON
0006
0006 9C0080 STZ SIGN clear the sign
0009 AD0000 LDA NUM1
000C 4D0200 EOR NUM2 exclusive-or: check sign
000F 1003 BPL OK
0011 CE0080 DEC SIGN negative: sign = $FFFF
0014 AD0200 OK LDA NUM2
0017 1007 BPL OK1
0019 49FFFF EOR #$FFFF minus: get absolute value
001C 1A INC A
001D 8D0200 STA NUM2
0020 AD0000 OK1 LDA NUM1
0023 1004 BPL OK2
0025 49FFFF EOR #$FFFF
0028 1A INC A
0029 OK2 ANOP

Fragment 10.1

At this point, the unsigned multiplication of the accumulator and NUM2 can be performed. The code
for the multiplication itself is omitted from these fragments; however, an example of unsigned multiplication is
found in Chapter 14. The important fact for the moment is that the multiplication code is assumed to return the
unsigned product in the accumulator.

0000 AE0080 LDX SIGN
0003 1004 BPL DONE
0005 49FFFF EOR #$FFFF if should be neg,
0008 1A INC A two’s complement the result
0009 60 DONE RTS
000A

Fragment 10.2

The Western Design Center

145

What remains is to adjust the sign of the result; this code is found in Fragment 10.2. By testing the sign
of SIGN, it can be determined whether or not the result is negative; if it is negative, the actual result is the two’s
complement of the unsigned product, which is formed as described above.

Bit Manipulation

You have now been introduced to the three principal logical operators, AND, ORA, and EOR. In
addition there are three more specialized bit-manipulating instructions that use the same logical operations.

The first of these is the BIT instruction. The BIT instruction really performs two distinct operations.
First, it directly transfers the highest and next to highest bits of the memory operand (that is, seven and six if m
= 1, or fifteen and fourteen if m = 0) to the n and v flags. It does this without modifying the value in the
accumulator, making it useful for testing the sign of a value in memory without loading it into one of the
registers. An exception to this is the case where the immediate addressing mode is used with the BIT
instruction: since it serves no purpose to test the bits of a constant value, the n and v flags are left unchanged in
this one case.

BIT’s second operation is to logically AND the value of the memory operand with the value in the
accumulator, conditioning the z flag in the status register to reflect whether or not the result of the ANDing was
zero or not, but without storing the result in the accumulator (as is the case with the AND instruction) or saving
the result in any other way. This provides the ability to test if a given bit (or one or more bits in a bit-field) is
set by first loading the accumulator with a mask of the desired bit patterns, and then performing the BIT
operation. The result will be non-zero only if at least one of the bits set in the accumulator is likewise set in the
memory operand. Actually, you can write your programs to use either operand as the mask to test the other,
except when immediate addressing is used, in which case the immediate operand is the mask, and the value in
the accumulator is tested.

A problem that remained from the previous chapter was sign extension, which is necessary when
mixed-precision arithmetic is performed – that is, when the operands are of different sizes. It might also be
used when converting to a higher precision due to overflow. The most typical example of this is the addition (or
subtraction) of a signed eight-bit and a signed sixteen-bit value. In order for the lesser-precision number to be
converted to a signed number of the same precision as the larger number, it must be sign-extended first, by
setting or clearing all of the high-order bits of the expanded-precision number to the same value as the sign bit
of the original, lesser-precision number.

In other words, $7F would become $007F when sign-extended to sixteen bits, while $8F would become
$FF8F. A sign-extended number evaluates to the same number as its lesser precision form. For example, $FF
and $FFFF both evaluate to –1.

You can use the BIT instruction to determine if the high-order bit of the low-order byte of the
accumulator is set, even while in the sixteen-bit accumulator mode. This is used to sign extend an eight-bit
value in the accumulator to a sixteen-bit one in Listing 10.3.

The Western Design Center

146

0001 0000 KEEP KL.10.3
0002 0000 65816 ON
0003 0000
0004 0000 L103 START
0005 0000 18 CLC
0006 0001 FB XCE
0007 0002
0008 0002 C230 REP #$30 turn 16-bit modes on
0009 0004 LONGA ON
0010 0004 LONGI ON
0011 0004
0012 0004 A500 LDA 0 get value to sign extend
0013 0006
0014 0006 29FF00 AND #$FF zero out any garbage in high byte
0015 0009 898000 BIT #$80 test high bit of low byte
0016 000C F003 BEQ OK number is positive; leave as is
0017 000E 0900FF ORA #$FF00 turn on high bits
0018 0011
0019 0011 8500 OK STA 0 save sign-extended value
0020 0013
0021 0013 38 SEC
0022 0014 FB XCE
0023 0015 60 RTS
0024 0016 END

Listing 10.3

The pair of “test-and-set” instructions, TSB and TRB, are similar to the BIT instruction in that they set
the zero flag to represent the result of ANDing the two operands. They are dissimilar in that they do not affect
the n and v flags. Importantly, they also set (in the case of TSB) or reset (in the case of TRB) the bits of the
memory operand according to the bits that are set in the accumulator (the accumulator value is a mask). You
should recognize that the mechanics of this involve the logical functions described above: the TSB instruction
Ors the accumulator with the memory operand, and stores the result to memory; the TRB inverts the value in
the accumulator, and then ANDs it with the memory operand. Unlike the BIT instruction, both of the test-and-
set operations are read-modify-write instructions; that is, in addition to performing an operation on the memory
value specified in the operand field of the instruction, they also store a result to the same location.

The test-and-set instructions are highly specialized instructions intended primarily for control of
memory-mapped I/O devices. This is evidenced by the availability of only two addressing modes, direct and
absolute, for these instructions; this is sufficient when dealing with memory-mapped I/O, since I/O devices are
always found at fixed memory locations.

Shifts and Rotates

The second class of bit-manipulating instructions to be presented in this chapter are the shift and rotate
instructions: ASL, LSR, ROL, and ROR. These instructions copy each bit value of a given word into the adjacent bit to the
“left” or “right.” A shift t o the left means that the bits are shifted into the next-higher-order bit; a shift to the right means
that each is shifted into the next-lower-order bit. The bit shifted out of the end-that is, the orginal high-order bit for a left
shift, or the original low order bit for a right shift-is copied into the carry flag.

Shift and rotate instructions differ in the value chosen for the origin bit of the shift or rotate. The shift
instructions write a zero into the origin bit of the shift – the low-order bit for a shift left of the high-order bit for
shift right. The rotates, on the other hand, copy the original value of the carry flag into the origin bit of the
shift. Figure 10.2. and Figure 10.3 illustrate the operation of the shift and rotate instructions.

The carry flag, as Fragment 10.3 illustrates, is used by the combination of a shift followed by one or
more rotate instructions to allow multiple-precision shifts, much as it is used by ADC and SBC instructions to
enable multiple-precision arithmetic operations.

The Western Design Center

147

In this code fragment, the high-order bit in LOC1 is shifted into the carry flag in the first ASL
instruction and a zero is shifted into the low-order bit of LOC1; its binary value changes from

1010101010101010
to

0101010101010100 carry = 1
The next instruction, ROL, shifts the value in the carry flag (the old high bit of LOC1) into the low bit of
LOC2. The high bit of LOC2 is shifted into the carry.

The Western Design Center

148

1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1

X X

1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1

X X

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 X

1 1

Figure 10-2 Shift and Rotate Left

0000 A9AAAA LDA #%1010101010101010
0003 8D0080 STA LOC1
0006 A9AAAA LDA #%1010101010101010
0009 8D0080 STA LOC2
000C 0E0080 ASL LOC1
000F 2E0080 ROL LOC2

Fragment 10.3

ASL-Before

CARRY FLAG CARRY FLAG

ROL-Before

ASL

CARRY FLAG CARRY FLAG

ROL

0

ASL-After

CARRY FLAG CARRY FLAG

ROL-After

The Western Design Center

149

1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1

X X

1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1

X X

0 1 0 1 1 0 0 1 X 1 0 1 1 0 0 1

1 1

Figure 10-3 Shift and Rotate Right

LSR-Before

CARRY FLAG CARRY FLAG

ROR-Before

LSR

CARRY FLAG CARRY FLAG

ROR

LSR-After

CARRY FLAG CARRY FLAG

ROR-After

0

The Western Design Center

150

1010101010101010

becomes

0101010101010101 carry = 1

A double-precision shift left has been performed.
What is the application of the shift and rotate instructions? There are two distinct categories:

multiplication and division by powers of two, and generalized bit-manipulation.
Left shifts multiply the original value by two. Right shifts divided the original value by two.

This principal is inherent in the concept of positional notation; when you multiply a value by ten by
adding a zero to the end of it, you are in effect shifting it left one position; likewise when you divide
by ten by taking away the right-most digit, which in this case is base two.

Shifting is also useful, for the same reason, in a generalized multiply routine, where a combination of
shift and add operations are performed iteratively to accomplish the multiplication. Sometimes, however, it is
useful to have a dedicated multiplication routine, as when a quick multiplication by a constant value is needed.
If the constant value is a power of two – such as four, the constant multiplier in Fragment 10.4 – the solution is
simple: shift left a number of times equal to the constant’s power of two (four is two to the power, so two left
shifts are equivalent to multiplying by four).

0000 A93423 LDA #$2334
0003 0A ASL A times 4 (2 to the 2nd power)
0004 0A ASL A

Fragment 10.4

The result in the accumulator is $2334 times four, or $8CD0. Other “quickie” multiply routines can be easily
devised for multiplication by constants that are not a power of two. Fragment 10.5 illustrates multiplication by
ten: the problem is reduced to a multiplication by eight plus a multiplication by two.

0000 A9D204 LDA #1234
0003 0A ASL A multiply by 2
0004 8D0080 STA TEMP save intermediate result
0007 0A ASL A times 2 again = times 4
0008 0A ASL A times 2 again = times 8
0009 18 CLC
000A 6D0080 ADC TEMP = times 10

Fragment 10.5

After the first shift left, which multiplies the original value by two, the intermediate result (1234 * 2 =
2468) is stored at location TEMP. Two more shifts are applied to the value in the accumulator, which equals
9872 at the end of the third shift. This is added to the intermediate result of 1234 times 2, which was earlier
stored at location TEMP, to give the result 12,340, or 1234 * 10.

Division using the shift right instructions is similar. Since bits are lost during a shift right operation,
just as there is often a remainder when an integer division is performed, it would be useful if there were an easy
way to calculate the remainder (or modulus) of a division by a power of two. This is where the use of the AND
instruction alluded to earlier comes into play.

The Western Design Center

151

0000 A91FE2 LDA #$E21F
0003 48 PHA save accumulator
0004 4A LSR A divide by 2
0005 4A LSR A divide by 2 again = divide
0006 8D0080 STA QUO save quotient
0009 68 PLA recover original value
000A 290300 AND #$3
000D 8D0080 STA MOD save modulus

Fragment 10.6

Consider Fragment 10.6. In this case, $E21F is to be divided by four. As with multiplication, so with
division: two shifts are applied, one for each power of two, this time to the right. By the end of the second shift,
the value in the accumulator is $3887, which is the correct answer. However, two bits have been shifted off to
the right. The original value in the accumulator is recovered from the stack and then ANDed with the divisor
minus one, or three. This masks out all but the bits that are shifted out during division by four, the bits which
correspond to the remainder or modulus the quotient times four, and then adding the remainder.

The second use for the shift instructions is general bit manipulation. Since the bit shifted out of the
word always ends up in the carry flag, this is an easy way to quickly test the value of the high- or low-order bit
of a word. Listing 10.4 gives a particularly useful example: a short routine to display the value of each of the
flags in the status register. This routine will, one by one, print the letter-name of each of the status register flags
if the flag is set (as tested by the BCS instruction), or else print a dash if it is clear.

The Western Design Center

152

0001 0000 KEEP KL.10.4
0002 0000 65816 ON
0003 0000
0004 0000
0005 0000 PRINTP START
0006 0000 PREG GEQU $80
0007 0000 PTR GEQU $82
0008 0000
0009 0000
0010 0000 08 PHP save (on the stack)
0011 0001 ; the status reg to be displayed
0012 0001
0013 0001 18 CLC
0014 0002 FB XCE
0015 0003
0016 0003 C2FF REP #$FF 16-bit index regs; reset all flags
0017 0005 E220 SEP #$20 8-bit accum
0018 0007 LONGI ON
0019 0007 LONGA OFF
0020 0007
0021 0007 68 PLA pull status reg to display into accum
0022 0008 8580 STA PREG then store to memory location PREG
0023 000A A23000 LDX #FLAGS load 16-bit X with ptr to flag string
0024 000D 8682 STX PTR and store to PTR
0025 000F A20800 LDX #8 load X with counter (# of flag bits)
0026 0012
0027 0012 0680 LOOP ASL PREG shift high bit of PREG Õ carry
0028 0014 B004 BCS DOFLAG branch if set
0029 0016 A92D LDA #’-‘ if flag not set, output ‘-‘
0030 0018 8002 BRA SKIP
0031 001A B282 DOFLAG LDA (PTR) get flag letter from FLAGS
0032 001C 200080 SKIP JSR COUT output flag letter or ‘-‘
0033 001F E682 INC PTR 16-bit
0034 0021 D002 BNE OK increment
0035 0023 E683 INC PTR+1 (incr hi byte if low rolls over)
0036 0025 CA OK DEX decrement counter
0037 0026 D0EA BNE LOOP continue thru all 8 bits of status reg
0038 0028 A90D LDA #$0D output cr after all 8 flags
0039 002A 200080 JSR COUT
0040 002D
0041 002D 38 SEC
0042 002E FB XCE
0043 002F 60 RTS
0044 0030
0045 0030 6E766D78 FLAGS DC c’nvmxdizc’
0046 0038
0047 0038 END

SKIP 00001C

0048 0000
0049 0000
0050 0000 COUT START
0051 0000 ECOUT GEQU $FDED COUT IN APPLE I I MONITOR
0052 0000 48 PHA

The Western Design Center

153

0053 0001 DA PHX
0054 0002 5A PHY
0055 0003 08 PHP
0056 0004 38 SEC
0057 0005 FB XCE
0058 0006 20EDFD JSR ECOUT
0059 0009 18 CLC
0060 000A FB XCE
0061 000B 28 PLP
0062 000C 7A PLY
0063 000D FA PLX
0064 000E 68 PLA
0065 000F 60 RTS
0066 0010 END

Listing 10.4

The Western Design Center

154

11) Chapter Eleven

The Complex Addressing Modes

Chapter 7 defined the term addressing mode and introduced the set of simple 65x addressing modes,
those which involve at most a minimum of calculating combined values from multiple locations.

This chapter continues and expands the discussion of one of those modes, the direct page addressing
mode, for those cases where the direct page register value is other than zero. It discusses the basis for selection
by the assembler among the direct page, absolute, and long addressing modes, and how you can explicitly
override those assumptions. And it discusses the set of complex addressing modes available on the 6502, the
65C02, the 65802, and the 65816, those which require the effective address to be calculated from several
sources (Table 11.1). The understanding of these modes also provides the context within which to discuss
several more complex push instructions that were previously deferred to this chapter (Table 11.2).

Available on all 65x processors: Example Syntax
absolute indexed with X LDA $2234,X
absolute indexed with Y LDA $2234,Y
direct page (zero page) indexed with X LDA $17,X
direct page (zero page) indexed with Y LDX $17,Y
direct page (zero page) indirect indexed with Y LDA ($17),Y
direct page (zero page) indexed indirect with X LDA ($17,X)

Available on the 65C02, 65802, and 65816 only:
absolute indexed indirect JMP ($ 7821,X)

Available on the 6502 and 65816 only:
non-zero direct page LDA $17
absolute long indexed with X LDA $654321,X
direct page indirect long indexed with Y LDA [$17],Y
stack relative LDA $29,S
stack relative indirect indexed with Y LDA ($29,S),Y

Table 11-1 Complex Addressing Modes

Available on:
Mnemonic 6502 65C02 65802/816 Description
PEA x push effective absolute address
PEI x push effective indirect address
PER x push effective relative address

Table 11-2 Complex Push Instructions

The Western Design Center

155

Relocating the Direct Page

Chapter 7 discussed zero page addressing as found on the 6502 and 65C02 and introduced direct page
addressing, the 65816’s enhancement to zero page addressing. The 65816 lets the zero page addressing modes
use a direct page that can be located and relocated anywhere in the first 64K of memory. But Chapter 7 left the
direct page set to page zero so it could be discussed as a simple addressing mode – that is, so no calculation of
direct page register base plus direct page offset needed to be done and so the operand, a direct page offset, could
be thought of as an absolute address with a high-order byte of zero.

Relocating the direct page from page zero, to which it is initialized on power-up, can be accomplished
in either of two ways. The first would let a new value be pulled off the stack into the direct page register with
the PLD instruction, as found in Fragment 11.1.

0000 ; set direct page register to $3400
0000 A20034 LDX #$3400 get $3400 into a register
0003 DA PHX and push it onto the stack,
0004 2B PLD then pull it into direct page reg

Fragment 11.1

Fragment 11.2 illustrates the second method. The direct page register can be set to the value in the
sixteen-bit C accumulator by use of the TCD instruction, which transfers sixteen bits from accumulator to direct
page register.

0000 ; set direct page register to $FE00
0000 A900FE LDA #$FE00 get $FE00 into sixteen-bit accum
0003 5B TCD and transfer from C accum into direct pg

Fragment 11.2

Both methods of setting the direct page register give it a sixteen-bit value. Since sixteen bits are only
capable of specifying an address within a 64K range, its bank component must be provided in another manner;
this has been done by limiting the direct page to bank zero. The direct page can be located anywhere in 64K but
the bank address of the direct page is always bank zero.

Chapter 7, which limited the use of the direct page to page zero, used the example shown in Fragment
11.3 to store the one-byte value $F0 at address $0012, which is the direct page offset of $12 added to a direct
page register value of zero. If instead the direct page register is set to $FE00, then $F0 is stored to $FE12; the
direct page offset of $12 is added to the direct page register value of $FE00.

0000 A9F0000 LDA #$F0
0003 8512 STA $12 store accumulator to dp:$12

Fragment 11.3

While it is common to speak of a direct page address of $12, $12 is really an offset from the base
value in the direct page register ($FE00 in the last example). The two values are added to form the effective
direct page address of $FE12.

But while Chapter 7 defined a page of memory as $100 locations starting from a page boundary (any
multiple of $100), the direct page does not have to start on a page boundary; the direct page register can hold
any sixteen-bit value. If the code in Fragment 11.4 is executed, running the code in Fragment 11.3 stores the
one-byte value $f0 at address $1025: $1013 plus $12.

The Western Design Center

156

0000 ; set direct page register to $1013
0000 A91310 LDA #$1013 get $1013 into sixteen-bit accum
0003 5B TCD transfer $1013 from C into direct pg reg

Fragment 11.4

You will for the most part, however, want to set the direct page to begin on a boundary: it saves one
cycle for every direct page addressing operation. This is because the processor design includes logic that, when
the direct page register’s low byte is zero, concatenates the direct page register’s high byte to the direct page
offset – instead of adding the offset to the entire direct page register – to form the effective direct page address;
concatenation saves a cycle over addition.

One of the benefits of the direct page concept is that programs, and even parts of programs, can have
their own $100-byte direct pages of variable space separate from the operating system’s direct page of variable
space. A routine might set up its own direct page with the code in Fragment 11.5.

0000 ; set up direct page for this routine at $0300
0000 0B PHD first save current direct page location
0001 A90003 LDA #$300 load sixteen-bit accumulator with $300
0004 5B TCD transfer $300 into direct page reg

Fragment 11.5

To end the routine and restore the direct page register to its previous value, simply execute a PLD
instruction.

As discussed in Chapter 7, having a direct page makes accessing zero page addresses in any bank
require special assembler syntax. Since the zero page is no longer special, absolute addressing must be used;
but since the assembler normally selects direct page addressing for operands less than $100, the standard syntax
requires that you prefix a vertical bar or exclamation point to the operand to force the assembler to use absolute
addressing. This is just one of the potential assembler misassumptions covered in the next section.

Assembler Addressing Mode Assumptions

When the assembler encounters an address in the operand field of an instruction, it must decide whether
the address is a direct page offset, a sixteen-bit absolute address, or a 24-bit long address and generate opcode
and operand values which are appropriate. Its decision is based on the operand’s size – not the number of digits
in the operand, but whether the value of the operand is greater than $FF of greater than $FFFF. For example,
the assembler will interpret the operand $3F to be a direct page offset regardless of whether it is written as $3F,
$003F, or $00003F, because its value is less than 100 hex.

As a result, there are several areas of memory in 65802 and 65816 systems that the assembler will not
access without entering the special syntax shown in Table 11.3 to override the assembler’s assumptions.

The Western Design Center

157

Syntax Description
8-bit operand (less than $100):

Normal direct page addressing:
LDA $32 load accum from: bank zero: direct page: $32

Force absolute addressing: zero page in data bank:
LDA !$32 load accum from: data bank: $0032

Force long addressing: zero page in bank zero:
LDA >$32 load accum from: $00:0032

16-bit operand (from $100 through $FFFF):

Normal absolute addressing:
LDA $7512 load accum from: data bank: $7512

Force direct page addressing:
LDA <47512 load accum from: bank zero: direct page: $12

Force long addressing:
LDA >$7512 load accum from: $00:7512

24-bit operand (over $FFFF):

Normal long addressing:
LDA $123456 load accum from: $12:3456

Force absolute addressing:
LDA !$123456 load accum from: data bank: $3456

Force direct page addressing:
LDA <$123456 load accum from: bank zero: direct page: $56

Table 11-3 Assembler Syntax for Complete Memory Access

The first is zero page memory. Page zero has no special meaning in the 65802 and 65816: its special
attributes have been usurped by the direct page, so accessing it requires use of absolute addressing just like any
other absolute location. But the assembler assumes addresses less than $100 are direct page offsets, not zero
page addresses; it will not generate code to access the zero page (unless the direct page is set to the zero page so
that the two are one and the same) without explicit direction. And even if the direct page is set to the zero page,
65816 systems have a zero page not only in bank zero but also in every other bank, and those other page zeroes
cannot ever be accessed by absolute addressing without special direction.

The syntax to force the assembler to use absolute addressing is to precede an operand with a vertical bar
or exclamation point as shown in Fragment 11.6.

The Western Design Center

158

0000 C220 REP #$20 set accumulator/memory to sixteen
0002 LONGA ON
0002 A90032 LDA #$3200 get new direct page location
0005 5B TCD and set up direct page at $3200
0006 E210 SEP #$10 set index registers to eight-bit
0008 LONGI OFF
0008 A202 LDX #2 set new data location to bank 2
000A DA PHX push 2 on stack
000B AB PLB and pull it off into data bank
000C A532 LDA $32 load accumulator from dp:$32 in bank 0
000E 8D3200 STA !$32 store accum at $02:0032 (data bank)
0011 8F320000 STA >$32 store accum at $00:0032 (long address)

Fragment 11.6

Notice the use of another symbol, the greater-than sign (>), to force long addressing. This solves
another problem: The assembler assumes absolute addresses are in the data bank; if the value in the data bank is
other than zero, then it similarly will not generate code to access bank zero without special direction. The
greater-than sign forces the assembler to use a long addressing mode, concatenating zero high bits onto the
operand until it’s 24 bits in length. This usage is shown in Fragment 11.7, where the greater-than sign forces
absolute long addressing, resulting in the assembler generating an opcode using absolute long addressing to
store the accumulator, followed by the three absolute long address bytes for $00:0127, which are, in 65x order,
$27, then $01, then $00.

The ASL instruction in Fragment 11.7 makes use of the third assembler override syntax: prefixing an
operand with the less-than sign (<) forces direct page addressing. It’s not likely you’ll use this last syntax often,
but it may come in handy when you’ve assigned a label to a value that you need the assembler to truncate to its
low-order eight bits so it will be used as a direct page offset.

Note that this override syntax is the recommended standard syntax. As Chapter 1 (Basic Concepts)
points out, even mnemonics can vary from one assembler to another, so assembler syntax such as this can differ
as well.

0000 E210 SEP #$10 use 8 bit index registers
0002 LONGI OFF
0002
0002 A202 LDX #2 get new data bank value
0004 DA PHX push it on stack
0005 AB PLB pull into data bank
0006 AD2701 LDA $127 from B:$0127 ($02:0127)
0009 8F270100 STA >$127 store at $00:0127
000D 0627 ASL <$127 shift word at dp:$27

Fragment 11.7

Direct Page Indirect Indexed With Y Addressing

Direct page indirect indexed addressing or postindexing, which uses the Y register, is one of two
ways indirect addressing can be combined with indexing (the other will be described in the next section). In
postindexing, the processor goes to the location the direct page operand specifies and adds the index to the
indirect address found there.

Like direct page addressing, which was discussed in Chapter 7 (The Simple Addressing Modes),
postindexing gives you the freedom to access a memory location which is not determined until the program is
executing. As you also learned from Chapter 7, direct page indirect lets your program store the absolute address
of a data bank location you want to access (this address is called the indirect address) into any two consecutive
bytes in the direct page. This makes those two bytes perform as though they are an extra sixteen-bit register in
the microprocessor itself. Further, it leaves the processor’s registers unobstructed, and it allows data at the
location stored in the direct page “register” to be accessed at any time.

The Western Design Center

159

Postindexing differs in that the absolute address you store into the direct page “register” is not one
location but the base of an array; you can then access a particular byte in the array by loading its array index
into the Y register and specifying, as your operand, the direct page “register” (the location of the indirect base of
the array). As Figure 11.1 shows, the processor goes to the direct page offset, gets the absolute memory
location stored there, than adds the contents of the Y register to get the absolute memory location it will access.
The direct page offset, being in the direct page, is in bank zero on the 65816; the array, on the other hand, is in
the data bank.

Effective Address:
23 15 7 0

Bank High Low
65816 Registers
 Bank High Low
23 15 7 0
Data Bank (DBR)

Instruction:
Opcode Operand

+1 +
+

High Indirect Address
Low Indirect Address

Bank 0
Y Index Register (Y)

x = 1
x = 0

Direct Page Register (D)

Figure 11-1 Postindexing

This addressing mode is called postindexing because the Y index register is added after the indirect
address is retrieved from the direct page.

For example, suppose that your program needs to write a dash (hyphen) character to a location on the
AppleII’s 40-column screen that will be determined while the program is running. Further suppose your
program picks a screen location at column nine on line seven. The AppleII has a firmware routine (called
BASCALC) which, when presented with the number of a line on the screen, calculates the address of the
leftmost position in the line and returns it in zero page location BASL, located at memory locations $0028 and
$00029.

If you wanted to write your hyphen to the first position on the line, you could, after calling BASCALC
and loading the character to print into the accumulator, use the 65C02’s indirect addressing mode:

9228 STA (BASL)

The 6502 has no simple indirect addressing mode, but Fragment 11.8 illustrates what 6502
programmers long ago learned: you can use postindexing to the same effect as simple indirect by loading the Y
register with zero.

The Western Design Center

160

0000 BASL EQU $28
0000 A92D LDA #’-‘ write a dash
0002 A000 LDY #0
0004 9128 STA (BASL),Y to (BASL)
0006 .
0006 .
0006 .

Fragment 11.8

But you want to write the hyphen character to column nine (the leftmost position being column zero),
not column zero. After calling BASCALC, you load the Y register with nine and write your character indirect
through BASL indexed by the nine in Y as seen in Fragment 11.9. If BASCALC calculates line seven on the
screen to start at location $780, and as a result stores that address at BASL, then the routine in Fragment 11.9
will write a dash to location $789 (column nine on line seven).

0000 A92D LDA #’-‘ write a dash
0002 A009 LDY #9 to col 9
0004 9128 STA (BASL),Y on the line with its base i

Fragment 11.9

You could write a line of dashes from column nine through column sixteen simply by creating the loop
coded in Listing 11.1. This kind of routine has been used for years on the 6502-based AppleII .

0001 0000 KEEP KL.11.1
0002 0000 65816 OFF
0003 0000 ; 6502 example
0004 0000
0005 0000 L111 START
0006 0000
0007 0000 BASL GEQU $28
0008 0000 LINE7 GEQU $780
0009 0000
0010 0000 A980 LDA #LINE7
0011 0002 8528 STA BASL
0012 0004 A907 LDA #>LINE7
0013 0006 8529 STA BASL+1
0014 0008 A92D LDA #’-‘ write a dash
0015 000A A009 LDY #9 to col 9
0016 000C 9128 LOOP STA (BASL),Y on the line with its base in BASL
0017 000E C8 INY incr pointer to next column position
0018 000F C011 CPY #17
0019 0011 90F9 BCC LOOP (BLT): write another dash up to col. 17
0020 0013 60 RTS
0021 0014
0022 0014 END

Listing 11.1

Finally, note that, like absolute indexed addressing, the array of memory accessible to the indirect
indexed addressing mode can extend beyond the current 64K data bank into the next 64K bank, if the index plus
the array base exceeds $FFFF.

The Western Design Center

161

Direct Page Indexing Indirect Addressing

As the introduction to the last section pointed out, you can combine indexing with indirection in two
ways. Postindexing, discussed in the last section, is one. The other is called direct page indexed indirect
addressing or preindexing and uses the X register. It adds the index to the operand (a direct page base) to
form a direct page offset at which the indirect address (the address of the data to be accessed) is located.

In effect, preindexing lets you index into a double-byte array of absolute memory addresses based in the
direct page to choose the memory location to access; the array begins at the direct page offset specified by the
operand.

Since the array base is a direct page location, adding the direct page register value yields the absolute
location in bank zero. The processor then adds the value in the X register, which is the index into the array of
memory locations. Now the processor finally has an address that holds the memory location you want to
access; it now gets the location and accesses the data at that location. This is shown in Figure 11.2. Since
indexing is done in order to find the indirect address, this addressing mode is also called preindexing.

You’ll find preindexing useful for writing routines which need to access data in a number of different
locations in exactly the same way. For example, a tic-tac-toe game drawn on the screen has nine boxes to
which an ‘O’ or an ‘X’ might be written. The tic-tac-toe program might keep internal arrays of information
about the content of each of the nine boxes, as well as arrays of data for working its win-seeking algorithms,
using indexes from 0 to 8 to represent the locations.

When it comes time for the program to write an ‘X’ to a chosen square, you could, of course, write nine
nearly identical routines which differ only in the address to which the ‘X’ will be written; you would also have
to write a tenth routine to select which one of the routines needs to be called, based on the value of the box
index (from zero to eight).

When it comes time for the program to write an ‘X’ to a chosen square, you could, of course, write nine
nearly identical routines which differ only in the address to which the ‘X’ will be written; you would also have
to write a tenth routine to select which one of the routines needs to be called, based on the value of the box
index (from zero to eight).

A faster and less wasteful method of writing the ‘X’ would be to use pre-indexing. In the section of
code which initially draws the tic-tac-toe grid, you would determine the nine addresses where characters are to
be direct page offset $50; this puts the 0 location at $50 and $51 (stored, in 65x fashion, low byte in $50 and
high byte in $51), the 1 location at $52 and 53, and so on. The nine addresses use 18 bytes of memory.

When an ‘X’ is to be stored to one of the nine screen locations, only one routine is necessary: you
multiply the box number by two (using the ASL instruction). Remember that each indirect address takes up two
bytes in the direct page array. Transfer it to the X register. Then load an ‘X’ character into the accumulator and
write it to the box on the screen using preindexing as Fragment 11.10 shows.

0000 AD0080 WRITEX LDA BOXNUMBER get which box to write an ‘X’ to
0003 0A ASL A multiply by two to get index
0004 AA TAX and transfer index to X register
0005 A958 LDA #’X’ write ’X’ character
0007 8150 STA ($50,X) to scrn location at (dp:$50, index reg)

Fragment 11.10

The Western Design Center

162

Effective Address:

23 15 7 0

Bank High Low

Instruction

Opcode Operand

65816 Registers:

23
Bank

15
High

7
Low

0

Data Bank (DBR)

X Index Register (X)
x=1
x=0 +1

High Indirect Address

0000 0000 Direct Page Register (D) + High Indirect Address

 +
Bank 0

Figure 11-2 Preindexing

The Western Design Center

163

Notice the differing syntax: postindexing looked like this:

9128 STA (BASL),Y

In postindexed, the operand locates the direct address, so it’s in parentheses to indicate indirection. The, “Y” is
not in parentheses, since the index register is not part of finding the indirect address – it’s added to the indirect
address once it is found.

On the other hand, with preindexing:

8150 STA ($50,X)

both the operand and the index register are involved in locating the indirect address, so both are in parentheses.
A very different application for preindexing enables the 65x to read from (or write to) several I/O

peripherals “at once.” Obviously, a microprocessor can only read from one device at a time, so it polls each
device: provided each device uses the same I/O controller chip (so that a single routine can check the status of
all devices and read a character from each of them identically), your program can poll the various status
locations using pre-indexing. Begin by storing an array of all the status locations in the direct page. Specify the
base of the array as the operand to preindexed instruction. Load the X index with 0 and increment it by two
until you’ve checked the last device. Finally, restore it to zero and cycle through again and again.

If a status check reveals a character waiting to be read, your program can branch to code that actually
reads the character from the device. This time, you’ll use preindexing to access a second direct page array of
the character-reading addresses for each device; the index in the X register from the status-checking routine
provides the index into the character-reading routine.

On the 6502, the 65C02, and the 6502 emulation modes, the entire array set up for preindexing must be
in the direct page. (On the 6502 and 65C02, this means the array must be entirely in the zero page which,
unfortunately, severely limits the use of preindexing due to the competition for zero page locations.) If the
specified direct page offset plus the index in the X exceeds $FF, the array wraps around within the direct page
rather than extending beyond it. That is,

A21A LDX #$1A

followed by

A1F0 LDA ($FO,X)

would load the accumulator from the indirect address in location $0A not $10A.
On the 65802 and 65816 (in native mode), the array must still start in the direct page but wraps,

not at the end of the direct page but at the end of bank zero, when the array base plus the D direct page
setting plus the X index exceeds $00:FFFF.

On the 65816, the data that is ultimately accessed (after the indirection) is always in the data
bank.

Absolute Indexed Indirect Addressing

The 65C02 introduced a new addressing mode, absolute indexed indirect addressing, which is quite
similar to direct page indexed indirect. (It is also preindexed using the X index register, but indexes into
absolute addressed memory rather than the direct page to find the indirect address.) This new addressing mode
is used only by the jump instruction and, on the 65802 and 65816, the jump-to-subroutine instruction.

Absolute indexed indirect provides a method for your program, not to access data in scattered locations
by putting the locations of the data into a table and indexing into it, but to jump to routines at various locations
by putting those locations into a table, indexing into it, and jumping to the location stored in the stored in the
table at the index. Figure 11.3 shows what happens.

The Western Design Center

164

A menu-driven program, for example, could ask users to respond to a prompt by pressing a number key
from ‘0’ through ‘7’. Your program would convert the key’s value to an index by subtracting the ASCII value
of ‘0’ and doubling the result (to reflect the fact that each table entry is an address and thus takes two bytes in
the table) (Fragment 11.11). It would then jump indexed indirect to a routine appropriate to the menu choice.

0000 ; get menu choice into accumulator
0000
0000 38 SEC set carry before subtract
0001 E93000 SBC #’0’ convert’0’-‘7’ to 0-7
0004 0A ASL A times 2 = index
0005 AA TAX transfer index to X
0006 7C0900 JMP (TABLE,X) jump to address TABLE + X
0009
0009 0080 TABLE DC A’ROUTIN0’ routine for reason ‘0’
000B 0080 DC A’ROUTIN1’ menu response ‘1’
000D 0080 DC A’ROUTIN2’ menu response ‘2’
000F 0080 DC A’ROUTIN3’ menu response ‘3’
0011 0080 DC A’ROUTIN4’ menu response ‘4’
0013 0080 DC A’ROUTIN5’ menu response ‘5’
0015 0080 DC A’ROUTIN6’ menu response ‘6’
0017 0080 DC A’ROUTIN7’ menu response ‘7’

Fragment 11.11

The Western Design Center

165

Effective Address: New Program Counter Value

23 15 7 0

Bank High Low

Instruction:
Opcode Operand Low Operand High

65816 Registers:
Bank High Low

23 15 7 0
High Indirect Address

X Index Register (X) x
+1

x = 1
Low Indirect Address

x = 0

Program Bank
Program Bank (PBR)

Figure 11-3 Absolute Indexed Indirect

Because both the operand (the absolute address of the base of the table) and the index register are involved in
determining the indirect address, both are within the parentheses.

On the 65816, a jump-indirect operand is in bank zero, but a jump-indexed-indirect operand is in the
program bank. There is a different assumption for each mode. Jump indirect assumes that the indirect address
to be jumped to was stored by the program in a variable memory cell; such variables are generally in bank zero.
Jump indexed indirect, on the other hand, assumes that a table of locations of routines would be part of the
program itself and would be loaded, right along with the routines, into the bank holding the program. So,

6C3412 JMP ($1234) jump to address stored at $00:1234.1235

assumes $1234 is in a double-byte cell in bank zero. But

7C3412 JMP (1234,X) jump to address stored at pb:$1234,X

assumes $1234 is in the program bank, the bank in which the code currently being executed resides.
The indirect addresses stored in the table are absolute addresses also assumed to be in the current

program bank.

Direct Page Indirect Long Indexed with Y Addressing

The 65816 can access sixteen megabytes of memory, yet lets you access most data (data located in the
current data bank) with just two bytes. Nevertheless, there are times when data must be accessed in a bank
other than the current data bank when it would be inconvenient to change the data bank, then change it back.
As Chapter 7 pointed out, this problem is solved by the “long” addressing modes, which allow three bytes (the
bank in addition to the address within the bank) to specify a full 24-bit address. This solution lets you access
the 65816’s full sixteen-megabyte address space. Probably the most useful way to reference data outside of the
current data bank is via the direct page indirect long indexed with Y, or postindexed long, addressing mode.
This is the long version of direct page indirect indexed addressing, discussed earlier in this chapter.

Instructions are two bytes in length, as shown in Fragment 11.4: The opcode is followed by a single
byte, which is a direct page offset in bank zero. The indirect address stored in the direct page (to which the
operand points) is, in the long version, three bytes (a full 24-bit address); the byte at the direct page offset is the
low byte of the 24-bit address, the byte in the next direct page location the middle byte of the 24-bit address,

The Western Design Center

166

and the byte in the third location the bank byte of the 24-bit address. The contents of the Y index register are
added to this 24-bit address to form the 24-bit effective address at which data will be accessed.

The syntax for postindexed long is:

B715 LDA [$15],Y

The square brackets are used to indicate the indirect address is long.
So, like its sixteen-bit counterpart, indirect long indexed addressing allows you to index into an array of

which neither the base nor the index need be determined until the program is executing. Unlike its sixteen-bit
counterpart, it allows you to access an array in any bank, not just the current data bank.

Stack Relative Addressing

Possibly the most exciting new addressing method introduced by the 65802 and 65816 is stack relative.
This is the first 65x method for directly accessing a stack byte other than the last data item pushed.

Stack relative addressing lets you easily access any byte or address in the last $FF bytes stacked.
Instructions using stack relative addressing are two bytes long, the operand a single byte that is an index into the
stack. As Figure 11.5 shows, the stack is treated as an array with its base the address in the stack pointer. The
operand is added to the stack pointer value to form the bank zero effective address which will be accessed.

This can be especially useful when one part of a program needs to send data to another part of the
program, such as a multiply routine. The two sixteen-bit values to be multiplied are pushed onto the stack in
one part of the program. Later, the multiply routine loads one of the operands using stack relative addressing,
leaving both the other operand and the stack pointer undisturbed:

A303 LDA 3,S load first operand

or

A301 LDA 3,S load second operand

Notice that accessing the last data put on the stack requires an index of 1, not of 0. This is because the
stack pointer always points to the next available location, which is one byte below the last byte pushed onto the
stack. An index of zero would generally be meaningless, except perhaps to re-read the last byte pulled off the
stack! (The latter would also be extremely dangerous since, should an interrupt occur, the left-behind byte
would be overwritten by interrupt-stacked bytes.)

The Western Design Center

167

Effective Address:
23 15 7 0

Bank High Low

Instruction:
Opcode Operand

Bank Indirect Address
65816 Registers: High Indirect Address

Bank High Low

+2

+1 Low Indirect Address

23 15 7 0
+

Bank 0
 +

Y Index Register (Y)
x = 1
x = 0

0000 0000 Direct
Page Register
(D)

Figure 11-4 Postindexed Long

The Western Design Center

168

Effective Address:
23 15 7 0

Bank High Low

Instruction: 00000000
Opcode Operand

65816 Registers:
Bank High Low

23 15 7 0
0000 0000 Stack Pointers (S) +

Figure 11-5 Stack Relative

Stack Relative Indirect Indexed Addressing

While the stack relative addressing mode serves to access data on the stack, the stack relative indirect
indexed addressing mode lets you access data indirectly through addresses that have been pushed onto the
stack.

Change the previous example: Instead of stacking the two sixteen-bit values to be multiplied, the values
are found in memory cells in the data bank, one after the other (occupying four consecutive bytes), and it’s the
address of the first that is pushed onto the stack. Now, Fragment 11.12 shows, either value can be loaded using
the stack indirect address:

0000 A00000 LDY #0
0003 B301 LDA (1,S),Y load first 16-bit multiply operand
0005 AA TAX save first value
0006 A00200 LDY #2
0009 B301 LDA (1,S),Y load second 16-bit multiply operand

Fragment 11.12

The 1,S is the stack location where the indirect address was pushed. (Actually, 1,S points to the stack
location of the low byte of the indirect address; the high byte is in 2,S, the next higher stack location.) To this
indirect address, the value in the Y is added: the indirect address plus 0 locates the first value to be multiplied;
the indirect address plus 2 locates the second. Finally the accumulator is loaded from this indirect indexed
address. Figure 11.6 illustrates the sequence.

This mode, very similar to direct page indirect indexing (also called postindexing), might be called
“stack postindexing.” The operand which indexes into the stack is very similar to a direct page address; both are
limited to eight bits and both are added to a sixteen-bit base register (D or S). In both cases, the indirect address
points to a cell or an array in the data bank. In both cases, Y must be the index register. And in both cases in
the 65816, the postindexed indirect address about to be accessed may extend out of the data bank and into the
next bank if index plus address exceeds $FFFF; that is, if the indirect address is the base of an array, the array
can extend into the next bank.

The Western Design Center

169

Push Effective Instructions

Effective Address:
23 15 7 0

Bank High Low

Instruction:
Opcode Operand

65816 Registers:
Bank High Low

23 15 7 0
Data Bank (DBR)

Stack
High Indirect Address

+1
Low Indirect Address +

Y Index Register (Y)
+

Bank 0
x = 1
x = 0

0000 0000 Stack Pointer (S)

Figure 11-6 Stack Relative Indirect Indexed

As Figure 11.7 shows, the PEA(push effective absolute address) instruction
pushes the operand, a The 65802 and the 65816 provide three instructions which push, not registers, but
absolute, indirect, and relative addresses straight onto the stack. These three instructions are PEA, PEI, and
PER, the push effective address instructions. Addresses so pushed might be accessed, for example, using the
stack relative indirect indexed addressing mode just discussed. Chapter 6, which introduced the push
instructions in the context of data movement, deferred discussion of these three instructions to this chapter.
Except for the block move instructions, these are the only instructions that move data directly from one memory
location to another.
16-bit absolute address or immediate data word, onto the stack. For example,

F43421 PEA $2134 push $2134 onto the stack

pushes what may be either sixteen-bit immediate data or a sixteen-bit address onto the stack. The operand
pushed by the PEA instruction is always 16 bits regardless of the settings of the m memory/accumulator and x
index mode select flags.

The PEI (push effective indirect address) instruction has, as an operand, a direct page location: it’s the
sixteen-bit value stored at the location that is pushed onto the stack. Figure 11.8 shows that this has the effect of
pushing either an indirect address or sixteen bits of direct page data onto the stack. For example, if you had
stored the value or indirect address $5678 at direct page location $21, then

D421 PEI ($21) push two bytes at dp:$21 and dp:$22

The Western Design Center

170

would get the $5678 from direct page location and push it onto the stack. Like the PEA instruction, the PEI
instruction always pushes sixteen bits regardless of the settings of the m memory/accumulator and x index node
select flags.

The PER (push effective relative) instruction pushes an effective program counter relative address onto
the stack, a capability helpful in writing relocatable code. The operand you specify to the assembler is a
location in the program, for example, of a data area; the operand the assembler generates is a sixteen-bit relative
displacement, the difference between the nest instruction’s address and the operand address. Figure 11.9 shows
that when the instruction is executed, the displacement is added to the next instruction’s run-time address to
form the address at which the data is now located it is this address which is pushed onto the stack. If the data
location precedes the PER instruction, the assembler generates a very large sixteen-bit displacement which,
when added to the program counter value, will wrap around within the program bank to reach the data.

The operation of the PER instruction is similar to the operation of the BRL (branch long) instruction:
the branch long operand you specify to the assembler is also a

Instruction:
Data Low = Data High =

Opcode
Operand Low Operand High

Stack
Stack Pointer (S)

before
Data High
Data Low

after

Bank 0

Figure 11-7 PEA Addressing

The Western Design Center

171

Effective Address:
23 15 7 0

Bank High Low

0000 0000

Instruction:
Opcode Operand

65816 Registers:
Bank High Low

23 15 7 0 +

0000 0000 Direct Page Register (D)

Source
Effective Address + 1

High Indirect Address
Low Indirect AddressSource

Effective Address Bank 0

Stack
before

High Indirect Address
Stack Pointer (S) Low Indirect Address

after

Bank 0

Figure 11-8 PEI Addressing

The Western Design Center

172

Instruction:
Opcode Operand Low Operand High

+ Data

Register:
15 7 0

Program Counter (PC)

Stack
before

Data High
Stack Pointer (S) Data Low

Data
after

Bank 0

Figure 11-9. PER Addressing

location in the program; the operand the assembler generates is also a sixteen-bit displacement; and
when the instruction is executed, the displacement is added to the next instruction’s run-time address
to form the address to which the program will branch.

To understand the use of the PER instruction, together with the relative branches, in writing a
program that will run at any address, suppose that your relocatable program is assembled starting at
location $2000. There’s a data area starting at location $2500 called DATA0. A section of program
code at $2200 needs to access a byte three bytes past, called DATA1. A simple LDA $2503 would
work, but only if the program were intended to always begin at location $2000. If it’s meant to be
relocatable, you might load the program at $3000, in which case the data is at $3503 and a LDA $2503
loads the accumulator with random information from what is now a non-program address. Using the
instruction

62E17F PER DATA3 push address of DATA3 relative to PC

in your source program causes the assembler to calculate the offset from $2203 (from the instruction
following the PER instruction at $2200) to DATA1 at $2503, an offset of $300. So the assembler
generates object code of a PER opcode followed by $300. Now if the code is loaded at $3000,
execution of the PER instruction causes the processor to calculate and stack the current absolute
address of DATA1 by adding the operand, $300, to the current program counter location; the result is
$3503, so it’s $3503 that’s stacked. Once on the stack, provided the program and data banks are the
same, the data can be accessed using stack relative indirect indexed addressing. Fragment 11.13
contains the example code.

Once the address of DATA1 is on the stack, the values at DATA2 and DATA3 can be
accessed as well simply by using values of one and two, respectively, in the Y index register.

The Western Design Center

173

0000 ORG $2200
0000 ACCESS START
0000
0000 62FD7F PER DATA1 push run-time address of DATA1 onto stack
0003 E220 SEP #$20 set accum to 8-bit mode
0005 A00000 LDY #0 zero index: DATA1 is cell, not array
0008 B301 LDA (1,S),Y load accum from DATA1 in data ban
000A ; (address of DATA1 @ 1,S & 2,S)
000A .
000A .
000A .
000A
000A END

0000
0000 ORG $2500
0000 DATA0 START
0000 2A2A2A DC C’***’
0003 FF DATA1 DC H’FF’
0004 F7 DATA2 DC H’F7’
0005 E3 DATA3 DC H’E3’
0006
0006 END

Fragment 11.13

The Western Design Center

174

12) Chapter Twelve
The Basic Building Block:

The Subroutine

The feature essential to any processor to support efficient, compact code, as well as modular or top-
down programming methods, is a means of defining a subroutine. A subroutine is a block of code that can be
entered (called) repeatedly from various parts of a main program, and that can automatically return control to
the instruction following the calling instruction, wherever it may be. The 65x jump-to-subroutine instruction
provides just such a capability.

When a jump-to-subroutine, or JSR, instruction is encountered, the processor first pushes its current
location onto the stack for purposes of returning, then jumps to the beginning of the subroutine code. At the end
of the subroutine code, a return-from-subroutine (RTS) instruction tells the processor to return from the
subroutine to the instruction after the subroutine call, which it locates by pulling the previously saved return
location from the stack.

Because subroutines let you write a recurring section of program code just once and call it from each
place that it’s needed, they are the basis of top-down, structured programming. Common subroutines are often
collected together by programmers to form a library, from which they can be selected and reused as needed.

Chapter 8, Flow of Control, introduced the 65x jump instructions – those flow-of-control instructions
which do not use the stack for return purposes. But discussion of the jump-to-subroutine instructions was put
off to this chapter.

Table 12.1 lists the instructions to be explained in this chapter. In addition, this chapter will use the
simple example of a negation routine to illustrate how library routines (and routines in general) are written and
documented, and it examines the question of when to code a subroutine and when to use in-line code. Finally,
methods of passing information (or parameters) to and from subroutines are compared and illustrated.

Available on:
Mnemonic 6502 65C02 65802/816 Description
65x Subroutine Instructions:

JSR x x x jump to subroutine
RTS x x x return from subroutine
JSL x long jump to subroutine
RTL x long return from subroutine

Table 12-1 Subroutine Instructions

The Western Design Center

175

The Jump-To-Subroutine Instruction

There is just one addressing mode available to the JSR instruction on the 6502 and 65C02 – absolute
addressing. This mode lets you code a subroutine call to a known location. When used on the 65816, that
location must be within the current program bank. It uses the absolute addressing syntax introduced earlier:

200020 JSR $2000 jump to subroutine located at pb:$2000

or

200080 JSR SUBR1 jump to subroutine SUBR1 in program bank

In the second case, the assembler determines the address of subroutine SUBR1.
The processor, upon encountering a jump-to-subroutine instruction, first saves a return address. The

address saved is the address of the last byte of the JSR instruction (the address of the last byte of the operand),
not the address of the next instruction as is the case with some other processors. The address is pushed onto the
stack in standard 65x order – the low byte in the lower address, the high byte in the higher address – and done in
standard 65x fashion – the first byte is stored at the location pointed to by the stack pointer, the stack pointer is
decremented, the second byte is stored, and the stack pointer is decremented again. Once the return address has
been saved onto the stack, the processor loads the program counter with the operand value, thus jumping to the
operand location, as shown in Figure 12.1. Jumping to a subroutine has no effect on the status register flags.

The Return-from-Subroutine Instruction

At the end of each subroutine you write, the one-byte RTS, or return-from-subroutine, instruction
must be coded. When the return-from-subroutine instruction is executed, the processor pulls the stored address
from the stack, incrementing the stack

The Western Design Center

176

Effective Address: New Program Counter Value
23 15 7 0

Bank High Low

Instruction:
Opcode Operand Low Operand High

65816 Registers:
23 Bank 15 High 7 Low 0
Program Bank (PBR)

Program Counter (PC) Stack before

Address of last JSR Return Address High
instruction byte Return Address Low Stack Pointer

 after

Bank 0

Figure 12-1 JSR

pointer by one before retrieving each of the two bytes to which it points. But the return address that was stored
on the stack was the address of the third byte of the JSR instruction. When the processor pulls the return
address off the stack, it automatically increments the address by one so that it points to the instruction following
the JSR instruction which should be executed when the subroutine is done. The processor loads this
incremented return address into the program counter and continues execution from the instruction following the
original JSR instruction, as Figure 12.2 shows.

The processor assumes that the two bytes at the top of the stack are a return address stored by a JSR
instruction and that these bytes got there as the result of a previous LSR. But as a result, if the subroutine used
the stack and left it pointing to data other than the return address, the RTS instruction will pull two irrelevant
data bytes as the address to return to. Cleaning up the stack after using it within a subroutine is therefore
imperative.

The useful side of the processor’s inability to discern whether the address at the top of the stack was
pushed there by a JSR instruction is that you can write a reentrant indirect jump using the RTS instruction.
First formulate the address to be jumped to, then decrement it by one (or better, start with an already-
decremented address), push it onto the stack (pushing first high byte, then low byte, so that it is in correct 65x
order on the stack) and, finally, code an RTS instruction. The return-from-subroutine pulls the address back off
the stack, increments it, and loads the result into the program counter to cause a jump to the location, as
Fragment 12.1 illustrates.

0000 ; 16-bit accumulator holds address of code to jump to
0000 3A DEC A DEST – 1: address of byte before target
0001 48 PHA push it; now address is stacked as tho JSR
0002 60 RTS pull address; increment it; transfer control

Fragment 12.1

Reentrancy is the ability of a section of code to be interrupted, then executed by the interrupting
routine, and still execute properly both for the interrupting routine and for the original routine when control is
returned to it. The interruption may be a result of a hardware interrupt (as described in the next chapter), or the

The Western Design Center

177

result of the routine calling itself, in which case the routine is said to be recursive. The keys to reentrancy are,
first, to be sure you save all important registers before reentering and, second to use no fixed memory locations
in the reentrant code. (There will be more on interrupts and reentrancy in the next chapters.)

Stack
 after PC High

PC Low
 +1

 before

Bank 0

Figure 12-2 RTS

The indirect jump using RTS qualifies for reentrancy: While normally you would code an indirect jump
by forming the address to jump to and storing it to an absolute address, then jumping indirect through the
address, this jump by use of RTS uses only registers and stack.

A subroutine can have more than one RTS instruction. It’s common for subroutine from internal loops
upon certain error conditions, in addition to returning normally from one or more locations. Some structured
programming purists would object to this practice, but the efficiency of having multiple exit points is
unquestionable.

Returning from a subroutine does not affect the status flags.

JRS Using Absolute Indexed Indirect Addressing

The 65802/65816 gives JSR another addressing mode – absolute indexed indirect (covered in the last
chapter) which lets your program select, on the basis of the index in the register, a subroutine location from a
table of such locations and call it:

FC0080 JSR (TABLE,X) JSR to indirect address in (TABLE at X)

The array Table must be located in the program bank. The addressing mode assumes that a table of locations of
routines would be part of the program itself and would be loaded, right along with the routines, into the bank
holding the program. The indirect address (the address with which the program counter will be loaded), a
sixteen-bit value, is concatenated with the program bank register, resulting in a transfer within the current
program bank. If the addition of X causes a result greater than $FFFF, the effective address will wrap,
remaining in the current program bank, unlike the indexing across banks that occurs for data accesses.

This addressing mode also lets you do an indirect jump-to-subroutine through a single double-byte cell
by first loading the X register with zero. You must remember in coding this use for the 65816, however, that
the cell holding the indirect address is in the program bank, not bank zero as with absolute indirect jumps.

The indexed indirect jump-to-subroutine is executed in virtually the same manner as the absolute jump-
to-subroutine: the processor pushes the address of the final byte of the instruction onto the stack as a return
address; then the address in the double-byte cell pointed to by the sum of the operand and the X index register is
loaded into the program counter.

There is no difference between returning from a subroutine called by this instruction and returning from
a subroutine called by an absolute JSR. You code an RTS instruction which, when executed, causes the
address on the top of the stack to be pulled and incremented to point to the instruction following the JSR, then
to be loaded into the program counter to give control to that instruction.

Program Counter (PC)
 Stack Pointer (S)

The Western Design Center

178

The Long Jump to Subroutine

A third jump-to-subroutine addressing mode is provided for programming in the 16-megabyte address
space of the 65816 – absolute long addressing. Jump-to-subroutine absolute long is a four-byte instruction, the
operand a 24-bit address in standard 65x order (the low byte of the 24-bit address is in the lowest memory
location immediately following the opcode and the high byte is next, followed by the bank byte):

22563412 JSR $123456 jump to subroutine at $3456 in bank $12

This time a three-byte (long) return address is pushed onto the stack. Again it is not the address of the
next instruction but rather the address of the last byte of the JSR instruction which pushed onto the stack (the
address of the fourth byte the JSR instruction in this case). As Figure 12.3 shows, the address is pushed onto
the stack in standard 65x order: low byte in the lower address, high byte in the higher address, bank byte in the
highest address (which also means the bank byte is the first of the three pushed, the low byte last).

Jumping long to a bank zero subroutine requires the greater-than (>) sign, as explained in the last
chapter:

22563400 JSR >$3456 long jump to subroutine at $3456 in bank 0

The greater-than sign forces long addressing to bank zero, voiding the assembler’s normal assumption to use
absolute addressing to jump to a subroutine at $3456 in the current program bank.

To avoid this confusion altogether, there is an equivalent standard mnemonic for jump-to-subroutine
long – JSL:

22563400 JSL $3456 long jump to subroutine at $3456 in bank 0

or

22563402 JSL $023456 long jump to subroutine at $3456 in bank 2

Using an alternate mnemonic is particularly appropriate for jump-to-subroutine long, since this
instruction requires you to use an entirely different return-from-subroutine instruction – RTL, or return-from-
subroutine long.

Stack
Return Address Bank

before

Return Address High Stack Pointer (S)
Return Address

(last JSR instruction byte) Return Address Low
after

Bank 0

Figure 12-3 JSL

Return from Subroutine Long

The return from subroutine instruction pops two bytes off the stack as an absolute address, increments
it, and jumps there. But the jump to subroutine long instruction pushes a three-byte address onto the stack – a
long return address that points to the original code, and is typically in a bank different from the subroutine bank.

So the 65816 provides a return from subroutine long instruction, RTL. This return instruction first
pulls, increments, and loads the program counter, just as RTS does; then it pulls and loads a third byte, the
program bank register, to jump long to the return address. This is illustrated in Figure 12.4.

The Western Design Center

179

Branch to Subroutine

One of the glaring deficiencies of the 6502 was its lack of support for writing relocatable code;
the 65802 and 65816 address this deficiency, but still lack the branch-to-subroutine instruction some
other processors provide. There is no instruction that lets you call a subroutine with an operand that is
program counter relative, not an absolute address. Yet, to write relocatable code easily, a BSR
instruction is required: suppose a relocatable program assembled at $0 has an often-called multiply
subroutine at $07FE; if the program is later loaded at $7000, that subroutine is at $77FE; obviously, a
JSR to $07FE will fail.

Stackafter
Program Bank (PBR) Program Bank (PBR)

Stack Pointer (S) PC High
PC Low +1 Program Counter (PC)

before

Bank 0

Figure 12-4 RTL

The 65802 and 65816 can synthesize the BSR function using their PER instruction. You use PER to
compute and push the current run-time return address; since its operand is the return address’ relative offset
(from the current address of the PER instruction), PER provides relocatability. As Fragment 12.2 shows, once
the correct return address is on the stack, a BRA or BRL completes the synthesized BSR operation.

0000 .
0000 .
0000
0000 62FC7F PER RETURN-1 push run-time return address
0003 82FA7F BRL SUBR1 intra-bank relative branch is BSR
0006 RETURN . continue processing here
0006 .
0006 .
0006
0006
0006 SUBR1 .
0006 . execute subroutine function
0006 .
0006 .
0006 60 RTS return from subroutine

Fragment 12.2

In this case, you specify as the assembler operand the symbolic location of the routine you want to
return to minus one. Remember that the return address on the stack is pulled, then incremented, before control
is passed to it. The assembler transforms the source code operand, RETURN – 1, into the instruction’s object
code operand, a relative displacement from the next instruction to RETURN – 1. In this case, the displacement
is $0002, the difference between the first byte of the BRL instruction and its last byte. (Remember, PER works
the same as the BRL instruction; in both cases, the assembler turns the location you specify into a relative
displacement from the program counter.) When the instruction is executed, the processor adds the displacement
($0002, in this case) to the current program counter address (the address of the BRL instruction); the resulting
sum is the current absolute address of RETURN – 1, which is what is pushed onto the stack.

The Western Design Center

180

If at run-time the PER instruction is at $1000, then the BRL instruction will be at $1003, and
RETURN at $1006. Execution of PER pushes $1005 onto the stack, and the program branches to SUBR1.
The RTS at the end of the subroutine causes the $1005 to be pulled from the stack, incremented to $1006 (the
address of RETURN), and loaded into the program counter.

If, on the other hand, the instructions are at $2000, $2003, and $2006, then $2005 is pushed onto the
stack by execution of PER, then pulled off again when RTS is encountered, incremented to $2006 (the current
run-time address of RETURN), and loaded into the program counter.

If a macro assembler is available, synthetic instructions such as this are best dealt with by burying this
code in a single macro call.

Coding a Subroutine: How and When

The uses of subroutines are many. At the simplest level, they let you compact in a single location
instructions that would otherwise be repeated if coded in-line. Programmers often build up libraries of general
subroutines from which they can pluck the routine they want for use in a particular program; even if the routine
is only called once, this allows quick coding of commonly used functions.

The next few pages will look at a simple logic function for the 65x processors – forming the negation
(two’s complement) of eight- and sixteen-bit numbers – and how such a routine is written. Also covered is how
subroutines in general (and library routines in particular) should be documented.

The 65x processors have no negate instruction, so the two’s complement is formed by complementing
the number (one’s complement) and adding one.

6502 Eight-Bit Negation – A Library Example

If the value to be negated is an eight-bit value, the routine in Listing 12.1 will yield the desired result.

0001 0000 KEEP KL.12.1
0002 0000
0003 0000 ; NEGACC - -
0004 0000 ;
0005 0000 ; Negate the 8-bit value in the accumulator
0006 0000 ; On entry: Value to be negated is in accumulator
0007 0000 ; On exit: Value now negated is in accumulator
0008 0000
0009 0000 NEGACC START
0010 0000 46FF EOR #$11111111 form one’s complement
0011 0002 18 CLC prepare to add one
0012 0003 6901 ADC #1 add one
0013 0005 60 RTS return
0014 0006 END

Listing 12.1

It is extremely important to clearly document library routines. Perhaps the best approach is to begin
with a block comment at the head of the routine, describing its name, what the routine does, what it expects as
input, what direct page locations it uses during execution, if the contents of any registers or any memory special
locations are modified during execution, and how and where results are returned.

By documenting the entry and exit conditions as part of the header, as in the example, when the routine
is used from a library you won’t have to read the code to get this information. Although this example is quite
simple, when applied to larger, more complex subroutines, the principle is the same: document the entry and
exit conditions, the function performed, and any side effects.

As a subroutine, this code to negate the accumulator takes six bytes. Each JSR instruction takes three.
So calling it twice from a single program requires 12 bytes of code; if called three times, 15 bytes; if four, 18
bytes.

The Western Design Center

181

On the other hand, if this code were in-line once, it would take only five bytes, but each additional time
it is needed would require another five bytes, so using it twice takes 10 bytes, three times takes 15, and four
times takes 20. You can see that only if you need to negate the accumulator four or more times does calling as a
subroutine make sense in view of object byte economy.

65C02, 65802, and 65816 Eight-Bit Negation

The addition of the accumulator addressing mode for the INC increment instruction on the
65C02, 65802, and 65816 means no subroutine is required for negating an eight-bit value in the
accumulator on these processors: the in-line code in Fragment 12.3 takes only three bytes.

0000 49FF EOR #%11111111 form one’s complement of accum
0002 1A INC A increment the accum by one

Fragment 12.3.

Since the in-line code takes the same number of bytes as the JSR instruction, you would lose four bytes (the
number in the subroutine itself) by calling it as a subroutine.

6502 Sixteen-Bit Negation

Negating sixteen-bit values makes even more sense as a subroutine on the 6502. One method, given the
previously-coded routine NEGACC, is shown in Listing 12.2.

0001 0000 KEEP KL.12.2
0002 0000
0003 0000
0004 0000 ; Negate the 16-bit value in registers X – A (hi-lo)
0005 0000 ; On entry: Value to be negated is in X – A (hi-lo)
0006 0000 ; On exit: Value now negated is in A – Y (hi-lo)
0007 0000 ; X is unchanged
0008 0000 ; must be linked with NEGACC
0009 0000
0010 0000 NEGXA START
0011 0000 ; first call the 8-bit negation routine defined a few pages back
0012 0000 200080 JSR NEGACC negate the low 8 bits in the accum
0013 0003 ; then get and negate the high 8 bits
0014 0003 A8 TAY
0015 0004 8A TXA get high 8 bits into accum
0016 0005 49FF EOR #%11111111 form one’s complement
0017 0007 6900 ADC add carry from adding 1 to low byte
0018 0009 60 RTS return
0019 000A END

Listing 12.2

Here, one subroutine (NEGXA) calls another (the subroutine described previously that negates eight
bits).

65802 and 65816 Sixteen-Bit Negation

Fragment 12.4 shows that on the 65802 and 65816, the sixteen-bit accumulator can be negated in-line in
only four bytes. As a result, a subroutine to negate the sixteen-bit accumulator would be inefficient, requiring
five calls to catch up with the on-byte difference; in addition, you should note that there is a speed penalty
associated with calling a subroutine – the time required to executed the JSR and RTS instructions.

The Western Design Center

182

0000 49FFFF EOR #$FFFF form one’s complement of accum
0003 1A INC A increment the accum by one

Fragment 12.4

Parameter Passing

When dealing with subroutines, which by definition are generalized pieces of code used over and over
again, the question of how to give the subroutine the information needed to perform its function must be
considered. Values passed to or from subroutines are referred to as the parameters of the subroutine.
Parameters can include values to be acted upon, such as two numbers to be multiplied, or may be information
that defines the context or range of activity of the subroutine. For example, a subroutine parameter could be the
address of a region of memory to work on or in, rather than the actual data itself.

The preceding examples demonstrated one of the simplest methods of parameter-passing, by using the
registers. Since many of the operations that are coded are subroutines in assembly language are primitives that
operate on a single element, like “print a character on the output device” or “convert this character from binary
to hexadecimal,” passing parameters in registers is probably the approach most commonly found.

A natural extension of this approach, which is particularly appropriate for the 65802 and 65816, but
also possible on the 6502 and 65C02, is to pass the address of a parameter list in a register (or, on the 6502 and
65C02, in two registers). Listing 12.3 gives example.

The Western Design Center

183

0001 0000 KEEP KL.12.3
0002 0000 65816 ON
0003 0000
0004 0000 L123 START
0005 0000 18 CLC
0006 0001 FB XCE
0007 0002
0008 0002 E220 SEP #$20 8-bit accumulator
0009 0004 LONGA OFF
0010 0004
0011 0004 C210 REP #$10 16-bit index register
0012 0006 LONGI ON
0013 0006
0014 0006 A21500 LDX #STRING1 pass the address of STRING1 to PRSTRNG
0015 0009 2000080 JSR PRSTRNG print STRING1
0016 000C
0017 000C A22800 LDX #STRING2 pass the address of STRING2 to PRSTRNG
0018 000F 200080 JSR PRSTRNG print STRING2
0019 0012
0020 0012 38 SEC
0021 0013 FB XCE
0022 0014 60 RTS
0023 0015
0024 0015 54686973 STRING1 DC C ’This is string one’, H ‘00’
0025 0028 54686973 STRING2 DC C ‘This is string two’, H ‘00’
0026 003B
0027 003B END
0028 0000
0029 0000 ; print a string of characters terminated by a 0 byte
0030 0000 ; on entry: X register holds location of string
0031 0000
0032 0000 PRSTRNG START
0033 0000 BD0000 TOP LDA !0,X get char at index position in string
0034 0003 F006 BEQ DONE if character is 0, return
0035 0005 200080 JSR COUT print character in accum
0036 0008 E8 INX
0037 0009 80F5 BRA TOP
0038 000B 60 DONE RTS
0039 000C
0040 000C END
0041 0000
0042 0000 ; COUT
0043 0000 ; machine-dependent routine to output a character
0044 0000 ;
0045 0000 COUT START
0046 0000 ECOUT GEQU $FDED Apple / / COUT
0047 0000 48 PHA Save registers
0048 0001 DA PHX
0049 0002 5A PHY
0050 0003 08 PHP and status,
0051 0004 38 SEC switch to emulation
0052 0005 FB XCE
0053 0006 20EDFD JSR ECOUT call 6502 routine
0054 0009 18 CLC
0055 000A FB XCE restore native mode
0056 000B 28 PLP restore status
0057 000C 7A PLY restore register
0058 000D FA PLX return
0059 000E 68 PLA
0060 000F 60 RTS
0061 0010 END

Listing 12.3

The Western Design Center

184

By loading the X register with the address of a string constant, the subroutine PRSTRNG has all the
information it needs to print the string at that address each time it is called. The data at the address passed in a
register could also be a more complex data structure than a string constant.

On the 6502 and 65C02, a sixteen-bit address has to be passed in two registers. Because of this,
parameters are often passed in fixed memory locations. Typically, these might be direct page addresses.
Listing 12.4 gives an example of this method.

0001 0000 KEEP KL.12.4
0002 0000
0003 0000
0004 0000 ; 6502/65C02 example
0005 0000
0006 0000 PEX START
0007 0000
0008 0000 PARAM GEQU $80
0009 0000
0010 0000 A200 LDX #>STRING1 load high byte of STRING1’s address
0011 0002 8681 STX PARAM+1 store the high byte of direct page cell
0012 0004 A20C LDX #<STRING1 load low byte of STRING1’s address
0013 0006 8680 STX PARAM store to low byte of direct page cell
0014 0008 2000080 JSR PRSTRNG print STRING1
0015 0008 60 RTS
0016 000C
0017 000C 54686973 STRING1 DC C ‘This is string one’, H’00’
0018 001F
0019 001F END
0020 0000
0021 0000 ; print a string of characters terminated by a 0 byte
0022 0000 ; on entry: direct page location PARAM holds address of string
0023 0000
0024 0000 PRSTRNG START
0025 0000 COUT GEQU $FDED Apple / / output routine
0026 0000
0027 0000 A000 LDY #0 start at string position zero
0028 0002 B180 LOOP LDA (PARAM),Y get char at index position in string
0029 0004 F006 BEQ DONE if character is 0, return
0030 0006 20EDFD JSR COUT print character in accum
0031 0009 C8 INY point to next char
0032 000A D0F6 BNE LOOP loop thru string: must be < 256
0033 000C 60 DONE RTS
0034 000D
0035 000D
0036 000D END

Listing 12.4

Unfortunately, it takes eight bytes to set up PARAM each time PRSTRNG is called. As a result, a
frequently used method of passing parameters to a subroutine is to code the data in-line, immediately following
the subroutine call. This technique (see Fragment 12.5) uses no registers and no data memory, only program
memory.

The Western Design Center

185

0000 .
0000 .
0000 2000080 JSR PRSTRNG print the following string
0003 54686520 DC C ‘The string to be printed’, H ‘00’
001C REUTRN . execution continues here
001C .
001C .
001C .
001C

Fragment 12.5

This method looks, at first glance, bizarre. Normally, when a subroutine returns to the calling section of
code, the instruction immediately following the JSR is executed. Obviously, in this example, the data stored at
that location is not executable code, but string data. Execution should resume instead at the label RETURN,
which is exactly what happens using the PRSTRNG coded in Listing 12.5. The return address pushed onto the
stack by the JSR is not a return address at all; it is, rather, the parameter to PRSTRNG.

The Western Design Center

186

0001 0000 KEEP KL.12.5
0002 0000 65816 ON
0003 0000
0004 0000 PRSTRNG START
0005 0000
0006 0000 18 CLC
0007 0001 FB XCE
0008 0002
0009 0002 E220 SEP #$20 8-bit accum
0010 0004 LONGA OFF
0011 0004
0012 0004 C210 REP #$10 16-bit index regs
0013 0006 LONGI ON
0014 0006
0015 0006 FA PLX pull return address
0016 0007 E8 INX and increment to point JSR to string
0017 0008 BD0000 LOOP LDA !0,X get char at index position in string
0018 000B F006 BEQ DONE if character is 0, return
0019 000D 200080 JSR COUT print char in accum
0020 0010 E8 INX point to next char
0021 0011 80F5 BRA LOOP loop thru string
0022 0013
0023 0013 ; push pointer to zero-terminator as return addr (RETURN-1)
0024 0013
0025 0013 DA DONE PHX
0026 0014 60 RTS return to label RETURN
0027 0015 END
0028 0000
0029 0000
0030 0000 ; COUT
0031 0000 ; machine-dependent routine to output a character
0032 0000 ;
0033 0000 COUT START
0034 0000 ECOUT GEQU $FDED Apple / / COUT
0035 000 48 PHA Save registers
0036 0001 DA PHX
0037 0002 5A PHY
0038 0003 08 PHP and status,
0039 0004 38 SEC switch to emulation
0040 0005 FB XCE
0041 0006 20EDFD JSR ECOUT call 6502 routine
0042 0009 18 CLC
0043 000A FB XCE restore native mode
0044 000B 28 PLP restore status
0045 000C 7A PLY restore registers
0046 000D FA PLX return
0047 000E 68 PLA
0048 000F 60 RTS
0049 0010 END

Listing 12.5

The parameter address on the stack need only be pulled and incremented once, and the data can then be
accessed in the same manner as in the foregoing example. Since the loop terminates when the zero end-of-
string marker is reached, pushing its address in the X register onto the stack gives RTS a correct return, value –
RETURN-1 – the byte before the location where execution should resume. Note that the data bank is assumed
to equal the program bank.

The advantage of this method is in bytes used: there is no need for any explicit parameter-passing by
the calling code, and the JSR mechanism makes the required information available to the subroutine
automatically. In fact, for most applications on all four 65x microprocessors, this method uses fewer bytes for
passing a single parameter than any other.

One slight disadvantage of this method is that if the string is to be output more than once, it and its
preceding JSR must be made into a subroutine that is called to output the string.

The Western Design Center

187

A second disadvantage to this method comes in calling routines to which more than one parameter must
be passed. This last example demonstrated how a parameter (the address of the string) can be implicitly passed
on the stack. But there is no way to extend the principle so two parameters could be implicitly passed, for
instance, to a routine that compares two strings. On the other hand, parameter can also be explicitly passed on
the stack. The push effective address instructions and stack-relative addressing modes make this all the easier,
as Fragment 12.6 and Listing 12.6 show.

0000 F40080 PEA STRING1 push address of STRING1 onto stack
0003 F40080 PEA STRING2 push address of STRING2 onto stack
0006 200080 JSR COMPARE compare the two
0009 . return and continue processing
0009 .
0009 .

Fragment 12.6

0001 0000 KEEP KL.12.6
0002 0000 65816 ON
0003 0000
0004 0000 ; compare two strings of characters, each terminated by a 0 byte
0005 0000 ; on entry: locs of strings are stacked just below the return addr
0006 0000 ; on exit : carry clear if chars match up to len of shortest string
0007 0000 ; else carry set for no match
0008 0000
0009 0000 COMPARE START
0010 0000
0011 0000 08 PHP assume native mode; save status
0012 0001
0013 0001 C210 REP #$10
0014 0003 LONGI ON
0015 0003 SEP #$20
0016 0005 LONGA OFF
0017 0005
0018 0005 A00000 LDY #0
0019 0008 B303 LOOP LDA (3,S),Y get character from first string
0020 000A F007 BEQ PASS if zero, end of string: match
0021 000C D305 CMP (5,S),Y compare to corresponding char in 2nd string
0022 000E D006 BNE FAIL branch if not equal; probably failure
0023 0010 C8 INY else do next pair
0024 0011 80F5 BRA LOOP
0025 0013
0026 0013
0027 0013 ; matches shortest string: ok
0028 0013
0029 0013 28 PASS PLP restore previous status
0030 0014 18 CLC but clear carry
0031 0015 60 RTS
0032 0016 B305
0033 0016 F0F9 FAIL LDA (5,S),Y was last failure due to end of string2?
0034 0018 F0F9 BEQ PASS yes; let it pass
0035 001A
0036 001A 28 PLP restore previous status
0037 001B 38 SEC sorry, no good
0038 001C 60 RTS
0039 001D
0040 001D END

Listing 12.6

This example, which compares two strings to see if they are equal up to the length of the shorter of the
two strings, uses parameters that have been explicitly passed on the stack. This approach, since it explicitly
passes the address of the strings, lets them be located anywhere and referred to any number of times. Its

The Western Design Center

188

problem is that when the subroutine returns, the parameters are left on the stack. Clearly, the subroutine should
clean up the stack before returning; however, it can’t simply pull the parameters off, because the return address
is sitting on top of the stack (which explains why stack offsets of three and five, rather than one and three, are
used).

Perhaps the cleanest way to pass parameters on the stack prior to a subroutine call is to decompose the
JSR instruction into two: one to push the return address, the other to transfer to the subroutine. The push
effective address instructions again come in handy. Fragment 12.7 shows how the parameters to the routine in
Listing 12.7 are passed.

0000 .
0000 .
0000 F4FF7F PEA RETURN-1 push return addr before parameters
0003 F40080 PEA STRING1 push address of STRING1 onto stack
0006 F40080 PEA STRING2 push address of STRING2 onto stack
0009 4C0080 JMP COMPARE compare them
000C RETURN . continue processing
000C .
000C .
000C

Fragment 12.7

The Western Design Center

189

0001 0000 KEEP KL.12.7
0002 0000 65816 ON
0003 0000
0004 0000 ; compare two strings of characters, each terminated by a 0 byte
0005 0000 ; on entry: locs of strings are at top of stack
0006 0000 ; return address is stacked just beneath
0007 0000 ; on exit: carry clear if chars match up to len of shortest string
0008 0000 ; else carry set for no match
0009 0000
0010 0000 COMPARE START
0011 0000
0012 0000 08 PHP assume native mode; save status
0013 0000
0014 0001 C210 REP #$10
0015 0003 LONGI ON
0016 0003
0017 0003 E220 SEP #$20
0018 0005 LONGA OFF
0019 0005
0020 0005 A00000 LDY #0
0021 0008 B301 LOOP LDA (1,S),Y get character from first string
0022 000A F007 BEQ PASS if zero, end of string: match
0023 000C D303 CMP (3,S),Y compare to corresponding char in 2nd string
0024 000E D007 BNE FAIL bra if not equal; probably failure
0025 0010 C8 INY else do next pair
0026 0011 80F5 BRA LOOP
0027 0013
0028 0013 ; matches shortest string
0029 0013
0030 0013 28 PASS PLP they match up to shortest string;
0031 0014 18 CLC restore status, but clear carry
0032 0015 8006 BRA EXIT
0033 0017
0034 0017 B303 FAIL LDA (3,S),Y was last failure due to end of string2?
0035 0019 F0F8 BEQ PASS yes, let it pass
0036 001B 28 PLP restore status, but set carry (no match)
0037 001C 38 SEC
0038 001D
0039 001D FA EXIT PLX clean up stack: remove both 16-bit params
0040 001E FA PLX
0041 001F 60 RTS now return
0042 0020
0043 0020 END

Listing 12.7

Since the return address was pushed first, the parameter addresses on the stack are accessed via offsets
of one and three. Before returning, two pull instructions pop the parameters off the stack, then the RTS is
executed, which returns control to the main program with the stack in order.

Passing parameters on the stack is particularly well suited for both recursive routines (routines
that call themselves) and reentrant routines (routines that can be interrupted and used successfully both
by the interrupting code and the original call) because new memory is automatically allocated for
parameters for each invocation of the subroutine. This is the method generally used by most high-
level languages that support recursion.

Fragment 12.8 sets up multiple parameters implicitly passed on the stack by coding after the JSR, not
data, but pointers to data. The routine called is in Listing 12.8.

The Western Design Center

190

0000 .
0000 .
0000 200080 JSR COMPARE compare two strings; addresses follow
0003 0080 DC A ‘STRING1’ address of STRING1
0005 0080 DC A ‘STRING2’ address of STRING2
0007 RETURN . continue processing
0007 .
0007 .
0007

Fragment 12.8

While this subroutine, unlike the previous one, uses a dozen bytes just getting itself ready to start, each
call requires only seven bytes (three for the JSR, and two each for the parameters), while each call to the
previous routine required twelve bytes (three PERs at three bytes each plus three for the JMP).

Apple Computer’s ProDOS operating system takes this method a step further: all operating system
routines are called via a JSR to a single ProDOS entry point. One of the parameters that follow the JSR
specifies the routine to be called, the second parameter specifies the address of the routine’s parameter block.
This method allows the entry points of the internal ProDOS routines to “float” from one version of ProDOS to
the next; user programs don’t need to know where any given routine is located.

The Western Design Center

191

0001 0000 KEEP KL.12.8
0002 0000 65816 ON
0003 0000
0004 0000 ; compare two strings of characters, each terminated by a 0 byte
0005 0000 ; on entry: increment address at top of stack: pts to loc of 1st str
0006 0000 ; incr twice more to point to loc of 2nd str
0007 0000
0008 0000 COMPARE START
0009 0000
0010 0000 C210 REP #$10 caller must save and
0011 0002 LONGI ON restore mode status
0012 0002
0013 0002 E220 SEP #$20
0014 0004 LONGA OFF
0015 0004
0016 0004 7A PLY
0017 0005 C8 INY points to indirect address of 1st str
0018 0006 B90000 LDA !0,Y load accum with address of 1st string
0019 0009 C8 INY
0020 000A C8 INY point Y to indirect addr of 2nd string
0021 000B BE0000 LDX !0,Y load X with address of 2nd string
0022 000E C8 INY point Y to RETURN-1 for RTS
0023 000F 5A PHY and push it onto stack for RTS
0024 0010 A8 TAY load Y with address of 1st string
0025 0011
0026 0011 B90000 LOOP LDA !0,Y get character from first string
0027 0014 F009 BEQ PASS if zero, end of string: match
0028 0016 DD0000 CMP !0,X compare to corresponding char in 2nd string
0029 0019 D006 BNE FAIL bra if not equal; probably failure
0030 001B C8 INY else do next pair
0031 001C E8 INX
0032 001D 80F2 BRA LOOP
0033 001F 18 PASS CLC they match up to shortest string;
0034 0020 60 RTS
0035 0021 BD0000 FAIL LDA !0,X was last failure due to end of string2?
0036 0024 F0F9 BEQ PASS yes; let it pass
0037 0026 38 SEC sorry, no good
0038 0027 60 EXIT RTS now return!
0039 0028
0040 0028 END

Listing 12.8

The Western Design Center

192

13) Chapter Thirteen

Interrupts and System Control Instructions

This is the last chapter that introduces new instructions; almost the entire 65816 instruction set, and all
of the addressing modes, have been presented. The only instructions remaining are the interrupts and status
register control instructions, listed in Table 13.1. This chapter introduces interrupt processing, as well.

Most of the system control functions described are of practical interest only if you are implementing
systems programs for the 65x processors, such as operating systems or device handling routines. It is quite
possible that if you are programming on an existing machine, with full operating system support, you will have
little cause to use many of the system control instructions.

Available on:
Mnemonic 6502 65C02 65802/816 Description

BRK x x x Break (software interrupt)
RTI x x x Return from Interrupt
NOP x x x No operation
SEC x x x Set carry flag
CLC x x x Clear carry flag
SED x x x Set decimal mode
CLD x x x Clear decimal mode
SEI x x x Set interrupt disable flag
CLI x x x Clear interrupt disable flag
CLV x x x Clear overflow flag
SEP x Set status register bits
REP x Clear status register bits
COP x Co-processor or software

interrupt
STP x Stop the clock
WAI x Wait for interrupt
WDM x Reserved for expansion

Table 13-1. Interrupt and System Control Instructions.

Interrupts

An interrupt, as the name implies, is a disruption of the normal sequential flow of control, as modified
by the flow-altering statements such as branches and jump instructions encountered in the stream of code.

Hardware interrupts are generated when an external device causes one of the interrupt pins, usually
the IRQ’ or interrupt request pin, to be electrically pulled low from its normally high signal level. The typical
application of 65x interrupts is the implementation of an interrupt-driven I/O system, where input-output
devices are allowed to operate asynchronously from the processor. This type of system is generally considered
to be superior to the alternative type of I/O management system, where devices are polled at regular intervals to
determine whether or not they are ready to send or receive data; in an interrupt-driven system, I/O service only
claims processor time when an I/O operation is ready for service. Figure 13.1 illustrates how processor time is
spent under either system.

The Western Design Center

193

POLLING

I/O
Service

Polling
Loop

User Task
A TIME B

INTERRUPT-DRIVEN

I/O
Service

User
Task

A TIME B

I/O Requested at Times A and B

Figure 13-1 I/O Management: Interrupts vs. Polling

Software interrupts are special instructions that trigger the same type of system behavior as occurs
during a hardware interrupt.

When an interrupt signal is received, the processor loads the program counter with the address stored in
one of the sixteen-bit interrupt vectors in page $FF of bank zero memory, jumping to the (bank zero) routine
whose address is stored there. (In the case of the 6502, 65C02, and 65802, “bank zero” refers to the lone 64K
bank memory addressable by these processors.) The routine that it finds there must determine the nature of the
interrupt and handle it accordingly.

When an interrupt is first received, the processor finishes the currently executing instruction and pushes
the double-byte program counter (which now points to the instruction following the one being executed when
the interrupt was received) and the status flag byte onto the stack. Since the 6502 and 65C02 have only a
sixteen-bit program counter, only a sixteen-bit program counter address is pushed onto the stack; naturally, this
is the way the 65802 and 65816 behave when in emulation mode as well. The native-mode 65802 and 65816
must (and do) also push the program counter bank register, since it is changed to zero when control is
transferred through the bank zero interrupt vectors.

As Figure 13.2 shows, in native mode the program bank is pushed onto the stack first, before the
program counter and the status register: but emulation mode it is lost. This means that if a 65816 program is
running in emulation mode in a bank other than zero when an interrupt occurs, there will be no way of knowing
where to return to after the interrupt is processed because the original bank will have been lost.

The Western Design Center

194

This unavoidable but fairly esoteric problem can be dealt with in two ways. The first is simply never
run in emulation mode outside bank zero. The second solution, which is to store the value of the program
counter bank register in a known location before entering the emulation mode with a non-zero program counter
bank register, is described later in this chapter.

In addition to pushing the status and program counter information onto the stack, the d decimal flag in
the status register is cleared (except on the 6502), returning arithmetic to binary mode. The i interrupt disable
flag is set, preventing further interrupts until your interrupt-service routine resets it (it may do this as soon as it
is finished saving the previous context) or the routine is exited (with an RTI return-from-interrupt instruction).
Indeed, if the interrupt flag had already been set, the first interrupt would have been ignored as well.

This last feature of disabling interrupts, however, does not apply to a second type of hardware interrupt,
called the non-maskable interrupt (or NMI’) for the very reason that it cannot be ignored, even if the i flag is
set. NMI’ is triggered by a separate pin on a 65x processor; its use is usually reserved for a single high priority
interrupt, such as power failure detection.

6502/65C02/Emulation Mode

Stack
before

PC High
Stack Pointer (S) PC Low

Program Counter (PC)

Status (P)
after

Status (P)

Bank 0

65802/65816 Native Mode

Stack
before

Program Bank (PBR) Program Bank (PBR)
PC High

Stack Pointer (S) PC Low
Program Counter (PC)

Status (P) Status (P)
after

Bank 0

Figure 13-2 Interrupt Processing

Just as the two types of interrupt have their own signals and pins, they also have their own vectors –
locations where the address of the interrupt-handling routine is stored. As Table 13.2 shows, on the 65802 and
65816 there are two sets of interrupt vectors: one set for when the processor is in emulation mode, and one set
for when the processor is in native mode. Needless to say, the locations of the emulation mode vectors are
identical to the locations of the 6502 and 65C02 vectors.

The Western Design Center

195

Emulation mode, e = 1 Native mode, e = 0
00FFFE,FF - IRQ/BRK 00FFEE,EF - IRQ
00FFFC,FD - RESET -
00FFFA,FB - NMI 00FFEA,EB - NMI
00FFF8,F9 - ABORT 00FFE8,E9 - ABORT

00FFE6,E7 - BRK
00FFF4,F5 - COP 00FFE4,E5 - COP

Table 13-2 Interrupt Vectors

As you can see in Table 13.2, there are several other vector locations named in addition to IRQ’ and
NMI’. Note that there is no native mode RESET’ vector: RESET’ always forces the processor to emulation
mode. Also note that the IRQ’ vector among the 6502 vectors is listed as IRQ’/BRK, while in the
65802/65816 native mode list, each has a separate vector.

The BRK and COP vectors are for handling software interrupts. A software interrupt is an
instruction that imitates the behavior of a hardware interrupt by stacking the program counter and the status
register, and then branching through a vector location. On the 6502 and 65C02, the location jumped to in
response to the execution of a BRK (a software interrupt) and the location to which control is transferred after
an IRQ’ (a hardware interrupt) is the same; the interrupt routine itself must determine the source of the interrupt
(that is, either software or hardware) by checking the value of bit five of the processor status register pushed
onto the stack. On the 6502 and 65C02 (and the 6502 emulation mode of the 65802 and 65816), bit five is the b
break flag. Note first that this is not true of the 65816 native mode, since bit five of its status register is the m
memory select flag. Secondly, notice that it is the stacked status byte which must be checked, not the current
status byte.

Suppose, for example, that the IRQ’/BRK vector at $00:FFFE.FF contains the address $B100
(naturally, in the low-high order all 65x addresses are stored in), and the code in Fragment 13.1 is stored starting
at $B100. When a BRK instruction is executed, this routine distinguishes it from a hardware interrupt and
handles each uniquely.

0000 ORG $B100
0000
0000 IRQBRKIN START
0000 8D1000 STA SAVEA save original accumulator
0003 68 PLA copy p register
0004 48 PHA return it to stack
0005 2920 AND #%00010000 look at bit four only
0007 D0F7 BNE ISBRK bra if bit 4 set:
0009 ; BRK caused interrupt
0009 . else caused by IRQ”
0009 .
0009 .
0009 .
0009 4C0C00 JMP RETURN reload accum and return
000C
000C ; handle interrupt caused by BRK instruction
000C
000C ISBRK . do BRK handling code
000C .
000C .
000C AD1000 RETURN LDA SAVEA reload saved accumulator
000F 40 RTI return
0010
0010 00 SAVEA DS 1
0011
0011 END

Fragment 13.1

The Western Design Center

196

The RTI, or return-from-interrupt instruction is similar to the RTS (return-from-subroutine) instruction. RTI
returns control to the location following the instruction that was interrupted by pulling the return address off the stack.
Unlike the RTS instruction, however, since the status register was also pushed onto the stack in response to the interrupt, it
too is restored, returning the system to its prior state. Further, in the 65802/65816 native mode the RTI instruction behaves
like an RTL (return from subroutine long), in that the program counter bank register is also pulled off the stack. This
difference makes it critical that the processor always be in the same state when the RTI instruction is executed as it was
when it was interrupted. The fact that the 65816 has separate vector groups for native and emulation modes makes this
easier to achieve.

There is another key difference between the RTI and the RTS or RTL: RTS and RTL increment the
return address after pulling it off the stack and before loading it into the program counter; RTI on the other
hand loads the program counter with the stack return address unchanged.

RTI will probably not function correctly in the special case where an interrupt occurred while code was
executing in the emulation mode in a non-zero bank: RTI will try to return control to an address within the bank
the RTI is executed in, which will probably not be the correct bank because (as on the 6502 and 65C02) the
bank address is not stacked. As mentioned earlier, the only way to deal with this is to save the bank address
prior to entering emulation mode. When the interrupt handler returns, it should use this saved bank address to
execute a long jump to an RTI instruction stored somewhere within the return bank, the long jump will present
the program bank address to the correct value before the RTI is executed.

The interrupt handler itself should enter the native mode if interrupts are to be reenabled before exiting
in order to avoid the same problem, the return to emulation mode before exiting via the long jump to the RTI
instruction.

Concerning the BRK instruction, you should also note that although its second byte is basically a “don’t
care” byte – that is, it can have any value - the BRK (and COP instruction as well) is a two-byte instruction, the
second byte sometimes is used as a signature byte to determine the nature of the BRK being executed. When
an RTI instruction is executed, control always returns to the second byte past the BRK opcode. Figure 13.3
illustrates a stream of instructions in hexadecimal form, the BRK instruction, its signature byte, and location an
RTI returns to. The BRK instruction has been inserted in the middle; after the BRK is processed by a routine
(such as the skeleton of a routine described above), control will return to the BCC instruction, which is the
second byte past the BRK opcode.

The fact that the opcode for the BRK instruction is 00 is directly related to one of its uses: patching
existing programs. Patching is the process of inserting instruction data in the middle of an existing program in
memory to modify (usually to correct) the program without reassembling it. This is a favored method of some
programmers in debugging and testing assembly language programs, and is quite simple if you have a good
machine-level monitor program that allows easy examination and modification of memory locations. However,
if the program to be patched is stored in PROM (programmable read-only memory), the only way to modify a
program that has already been “burned-in” is to change any remaining one bits to zeros. Once a PROM bit has
been “blown” to zero, it cannot be restored to a one. The only way to modify the flow of control is to insert
BRK instructions – all zeroes – at the patch location and to have the BRK handling routine take control from
there.

The Western Design Center

197

LDA $44

 A5 44

00 00 90 32

BRK instruction
 BCC instruction

 optional
 ‘signature byte’

control resumes here
 after RTI executed

Figure 13-3Break Signature Byte Illustration

Processing Interrupts

Before an interrupt handling routine can perform a useful task, it must first know what is expected of it.
The example of distinguishing a BRK from an IRQ is just a special case of the general problem of identifying
the source of an interrupt. The fact that different vectors exist for different types of interrupts – for example,
NMI would usually be reserved for some catastrophic type of interrupt, like “power failure imminent”, which
demanded immediate response – solves the problem somewhat. Typically, however, in an interrupt-driven
system there will be multiple sources of interrupts through a single vector. The 65802 and 65816, when in
native mode, eliminate the need for a routine to distinguish between IRQ and BRK, such as the one above, by
providing a separate BRK vector, as indicated in Table 13.2. Although this does simplify interrupt processing
somewhat, it was done primarily to free up bit five in the status register to serve as the native memory select
flag, which determines the size of the accumulator.

The interrupt source is generally determined by a software technique called polling: when an interrupt
occurs, all of the devices that are known to be possible sources of interrupts are checked for an indication that
they were the source of the interrupt. (I/O devices typically have a status bit for this purpose.) A hardware
solution also exists, which is to externally modify the value that is apparently contained in the vector location
depending on he source of interrupt. The 65816 aids the implementation of such systems by providing a
VECTOR PULL signal, which is asserted whenever the interrupt vector memory locations are being accessed
in response to an interrupt.

A simple example of the polling method could be found in a system that includes the 6522 Versatile
Interface Adapter as one of its I/O controllers. The 6522 is a peripheral control IC designed for hardware
compatibility with the 65x processor family. The 6522 includes two parallel I/O ports and two timer/counters.
It can be programmed to generate interrupts in response to events such as hardware handshaking signals,
indicating that data has been read or written to its I/O ports, or to respond to one of its countdown timers
reaching zero. The 6522 contains sixteen different control and I/O registers, each of which is typically mapped
to an adjacent address in the 65x memory space. When an interrupt occurs, the processor must poll the
interrupt flag register, shown in Figure 13.4, to determine the cause of the interrupt.

The Western Design Center

198

7 6 5 4 3 2 1 0

SET BY CLEARED BY

CA2
CA2 active edge Read or write

Reg. 1 (ORA)

CA1
CA1 active edge Read or write

Reg. 1 (ORA)

SHIFT REG
Complete 8 shifts Read or write

Shift Reg.
CB2 CB2 active edge Read or write ORB

CB1 CB1 active edge Read or write ORB

TIMER2
Time-out of T2 Read T2 low or write

T2 high

TIMER1
Time-out of T-1 Read T1 low or write

T1 high

IRQ
Any enabled
interrupt

Clear all interrupts

Figure 13-4 6522 VIA Interrupt Flag Register

If register zero of the 6522 is mapped to location $FF:B080 of a 65816 system, for example, the
interrupt flag register would normally be found at $FF:B08D. The polling routine in Fragment 13.2 would be
needed whenever an interrupt occurred. To keep the example simple, assume that only the two timer interrupts
are enabled (for example, timer 1 to indicate, in a multi-tasking system, that a given process’ time-slice has
expired and the next process must be activated; timer 2, on the other hand, to maintain a time-of-day clock).

The Western Design Center

199

0000 IRQIN START
0000 E220 SEP #$20 8-bit accumulator
0002 LONGA OFF
0002
0002 8D1B00 STA SAVEA save the accumulator
0005 AF8DB0FF LDA $FFB08D device interrupt register
0009 10F5 BPL NEXTDEV branch if bit 7 clear
000B 0A ASL A check bits 6 & 5
000C 0A ASL A bit 6 to carry, 5 to sign
000D 30F1 BMI TIMER2 if 5 set, timer2 caused
000F ; interrupt
000F
000F ; timer2 didn’t cause interrupt; timer1?
000F
000F 90EF BCC ERROR interrupt source unknown
0011
0011 ; bit 6 set: timer1 caused interrupt
0011
0011 TIMER1 . timer 1 handler code
0011 .
0011 .
0011
0011 8004 BRA RETURN
0013
0013 ; bit 5 set: timer2 caused interrupt
0013
0013 TIMER2 . timer 2 handler code
0013 .
0013 .
0013 8002 BRA RETURN
0015
0015 ; interrupt not caused by 6522: check other devices
0015
0015 NEXTDEV . code to poll next devices
0015 .
0015 .
0015 8000 BRA RETURN
0017
0017 ERROR . error handling code
0017 .
0017 .
0017
0017 AD1B00 RETURN LDA SAVEA reload saved accumulator
001A 40 RTI and return
001B
001B 00 SAVEA DS 1
001C END

Fragment 13.2

When the interrupt flag register is loaded into the accumulator, the first thing to check is whether or not
bit seven is set; bit seven is set if any 6522 interrupt is enabled. If it is clear, then the interrupt handler branches
to the location NEXTDEV, which polls all other connected I/O devices looking for the interrupt.

If the 6522 was the source of the interrupt, then two shifts move the flag register’s bit six into the carry
and bit five into bit seven of the accumulator. Since bit five is set by the time-out of timer 2, if the high-order
bit of the accumulator is set (minus), then the source of the interrupt must be timer 2. If timer 2 did not cause
the interrupt, then the carry flag is checked; if it’s set, then timer 1 caused the interrupt; if it’s clear, then timer 1
didn’t cause it either, so there has been some kind of error.

The Western Design Center

200

Control is thus assigned to the correct routine to handle the specific source of interrupt.
It is important to note that in both examples in this chapter, the accumulator was saved in memory prior

to its use within the interrupt-handling routine. You should further note that in the second example, which is
specific to the 65816, only the low-order byte of the accumulator was stored, because the STA SAVEA
instruction was executed after the SEP #$20 instruction, which set the accumulator size to eight bits. When the
RTI instruction is executed at the end of the interrupt service routine, the m status flag will be restored to
whatever value it had prior to the interrupt. If m was clear and the accumulator was in sixteen-bit mode, the
high-order byte will have been preserved throughout the interrupt routine provided that none of the interrupt
handling routines switch into sixteen-bit mode; if they do, the high-order part of the accumulator must be saved
first, then restored before execution of the RTI.

An important concept related to interrupt handling is that of reentrancy; a reentrant program can be
interrupted and literally reentered by the interrupt handling routine and return correct values for both the
original invocation and the reentrant call from the interrupt handler. Reentrancy is normally achieved by using
no addressable memory – only registers, which may be saved and restored on the stack each time the routine is
entered. The stack relative addressing modes simplify the writing of reentrant routines considerably.

Interrupt Response Time

By saving only the essentials – the program counter, program counter bank in 65802/65816 native
mode, and status register – and shifting the burden of saving and restoring user registers (those that are actually
used) to the programmer of the interrupt-handler, the 65x processors provide maximum flexibility and
efficiency. It is quite possible for an interrupt routine to do useful work – such as checking the status of
something within the system at periodic intervals – without using any registers.

At either seven or eight cycles per interrupt – the time required to stack the program counter, pc bank,
and status register, and then jump through the interrupt vectors – the interrupt response cycle is among the
longest-executing 65x instructions. Since an interrupt always lets the current instruction complete execution,
there is a possible seven-cycle delay between the receipt of an interrupt and the servicing of one; this delay is
called the interrupt latency. Small as the delay is, it can be significant in the servicing of data acquisition and
control devices operating in real time, systems in which it is important that interrupts be disabled as little as
possible.

It has been the goal of the designers of the 65x series to keep interrupt latency to a minimum. To
further reduce interrupt latency, the 65802 and 65816 introduced a special new instruction, the WAI or wait for
interrupt instruction. In an environment where the processor can be dedicated to serving interrupts – that is,
where the interrupts provide timing or synchronization information, rather than being used to allow
asynchronous I/O operations to be performed – the processor can be put into a special state where it sits and
waits for an interrupt to happen. This lets any of the user registers be saved before the interrupt occurs, and
eliminates the latency required to complete an existing instruction. Upon execution of a WAI instruction, the
processor goes into a very low-power state, signals the outside world that it is waiting by pulling the bi-
directional RDY signal low, and sits idle until an interrupt is received. When that occurs, response is immediate
since no cycles are wasted completing an executing instruction.

There are two responses to an interrupt after the WAI instruction is executed. The first, as you might
expect, is to release the waiting condition and transfer control to the appropriate interrupt vector, as normally
takes place whenever interrupts are serviced. The second response is if maskable interrupts (on the IRQ’ line)
have been disabled, in which case the normal interrupt processing does not occur. However, since the waiting
condition is released, execution continues with the instruction following the WAI opcode. This means that
specialized interrupt-synchronization routines can be coded with a one-cycle latency between receipt of
interrupt and response.

A second, similar 65802/65816 instruction is the STP or stop the clock instruction. The STP
instruction reduces on-chip power consumption to a very low level by stopping the phase two clock input.
Since power consumption of CMOS circuits increases with operating frequency, by halting the clock input the
STP instruction is able to reduce the power consumption of the 65816 to its lowest possible value. Like the
WAI instruction, the STP idles the processor after being executed. Further, the processor I/O buffers are
disabled, making the bus available. The processor is powered back up in response to a RESET’ signal being
asserted.

The Western Design Center

201

The RESET’ pin is an input similar to the IRQ’ and NMI’ inputs. It is used to perform system
initialization or reinitialization. When a 65x system is first powered up, RESET’ must be asserted by external
power-up circuitry. It can also be used to let the user force the system into a known state, for example, to break
out of an infinite loop.

When RESET’ is asserted, the processor is forced to emulation mode and the registers and status flags
are initialized as shown in Table 13.3. Note that the initialization of the index register high bytes to zero is
really a function of x being forced to one; x = 1 always clears the high byte of the index registers.

Stack High 01
Direct Page Register 0000
X Register High 00
Y Register High 00
Program Bank Register 00
Data Bank Register 00
Status Register m = 1, x = 1, d = 0, i = 1
Emulation Flag 1

Table 13-3 Reset Initialization

In addition to the BRK, IRQ’, RESET’, and NMI’ vectors discussed, there are two remaining
interrupt-like vectors. These are the COP (co-processor) and ABORT’ vectors. The COP vector is essentially
a second software interrupt, similar to BRK, with its own vector. Although it can be used in a manner similar
to BRK, it is intended particularly for use with co-processors, such as floating-point processors. Like BRK, it
is a two-byte instruction with the second available as a signature byte.

The ABORT’ vector contains the address of the routine which gains control when the 65816 ABORT’
signal is asserted. Prior to transferring control through the ABORT’ vector, the current instruction is completed
but no registers are modified. The pc bank, program counter, and status register are pushed onto the stack in the
same manner as an interrupt. The ABORT’ signal itself is only available on the 65816; although the 65802 has
an ABORT’ vector, it is ineffective since no ABORT’ signal can be generated because of the need for the
65802 to be pin-compatible with the 6502. Typical application of the abort instruction feature is the
implementation of hardware memory-management schemes in more sophisticated 65816 systems. When a
memory-bounds violation of some kind is detected by external logic, the ABORT'’ signal is asserted, letting the
operating system attempt to correct the memory-management anomaly before resuming execution.

Status Register Control Instruction

There are nine instructions that directly modify the flags of the status register; two of them are available
only on the 65802 and 65816. These last two are the SEP (set the P status register) and REP (reset P)
instructions, which you are already familiar with from their use in the example to set or reset the m and x flags
in the status register. They can be used to set or clear any of the flags in the status register. For each bit in the
immediate byte that follows the opcode, the corresponding bit in the status register is set or cleared (depending
on whether SEP or REP, respectively, was used).

The other seven flag instructions set or clear individual flags in the status register. The pair SEC and
CLC set and clear the carry flag when executed. These should be familiar to you from the chapter on
arithmetic, where the CLC is always used before the first of a series of ADC instructions, and SEC before the
first of a series of SBC instructions. Likewise, the SED and CLD modes should also be familiar from the same
chapter’s discussion of decimal-mode arithmetic; these two instructions set or clear the decimal mode. Note
that reset can also affect the decimal flag: it is always initialized to zero on reset on the 65C02, 65802, and
65816; on the other hand, its value is indeterminate after reset on the 6502.

The SEI (set interrupt disable flag) and CLI (clear interrupt disable flag) instructions are new to this
chapter: they are used to enable or disable the processor’s response to interrupt requests via the IRQ’ signal. If
the SEI instruction has been executed, interrupts are disabled; a CLI interrupt instruction may be used to
reenable interrupts. Note that the interrupt disable flag is set automatically in response to an interrupt request,
whether a software interrupt or IRQ’, NMI’, or RESET’; this “locks out” other interrupts from occurring until

The Western Design Center

202

the current one has been serviced. Similarly, the interrupt disable flag is cleared automatically upon return from
an interrupt via RTI due to reloading of the stacked status register, which was pushed with i clear.

The SEI lets interrupts be locked out during critical routines which should not be interrupted. An
example would be a device controller that depended on software timing loops for correct operation; interrupts
must be locked out for the duration of the timing loop. It is important in an environment where interrupts are
supported that they not be locked out for long periods of time. Although the CLI instruction will explicitly
clear the interrupt disable flag, it is rarely used because typically the processor status is saved before execution
of an SEI instruction as in Fragment 13.3, which reclears the flag by restoring the entire processor status
register.

0000 08 PHP save status
0001 78 SEI disable interrupts
0002 .
0002 . execute time-critical code
0002 .
0002 28 PLP done – restore status, enable interrupts

Fragment 13.3

Since the interrupt disable flag was clear when the PHP instruction was executed, the PLP instruction restores
the cleared flag. This same technique is also useful when mixing subroutine calls to routine with different
default modes for accumulator and index register sizes; since saving the status with PHP is a common operation
between subroutine calls anyway, the PLP instruction can be used to conveniently restore operating modes as
well as status flags.

Finally, there is a CLV (clear overflow flag). There is no corresponding set overflow instruction, and,
as you will recall from the chapter on arithmetic, the overflow flag does not need to be explicitly cleared before
a signed operation. The arithmetic operation always change the overflow status to correctly reflect the result.
The reason for including an explicit CLV instruction in the 65x repertoire is that the 6502, 65C02, and 65802
have a SET OVERFLOW input signal; external hardware logic can set the overflow flag of the status register
by pulling the SET OVERFLOW input low. Since there is no corresponding clear overflow input signal, the
overflow must be cleared in software in order to regain susceptibility to the SET OVERFLOW signal.

The practical application of the SET OVERFLOW signal is generally limited to dedicated control
applications; it is rarely connected on general-purpose, 6502-based computer systems. On the 65816, there is
no SET OVERFLOW input; it was sacrificed to make room for some of the more generally useful new signals
available on the 65816 pin configuration.

No Operation Instructions

The final two instructions to complete the 65816 instruction set are the no operation instruction. These
do exactly what they sound like: nothing. They are used as place holders, or time-wasters; often they are used
to patch out code during debugging. The NOP instruction – with a hexadecimal value of $EA – is the standard
no operation.

As mentioned in the earlier architecture chapters, the 6502 and 65C02 have a number of unimplemented
instructions – the same opcodes which, on the 65802 and 65816, correspond to the new instructions. On the
6502, the operation of the processor when these “instructions” are executed is undefined; some of them cause
the processor to “hang-up.” On the 65C02, these are all “well-behaved” no-operations of either one, two, or
more cycles. On the 65802 and 65816, there is only one unimplemented instruction, defined as WDM; this is
reserved for future systems as an escape prefix to expand the instruction set with sixteen-bit opcodes. For this
reason, it should not be used in your current programs, as it will tend to make them incompatible with future
generations of the 65816.

The Western Design Center

203

Part 4
Applications

The Western Design Center

204

14) Chapter Fourteen
Selected Code Samples

This chapter contains five different types of example programs, which are examined in detail. Each
focuses on a different topic of interest to the 65x programmer: multiplication and division algorithms; a 65802-
to-6502 mode-switching tour de force; a quick utility routine to determine which 65x processor a program is
running under; high-level languages; and a popular performance benchmark.

Multiplication

Probably the most common multiply routine written for eight-bit applications is to multiply one sixteen-
bit number by another, returning a sixteen-bit result. While multiplying two large sixteen-bit numbers would
yield a 32-bit result, much of systems programming is done with positive integers limited to sixteen bits, which
is why this multiply example is so common. Be aware that a result over sixteen bits cannot be generated by the
examples as coded – you’ll have to extend them if you need to handle larger numbers.

There are several methods for the sixteen-by-sixteen multiply, but all are based on the multiplication
principles for multi-digit numbers you were taught in grade school: multiply the top number by the right-most
digit of the bottom number; move left, digit by digit, through the bottom number, multiplying it by the top
number, each time shifting the result product left one more space and adding it to the sum of the previous
products:

2344
 X 12211

2344
 2344
 4688
 4688
 2344
 28622584

Or to better match the description:

2344
 X 12211

2344
 + 2344
 25784 sum of products so far
 + 4688
 494584 sum of products so far
+ 4688
 5182584 sum of products so far

+ 2344
 28622584 final product (sum of all single-digit multiplies)

The Western Design Center

205

Binary multiplication is no different, except that, since each single-digit multiply is by zero or one, each
resulting single-digit product is either the top number itself or all zeroes.

101
 x 1010

000 5
 101 x 10
 000 0
 101 5
 110010 50 decimal

To have the computer do it, you have it shift the bottom operand right; if it shifts out a zero, you need
do nothing, but if it shifts out a one, you add the top number to the partial product (which is initialized at zero).
Then you shift the top number left for the possible add during the next time through this loop. When there are
no more ones in the bottom number, you are done.

6502 Multiplication

With only three eight-bit registers, you can’t pass two sixteen-bit operands to your multiply routine in
registers. One solution, the one used below, is to pass one operand in two direct page (zero page) bytes, while
passing the other in two more; the result is returned in two of the 6502’s registers. All this is carefully
documented in the header of the routine in Listing 14.1.

This 6502 multiply routine takes 33 bytes.

65C02 Multiplication

With the same three eight-bit registers as the 6502, and an instruction set only somewhat enhanced, the
65C02 multiply routine is virtually the same as the 6502s. Only one byte can be saved by the substitution of an
unconditional branch instruction for the jump instruction, for a total byte count of 32.

65802 and 65816 Multiplication

The 65802 and 65816, when running in native mode, have three registers, all of which can be set to
sixteen bits, in addition to having many more addressing modes. As you might expect, a multiply routine for
these processors is considerably shorter than the 6502 and 65C02. What you might not expect is how much
shorter: the multiply routine in Listing 14.2 for the 65802 ands 65816 takes only 19 bytes – its length is less
than 60 percent of each of the other two routines!

Notice the additional documentation at the beginning of the routine. The processor must have both its
index registers and its accumulator in sixteen-bit modes before calling this routine.

The Western Design Center

206

0001 0000 KEEP KL.14.1
0002 0000
0003 0000
0004 0000 ; 16 by 16 = 16-bit multiply for 6502 microprocessor
0005 0000 ; operand 1: sixteen bits in direct page loc MCAND1/MCAND1+1
0006 0000 ; operand 2: sixteen bits in direct page loc MCAND2/MCAND2+2
0007 0000 ; result: returned in X-Y (hi – lo)
0008 0000 ; all original register values are destroyed
0009 0000
0010 0000 MULT START
0011 0000 MCAND1 GEQU $80
0012 0000 MCAND2 GEQU $82
0013 0000
0014 0000 A200 LDX #0 initialize result (hi)
0015 0002 A000 LDY #0 initialize result (lo)
0016 0004
0017 0004 A580 MULT1 LDA MCAND1 operand 1 (lo)
0018 0006 0581 ORA MCAND1+1 operand hi (hi); if 16-bit operand 1 is 0, done
0019 0008 F016 BEQ DONE
0020 000A 4681 LSR MCAND1+1 get right bit, operand 1
0021 000C 6680 ROR MCAND1
0022 000E 9909 BCC MULT2 if clear, no addition to previous products
0023 0010 18 CLC else add oprd 2 to partial result
0024 0011 98 TYA
0025 0012 6582 ADC MCAND2
0026 0014 A8 TAY
0027 0015 8A TXA
0028 0016 6583 ADC MCAND2+1
0029 0018 AA TAX
0030 0019
0031 0019 0682 MULT2 ASL MCAND2 now shift oprd 2 left for poss. add next

iteration
0032 001B 2683 ROL MCAND2+1
0033 001D 4C0400 JMP MULT1
0034 0020
0035 0020 60 DONE RTS
0036 0021
0037 0021 END

Listing 14.1

The Western Design Center

207

0001 0000 KEEP KL.14.2.
0002 0000 65816 ON
0003 0000
0004 0000 ; 16 by 16 = 16 multiply
0005 0000 ; for 65802/65816 microprocessors in native mode with
0006 0000 ; index registers and accumulator already set to 16 bits
0007 0000 ; operand 1: sixteen bits in direct page location MCAND1
0008 0000 ; operand 2: sixteen bits in direct page location MCAND2
0009 0000 ; result: sixteen bits returned in accumulator
0010 0000
0011 0000 MULT START
0012 0000 MCAND1 GEQU $80
0013 0000 MCAND2 GEQU $82
0014 0000
0015 0000 18 CLC
0016 0001 FB XCE
0017 0002 C230 REP #$30
0018 0004
0019 0004 LONGA ON tell assembler about
0020 0004 LONGI ON index & accum settings
0021 0004
0022 0004 A90000 LDA #0 initialize result
0023 0007
0024 0007 A680 MULT1 LDX MCAND1 get operand 1
0025 0009 F00B BEQ DONE if operand 1 is zero, done
0026 000B 4680 LSR MCAND1 get right bit, operand 1
0027 000D 9003 BCC MULT2 if clear, no addition to previous products
0028 000F 18 CLC else add oprd 2 to partial result
0029 0010 6582 ADC MCAND2
0030 0012
0031 0012 0682 MULT2 ASL MCAND2 now shift oprd 2 left for poss add next time
0032 0014 80F1 BRA MULT1
0033 0016
0034 0016 38 DONE SEC
0035 0017 FB XCE
0036 0018 60 RTS
0037 0019 END

Listing 14.2

The Western Design Center

208

Along the same lines, notice that the first two lines of the subroutine are the mode directives – LONGA
ON and LONGI ON – which inform the assembler that all three registers have been set to sixteen bits. That
way, when the accumulator is loaded with immediate zero, the assembler will generate a sixteen-bit operand
rather than an incorrect eight-bit one, which would cause program failure when executed.

The RTS instruction is the intra-bank return instruction. An RTL instruction could be substituted if the
subroutine were intended to be called only by long jump-to-subroutine instructions, whether by code outside the
bank or by code within it. You should document such a requirement in the routine’s introductory comments.

Division

Probably the most common division routine written for eight-bit applications is the converse of the
multiply routine just covered – to divide one sixteen-bit number by another sixteen-bit number, returning both a
sixteen-bit quotient and a sixteen-bit remainder.

There are several methods for doing this, but all are based on the division principles for multi-digit
numbers that you learned in grade school. Line up the divisor under the left-most set of digits of the dividend,
appending an imaginary set of zeroes out to the right, and subtract as many times as possible. Record the
number of successful subtractions; then shift the divisor right one place and continue until the divisor is flush
right with the dividend, and no more subtractions are possible. Any non-subtractable value remaining is called
the remainder.

 12211 remainder 1
 2344 28622585
 - 2344

 5182585
 -2344
 2838585
 -2344
 494585
 -2344
 260185
 -2344
 25785
 -2344
 2345
 -2344

 1

Binary division is even easier since, with only ones and zeroes, subtraction is possible at each digit
position either only once or not at all:

 1100 remainder 1 12 remainder 1
 101 111101 5 61

-101 -5
 10101 11
 -101 -5
 01 6

-5
 1

The Western Design Center

209

Many programs calling this division routine will need only the quotient or only the remainder, although
some will require both. The routines here return both.

6502 Division

The 6502, with its three eight-bit registers, handles passing parameters to and from a division routine
even less smoothly than to and from a multiplication routine: not only do you need to pass it two sixteen-bit
values, but it needs to pass back two sixteen-bit results.

The solution used in Listing 14.3 is to pass the dividend and the divisor in two direct page double bytes,
then pass back the remainder in a direct page double byte and the quotient in two registers.

The Western Design Center

210

0001 0000 KEEP KL.14.3.
0002 0000
0003 0000
0004 0000 ; 16 divided by 16 = 16 divide for 6502 microprocessor
0005 0000 ; divide DIVDND / DIVSOR →XA (hi – lo); remainder in DIVDND
0006 0000 ; DIVDND and DIVSOR are direct page double byte cells
0007 0000 ; no special handling for divided by zero (returns $FFFF quotient)
0008 0000
0009 0000 DIV START
0010 0000 DIVDND GEQU $80
0011 0000 DIVSOR GEQU $82
0012 0000
0013 0000
0014 0002 A900 LDA #0
0015 0003 AA TAX initialize quotient (hi)
0016 0004 48 PHA initialize quotient (lo)
0017 0006 A001 LDY #1 initialize shift count = 1
0018 0008 A582 LDA DIVSOR get high byte of divisor
0019 000A 300B BMI DIV2 bra if divisor can’t be shifted left
0020 000A C8 DIV1 INY else shift divisor to leftmost position
0021 000B 0682 ASL DIVSOR
0022 000D 2683 ROL DIVSOR+1 test divisor
0023 000F 3004 BMI DIV2 done if divisor in leftmost position
0024 0011 C011 CPY #17 max count (all zeroes in divisor)
0025 0013 D0F5 BNE DIV1 loop if not done
0026 0015
0027 0015 38 DIV2 SEC now do division by subtraction
0028 0016 A580 LDA DIVDND subtract divisor from dividend
0029 0018 E582 SBC DIVSOR low bytes first
0030 001A 48 PHA save to difference temporarily on stack
0031 001B A581 LDA DIVDND+1 then subtract high bytes
0032 001D E583 SBC DIVSOR+1
0033 001F E583 BCC DIV3 bra if can’t subtract divisor from dividend
0034 0021 ; else carry is set to shift into quotient
0035 0021 8581 STA DIVDND+1 store high byte of difference
0036 0023 68 PLA get low subtract result from stack
0037 0024 8580 STA DIVDND
0038 0026 48 PHA restore low subtract result →stack for pull
0039 0027 68 DIV3 PLA throw away low subtract result
0040 0028 68 PLA bet quotient low byte from stack
0041 0029 2A ROL A shift carry →quotient (1 for divide, 0 for not)
0042 002A 48 PHA put back on stack
0043 002B 8A TXA get quotient high byte
0044 002C 2A ROL A continue shift →quotient (high)
0045 002D AA TAX put back in x
0046 002E 4683 LSR DIVSOR+1 shift divisor right for next subtract
0047 0030 6682 ROR DIVSOR
0048 0032 88 DEY decrement count
0049 0033 D0E0 BNE DIV2 branch unless done (count is 0)
0050 0035
0051 0035 68 DONE PLA get quotient (lo)
0052 0036 60 RTS
0053 0037
0054 0037 END

Listing 14.3

The Western Design Center

211

The label DONE is not needed (there is no branch to the location), but was added for clarity.
The routine at DIV2 may seem curious. The 6502 has no sixteen-bit compare; to compare two sixteen-

bit numbers, you must actually subtract them (setting the carry first, as is required before a subtract using the
65x SBC instruction). So the divisor is subtracted from the dividend, with the low result saved on the stack. If
the carry is clear, the divisor is too large to be subtracted from the dividend. Thus a branch is taken to DIV3,
where the low result is pulled but not used and the cleared carry is rolled into the quotient to acknowledge the
unsuccessful subtraction. If the carry is set, then the high result, still in the accumulator, is stored, and the low
result is pulled from the stack, stored, then restacked to be repulled atDIV3; since the carry is known to be set, it
does not need to be explicitly set before rolling it into the quotient to acknowledge the successful subtraction.

The quotient is returned in register X and A.
This 6502 divide routine takes 55 bytes.

65C02 Division

The 65C02 routine is virtually the same; only three early instructions (shown in Fragment 14.1) in the
6502 routine are changed to the code in Fragment 14.2, for a net savings of one byte, because the 65C02 has
instructions to push the index registers. This 65C02 divide routine takes 54 bytes, one byte fewer than the 6502
divide routine takes.

0000 A900 LDA #0
0002 AA TAX
0003 48 PHA

Fragment 14.1

0000 A200 LDX #0
0002 DA PHX

Fragment 14.2

65802/65816 Division

The 65802 and 65816 processors, with their registers extendable to sixteen bits, can handle sixteen-bit
division with ease. In the divide routine in Listing 14.4, the dividend and the divisor are passed in sixteen-bit
registers X and A respectively; the quotient is passed back in a sixteen-bit direct page location and the
remainder in X.

The Western Design Center

212

0001 0000 KEEP KL.14.4
0002 0000 65816 ON
0003 0000
0004 0000 ; 16 divided by 16 = 16 divide for 65802/65816 microprocessor
0005 0000 ; 16-bit divide: X /A →QUOTNT; remainder in X
0006 0000 ; QUOTNT is a 16-bit direct page cell
0007 0000 ; native mode: all registers set to 16-bit modes
0008 0000 ; no special handling for divide by zero (returns $FFFF quotient)
0009 0000
0010 0000 DIV START
0011 0000 QUOTNT GEQU $80
0012 0000
0013 0001
0014 0002
0015 0004
0016 0004 LONGA ON tell assembler about 16-bit
0017 0004 LONGI ON index & accumulator setting
0018 0004
0019 0004 6480 STZ QUOTNT initialize quotient to 0
0020 0006 A00100 LDY #1 initialize shift count to 1
0021 0009
0022 0009 0A DIV1 ASL A shift divisor: test leftmost bit
0023 000A B006 BCS DIV2 branch when get leftmost bit
0024 000C C8 INY else increment shift count
0025 000D C01100 CPY #17 max count (all zeroes in divisor)
0026 0010 D0F7 BNE DIV1 loop if not done
0027 0012
0028 0012 6A DIV2 ROR A put shifted-out bit back
0029 0013
0030 0013 ; now divide by subtraction
0031 0013 48 DIV4 PHA push divisor
0032 0014 8A TXA get dividend into accumulator
0033 0015 38 SEC
0034 0016 E301 SBC 1,S subtract divisor from dividend
0035 0018 9001 BCC DIV3 bra if can’t subtract; dividend still in X
0036 001A AA TAX store new dividend; carry=1 for quotient
0037 001B
0038 001B 2680 DIV3 ROL QUOTNT shift carry →quotient (1 for divide, 0 for not)
0039 001D 68 PLA pull divisor
0040 001E 4A LSR A shift divisor right for next subtract
0041 001F 88 DEY DIV4 decrement count
0042 0020 D0F1 BNE branch to repeat unless count is 0
0043 0022
0044 0022
0045 0023
0046 0024 60 RTS
0047 0025 END

Listing 14.4.

The Western Design Center

213

This divide routine for the 65802 and 65816 generates only 31 bytes, little more than half the bytes the
6502 and 65C02 divide routines generate.

As the introductory comments note, it requires the processor to be in native mode and the m and x
memory select flags to be in sixteen-bit modes before the routine is called; these requirements become doubly
obvious when you see in another of the comments that the values passed in the accumulator and an index
register are sixteen bits, with one of the two sixteen-bit results being passed back in one of the same registers.
Assemblers, however, do not read comments; they only read instructions and directives. That’s the reason for
the LONGA ON and LONGI ON directives at the beginning of the routine.

Calling an Arbitrary 6502 Routine

Particularly during the early phases of the processor’s life cycle, you might wish to mix existing 6502
code with your 65816 applications. The routine provided below provides a general purpose way of doing this.
Additionally, the context-saving code illustrated here could prove useful in other applications. You’ll find
similar code in the debugger in the next chapter, where it is needed to save the context between instructions of
the user program being traced.

The simplest way to call a 6502 routine from the 65802 or 65816 is found in Fragment 14.3.

0000 38 SEC
0001 FB XCE
0002 200080 JSR D06502

Fragment 14.3

Although this will work fine in some cases, it is not guaranteed to. In order to be assured of correct
functioning of an existing 6502 routine, the direct page register must be reset to zero and the stack pointer must
be relocated to page one. Although a 6502 program that uses zero page addressing will technically function
correctly if the direct page has been relocated, the possibility that the zero page may be addressed using some
form of absolute addressing, not to mention the probability that an existing 6502 monitor or operating system
routine would expect to use values previously initialized and stored in the zero page, requires that this register
be given its default 6502 value.

If the stack has been relocated from page one, it will be lost when the switch to emulation mode
substitutes the mandatory stack high byte of one. So first, the sixteen-bit stack pointer must be saved. Second,
if the 65802/65816 program was called from a 6502 environment, then there may be 6502 values on the original
6502 page-one stack; such a program must squirrel away the 6502 stack pointer on entry so it can be restored on
exit, as well as used during temporary incursions, such as this routine, into the 6502 environment.

The goal, then, is this: provide a mechanism whereby a programmer may simply pass the address of a
resident 6502 routine and any registers required for the call to a utility which will transfer control to the 6502
routine; the registers should be returned with their original (potentially sixteen-bits) values intact, except as
modified by the 6502 routine; and finally the operating mode must be restored to its state before the call.

When loading the registers with any needed parameters, keep in mind that only the low-order values
will be passed to a 6502 subroutine, even though this routine may be entered from either eight- or sixteen-bit
modes.

The call itself is simple; you push the address of the routine to be called, minus one, onto the stack,
typically using the PEA instruction. Then you call the routine, which executes the subroutine call and manages
all of the necessary housekeeping. Fragment 14.4 gives an example of calling the routine.

The Western Design Center

214

0000 A94100 LDA #’A’ character to be printed
0003 F4ECFD PEA $FDED-1 routine to be called
0006 200080 JSR JSR6502

Fragment 14.4

$FDED is the address of an existing Apple I I routine to print charact4ers, and JSR6502 is the routine described
in Listing 14.5.

The Western Design Center

215

0001 0000 KEEP KL.14.5
0002 0000 65816 ON
0003 0000
0004 0000 JSR6502 START
0005 0000
0006 0000
0007 0000 ; used by 65816 program called by 6502 code before moving stack
0008 0000
0009 0000 08 PHP save flags, including register sizes
0010 0001
0011 0001 C230 REP #$30 set all registers to 16 bits
0012 0003 LONGA ON
0013 0003 LONGI ON
0014 0003
0015 0003 DA PHX then push them
0016 0004 5A PHY push index regs
0017 0005 0B PHD push direct page base
0018 0006 48 PHA push accum
0019 0007
0020 0007 ; set up page-1 stack ptr, saving 65802 stack ptr in DP & on new stack
0021 0007 38 TSC save old stack pointer in
0022 0008 5B TCD direct page register
0023 0009 2900FF AND #$FF00 mask stack pointer to examine high byte
0024 000C C90001 CMP #$100
0025 000F F004 BEQ USESTK branch if stack already in page 1
0026 0011 AD4F00 LDA STK6502 else retrieve safe 6502 stack pointer
0027 0014 1B TCS and load stack pointer with it
0028 0015 0B USESTK PHD push old stack pointer onto new stack
0029 0016
0030 0016 ; set up a return-to-this-code return address on new stack
0031 0016 ; (direct page register points to old stack with orig accum at 1)
0032 0016
0033 0016 F42700 PEA RETURN-1 push local return address (out exit code)
0034 0019 D40C PEI (12) push routine addr from prev stack onto this one
0035 001B A50A LDA 10 shuffle return address
0036 001D 850C STA 12 to bottom of old stack
0037 001F A501 LDA 1 restore accum from prev stack using dp reg
0038 0021
0039 0021 ; set direct page to zero page
0040 0021 F40000 PEA 0 set direct page
0041 0024 2B PLD to zero page
0042 0025
0043 0025 ; switch to emulation mode
0044 0025 38 SEC
0045 0026 FB XCE switch to emulation mode
0046 0027 LONGA OFF
0047 0027 LONGI OFF
0048 0027
0049 0027 ; and call 6502 routine
0050 0027 60 RTS JSR (via RTS) to 6502 routine @ stacked addr
0051 0028
0052 0028 ;
0053 0028 ; 6502 routine returns here
0054 0028 08 RETURN PHP now save returned flag results from 6502 code
0055 0029 EB XBA save returned A accum in B accum
0056 002A 68 PLA get flags into A accum
0057 002B 2B PLD get old stack pointer
0058 002C
0059 002C ; address old stack values as direct page:
0060 002C ; dp (stack) offset 12.13 = return address back to 65802/65816 code
0061 002C ; 10.11 = unused (orig held addr of 6502 routine)
0062 002C ; 9 = orig P flags
0063 002C ; 7.8 = orig 16-bit X
0064 002C ; 5.6 = orig 16-bit Y
0065 002C ; 3.4 = orig DP
0066 002C ; 1.2 = orig 16-bit accum

The Western Design Center

216

0067 002C ; 0 = was next available stack location
0068 002C
0069 002C ; combine returned condition flags with 65802/816 mode flags
0070 002C 29CF AND #%11001111 mask out m & x flags
0071 002E 850B STA 11 save for a minute; dp:11 is free
0072 0030 A509 LDA 9 get orig P value
0073 0032 2930 AND #%00110000 mask out all but m & x flags
0074 0034 050B ORA 11 combine new condition flags with old m & x
0075 0036 850B STA 11 store new P @ 11
0076 0038 ; 9.10 in old stack now free
0077 0038
0078 0038 ; save registers returned from 6502 routine
0079 0038 EB XBA swap: 6502 accum back to A
0080 0039 8501 STA 1 save returned accumulator low
0081 003B 8405 STY 5 save returned Y low
0082 003D 8607 STX 7 save returned X low
0083 003F
0084 003F 18 CLC
0085 0040 FB XCE restore native mode
0086 0041
0087 0041 C230 REP #$30 extend register size back to 16 bits
0088 0043 LONGA ON
0089 0043 LONGI ON
0090 0043
0091 0043 0B PHD
0092 0044 FA PLX
0093 0045 9A TXS restore old stack pointer
0094 0046
0095 0046 ; but still address old stack via direct page
0096 0046
0097 0046 68 PLA copy accum to free stack bytes @ dp:9.10.
0098 0047 8509 STA 9
0099 0049 ; stack was moved by PLA, but DP was not
0100 0049
0101 0049 ; pull registers from stack
0102 0049 2B PLD restore old direct page
0103 004A 7A PLY
0104 004B FA PLX
0105 004C 68 PLA load accumulator again
0106 004D 28 PLP get 6502 condition flags; 65802/816 modes
0107 004E
0108 004E 60 RTS done!
0109 004F
0110 004F 8001 STK6502 DC A’$180’ arbitrary ‘safe’ stack in page one
0111 0051 ; smart user will store last page one
0112 0051 ; stack value here before switching stack
0113 0051 ; out of page one
0114 0051
0115 0051 END

Listing 14.5

The routine is entered with the return address on the top of the stack, and the go-to address of the 6502
routine at the next location on the stack. Since you want to be able to restore the m and x mode flags, the first
thing the routine does is push the status register onto the stack. The REP #$30 instruction, which follows, puts
the processor into a known state, since the routine can be called from any of the four possible register-size
modes. The long accumulator, long index mode is the obvious choice because it encompasses all the others.
The user registers, including the direct page register, are saved on the stack, and then the stack pointer itself is
saved to the direct page register via the accumulator. This has two benefits: it preserves the value of the old
stack pointer across a relocation of the stack, and provides a means of accessing all of the data on the old stack
after it has been relocated. This technique is of general usefulness, and should be understood clearly. Figure
14.1, which shows the state of the machine after line 0034 (the PEI instruction), helps make this clear.

The stack must be relocated to page one only if it is not already there. If it is elsewhere, then the last
6502 page-one stack pointer should be restored from where it was cubbyholed when the 65802/65816 program

The Western Design Center

217

took control and moved the stack elsewhere. If there is no previous 6502 stack to avoid, any page one address
could be used to initialize the temporary 6502 stack needed.

The first item that goes onto the new stack is the value of the old stack pointer, now found in the direct
page register. Next, a local return address must be pushed on the stack for when the called 6502 routine
executes an RTS.

While the direct page register was pushed onto the new stack, it retains its value, and still points to the
old stack; so although the stack pointer has been relocated, you still have access to the values on the old stack
via direct page addressing. One of the needed items is the go-to address, the address of the 6502 routine to be
called. Since the size of all of the elements pushed on the stack is known, by referencing the direct page
location 12, this value is retrieved. A PEI (push indirect) instruction is used to transfer the routine to be called
from the old stack (now being referenced via the direct page) to the new stack. This frees up the double byte on
the old stack dp:12.13, the bottom of the old stack; the return address is shuffled in from dp:10.11, freeing those
two bytes.

The Western Design Center

218

FD

EC

ADDRESS OF
6502 ROUTINE

C3

4F

RETURN
ADDRESS

P P REGISTER

XH

XL
X REGISTER

YH

YL
Y REGISTER

DPH

DPL
DIRECT PAGE

AH

40 AL
ACCUMULATOR

20

OLD← STACK
POINTER

$4020

30

4D

RETURN
ADDRESS

FD

EC

ADDRESS← OF
6502 ROTUINE

STACK

POINTER

STACK
DIRECT← PAGE
(OLD STACK)

Figure 14-1 Stack Snapshot after PEI (12) Instruction

The accumulator was used during these operations, and must be restored because it may contain one of
the parameters required by the 6502 routine. Like the go-to address, the accumulator is loaded from the old
stack using direct page addressing.

Having restored the accumulator, all that remains is to set the direct page register to zero; since no
registers can be modified at this point, this is accomplished by pushing a zero onto the stack, and then pulling it
into the direct page register.

When you switch the processor into emulation mode, the environment is as it should be; the new stack
is now set up to transfer control to the 6502 subroutine via the execution of an RTS instruction which, rather
than exiting the JSR6502 routine, performs a kind of jump indirect to the value on top of the stack, the go-to
address. The use of the RTS to transfer control to the 6502 routine is the reason the address minus one is put on
the stack to begin with. This requirement could be eliminated if the go-to address was decremented before
being pushed on the page one stack; but this would require the execution of two additional instructions, one to
load it into a register, and one to decrement. PEI moves the value directly onto the stack from the direct page.

The Western Design Center

219

When control returns from the 6502 routine, the flags, representing the 6502 routine’s results, are
pushed, then pulled into the eight-bit A accumulator after its value has been saved by transferring it to the B
accumulator with an XBA. The only other item left on the new stack is the old stack pointer. This is pulled into
the direct page register, which immediately restores access to all of the values pushed onto the old stack.

The condition code bits in the returned status register are merged with the mode flags in the original
status register. The eight-bit result is stored in the location immediately below the return address.

The register values upon return are saved into the locations where the registers were originally pushed
on the stack. Since the processor is still in emulation mode, only the low bytes are stored; the high bytes of any
of the 65802/65816 registers are always preserved (which means that if a low byte is unchanged, then the entire
double-byte value is preserved).

The native mode is restored. The registers are extended to sixteen bits. The stack pointer is restored
from the direct page register.

There remains a gap on the stack; the value of the accumulator is copied there. The registers are now
restored, with the accumulator being pulled a second time from its new location.

Control is now back with the calling 65816 program, the processor never the wiser for having been
transformed into a 6502.

This coding presumes that the calling code, the switching routine, and the 6502 routine are all located in
the same bank, bank zero. It also assumes a data bank of zero. Should the 6502 routine be in a non-zero bank,
then you should save its program bank to a safe location prior to the switch to emulation mode so that it cannot
be lost in case of interrupt. You should also check your emulation mode interrupt service routines to be sure
they restore the program bank from the safe location prior to returning.

Finally, should the calling code be in a bank different from the 6502 routine, you’ll have to locate the
switching code in the same bank with the 6502 routine (its return will be an RTS); call the switching code with
a JSL; move the pushed program bank down two bytes to the bottom of the stack before relocating the return
address; and return to the calling code via an RTL.

Testing Processor Type

A related utility routine (Listing 14.6) checks the processor type, allowing code targeted for the large
6502 installed-base to take advantage of a 65C02 or 65802/65816 if available. The processor is assumed to be
in emulation mode if it is a 65816 or 65802.

This routine takes advantage of the fact that the 65C02 and 65816 set the sign flag correctly in the
decimal mode, while the 6502 does not. The sign flag is set (minus) after loading $99 (a negative two’s-
complement number). When one is added to BCD 99, the result is BCD 0, a positive two’s-complement
number. On the 6502, adding one decimal mode does not affect the sign flag. On the 65C02 and 65816, the
sign flag is cleared to reflect that adding one results in a positive value (zero).

Having distinguished between the 65C02 and the 6502, the code further distinguishes between the
65C02 and 65816 by trying to execute one of the new 65816 instructions – specifically, the XCE instruction. If
a 65C02 is in use, the execution of XCE has no effect; it simply performs a no-op, and the carry flag remains
clear. On a 65816 in emulation mode, the carry flag would be set after exchanging.

The Western Design Center

220

0001 0000 KEEP KL.14.6
0002 0000 65816 ON
0003 0000
0004 0000 LONGA OFF
0005 0000 LONGI OFF generate ‘6502’ code
0006 0000
0007 0000 ; CHECK - -
0008 0000 ; CHECK PROCESSOR TYPE
0009 0000 ; MINUS = 6502
0010 0000 ; CARRY CLEAR = 65C02
0011 0000 ; CARRY SET = 65816
0012 0000
0013 0000 CHECK START
0014 0000 F8 SED Trick with decimal mode used
0015 0001 A999 LDA #$99 set negative flag
0016 0003 18 CLC
0017 0004 6901 ADC #$01 add 1 to get new accum value of 0
0018 0006 3006 BMI DONE branch if 0 does not clear negative flag: 6502
0019 0008
0020 0008 ; else 65C02 or 65802 if neg flag cleared by decimal-mode arith
0021 0008
0022 0008 18 CLC
0023 0009 FB XCE OK to execute unimplemented C02 opcodes
0024 000A 9002 BCC DONE branch if didn’t do anything:65C02
0025 000C FB XCE switch back to emulation mode
0026 000D 38 SEC set carry
0027 000E D8 DONE CLD binary
0028 000F 60 RTS
0029 0010 END

Listing 14.6

Compiler-Generated 65816 Code for a RecursiveProgram

Although it is not directly relevant to assembly-language programming per se, a look at how a compiler
might generate 65816 code provides another angle on 65816 program design. You may also find it helpful
when you are writing in a high-level language to have some idea as to what kind of code your compiler might
be generating.

For the brief example presented here, an integer-only subset of the C programming language – such as
the dialect known as “small C” – is used. To understand C, it is important to understand the concept of the
pointer. Effectively, a pointer is a variable that holds the address of another data structure. C programmers are
particularly known for their liberal use of pointers, primarily because they provide a method to manipulate data
structures that is very close to the machine level. The concept of the variable itself is an abstraction which
generally results in additional overhead.

The most notable thing about the use of pointers in the example is that they are limited to sixteen bits,
even though the 65816 has an address space of sixteen megabytes. The sixteen-bit machine word size was
chosen both for pointers and for the storage type int; this lets many operations be implemented using one or two
65816 instructions. As a consequence, the memory model used with this compiler limits data storage to 64K;
program storage is also limited to 64K. If the loader for this hypothetical compiler supports loading of constant
data and program code into separate banks, a total of 128K memory would be available to the program.

The first line of the program, shown in Listing 14.7, is the declaration of the function main. By
convention, the function main is always called as the entry point to a program; it typically (but not necessarily)
is the first routine coded, as it is in this example.

The curly braces define the function block; the first statement in the block is the declaration of y, which
is a pointer variable. In C, pointers are typed by the type of the data object to which they point.

The Western Design Center

221

main ();
{

char *y;
y = “A string to invert”;
invert (y);

}

invert (yy) char *yy;
{

if (*yy)
{

invert (yy+1);
putchar (*yy);

}
}

Listing 14.7

The first executable statement is the assignment of the string constant “A string to invert” to the
variable y. In this context, the y appears without the asterisk, because the variable is being given a value – an
address – rather than the string it points to. The C compiler always returns the address of a string and zero-
terminates it when it encounters a string constant.

The next statement is a call to the function invert with a parameter of y (which is the variable that just
received a value in the preceding statement). Invert is the function that actually does the work of this program,
which, as you may have guessed by now, prints an inverted (backwards) string.

After the closing brace for main comes the declaration of the function invert. Invert takes a parameter
– a pointer to a character. When invert is called from main with y as the parameter, yy assumes the value of y.

The code of invert tests the value pointed to by yy; the first time invert is called, this will be the letter
“A”, the first character in the string constant. The test is whether or not the value “at yy” is non-zero or not; if it
is non-zero, the statements within the braces will be executed. If (or when) the value is equal to zero, the code
within the braces is skipped.

Looking at the first of the pair of lines contained within the braces, you will find that it is a call to
invert – the same function presently being defined. This calling of a routine from within itself is called
recursion, and programming languages such a C or Pascal, which allocate their local variables on the stack,
make it easy to write recursive programs such as this one. The merits of using recursion for any given problem
are the subject for another discussion; however, as seen in the example, it seems quite useful for the task at
hand. What happens when this function calls itself will be explored in a moment, as the generated code itself is
discussed.

The last executable line of the program calls the routine putchar, an I/O routine that outputs the value
passed it as a character on the standard (default) output device.

Returning to the top of the program, Listing 14.8 shows the code generated by the compiler to execute
the C program; it is inter-listed with the source code – each line of compiler source appears as an assembler-
source comment.

Before the first statement is compiled, the compiler has already generated some code: a jump to a
routine labeled CCMAIN. CCMAIN is a library routine that performs the “housekeeping” necessary to
provide the right environment for the generated code to run in. At the very least, CCMAIN must make sure the
processor is in the native mode, and switch into the default (for the compiler) sixteen-bit index and accumulator
word sizes. If the operating system supports it, it should also initialize the variable argc and argv, which allow
the programmer access to command-line parameters, although they are not used in this example. Finally,
CCMAIN will call main to begin execution of the user-writer code itself.

The Western Design Center

222

0001 0000 KEEP A.OUT
0002 0000 65816 ON
0003 0000
0004 0000 CC0 START
0005 0000 4C0080 JMP CCMAIN
0006 0003 END

0007 0000 ; main ();
0008 0000 main START
0009 0000 ;{
0010 0000 ; char *y;
0011 0000 ; y = “A string to invert”;
0012 0000 DA PHX
0013 0001 A90080 LDA #CCC0+0
0014 0004 8301 STA 1,S
0015 0006 ; invert (y);
0016 0006 A301 LDA 1,S
0017 0008 48 PHA
0018 0009 200080 JSR invert
0019 000C FA PLX
0020 000D ;}
0021 000D FA PLX
0022 000E 60 RTS
0023 000F END

0024 0000 ; invert (yy) char *yy;
0025 0000 invert START
0026 0000 ;{
0027 0000 ; if (*yy)
0028 0000 A00000 LDY #0
0029 0003 B303 LDA (3,S),Y
0030 0005 29FF00 AND #$FF
0031 0008 D003 BNE *+5
0032 000A 4C1F00 JMP CC3
0033 000D ; {
0034 000D ; invert (yy+1);
0035 000D A303 LDA 3,S
0036 000F 1A INC A
0037 0010 48 PHA
0038 0011 200080 JSR invert
0039 0014 FA PLX
0040 0015 ; putchar (*yy)
0041 0015 A00000 LDY #0
0042 0018 B303 LDA (3,S),Y
0043 001A 48 PHA
0044 001B 200080 JSR putchar
0045 001E FA PLX
0046 001F ; }
0047 001F ;}
0048 001F 60 CC3 RTS
0049 0020 END

0050 0000
0051 0000 CCC0 START
0052 0000 41207374 DC I1’$41,$20,$73,$74,$72,$69,$6E,$67’
0053 0008 20746F20 DC I1’$20,$74,$6F,$20,$69,$6E,$76,$65’
0054 0010 727400 DC I1’$72,$74,$00’

The Western Design Center

223

0055 0013 END

0056 0000
0057 0000 ; ‘LIBRARY’ ROUTINES - - AS IF TO BE LINKED TO
0058 0000 ; SOURCE PROGRAM
0059 0000
0060 0000 CCMAIN START
0061 0000 18 CLC
0062 0001 FB XCE
0063 0002 C230 REP #$30
0064 0004 200080 JSR MAIN
0065 0007 38 SEC
0066 0008 FB XCE
0067 0009 60 RTS
0068 000A END

0069 0000
0070 0000

0071 0000
PUTCHA
R

START

0072 0000 COUT GEQU $FDED Apple I I character output
0073 0000
0074 0000
0075 0000 A303 LDA 3,S get parameter from stack
0076 0002
0077 0002 08 PHP
0078 0003 38 SEC
0079 0004 FB XCE
0080 0005 20EDFD JSR COUT
0081 0008 18 CLC
0082 0009 FB XCE
0083 000A
0084 000A 28 PLP
0085 000B 60 RTS
0086 000C END

Listing 14.8

The declaration of main causes an assembler START statement to be output; this simply defines the
beginning of the subroutine or function. The declaration char *y will cause the PHX instruction to be
generated after the first line of executable code is generated; this reserves space for one variable (the pointer y)
on the stack. That first executable code line is the assignment y = “A string to invert”. This causes the
address of the string constant, which will be temporarily stored at the end of the generated program, to be
loaded into the accumulator. The address just loaded into the accumulator is now stored on the stack in the
memory reserved for it by the PHX instruction; the value of X that was pushed onto the stack was meaningless
in itself.

The next statement to be compiled is a call to the function invert with the variable y as the parameter.
This causes the value stored on the stack to be loaded back into the accumulator, where it is then pushed onto
the stack. All parameters to function calls are passed on the stack.

Note that the accumulator already contained the value stored on the top of the stack; the LDA 1,S
instruction was redundant. However, the hypothetical compiler in this example does not optimize across
statements, so the potential optimization – elimination of the load instruction – cannot be realized. Once the
parameter is on the top of the stack, the function itself is called via a JSR instruction. Since the program space
is limited to 64K, only a sixteen-bit subroutine call is used. After the call returns, the PLX instruction removes
the no-longer-needed parameter from the stack. The right bracket indicating the end of the function main

The Western Design Center

224

causes the compiler to generate another PLX to remove the viable storage, an RTS instruction, and an
assembler END statement.

Invert is defined as having one parameter, the character pointer yy. By declaring the function in this
way, the compiler knows to generate code to look for the variable yy on top of the stack whenever a reference to
it is made. You can see how this is done by looking at the code generated for the first line, which tests the value
at yy (rather than the value of yy) to see whether it is true, that is, not equal to zero. To get this value, the stack
relative indirect indexed addressing mode is used. First the Y register is loaded with zero, so that the first
element pointed to by the indirect value on the stack is accessed. The stack offset used is three, rather than one,
because when the subroutine call was made, after the parameter was pushed onto the stack, the return address
was pushed onto the stack, on top of the parameter.

After the value is loaded, it must be ANDed with $FF to mask out the high-order contents, since this is
a character (one-byte) type of variable.

If the character is not equal to zero, as it is not the first time through, the JMP CC3 instruction is
skipped, and execution continues with the code generated for the C source statements inside the braces.

The first statement is the recursive call to invert. Similar to the call from main, a parameter is pushed
onto the stack. Since an expression (yy+1) is being passed, however, it must first be evaluated. First the value
of yy is loaded from the stack, and then one is added to it. Although this hypothetical compiler does not
optimize across statements, it apparently does a pretty good job within them, for it has optimized the addition of
one to a single increment instruction.

Invert is then called again. If you start counting them, you will find that more pushes than pulls will
have been made at this point; in other words, the stack is growing. When invert is reentered, the value it finds
on the stack is the starting address of the string literal plus one; in other words, the second element is being
addressed. As long as the value pointed to by the parameter passed to invert is non-zero, invert will continue
to be called recursively, and the stack will continue to grow. When the last element (with the value of zero) is
reached, the recursive function “bottoms out”; the jump to CC3 that occurs when the value at yy is equal to zero
jumps directly to an RTS instruction. This causes control to return to the next statement after the call invert.
The value of yy in the most recently called invocation (the value at 3,S) will be a pointer to the last character in
the string; it is this character that is first loaded into the accumulator, then pushed, output via a call to the
routine putchar, then pulled again.

Upon return from putchar, control falls through to the RTS instruction, and the next set of values on
the stack are processed. This continues until all of the characters pointed to by the values on the stack have
been printed, in the reverse order in which they were found. Finally, the last return executed pulls the address
of the return address in main off the stack, and the program terminates.

The Same Example Hand-Coded in Assembly Language

A distinctive characteristic of the preceding high-level language programming example
was that the algorithm employed involved recursion. Consider Listing 14.9, which is the same
algorithm hand-coded in assembly language; it is much more efficient than the compiler-
generated example.

The Western Design Center

225

0001 0000 KEEP KL.14.9
0002 0000 65816 ON
0003 0000
0004 0000 MAIN START
0005 0000 18 CLC
0006 0001 FB XCE
0007 0002
0008 0002 C210 REP #$10 16-bit index registers
0009 0004 LONGI ON
0010 0004 E220 SEP #$20 8-bit accumulator
0011 0006 LONGA OFF
0012 0006
0013 0006 A21900 LDX #STRING
0014 0009
0015 0009 B500 INVERT LDA 0,X
0016 000B F009 BEQ DONE
0017 000D 48 PHA
0018 000E E8 INX
0019 000F 200900 JSR INVERT
0020 0012 68 PLA
0021 0013 200080 JSR COUT
0022 0016
0023 0016 38 DONE SEC
0024 0017 FB XCE
0025 0018 60 RTS
0026 0019
0027 0019 41207374 STRING DC C’A string to invert ‘,H’00’
0028 002C END

0029 0000
0030 0000
0031 0000 ; COUT
0032 0000 ; machine-department routine to output a character
0033 0000 ;
0034 0000 COUT START
0035 0000 ECOUT GEQU $FDED Apple / / COUT
0036 0000 48 PHA Save registers
0037 0001 DA PHX
0038 0002 5A PHY
0039 0003 08 PHP and status,
0040 0004 38 SEC switch to emulation
0041 0005 FB XCE
0042 0006 20EDFD JSR ECOUT call 6502 routine
0043 0009 18 CLC
0044 000A FB XCE restore native mode
0045 000B 28 PLP restore status
0046 000C 7A PLY restore registers
0047 000D FA PLX return
0048 000E 68 PLA
0049 000F 60 RTS
0050 0010 END

Listing 14.9

The Western Design Center

226

Because the more elaborate parameter-passing and variable-allocation requirements of the C language
can be bypassed, the example here is much more efficient. (Although some further optimization of the
compiler-generated code, as noted, is possible, the code in the example would probably be a typical result.)

To start with, a more intelligent decision about the mode flags is made right from the start, rather than
coping with the default sixteen-bit accumulator size of the compiler code by making out the high-order byte
whenever a character is loaded.

Secondly, full use of the index register is made, both to access the data and as the parameter-passing
mechanism. Rather than push successive pointers to the inverted character string on the stack, the character
itself is stored.

If this routine will be used to invert a single, known string (as opposed to making INVERT a
subroutine for inverting any string, the beginning character of which is pointed to by the X register), then any
assembly language programmer would simply write the code found in Listing 14.10. When the assembler
evaluates the LDX instruction’s operand, the “L:” function determines the length of STRING.

The Sieve of Eratosthenes Benchmark

With all of the different factors that affect system performance, it is difficult to find a clear criterion by
which to judge a processor’s performance. Rightly or wrongly, the speed with which a processor runs a
standard “benchmark” program is often used in forming a judgement of it. One of the most commonly used
(and cited) benchmarks is the Sieve of Eratosthenes algorithm. The use of the Sieve program first gained
popularity as the result of articles written by Jim Gilbreath and Gary Gilbreath, appearing in BYTE magazine
(September 1980, page 180), and updated in January 1983 (page 283).

The Western Design Center

227

0001 0000 KEEP KL.14.10
0002 0000 65816 ON
0003 0000
0004 0000 MAIN START
0005 0000
0006 0000 C210 REP #$10 16-bit index registers
0007 0002 LONGI ON
0008 0002 E220 SEP #$20 8-bit accumulator
0009 0004 LONGA OFF
0010 0004
0011 0004 A21700 LDX #L:STRING-1 get length of string less one
0012 0007
0013 0007 BD1100 INVERT LDA STRING,X get a char from end of string
0014 000A 200080 JSR COUT and output it
0015 000D CA DEX point to previous char
0016 000E 10F7 BPL INVERT and loop through all characters
0017 0010 60 DONE RTS
0018 0011 41207374 STRING DC C’A string to invert ‘,H’00’
0019 0024 END

0020 0000
0021 0000
0022 0000 ; COUT
0023 0000 ; machine-dependent routine to output a character
0024 0000 ;
0025 0000 COUT START
0026 0000 ECOUT GEQU $FDED Apple I I COUT
0027 0000 48 PHA Save registers
0028 0001 DA PHX
0029 0002 5A PHY
0030 0003 08 PHP and status,
0031 0004 38 SEC switch to emulation
0032 0005 FB XCE
0033 0006 20EDFD JSR ECOUT call 6502 routine
0034 0009 18 CLC
0035 000A FB XCE restore native mode
0036 000B 28 PLP restore status
0037 000C 7A PLY restore registers
0038 000D FA PLX return
0039 000E 68 PLA
0040 000F 60 RTS
0041 0010 END

Listing 14.10

The Sieve program calculates the prime numbers between 3 and 16,381; it is based on an algorithm
originally attributed to the Greek mathematician Eratosthenes. The basic procedure is to eliminate every nth
number after a given number n, up to the limit of range within which primes are desired. Presumably the range
of primes is itself infinite.

As well as providing a common yardstick with which to gauge the 65816, the Sieve program in Listing
14.11 provides an opportunity to examine performance-oriented programming; since the name of the game is
performance, any and all techniques are valid in coding an assembly-language version of a benchmark.

Four variable locations are defined for the program. ITER counts down the number of times the
routine is executed; to time it accurately, the test is repeated 100 times. COUNT holds the count of primes
discovered. K is a temporary variable. And PRIME is the value of the current prime number.

The variable I has no storage reserved for it because the Y register is used; it is an index counter. Y is
used instead of X because certain indexed operations need the absolute,X addressing mode.

The Western Design Center

228

The constant SIZE is equal to one-half of the range of numbers within which the primes are to be
discovered; this algorithm ignores all even numbers (even numbers being non-prime). The first element in the
array represents 3, the second 5, the third 7, and so on.

0001 0000 KEEP KL.14.11
0002 0000 65816 ON
0003 0000
0004 0000 ERATOS START
0005 0000
0006 0000 SIZE GEQU 8192
0007 0000
0008 0000 ITER GEQU $80
0009 0000 COUNT GEQU $82
0010 0000 .K GEQU $84
0011 0000 PRIME GEQU $86
0012 0000 FLAGS GEQU $4000
0013 0000
0014 0000 18 CLC enter native mode
0015 0001 FB XCE
0016 0002 C230 REP #$30 with 16-bit A and X
0017 0004 LONGI ON
0018 0004 LONGA ON
0019 0004
0020 0004
0021 0004 A96400 LDA #100 do one hundred iterations
0022 0007 8580 STA ITER in order to time
0023 0009
0024 0009 6482 AGAIN STZ COUNT zero count (# of primes)
0025 000B
0026 000B A0FF1F LDY #SIZE-1 for I = 0 to size
0027 000E A9FFFF LDA #$FFFF
0028 0011 8D0040 STA FLAGS (handle zero case)
0029 0014
0030 0014 990040 LOOP STA FLAGS,Y
0031 0017 88 DEY flags[I] = TRUE
0032 0018 88 DEY
0033 0019 10F9 BPL LOOP
0034 001B
0035 001B A00000 LDY #0 for i = 0 to size
0036 001E ; (“i” stored in Y)
0037 001E
0038 001E
0039 001E B9FF3F MAIN LDA FLAGS-1,Y if flags[I] then
0040 0021 101E BPL SKIP minus-one offset: to see
0041 0023 ; high bit in long a mode
0042 0023 98 TYA
0043 0024 0A ASL A prime = I + I + 3
0044 0025 1A INC A
0045 0026 1A INC A
0046 0027 1A INC A
0047 0028 8586 STA PRIME
0048 002A
0049 002A 98 TYA
0050 002B 18 CLC
0051 002C 6586 ADC PRIME k = i + prime
0052 002E
0053 002E C90120 TOP CMP #SIZE+1 while k <= size
0054 0031 B00C BGE SKIP2
0055 0033

The Western Design Center

229

0056 0033 AA TAX flags[k] = FALSE
0057 0034
0058 0034 E220 SEP #$20 clear only
0059 0036 9E0040 STZ FLAGS,X one byte
0060 0039 C221 REP #$21 clears carry as well
0061 003B
0062 003B 6586 ADC PRIME k = k + prime
0063 003D 80EF BRA TOP (end while k <= size)
0064 003F
0065 003F E682 SKIP2 INC COUNT
0066 0041
0067 0041 C8 SKIP INY (end for i = 0 to size)
0068 0042 C00120 CPY #SIZE+1
0069 0045 D0D7 BNE MAIN
0070 0047
0071 0047 C680 DEC ITER
0072 0049 D0BE BNE AGAIN
0073 004B
0074 004B 38 SEC
0075 004C FB XCE
0076 004D 60 RTS
0077 004E
0078 004E
0079 004E END

Listing 14.11

The program begins by entering the native mode and extending the user registers to sixteen bits. ITER
is initialized for 100 iterations. An array (starting at FLAGS) of memory of size SIZE is initialized to $FF’s,
two bytes at a time.

The routine proper now begins. Y is initialized with zero, and control falls into the main loop. The
high-order bit of each cell of the array FLAGS is tested. Initially, they are all set, but the algorithm iteratively
clears succeeding non-prime values before they are tested by this code. If the high bit is clear, this number has
already been eliminated by the algorithm; it is non-prime. Notice that the high-order bit of the FLAG[I] (or
FLAG[Y]) array is desired; however, since the processor is in sixteen-bit mode, the high bit will be loaded from
the memory location at the effective address plus one. To overcome this, the base of the array is specified as the
actual base minus one; this calculation is performed by the assembler during generation of the object code.

If the current value has not been cleared, the algorithm calls for the number which is two times the
current index value plus three (this converts the index to the array values of 3, 5, 7 . . .) to be the next value
for PRIME. This prime number is generated quickly by transferring the Y index register into the accumulator,
shifting it left once to multiply by two, and incrementing it three times. Remember, this number is generated
from the current index only if the index value has not already been eliminated as being non-prime.

This prime number is then added to the current index, and the array elements at this offset, and at all
succeeding indices every PRIME value apart are eliminated from the array as being non-prime. They have the
current prime number as one of their factors. The most significant thing to note here in the code is that only one
byte can be cleared; the accumulator must temporarily be switched into the eight-bit mode to accomplish this.
However, since the next operation is an addition, an optimization is available: both the sixteen-bit mode can be
restored and the carry cleared in a single REP operation.

The program now loops, checking to see if the next index value has been eliminated; this process
continues until the index reaches the limit of SIZE.

You may be wondering what the result is: at 4 MHz, ten iterations are completed in 1.56 seconds, which
is twice as fast as a 4MHz 6502. The January, 1983 BYTE article cites results of 4.0 seconds for a 5MHz 8088,
1.90 seconds for an 8 MHz 8086, and .49 seconds for an 8 MHz 68000; an 8 MHz 65816 would yield .78
seconds.

The Western Design Center

230

15) Chapter Fifteen
DEGUG16 – A 65816 Programming Tool

This chapter consists of a complete 65816 application example and a detailed discussion of its dozen or
so routines. Where possible, different programming techniques have been employed in an effect to illustrate
some of the different methods of coding that are available.

The program, DEBUG16, is a rudimentary step-and-trace debugger. A debugger is a tool used during
software development to isolate and reveal sources of error in the program being tested. In other words, it helps
the programmer eliminate the bugs in a program, hence the name. A step-and-trace function lets the program
be halted after the execution of each single instruction and the registers and possibly other memory locations to
be examined. This effectively provides a “view” into the otherwise invisible internals of the processor.

The ability to trace programs in this manner can be extremely useful: uninitialized variables, wild
branches, infinite loops – all of the common flaws that normally result in your program going away to never-
never land with little clue to their reasons for departure – are made visible. In addition to display the register
contents, a tracer will also list the opcode mnemonic and display the operand using the same syntax as
originally specified in the source program. This process is called disassembly. Although the tracing program
can accurately regenerate an approximation of the source line that resulted in a given instruction, it cannot
determine any of the symbolic labels that might have been given to the address found by the tracer in the
assembler source program. More sophisticated debuggers called symbolic debuggers let you load a program’s
symbol table created by either the link editor or assembler; the debugger’s disassembly routine looks up each
address in a disassembly in the symbol table and insert labels in place of addresses wherever a correspondence
is found.

DEBUG16 also has a LIST entry point, at which its disassembler can be used apart from its tracer; this
lets you re-create a listing of a program without having the source code available. Again, there is no symbolic
information (labels) available. Additionally, the disassembler in its current form does not deal with variable
lengths of immediate operands when in the LIST mode.

The tracer can display the dissembled instruction and register values either one instruction at a time, or
allow the trace to execute in free-running mode. When only one instruction is disassembled at a time, the tracer
is said to be single-stepping; pressing a key lets the next instruction be executed. Pressing RETURN toggles
the tracer into free-running mode. While free-running, a single key press will pause the trace. Pressing any key
except RETURN resumes tracing ; RETURN switches back to single-stepping.

The basic theory of operation of the tracer is simple. Starting with the first program instruction, the
tracer calculates the length of the instruction by first determining the addressing mode associated with the
opcode, and then referring to a table that gives the instruction lengths for the different addressing modes. It can
therefore determine the location of the next instruction that follows the current one. It places a BRK instruction
at that location, having first saved the original value stored there. Next, it executes (via a JMP instruction) the
current instruction. As soon as that instruction completes, the program counter increments to the next
instruction, where it encounters the insert BRK. BRK initiates an interrupt cycle that returns control back to
the tracer, saves copies of all of the processor’s register contents to memory, then calls a routine which displays
them, along with the disassembled instruction.

When the next step (next instruction) is to be executed, the BRK instruction is replaced with its original
value, and the cycle is repeated. In this way the program is able to gain control of the processor “in between”
the execution of each instruction.

The exception to this method is whenever an instruction (such as a branch or jump) is encountered
which can change the flow of control; in these cases, the target location must be determined (by examining the
operand of the instruction), and a BRK inserted at that location instead.

The disassembly output looks like Figure 15.1.

The Western Design Center

231

00:2000 4CCB22 JMP $22CB
00:2003 08 PHP
00:2004 18 CLC
00:2005 FB XCE
00:2006 08 PHP
00:2007 08 PHD
00:2008 F40003 PEA $0300
00:200B 2B PLD
00:200C C220 REP #$20
00:200E E210 SEP #$10

Figure 15-1 Disassembly Output

And the tracer output looks like Figure 15.2.

00:5000 A905 LDA #$05
A= 15 05 X= 00 11 Y= 00 13 S= 01 AA D= 00 00 B= 00 P= 7D E:1
00:5002 AB TAY
A= 15 05 X= 00 11 Y= 00 05 S= 01 AA D= 00 00 B= 00 P= 7D E: 1
00:5003 90060 STA $600,Y
A= 15 05 X= 00 11 Y= 00 05 S= 01 AA D= 00 00 B= 00 P= 7D E: 1
00:5006 88 DEY
A= 15 05 X= 00 11 Y= 00 04 S= 01 AA D= 00 00 B= 00 P=7D E:1
00:5007 D0FA BNE $5003
A= 15 05 X= 00 11 Y= 00 04 S= 01 AA D= 00 00 B= 00 P= 7D E:1
00:5003 990060 STA $600,Y
A= 15 05 X= 00 11 Y= 00 04 S= 01 AA D= 00 00 B= 00 P= 7D E:1
00:5006 88 DEY $5003
A= 15 05 X= 00 11 Y= 00 03 S= 01 AA D= 00 00 B= 00 P= 7D E:1
00:5007 D0FA BNE $6000,Y
A= 15 05 X= 00 11 Y= 00 03 S= 01 AA D= 00 00 B= 00 P= 7D E:1
00:5003 990060 STA
A= 15 05 X= 00 11 Y= 00 03 S= 01 AA D= 00 00 B= 00 P= 7D E:1
00:5006 88 DEY
A= 15 05 X= 00 11 Y= 00 02 S= 01 AA D= 00 00 B= 00 P= 7D E: 1

Figure 15-2 Tracer Output

This example was developed and tested using an AppleIIe with a 65816 processor card installed; the
calls to machine-dependent locations have been isolated and are clearly as such. DEBUG16 uses the native
BRK vector. On the AppleII, this location ($FFE6, FFE7) normally contains ROM data, which varies between
monitor ROM versions. Since there is no way to patch ROM, the solution opted for here is for DEBUG16 to
try to patch the location pointed to by the data that is stored there. For current ROMs, these are RAM locations
that happen to be more or less livable. Check the location pointed to by your ROMs, and make sure that neither
your own code nor the debugger are loaded into that area. DEBUG16 will automatically read whatever value is
stored there and store a vector to that address to regain control after a BRK.

Both programs are executed by putting the starting address of the routine to list or trace (which has been
loaded into memory) at DPAGE+80.82 ($380.82) in low – high – bank order, and then calling either the
TRACE entry point at $2000, or the LIST entry at $2003.

The Western Design Center

232

Declarations

The listing begins with the declaration of global values by way of GEQU statements. Almost all of
these are addresses of direct page memory locations that will be used; one notable exception is the label
DPAGE, a sixteen-bit value that defines the beginning of the direct page memory to be used by this program.
Because a 65816 debugger is by definition a 6502 debugger, it is wise to relocate the direct page out of the
default zero page, since it will be used by 65802 programs, and you program being debugged. In the listing, a
value of $300 is used; on an Apple I I , this relocates the direct page to page three, which is a convenient page to
use.

Many of the direct page locations are used to store the register contents of the user program when the
debugger is executing. All of the registers are represented. As you will see in the code, the adjacent positioning
of some of the registers is important and must be maintained.

In addition to the direct page location used for register storage, one general-purpose temporary variable
is used, called TEMP. Three other variables – ADDRMODE, MNX, and OPLEN (for address mode,
mnemonic index, and operation length, respectively) – are used primarily to access the tables used in
disassembling an instruction.

The variable CODE contains the instruction opcode currently being executed in the user program. The
variable NCODE contains the next instruction opcode to be executed, saved there before being replaced with
the BRK instruction inserted in the code. OPRNDL, OPRNDH, and OPRNDB contain the three (possible)
values of the operand of a given instruction.

0001 0000
0002 0000 KEEP DEBUG16
0003 0000
0004 0000 65816 ON
0005 0000 MSB ON
0006 0000 LONGA OFF
0007 0000 LONGI OFF
0008 0000
0009 0000 ***
0010 0000 * *
0011 0000 * DEBUG16 *
0012 0000 * A 65816 DEBUGGER *
0013 0000 * *
0014 0000 * *
0015 0000 ***
0016 0000
0017 0000 ORG $8000
0018 0000
0019 0000 MAIN START
0020 0000
0021 0000 USING MN
0022 0000 USING ATRIBL
0023 0000
0024 0000
0025 0000 DPAGE GEQU $300 LOCATION OF THIS APPLICATION’S
0026 0000 ; DIRECT PAGE
0027 0000
0028 0000 ; DIRECT PAGE STORAGE
0029 0000 ; TRACE REGISTERS
0030 0000 ;
0031 0000
0032 0000 PCREG GEQU $80 PROGRAM COUNTER
0033 0000 PCREGH GEQU PCREG+1
0034 0000 PCREGB GEQU PCREGH+1 INCLUDING BANK
0035 0000
0036 0000 NCODE GEQU PCREGB+1 NEXT CODE TO BE TRACED
0037 0000
0038 0000 OPCREG GEQU NCODE+1 OLD PROGRAM COUNTER VALUE
0039 0000 OPCREGH GEQU OPCREG+1
0040 0000 OPCREGB GEQU OPCREGH+1

The Western Design Center

233

0041 0000
0042 0000 CODE GEQU OPCREGB+1 CURRENT CODE TO BE TRACED
0043 0000
0044 0000 OPRNDL GEQU CODE+1 OPERANDS OF CURRENT
0045 0000 OPRNDH GEQU OPRNDL+1 INSTRUCTION
0046 0000 OPRNDB GEQU OPRNDH+1
0047 0000
0048 0000
0049 0000 XREG GEQU OPRNDB+1 X REGISTER
0050 0000 XREGH GEQU XREG+1
0051 0000
0052 0000 YREG GEQU XREGH+1 Y REGISTER
0053 0000 YREGH GEQU YREG+1
0054 0000
0055 0000 AREG GEQU YREGH+1 ACCUMULATOR
0056 0000 AREGH GEQU AREG+1
0057 0000
0058 0000 STACK GEQU AREGH+1 STACK POINTER
0059 0000 STACKH GEQU STACK+1
0060 0000
0061 0000
0062 0000 DIRREG GEQU STACKH+1 DIRECT PAGE REGISTER
0063 0000 DIRREGH GEQU DIRREG+1
0064 0000
0065 0000 DBREG GEQU DIRREGH+1 DATA BANK REGISTER
0066 0000
0067 0000 PREG GEQU DBREG+1 P STATUS REGISTER
0068 0000
0069 0000 EBIT GEQU PREG+1 E BIT
0070 0000
0071 0000 TEMP GEQU EBIT+2 TEMPORARY
0072 0000 TEMPH GEQU TEMP+1
0073 0000 TEMPB GEQU TEMPH+1
0074 0000
0075 0000
0076 0000 ADDRMODE GEQU TEMPB+1 ADDRESS MODE OF CURRENT OPCODE
0077 0000
0078 0000 MNX GEQU ADDRMODE+1 MNEMONIC INDEX
0079 0000 ; FROM ATTRIBUTE TABLE
0080 0000
0081 0000 OPLEN GEQU MNX+2 LENGTH OF OPERATION,
0082 0000 ; INCLUDING INSTRUCTION
0083 0000
0084 0000 CR GEQU $8D CARRIAGE RETURN
0085 0000
0086 0000
0087 0000 M GEQU $20 SYBOLIC NAMES FOR
0088 0000 X GEQU $10 STATUS REGISTER BITS
0089 0000 C GEQU $01
0090 0000
0091 0000
0092 0000

0093 0000 4C008
0

JMP TRACE

The Western Design Center

234

LIST

The program has two entry points, defined in the first routine. One is for listing (disassembling) a
program, the other for tracing. The first entry point, at the program’s origin (default $8000), is jump to the
actual entry point of the trace routine; the second, immediately past it (at $8003), is the beginning of the code
for the disassembler.

Since this is a bare-bone disassembler, intended to be expanded and perhaps integrated with a general
purpose machine language monitor, parameters such as the start address of the program to be traced are entered
by modifying the values of the register variables; for example, to begin disassembly of a program stored at
$800, the values $00 $08, and $00 are stored staring at PCREG. Since the direct page is relocated to page
three, the absolute location of this variable is $380.

Starting at the LIST entry, some basic initialization is performed: saving the status register, switching
to native mode, and then saving the previous operating mode (emulation/native) by pushing the status register a
second time (the carry flag now containing the previous contents of the e bit). Thus this program may be called
from either native or emulation mode.

The current value of the direct page is saved in program memory, and then the new value – DPAGE –
is stored to the direct page register. The native mode is entered.

Control now continues at TOP, the beginning of the main loop of the disassembler. The mode is set to
long accumulator, short index. This combination allows simple manipulation of both byte and double-byte
values. The value of PCREG is copied to OPCREG (old pcreg). OPCREG will contain the starting location
of the current instruction throughout the loop; PCREG will be modified to point to the next instruction.
However, it hasn’t been modified yet, so it is used to load the accumulator with the opcode byte. Indirect long
addressing is used, so code anywhere within the sixteen-megabyte address space may be disassembled. Since
the accumulator is sixteen bits, a second byte is fetched as well, but ignored; the next instruction transfers the
opcode to the X register and then stores it at the location CODE.

The utility routine UPDATE is called next. This is common to both the disassembler and the tracer,
and determines the attributes of this instruction by looking the instruction up in a table; it also increments the
program counter to point to the next instruction.

The routines FLIST, FRMOPRND, and PRINTLN form the disassembled line and display it. After
each line is printed, the routine PAUSE is called to check the keyboard to see if a key has been pressed,
signalling a pause. If PAUSE returns with the carry clear, it means the user has signalled to quit, and control
falls through to QUIT; otherwise, the program loops to TOP again, where it repeats the process for the next
instruction.

The Western Design Center

235

0094 0003
0095 0003 ; LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
0096 0003 ;
0097 0003 ; LIST
0098 0003 ; MAIN LOOP OF DISASSEMBLER FUNCTION
0099 0003 ;
0100 0003 ; LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
0101 0003 ;
0102 0003
0103 0003
0104 0003 LIST ENTRY
0105 0003 08 PHP SAVE ORIGINAL FLAGS
0106 0004 18 CLC
0107 0005 FB XCE SET NATIVE MODE
0108 0006 08 PHP SAVE PREVIOUS MODE
0109 0007
0110 0007 0B PHD SAVE CURRENT DP
0111 0008 F40003 PEA DPAGE
0112 000B 2B PLD SET TO NEW DP
0113 000C
0114 000C TOP ANOP
0115 000C
0116 000C C220 REP #M
0117 000E E210 SEP #X
0118 0010 LONGA ON
0119 0010 LONGI OFF
0120 0010
0121 0010 649D STZ MNX CLEAR MNEMONIC INDEX
0122 0012 A580 LDA PCREG MOVE PROGRAM COUNTER
0123 0014 8584 STA OPCREG TO ‘OLD PROGRAM COUNTER’
0124 0016 A682 LDX PCREGB INCLUDING BANK
0125 0018 8686 STX OPCREGB
0126 001A A780 LDA [PCREG] GET NEXT INSTRUCTION
0127 001C AA TAX
0128 001D 8687 STX CODE SAVE AS ‘CODE’
0129 001F
0130 001F 200080 JSR UPDATE UPDATE ATTRIBUTE VARIABLES
0131 0022
0132 0022 200080 JSR FLIST FORM OBJECT CODE, MNEMONIC
0133 0025 200080 JSR FRMOPRNND FORM OPERAND FIELD
0134 0028 200080 JSR PAUSE CHECK FOR USER PAUSE
0135 002B 9005 BCC QUIT
0136 002D 200080 JSR PRINTLN PRINT IT
0137 0030
0138 0030 80DA BRA TOP LOOP TIL END
0139 0032
0140 0032 2B QUIT PLD RESTORE ENVIRONMET,
0141 0033 28 PLP RETURN TO CALLER
0142 0034 FB XCE
0143 0035 28 PLP
0144 0036 60 RTS
0145 0037 END
0146 0037

Local Symbols

LIST 00003 QUIT 000032 TOP 0000C

The Western Design Center

236

FLIST

FLIST is called by both the disassembler and the tracer. This routine displays the current program
counter value, the object code of the instruction being disassembled in hexadecimal, and the mnemonic for the
opcode. The code required to do this is basically the same for any instruction, the only difference being the
length of the instruction, which has already been determined by UPDATE.

The first thing the code does is to blank the output buffer by calling CLRLN. Particularly since 6502
emulation-mode I/O routines are used, it is more efficient to build an output line first, then display it all at once,
rather than output the line “on the fly.” Characters are stored in the output buffer LINE via indexed absolute
addressing; the Y register contains a pointer to the current character position within the line, and is incremented
every time a character is stored. Since character manipulation is the primary activity in this routine, the
accumulator is set to eight bits for most of the routine.

The flow of the program proceeds to generate the line from left to right, as it is printed; the first
characters stored are therefore the current program counter values. Since UPDATE has already modified the
program counter variable to load the operands of the instruction, the value in the variable OPCREG is used.
The hex conversion routine, PUTHEX, converts the data in the accumulator into the ASCII characters that
represents the number’s two hexadecimal digits, storing each character at the location pointed to by LINE,Y,
and then incrementing Y to point to the next character. A colon is printed between the bank byte and the
sixteen-bit program counter display to aid readability.

Next, some spaces are skipped by loading the Y register with a higher value, and the object code bytes
are displayed in hexadecimal. These values have already been stored in direct page memory locations CODE
and OPRNDL, OPRNDH, and OPNDB by the UPDATE routine, which also determined the length of the
instruction and stored it at OPLEN, The length of the operand controls a loop that outputs the bytes; note that a
negative displacement of one is calculated by the assembler so that the loop is not executed when OPLEN is
equal to one.

All that remains is to print the instruction mnemonic. The characters for all of the mnemonics are
stored in a table called MN; at three characters per mnemonic (which as you may have noticed is the standard
length for all 65x mnemonics), the mnemonic index (MNX) determined by UPDATE from the instruction
attribute table must be multiplied by three. This is done by shifting left once (to multiply by two), and adding
the result to the original value of MNX. Note that this type of “custom” multiplication routine is much more
efficient than the generalized multiplication routines described in the previous chapter. The characters in the
mnemonic table are copied into the output line using the MVN instruction; the result just calculated is
transferred into the X register as the source of the move. It is the line-buffered output that allows use of the
block-move instruction; on-the-fly output would have required each character to be copied out of the mnemonic
table in a loop.

The Western Design Center

237

0147 ;
0148 ; FLIST – FORM IMAGE OF PROGRAM COUNTER,
0149 ; OBJECT CODE, AND MNEMONIC IN ‘LINE’
0150 ;
0151 ; REQUIRES ATTRIBUTE VARIABLES TO BE PREVIOUSLY INITIALIZED
0152 ; LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
0153 ;
0154
0155 FLIST START
0156 USING MN
0157
0158 200080 JSR CLRLN BLANK ‘LINE’ VARIABLE
0159 0003
0160 0003 E230 SEP #M+X SHORT REGISTERS
0161 0005 LONGA OFF
0162 0005 LONGI OFF
0163 0005
0164 0005 A000 LDY #0
0165 0007 A586 LDA OPCREGB GET BANK BYTE, FORM AS HEX
0166 0009 200080 JSR PUTHEX STRING
0167 000C A9BA LDA #’:’ BANK DELIMITER
0168 000E 990080 STA LINE,Y
0169 0011 C8 INY
0170 0012 A585 LDA OPCREGH GET BYTES OF PROGRAM COUNTER
0171 0014 200080 JSR PUTHEX FORM AS HEX STRING IN
0172 0017 A584 LDA OPCREG LINE
0173 0019 200080 JSR PUTHEX
0174 001C
0175 001C A00A LDY #10
0176 001E A587 LDA CODE STORE OPCODE AS HEX STRING
0177 0020 20080 JSR PUTHEX
0178 0023 A201 LDX #1
0179 0025
0180 0025 E49F MORE CPX OPLEN LIST OPERANDS, IF ANY
0181 0027 F008 BEQ DONE
0182 0029 B587 LDA OPRNDL-1,X
0183 002B 200080 JSR PUTHEX
0184 002E E8 INX
0185 002F 80F4 BRA MORE
0186 0031
0187 0031 C23 DONE REP #M+X
0188 0033 LONGA ON
0189 0033 LONGI ON
0190 0033
0191 0033 A59D LDA MNX GET MNEMONIC INDEX,
0192 0035 0A ASL A MULTIPLY BY THREE
0193 0036 18 CLC (TIMES TWO PLUS SELF)
0194 0037 659D ADC MNX
0195 0039 18 CLC
0196 003A 690080 ADC #MN
0197 003D AA TAX INDEX INTO MNEMONIC TABLE
0198 003E A01480 LDY #LINE+20 COPY INTO ‘LINE’
0199 0041 A90200 LDA #2
0200 0044 MOVE ENTRY
0201 0044 540000 MVN 0,0
0202 0047
0203 0047 60 RTS
0204 0048 END

Local Symbols

DONE 000031 MORE 000025 MOVE 000044

The Western Design Center

238

FRMOPRND

This is the second part of the line-disassembly pair. It performs the address-mode specific generation of
the disassembled operand field; the result is similar to the address mode specification syntax of a line of 65x
source code.

The Y register is loaded with the starting destination in LINE, and the attribute stored at ADDRMODE
is multiplied by two to form an index into a jump table. There is a separate routine for each addressing mode;
the address of that routine is stored in a table called MODES in the order that corresponds to the attributes
given them from the attribute table.

The JMP indirect indexed instruction is used to transfer control through the jump table MODES to the
appropriate routine, whose index, times two, has been loaded into the X register.

Each of the routines is basically similar; they output any special characters and print the address of the
operand found in the instruction stream. There are three relative routines, POB, PODB, and POTB (for put
operand byte, put operand double byte, and put operand triple byte) which output direct page, absolute, and
absolute long addresses.

The two routines FPCR and FPCRL, which handle the program counter relative instructions, however,
must first calculate the destination address (which is how an assembler would specify the operand, so this is
how they are disassembled) by adding the actual operand, a displacement, to the current program counter. The
operand of a short program counter relative instruction is sign-extended before adding, resulting in a sixteen-bit
signed displacement which is added to the program counter to find the destination address.

The Western Design Center

239

0205 0000
0206 0000 ; LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
0207 0000 ;
0208 0000 ; FRMOPRND – –
0209 0000 ; FORMS OPERAND FIELD OF DISASSEMBLED INSTRUCTION
0210 0000 ;
0211 0000 ; OPLEN, ADDRMODE, AND OPRND MUST HAVE BEEN
0212 0000 ; INITIALIZED BY ‘UPDATE’
0213 0000 ; LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
0214 0000 ;
0215 0000
0216 0000 FRMOPRND START
0217 0000 USING MODES
0218 0000 E230 SEP #M+X
0219 0002 LONGA OFF
0220 0002 LONGI OFF
0221 0002
0222 0002 A01C LDY #28 OFF SET INTO ‘LINE’ FOR OPERAND
0223 0004 ; TO BEGIN

0224 0004 A59C LDA ADDRMOD
E

GET ADDRESS MODE, MULTIPLY BY

0225 0006 0A ASL A TWO, JUMP THROUGHT ADDRESS
0226 0007 AA TAX MODE JUMP TABLE TO PROPER
0227 0008 7C0080 JMP (MODES,X) HANDLER
0228 000B
0229 000B
0230 000B FIMM ENTRY IMMEDIATE MODE – –
0231 000B A9A3 LDA #’#’ OUTPUT POUND SIGN,
0232 000D 990080 STA LINE,Y ONE OR TWO
0233 0010 C8 INY OPERAND BYTES, DEPENDING
0234 0011 A59F LDA OPLEN ON OPLEN
0235 0013 C902 CMP #2
0236 0015 F003 BEQ GOSHORT
0237 0017 4C0080 JMP PODB
0238 001A 4C0080 GOSHORT JMP POB
0239 001D
0240 001D FABS ENTRY ABSOLUTE MODE – –
0241 001D 4C0080 JMP PODB JUST OUTPUT A DOUBLE BYTE
0242 0020
0243 0020 FABSL ENTRY ABSOLUTEW LONG – –
0244 0020 4C0080 JMP POTB OUTPUT A TRIPLE BYTE
0245 0023
0246 0023 FDIR ENTRY DIRECT MODE – –
0247 0023 4C0080 JMP POB OUTPUT A SINGLE BYTE
0248 0026
0249 0026 FACC ENTRY ACCUMULATOR – –
0250 0026 A9C1 LDA #’A’ JUST AN A
0251 0028 990080 STA LINE,Y
0252 002B 60 RTS
0253 002C
0254 002C FIMP ENTRY IMPLIED – –
0255 002C 60 RTS NO OPERAND
0256 002D
0257 002D FINDINX ENTRY INDIRECT INDEXED – –
0258 002D 20B600 JSR FIND CALL ‘INDIRECT’, THEN FALL
0259 0030 ; THROUGH TO INDEXED BY Y
0260 0030
0261 0030 FINY ENRTY INDEXED BY Y MODES – –
0262 0030 A9AC LDA #’,’ TACK ON A ‘COMMA,Y’
0263 0032 990080 STA LINE,Y
0264 0035 C8 INY
0265 0038 A9D9 LDA #’Y’
0266 003B 990080 STA LINE,Y

The Western Design Center

240

0267 003B 60 RTS
0268 003C
0269 003C FINDINXL ENTRY INDIRECT INDEXED LONG – –
0270 003C 20C600 JSR FINDL CALL ‘INDIRECT LONG’, THEN
0271 003F 4C3000 JMP FINY EXIT THROUGH INDEXED BY Y
0272 0042
0273 0042 FINXIND ENTRY INDEX INDIRECT – –
0274 0042 A9A8 LDA #’(’ PARENTHESIS
0275 0044 990080 STA LINE,Y
0276 0047 C8 INY
0277 0048 200080 JSR POB A SINGLE BYTE – –
0278 004B 206000 JSR FINX COMMA, X
0279 004E A9A9 LDA #’)’ CLOSE.
0280 0050 990080 STA LINE,Y
0281 0053 60 RTS
0282 0054
0283 0054 FDIRINXX ENTRY DIRECT INDEXED BY X – –
0284 0054 200080 JSR POB OUTPUT A BYTE,
0285 0057 4C6000 JMP FINX TACK ON COMMA, X
0286 005A
0287 005A FDIRINXY ENTRY DIRECT INDEXED BY Y – –
0288 005A 200080 JSR POB OUTPUT A BYTE,
0289 005D 4C3000 JMP FINY TACK ON COMMA, Y
0290 0060
0291 0060 FINX ENTRY INDEXED BY X – –
0292 0060 A9AC LDA #’,’ TACK ON A
0293 0062 990080 STA LINE,Y COMMA, X
0294 0065 C8 INY (USED BY SEVERAL
0295 0066 A9D8 LDA #’X’ MODES)
0296 0068 990080 STA LINE,Y
0297 006B C8 INY
0298 006C 60 RTS
0299 006D
0300 006D FABSX ENTRY ABSOLUTE INDEXED BY X – –
0301 006D 200080 JSR PODB OUTPUT A DOUBLE BYTE,
0302 0070 4C6000 JMP FINX TACK ON A COMMA, X
0303 0073
0304 0073 FABSLX ENTRY ABSOLUTE LONG BY X – –
0305 0073 200080 JSR POTB OUTPUT A TRIPLE BYTE,
0306 0076 4C6000 JMP FINX TACK ON COMMA, X
0307 0079
0308 0079 FABSY ENTRY ABSOLUTE Y – –
0309 0079 200080 JSR PODB OUTPUT A DOUBLE BYTE,
0310 007C 4C3000 JMP FINY TACK ON COMMA,Y
0311 007F
0312 007F FPCR ENTRY PROGRAM COUNTER RELATIVE – –
0313 007F A9FF LDA #$FF SIGN EXTEND OPERAND
0314 0081 EB XBA
0315 0082 A588 LDA OPRNDL
0316 0084 C221 REP #M+C
0317 0086 LONGA ON
0318 0086 3003 BMI OK
0319 0088 297F00 AND #$7F
0320 008B 6584 OK ADC OPCREG ADD TO PROGRAM COUNTER
0321 008D 1A INC A ADD TWO, WITHOUT CARRY
0322 008E 1A INC A
0323 008F 8588 STA OPRNDL STORE AS NEW ‘OPERAND’
0324 0091
0325 0091 E220 SEP #M
0326 0093 LONGA OFF
0327 0093
0328 0093 4C0080 JMP PODB NOW JUST DISPLAY A DOUBLE BYTE
0329 0096
0330 0096 FCPRL ENTRY PROGRAM COUNTER RELATIVE LONG
0331 0096

The Western Design Center

241

0332 0096 C221 REP #M+C
0333 0098 LONGA ON
0334 0098
0335 0098 A588 LDA OPRNDL JUST ADD THE OPERAND
0336 009A 6584 ADC OPCREG
0337 009C 18 CLC BUMP BY THREE, PAST INSTRCTION
0338 009D 690300 ADC #3
0339 00A0 8588 STA OPRNDL STORE AS NEW ‘OPERAND’
0340 00A2
0341 00A2 E220 SEP #M
0342 00A4 LONGA OFF
0343 00A4
0344 00A4 4C0080 JMP PODB PRINT A DOUBLE BYTE
0345 00A7
0346 00A7 FABSIND ENTRY ABSOLUTE INDIRECT
0347 00A7 A9A8 LDA #’(‘ SURROUND A DOUBLE BYTE
0348 00A9 990080 STA LINE,Y WITH PARENTHESES
0349 00AC C8 INY
0350 00AD 200080 JSR PODB
0351 00B0 A9A9 LDA #’)’
0352 00B2 990080 STA LINE,Y
0353 00B5 60 RTS
0354 00B6
0355 00B6 FIND ENTRY INDIRECT – –
0356 00B6 A9A8 LDA #’(‘ SURROUND A SINGLE BYTE
0357 00B8 990080 STA LINE,Y WITH PARENTESES
0358 00BB C8 INY
0359 00BC 200080 JSR POB
0360 00BF A9A9 LDA #’)’
0361 00C1 990080 STA LINE,Y
0362 00C4 C8 INY
0363 00C5 60 RTS
0364 00C6
0365 00C6 FINDL ENTRY INDIRECT LONG – –
0366 00C6 A9DB LDA #’[‘ SURROUND A SINGLE BYTE
0367 00C8 990080 STA LINE,Y WITH SQUARE BRACKTS
0368 00CB C8 INY
0369 00CC 200080 JSR POB
0370 00CF A9DD LDA #’]’
0371 00D1 990080 STA LINE,Y
0372 00D4 C8 INY
0373 00D5 60 RTS
0374 00D6

0375 00D6 FABSINXIN
D

ENTRY ABSOLUTE INDIRECT INDEXED

0376 00D6 A9A8 LDA #’(‘
0377 00D8 990080 ST5A LINE,Y SURROUND A CALL TO ‘ABSOLUTE
0378 00DB C8 INY INDEXED’ WITH PARENTESES
0379 00DC 206D00 JSR FABSX
0380 00DF A9A9 LDA #’)’
0381 00E1 990080 STA LINE,Y
0382 00E4 60 RTS
0383 00E5
0384 00E5 FSTACK ENTRY STACK – – IMPLIED
0385 00E5 60 RTS
0386 00E6
0387 00E6 FSTACKREL ENTRY STACK RELATIVE
0388 00E6 202300 JSR JUST LIKE
0389 00E9 A9AC LDA DIRECT INDEXED, BUT WITH
0390 00EB 990080 STA AN ‘S’
0391 00EE C8 INY
0392 00EF A9D3 LDA #’S”
0393 00F1 990080 STA LINE,Y
0394 00F4 C8 INY
0395 00F5 60 RTS

The Western Design Center

242

0396 00F6
0397 00F6
0398 00F6 FSRINDINX ENTRY STACK RELATIVE INDIRECT INDEX
0399 00F6 A9A8 LDA #’(‘
0400 00F8 990080 STA LINE,Y SURROUND STACK RELATIVE WITH
0401 00FB C8 INY PARENTHESES, THEN
0402 00FC 20E600 JSR FSTACKREL
0403 00FF A9A9 LDA #’)’
0404 0101 990080 STA LINE,Y
0405 0104 C8 INY
0406 0105 4C3000 JMP FINY TACK ON A COMMA,Y
0407 0108
0408 0108
0409 0108 FBLOCK ENTRY BLOCK MOVE
0410 0108
0411 0108 C220 REP #M
0412 010A A588 LDA OPRNDL MAKE HUMAN-READABLE:
0413 010C EB XBA SWAP SOURCE, DEST
0414 010D 8588 STA OPRNDL
0415 010F E220 SEP #M
0416 0111
0417 0111 200080 JSR POB OUTPUT THE SOURCE
0418 0114 A9AC LDA #’,’ THEN COMMA
0419 0116 990080 STA LINE,Y
0420 0119 C8 INY
0421 011A EB XBA SWAP DEST INTO OPRNDL
0422 011B 8588 STA OPRNDL THEN PRINT ONE BYTE
0423 011D 4C0080 JMP POB
0424 0120
0425 0120
0426 0120 END

Local Symbols

FABS 00001D FABSIND 0000A7 FABSINXIND 0000D6 FABBSL 000020
FABSLX 000073 FABSX 00006D FABSY 000079 FACC 000026
FBLOCK 000108 FDIR 000023 FDIRINXX 000054 FDIRINXY 00005A
FIMM 00000B FIMP 00002C FIND 000086 FINDINX 00002D
FINDINXL 00003C FINDL 0000C6 FINX 000060 FINXIND 000042
FINY 000030 FPCR 00007F FPCRL 000096 FSRINDINX 0000F6
FSTACK 0000E5 FSTACKREL 0000E6 GOSHORT 00001A OK 00008B

The Western Design Center

243

POB

This routine (put operand byte), with three entry points, outputs a dollar sign, followed by either one,
two, or three operand bytes in hexadecimal form; it calls the routine PUTHEX to output the operand bytes. It is
called by FRMOPRND.

Depending on the entry point, the X register is loaded with 0, 1, or 2, controlling the number of times
the loop at MORE is executed; on each iteration of the loop, an operand byte is loaded by indexing into
OPRNDL and then printed by PUTHEX.

0427 0000
0428 0000 ;LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
0429 0000 ;
0430 0000 ; POB, PODB, POTB
0431 0000 ; PUT OPERAND (DOUBLE, TRIPLE) BYTE
0432 0000 ;
0433 0000 ; PUTS OPRNDL (OPRNDH, OPRNDB) IN LINE AS HEX VALUE
0434 0000 ; WITH ‘$’ PREFIX
0435 0000 ;
0436 0000 ; ASSUMES SHORT ACCUMULATOR AND INSEX REGISTERS
0437 0000 ; (CALLED BY FOPRND)
0438 0000 ;LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
0439 0000 ;
0440 0000
0441 0000
0442 0000
0443 0000 POB START
0444 0000 LONGA OFF
0445 0000 LONGI OFF
0446 0000
0447 0000 ; PRINT:
0448 0000 A200 LDX #0 ONE OPERAND BYTE
0449 0002 8006 BRA IN SKIP
0450 0004 PODB ENTRY
0451 0004 A201 LDX #1 TWO OPERAND BYTES
0452 0006 8002 BRA IN SKIP
0453 0008 POTB ENTRY
0454 0008 A202 LDX #2 THREE OPERAND BYTES
0455 000A ; FALL THROUGH
0456 000A A9A4 IN LDA #’$’ PRINT LEAD-IN
0457 000C 990080 STA LINE,Y
0458 000F C8 INY
0459 0010
0460 0010 B588 MORE LDA OPRNDL,X LOOP THROUGH OPERAND
0461 0012 200080 JSR PUTHEX HIGH TO LOW
0462 0015 CA DEX
0463 0016 10F8 BPL MORE
0464 0018 60 RTS
0465 0019 END

Local Symbols

IN 00000A MORE 000010 PODB 000004 POTB 000008

The Western Design Center

244

STEP

This routine also contains the PAUSE entry point called by LIST; STEP waits until a keypress,
PAUSE simply checks to see if a key has been pressed, and waits only if there has been an initial keypress. In
both cases, the wait loop continues until the next keypress. If the keypress that exits the wait loop was the
ESCAPE key, the carry is cleared, signalling the calling program that the user wants to quit rather than
continue. If it was RETURN, the overflow flag is cleared; the tracer uses this toggle between tracing and single
stepping. Any other keypress causes the routine to return with both flags set.

The code in this listing is machine-dependent; it checks the keyboard locations of the AppleII. Since
this is a relatively trivial task, in-line code is used rather than a call to one of the existing 6502 monitor routines;
therefore, the processor remains in the native mode while it performs this I/O operation.

Like all utility routines, STEP saves and restores the status on entry and exit.

0466 0000
0467 0000
0468 0000
0464 0000
0465 0000 APPEND DB. UTILITY
0466 0000
0467 0000
0468 0000
0469 0000
0470 0000
0471 0000
0472 0000 ; LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
0473 0000 ;
0474 0000 ; STEP ­ ­ CHECKS FOR USER PAUSE SIGNAL
0475 0000 ; (KEYSTROKE)
0476 0000 ;
0477 0000 ; CONTAINS MACHINE-DEPENDENT CODE
0478 0000 ; FOR APPLE I I
0479 0000 ; LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
0480 0000 ;
0481 0000
0482 0000 STEP START
0483 0000 KEYBD EQU $C000
0484 0000 KEYYSTB EQU $C010
0485 0000 ESC EQU $9B ESCAPE KEY (HIGH BIT SET)
0486 0000 V EQU $40 MASK FOR OVERFLOW FLAG
0487 0000 LONGA OFF
0488 0000 LONGI OFF
0489 0000
0490 0000 08 PHP SAVE MODES
0491 0001 E230 SEP #M+X
0492 0003 800B BRA WAIT
0493 0005
0494 0005 PAUSE ENTRY ENTRY FOR ‘PAUSE’ CALL
0495 0005 08 PHP
0496 0006 E230 SEP #M+X
0497 0008 AD00C0 LDA KEYBD CHECK FOR KEYPRESS

0498 000B 101B BPL RETNCR NONE; DON’T PAUSE
0499 000D 8D10C0 STA KEYSTB CLEAR STROBE
0500 0010 ; IF KEYSTROKE
0501 0010 AD00C0 WAIT LDA KEYBD LOOP FOR NEXT KEY
0502 0013 10FB BPL WAIT
0503 0015 8D10C0 STA KEYSTB CLEAR STROBE
0504 0018 C998 CMP #ESC IF ESC RETURN WITH

0505 001A D004 BNE RETNESC

The Western Design Center

245

0506 001C
0507 001C 28 RETEQ PLP CARRY CLEAR (QUIT)

0508 001D EA NOP
0509 001E 18 CLC
0510 001F 60 RTS
0511 0020
0512 0020 C98D RETNESC CMP #CR
0513 0022 D004 BNE RETNCR
0514 0024 28 PLP
0515 0025 E241 SEP #C+V
0516 0027 60 RTS
0517 0028
0518 0028 8D10C0 RETNCR STA KEYSTB
0519 002B 28 PLP ELSE SET
0520 002C 38 SEC
0521 002D B8 CLV
0522 002E 60 RTS (CONTINUE)
0523 002F END

Local Symbols

ESC 00009B KEYBD 00C000 KEYSTB 00C010 PAUSE 000005
RETEQ 00001C RETNCR 000028 RETNESC 000020 V 000040
WAIT 000010

The Western Design Center

246

PUTHEX

This utility routine, already referred to in several descriptions, is called whenever a hexadecimal value
needs to be output. It converts the character in the low byte of the accumulator into two hexadecimal
characters, and stores them in the buffer LINE at the position pointed to by the Y register.

PUTHEX calls and internal subroutine, MAKEHEX, which does the actual conversion. This call
(rather than in-line code) allows MAKEHEX to first call, then fall through into, an internal routine,
FORMNIB.

When MAKEHEX returns, it contains the two characters to be printed in the high and low bytes of the
accumulator; MAKEHEX was processed with the accumulator eight bits wide, so the sixteen-bit mode is
switched to, letting both bytes be stored in one instruction. The Y register is incremented twice, pointing it to
the space immediately past the second character printed.

FORMNB is both called (for processing the first nibble) and fallen into (for processing the second).
Thus the RTS that exist exits FORMNIB returns variously to either MAKEHEX or PUTHEX. This technique
results in more compact code than if FORMNIB were called twice.

The conversion itself is done by isolating the respective bits, and then adding the appropriate offset to
form either the correct decimal or alphabetic (A-F) hexadecimal character.

Like all utility routines, the status is saved and restored on entry and exit.

0524 0000
0525 0000
0526 0000 ;
0527 0000 ; LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
0528 0000 ; PUTHEX
0529 0000 ;
0530 0000 ; CONVERTS NUMBER IN ACCUMULATOR TO HEX STRING
0531 0000 ; STORED AT LINE,Y
0532 0000 ;
0533 0000 ; SAVE AND RESTORED MODE FLAGS
0534 0000 ; LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
0535 0000 ;
0536 0000
0537 0000
0538 0000
0539 0000 PUTHEX START
0540 0000 08 PHP SAVE MODE FLAGS
0541 0001 200D00 JSR MAKEHEX GET ASCII CODES A, B
0542 0004 C220 REP #M
0543 0006 LONGA ON
0544 0006 990080 STA LINE,Y PUT TWO BYTES AT LINE
0545 0009 C8 INY INCREMENT Y PAST THEM
0546 000A C8 INY
0547 000B 28 PLP RESTORE MODE
0548 000C 60 RTS RETURN
0549 000D
0550 000D E230 MAKEHEX SEP $M+X ALL EIGHT BIT
0551 000F LONGA OFF
0552 000F LONGI OFF
0553 000F
0554 000F 48 PHA SAVE VALUE TO BE CONVERTED
0555 0010 290F AND #$OF MASK OFF LOW NIBBLE
0556 0012 201B00 JSR FORMNIB CONVERT TO HEX
0557 0015 EB XBA STORE IN B
0558 0016 68 PLA RESTORE VALUE
0559 0017 4A LSR A SHIFT HIGH NIBBLE
0560 0018 4A LSR A TO LOW NIBBLE
0561 0019 4A LSR A
0562 001A 4A LSR A
0563 001B ; FALL THROUGH TO CONVERT
0564 001B
0565 001B C90A FORMNIB CMP #$A IF GREATER THAN OR EQUAL TO
0566 001D B004 BGE HEXDIG 10, USE DIGITS A . . F

The Western Design Center

247

0567 001F 18 CLC ELSE SIMPLY ADD ‘0’ TO
0568 0020 69B0 ADC #’0’ CONVERT TO ASCII
0569 0022 60 RTS
0570 0023
0571 0023 69B6 HEXDIG ADC $’A’-11 SUBTRACT 11, ADD ‘A’
0572 0025 60 RTS (SORT OF)
0573 0026
0574 0026 END

Local Symbols

FORMNIB 00001B HEXDIG 000023 MAKEHEX 00000D

The Western Design Center

248

CLRLN

CLRLN performs the very straightforward task of clearing the output buffer, LINE, to blanks. It also
contains the global storage reserved for LINE.

Like the other utility routines, CLRLN saves and restores the status.

0575 0000
0576 0000 ; LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
0577 0000 ;
0578 0000 ; CLRLN
0579 0000 ;
0580 0000 ; CLEARS ‘LINE’ WITH BLANKS
0581 0000 ;
0582 0000 ; SAVES AND RESTORES MODE FLAGS
0583 0000 ;
0584 0000 ; LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
0585 0000 ;
0586 0000
0587 0000
0588 0000 CLRLN START
0589 0000 08 PHP
0590 0001 C230 REP #M+X
0591 0003 LONGA ON
0592 0003 LONGI ON
0593 0003
0594 0003 A9A0A0 LDA #’ ‘
0595 0006 A24400 LDX #68
0596 0009
0597 0009 9D1200 LOOP STA LINE,X
0598 000C CA DEX
0599 000D CA DEX
0600 000E 10F9 BPL LOOP
0601 0010 28 PLP
0602 0011 60 RTS
0603 0012
0604 0012
0605 0012 LINE ENTRY
0606 0012 A0A0A0A0 DC 70C’ ‘
0607 0058 8D00 DC H’8D00’
0608 005A END

Local Symbols

LINE 000012 LOOP 000009

The Western Design Center

249

UPDATE

This routine, common to both the disassembler and the tracer, updates the program counter and other
direct page variables – the address mode attribute (ADDRMODE) and the length (OPLEN) – and, using the
length, reads the instruction operands into direct page memory.

The address mode and length attributes are stored in a table called ATRIBL, two bytes per instruction.
Since there are 256 different codes, the table size is 512 bytes. The current opcode itself, fetched previously, is
used as the index into the table. Since the table entries are two bytes each, the index is first multiplied by two
by shifting left. Since the sixteen-bit accumulator was used to calculate the index, both attribute bytes can be
loaded in a single operation; since their location in direct page memory is adjacent, they can be stored in a
single operation as well.

Normally, the value of OPLEN loaded from the attribute table is the correct one; in the case of the
immediate addressing mode, however, the length varies with the setting of the m and x flags. The opcode for
the immediate instructions are trapped using just three comparisons, an AND, and four branches to test the
opcode bits. Note that the immediate operands are multiplied times two because the opcode already happens to
be shifted left once. If the current instruction uses immediate addressing, the stored value of the status register
is checked for the relevant flag setting; if m or x, as appropriate, is clear, then OPLEN is incremented. The
routines that output the immediate operand now know the correct number of operand bytes to print, and the
tracer knows where the next instruction begins.

The status is saved on entry and restored on exit.

0609 0000
0610 0000
0611 0000 ; LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
0612 0000 ;
0613 0000 ; UPDATE
0614 0000 ;
0615 0000 ; UPDATES ATTRIBUTE VARIABLES BASED ON OPCODE
0616 0000 ; PASSED IN ACCUMULATOR BY LOOKING IN ATTRIBUTE
0617 0000 ; TABLES
0618 0000 ;
0619 0000 ; SAVES AND RESTORES MODE FLAGS
0620 0000 ; LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
0621 0000 ;
0622 0000
0623 0000
0624 0000 UPDATE START
0625 0000 USING ATRIBL
0626 0000
0627 0000
0628 0000 LDYI EQU $A0+2 OPCODE VALUE TIMES TWO
0629 0000 LDXI EQU $A2+2
0630 0000
0631 0000 08 PHP SAVE STATE
0632 0001 C230 REP #M+X
0633 0003 LONGA ON
0634 0003 LONGI ON
0635 0003
0636 0003 29FF00 AND #$FF MASK HIGH BYTE
0637 0006 0A ASL A TIMES TWO
0638 0007
0639 0007 AS TAY
0640 0008 B90080 LDA ATRIBL,Y INDEX INTO ATTRIBUTE TABLE
0641 000B EB XBA SWAP ORDER OF ENTRIES
0642 000C 859C STA ADDRMODE SAVE ADDRMODE, MNEMONIC INDEX
0643 000E
0644 000E AA TAX ADDRMODE TO X (LOW)
0645 000F 98 TYA OPCODE * 2 TO ACCUM
0646 0010 E210 SEP #X
0647 0012 LONGI OFF
0648 0012

The Western Design Center

250

0649 0012 BCFF7F LDY LENS-1,X GET LENGTH OF OPERATION
0650 0015 849F STY OPLEN
0651 0017
0652 0017
0653 0017 A697 LDX EBIT EMULATION MODE?
0654 0019 E001 CPX #1 TEST BIT ZERO
0655 001B F02E BEQ SHORT YES ­ ­ ALL IMMEDIATE ARE
0656 001D ; SHORT
0657 001D 892000 BIT #$20 IS MSD+2 EVEN?
0658 0020 D029 BNE SHORT NO, CAN’T BE IMMEDIATE
0659 0022 C94401 CMP #LDXI IS IT LDX #?
0660 0025 F00A BEQ CHKX
0661 0027 891E00 BIT #$F+2 IS LSD+2 ZERO?
0662 002A D00E BNE CHKA CHECK ACCUMULATOR OPCODES
0663 002C C94001 CMP PREG MUST = LDY# OR GREATER
0664 002F 9009 BLT CHKA NO, MAYBE ACCUMULATOR
0665 0031 A596 LDA PREG IF IT IS, WHAT IS FLAG SETTING?
0666 0033 291000 AND #X
0667 0036 F011 BEQ LONG CLEAR – 16 BIT MODE
0668 0038 D011 BNE SHORT SET – 8 BIT MODE
0669 003A
0670 003A 291E00 CHKA AND #$0F+2 MASK OUT MSD
0671 003D C91200 CMP #$9+2 IS LSD = 9?
0672 0040 D009 BNE SHORT
0673 0042 A596 LDA PREG WHAT IS FLAG SETTING?
0674 0044 292000 AND #M
0675 0047 D002 BNE SHORT NO, 8 BIT MODE
0676 0049
0677 0049 E69F LONG INC OPLEN LONG IMMEDIATE ­ ­ LENGTH IS
0678 004B ; ONE MORE THEN FOUND IN TABLE
0679 004B
0680 004B A000 SHORT LDY #0
0681 004D 8005 BRA LOOPIN
0682 004F
0683 004F A780 LOOP [PCREG] LOAD 16 BITS ­ ­ 16 BIT MODE
0684 0051 ; USED TO BUMP PCREG EASILY
0685 0051 AA TAX TRUNCATE TO EIGHT BITS
0686 0052 9687 STX ORPNDL-1,Y SAVE
0687 0054
0688 0054 E680 LOOPIN INC PCREG MOVE PC PAST NEXT INSTRUCTION

0689 0056 C8 INY BYTE
0690 0057 C49F CPY OPLEN MOVED ALL OPERAND BYTES?
0691 0059 D0F4 BNE LOOP NO, CONTINUE
0692 005B
0693 005B 28 DONE PLP
0694 005C 60 RTS
0695 005D END

Local Symbols

CHKA 00003A CHKX 000031 DONE 00005B LDXI 000144
LDYI 000140 LONG 000049 LOOP 00004F LOOPIN 000054
SHORT 000048

The Western Design Center

251

PRINTLN

This is the output routine. In this version, an existing 6502 output routine is called, necessitating a
reversion to the emulation mode. Since this is the only place a 6502 routine is called, a simpler mode-switching
routine than the generalized one of the previous chapter is used. The user registers do not need to be preserved,
but zero needs to be swapped into the direct page to make it address page zero.

The main loop is in the emulation mode until the null terminal byte of LINE is encountered; on exit, the
native mode, direct page, and status are restored.

0696 0000
0697 0000
0698 0000 ; LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
0699 0000 ;
0700 0000 ; PRINTLN
0701 0000 ;
0702 0000 ; MACHINE-DEPENDENT CODE TO OUTPUT
0703 0000 ; THE STRING STORED AT ‘LINE’
0704 0000 ;
0705 0000 ; SAVES AND RESTORED MODE FLAGS
0706 0000 ; LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
0707 0000 ;
0708 0000
0709 0000
0710 0000
0711 0000 PRINTLN START
0712 0000 COUT EQU $FDED APPLE CHARACTER OUTPUT ROUTINE
0713 0000
0714 0000 08 PHP SAVE STATUS
0715 0001 0B PHD SAVE DIRECT PAGE
0716 0002 F40000 PEA 0 SWITCH TO PAGE ZERO
0717 0005 2B PLD FOR EMULATION
0718 0006
0719 0006 LONGA OFF
0720 0006 LONGI OFF
0721 0006 38 SEC SWITCH TO EMULATION
0722 0007 FB XCE
0723 0008
0724 0008 A000 LDY #0
0725 000A
0726 000A B90080 LOOP LDA LINE,Y LOOP UNTIL STRING TERMINATOR
0727 000D F006 BEQ DONE REACHED
0728 000F 20EDFD JSR COUT
0729 0012 C8 INY
0730 0013 80F5 BRA LOOP
0731 0015
0732 0015 18 DONE CLC RESTORE NATIVE MODE
0733 0016 FB XCE
0734 0017 2B PLD RESTORE DIRECT PAGE
0735 0018 28 PLP RESTORE MODE FLAGS
0736 0019 60 RTS
0737 001A
0738 001A END

Local Symbols

COUT 00FDED DONE 000015 LOOP 0000DA

The Western Design Center

252

TRACE

This is the actual entry to the trace routine. It performs initialization similar to LIST, and additionally
sets up the BRK vectors, so they can point to locations within the tracer.

The e flag, direct page register and data bank register are all given initial values of zero. The program
counter and program counter bank are presumed to have been initialized by the user. The first byte of the
program to be traced is loaded; since indirect long addressing is used, this program can be used with the 65816
to debug programs located in any bank. It can, of course, also be used with the 65802.

The jump to TBEGIN enters the main loop of the trace routine in the middle – in other words,
“between instructions.”

0739 0000
0740 0000 APPEND DB. TRACE
0741 0000
0742 0000
0743 0000 ;
0744 0000 ; TRACE
0745 0000 ;
0746 0000 ; ENTRY POINT FOR TRACER
0747 0000 ; LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
0748 0000
0749 0000
0750 0000 TRACE START
0751 0000 USRBRKV GEQU $3F0 USER BRK VECTOR FOR APPLE / /
0752 0000 BRKN GEQU $FFE6 NATIVE MODE BRK VECTOR
0753 0000
0754 0000 08 PHP SAVE CALLING STATE
0755 0001 18 CLC
0756 0002 FB XCE
0757 0003 08 PHP
0758 0004
0759 0004 C210 REP #$10
0760 0006 LONGI ON
0761 0006 F40000 PEA 0 OLD STACK BOUNDARY
0762 0009
0763 0009 BA TSX
0764 000A 8E3D00 STX SAVSTACK
0765 000D
0766 000D F40003 PEA DPAGE INITIALIZE DIRECT PAGE
0767 0010 2B PLD
0768 0011
0769 0011 8691 STX STACK
0770 0013
0771 0013 E220 SEP #$20
0772 0015 LONGA OFF
0773 0015
0774 0014 A901 LDA #1
0775 0017 8597 STA EBIT
0776 0019 6493 STZ DIRREG DIRECT PAGE, DATA BANK
0777 001B 6494 STZ DIRREGH TO POWER-UP DEFAULTS
0778 001D 6495 STZ DBREG
0779 001F 649E STZ MNX+1
0780 0021
0781 0021 9C0080 STZ STEPCNTRL
0782 0024
0783 0024 A20080 LDX #EBRKN PATCH BRK VECTORS
0784 0027 8EF003 STX USRBRKV TO POINT TO TRACE CODE
0785 002A
0786 002A AEE6FF LDX BRKN FIND OUT WHERE BRKN POINTS TO

0787 002D E000C0 CPX #$C000 MAKE SURE IT’S RAM ON AN APPLE
0788 0030 9003 BLT OK

The Western Design Center

253

0789 0032 4C0080 JMP QUIT MIGHT AS WELL GIVE UP NOW . . .

0790 0035 8E3F00 OK STX USRBRKN
0791 0038
0792 0038 A780 LDA [PCREG] GET FIRST OPCODE
0793 003A 4C0080 JMP TBEGIN BEGIN !
0794 003D
0795 003D SAVSTACK ENTRY
0796 003D 0000 DS 2
0797 003F USRBRKN ENTRY
0798 003F 0000 DS 2
0799 0041 SAVRAM ENTRY

0800 0041 0000 DS 2
0801 0043 END

Local Symbols

OK 000035 SAVRAM 000041 SAVSTACK 00003D USRBRKN 00003F

The Western Design Center

254

EBRKIN

This is the main loop of the tracer. It has three entry points: one each for the emulation and native
mode BRK vectors to point top, and a third (TBEGIN) which is entered when then program starts tracing and
there is no “last instruction.” This entry provides the logical point to begin examining the tracing process.

TRACE has performed some initialization, having loaded the opcode of the first instruction to be
traced into the accumulator. As with FLIST, UPDATE is called to update the program counter and copy the
instruction attributes and operand into direct page memory. The routine CHKSPLC is then called to handle the
flow-altering instructions' in these cases, it will modify PCREG to reflect the target address. In either case, the
opcode of the next instruction is loaded, and a BRK instruction (a zero) is stored in its place, providing a means
to regain control immediately after the execution of the current instruction.

The contents of the RAM pointed to by the (arbitrary) ROM values in the native mode BRK vector are
temporarily saved, and the location is patched with a jump to the NBRKIN entry point.

The registers are then loaded with their user program values: these will have been preinitialized by
TRACE, or will contain the values saved at the end of the execution of the previous instruction. Note the order
in which the registers are loaded; some with direct page locations, others pushed onto the stack directly from
direct page locations; then pull into the various registers. Once the user registers have been loaded with their
values, they cannot be used for data movement. The P status register must be pulled last, to prevent any other
instructions from modifying the flags.

The e bit is restored by loading the P register with a mask reflecting the value it should have; e is
exchanged with the carry, and a second PLP instruction restores the correct status register values.

The routine exists via a jump indirect long through the “old” pcreg variable, which points to the current
instruction. It will be reentered (at either EBRKIN or NBRKIN) when the BRK instruction that immediately
follows the current instruction is executed.

Before this, however, the single instruction will be executed by the processor; any memory to be loaded
or stored, or any registers to be changed by the instruction, will be modified.

After the BRK is executed, control returns to the tracer either at EBRKIN, if the user program was in
emulation mode, or at NBRKIN if the user program was in native mode. The first thing that must be done is
preserve the state of the machine as it was at the end of the instruction.

The BRK instruction has put the program counter bank (only in native mode), the program counter, and
the status register on the stack. The program already knows the address of the next instruction, so the value on
the stack can be disregarded. The status register is needed, however.

Entry to EBRKIN is from the Apple I I monitor user vector at $3F0 and $3F1. The Apple II monitor
handles emulation mode BRK instructions by storing the register values to its own zero page locations; it pulls
the program counter and status register from the stack and stores them, too. The code at EBRKIN dummies up
a native mode post-BRK stack by first pushing three place-holder bytes, then loading the status register the
form where the Apple Monitor stored it, and pushing it. The accumulator and X registers are re-loaded from
monitor locations; Y has been left intact. A one is stored to variable EBIT, which will be used to restore the
emulation mode when EBRKIN exists. The processor switches to native mode, and control falls through into
NBRKIN, the native mode break handler.

With the stack in the correct state for both emulation mode and native mode entries, the routine
proceeds to save the entire machine context. The register sizes are extended to sixteen bits to provide a standard
size which encompasses the maximum size possible. The data bank and direct page registers are pushed onto
the stack; the DPAGE value is pushed on immediately after, and pulled into the direct page, establishing the
local direct page. With this in place, the A, X, and Y registers can be stored at their direct page locations. The
register values pushed on the stack are picked off using stack-relative addressing. Since control is not returned
by execution of an RTI (as is usual for interrupt processing), but instead is returned by means of a JMP, the
stack must be cleaned up. Since seven bytes have been pushed, seven is added to the current stack pointer, and
then saved at the direct page variable STACK. This being done, a small local stack region $140 can be
allocated.

The memory borrowed as a RAM native-mode BRK vector is restored.
The current line is then disassembled in the same manner as LIST. The register values just stored into

memory are also displayed via the routine DUMPREGS.

The Western Design Center

255

Once this is done, the effect has been achieved and the contents of the registers between instructions has
been made visible. Before resuming execution of the program being traced, a check is made to see if the user
wishes to quit, pause or step, or toggle between tracing and stepping.

Before returning to the TBEGIN entry, the BRK instruction stored at the location of the new “current”
instruction is replaced with the saved opcode, the current program counter is moved to the old program counter,
and the cycle begins again at TBEGIN.

The Western Design Center

256

0802 0000
0803 0000 ; LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
0804 0000 ;
0805 0000 ; EBRKIN, NBRKIN, TBGIN
0806 0000 ;
0807 0000 ; ENTRY POINTS FOR TRACER MAIN LOOP
0808 0000 ; EBKIN AND NBKIN RECOVER CONTROL AFTER
0809 0000 ; ‘BRK’ INSTRUCTION EXECUTED
0810 0000 ; TBEGIN IS INITIAL ENTRY FROM ‘TRACE’
0811 0000 ;
0812 0000 ; LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
0813 0000 ;
0814 0000
0815 0000
0816 0000 EBRKIN START ENTRY FROM EMULATION MODE
0817 0000 ; FOR TRACER
0818 0000

0819 0000 LONG
A

OFF

0820 0000 LONGI OFF
0821 0000
0822 0000 F40000 PEA 0
0823 0003 4848 PHA
0824 0004 A548 LDA $48 APPLE I I MONITOR
0825 0006 48 PHA LOCATIONS
0826 0007 A545 LDA $45 FOR P, AA
0827 0009 A646 LDX $46 AND X
0828 000B
0829 000B ; note that if direct page is relocated
0830 000B ; in emulation mode, these locations
0831 000B ; will be used by monitor brk handler
0832 000B
0833 000B EE9703 INC EBIT+DPAGE MARK AS EMULATION MODE
0834 000E
0835 000E 18 CLC GO NATIVE
0836 000F FB XCE
0837 0010
0838 0010 NBRKIN ENTRY ENTRY FROM NATIVE MODE
0839 0010 ; FOR TRACER
0840 0010
0841 0010 C230 REP #M+X
0842 0012 LONGA ON
0843 0012 LONGI ON
0844 0012
0845 0012 8B PHB SAVE DATA BANK
0846 0013 0B PHD DIRECT PAGE
0847 0014 F40003 PEA DPAGE SWITCH TO APPLICATION
0848 0017 2B PLD DIRECT PAGE
0849 0018
0850 0018 858F STA AREG STASH USER REGISTERS
0851 001A 868B STX XREG
0852 001C 848D STY YREG
0853 001E
0854 001E A301 LDA 1,S GET DIRECT PAGE VALUE
0855 0020 8593 STA DIRREG SAVED
0856 0022
0857 0022 3B TSC CALCULATE TRUE STACK
0858 0023 18 CLC (BEFORE BRK)
0859 0024 690700 ADC #7
0860 0027 8595 STA STACK SAVE AS STACK
0861 0029
0862 0029 A303 LDA 3,S SAVE DATA BANK, STATUS
0863 002B 8595 STA DBREG STATUS REGISTER
0864 002D
0865 002D A94001 LDA #$140 SET UP SMALL STACK
0866 0030 1B TCS

The Western Design Center

257

0867 0031
0868 0031 4B PHK MAKE DATA BANK = PROGRAM BANK
0869 0032 AB PLB
0870 0033 AE0080 LDX USRBRKN RESTORE BORROWED RAM
0871 0036 AD0180 LDA SAVRAM+1
0872 0039 9D0100 STA !1,X
0873 003C AD0080 LDA SAVRAM
0874 003F 9D0100 STA !0,X
0875 0042 200080 JSR FLIST FORMAT DISASSEMBLY LINE
0876 0045 200080 JSR FRMOPRND
0877 0048
0878 0048 200080 JSR PRINTLN PRINT IT
0879 004B
0880 004B 200080 JSR CLRLN
0881 004E 200080 JSR DUMPREGS OUPUT REGISTER VALUES
0882 0051 200080 JSR PRINTLN
0883 0054
0884 0054 E220 SEP #M
0885 0056 LONGA ON
0886 0056
0887 0056 C210 REP STEPCNTRL
0888 0058 LONGI DOPAUSE
0889 0058
0890 0058 2CE000 BIT
0891 005B 300E BMI
0892 005D
0893 005D 200080 JSR STEP STEP ONE AT A TIME
0894 0060 9068 BCC QUIT USER WANTS TO QUIT
0895 0062 5011 BVC RESUME WANTS TO KEEP STEPPING
0896 0064 A980 LDA #$80 HIT CR; WANTS TO TRACE, NOT
0897 0066 8DE000 STA STEPCNTRL STEP ­ ­ SET FLAG
0898 0069 800A BRA RESUME
0899 006B
0900 006B 200080 DOPAUSE JSR PAUSE TRACING; ONLY WAIT IF USER
0901 006E 905A BCC QUIT HITS KEY
0902 0070 5003 BVC RESUME WANTS TO KEEP TRACING
0903 0072 9CE000 STZ STEPCNTRL HIT CR; WANTS TO STEP, NOT
0904 0075 ; TRACE ­ ­ CLEAR FLAG
0905 0075
0906 0075 A583 RESUME LDA NCODE RESTORE ONLD ‘NEXT’; IT’S ABOUT
0907 0077 8780 STA [PCREG] TO BE EXECUTED
0908 0079
0909 0079 TBEGIN ENTRY
0910 0079 AB TAY SAVE THE CURRENT (ABOUT TO BE
0911 007A ; EXECUTED) OPCODE
0912 007A
0913 007A A680 LDX PCREG REMEMBER WHERE YOU GOT IT FROM
0914 007C 8684 STX OPCREG PCREG POINTED TO IT AFTER
0915 007E A582 LDA PCREGB PREVIOUS CALL TO UPDATE
0916 0080 8586 STA OPCREGB
0917 0082
0918 0082 98 TYA
0919 0083
0920 0083 8587 STA CODE SAVE CURRENT OPCODE
0921 0085 200080 JSR UPDATE UPDATE PC TO POINT PAST THIS
0922 0088 ; INSTRUCTION
0923 0088 ; UPDATE ATTRIBUTE VARIABLES
0924 0088
0925 0088 200080 JSR CHKSPCL CHECK TO SEE IF THIS CAUSES A
0926 008B ; TRANSFER
0927 008B A780 LDA [PCREG] GET NEXT OPCODE TO BE EXECUTED
0928 008D ; (ON NEXT LOOP THROUGH)
0929 008D 8583 STA NCODE SAVE IT
0930 008F A900 LDA #0 PUT A BREAK ($00) THERE TO
0931 0091 ; REGAIN CONTROL
0932 0091 8780 STA [PCREG]
0933 0093
0934 0093 GO ENTRY

The Western Design Center

258

0935 0093 C230 REP #M+X
0936 0095 LONGA ON
0937 0095 LONGI ON
0938 0095 AE0080 LDX USRBRKIN BORROW THIS RAM FOT A SECOND
0939 0098 BD0000 LDA !0,X
0940 009B 8D0080 STA SAVRAM
0941 009E BD0100 LDA !1,X
0942 00A1 8D0180 STA SAVRAM+1
0943 00A4 A94C00 LDA #$4C
0944 00A7 9D0000 STA !0,X
0945 00AA A91000 LDA #NBRKIN
0946 00AD 9D0100 STA !1,X
0947 00B0 A561 LDA STACK RESTORE STACK
0948 00B2 1B TCS
0949 00B3 D495 PEI (DBREG) GET THIS STUFF ON STACK
0950 00B5 D496 PEI (EBIT-1)
0951 00B7 D493 PEI (DIRREG)
0952 00B9
0953 00B9 6497 STZ EBIT ASSUME NATIVE MODE ON RETURN
0954 00BB
0955 00BB A58F LDA AREG RESTORE USER REGISTERS
0956 00BD A48D LDY YREG
0957 00BF A68B LDX XREG
0958 00C1
0959 00C1 2B PLD POP IT AWAY!
0960 00C2
0961 00C2 28 PLP
0962 00C3 28 PLP
0963 00C4 FB XCE
0964 00C5
0965 00C5 AB PLB
0966 00C6 28 PLP
0967 00C7
0968 00C7 DC8403 JMP [DPAGE+OPCREG] ON TO THE NEXT!
0969 00CA
0970 00CA QUIT ENTRY
0971 00CA E220 SEP #$20
0972 00CC LONGA OFF
0973 00CC
0974 00CC A583 LDA NCODE CLEAN UP OLD PATCH
0975 00CE 8780 STA [PCREG]
0976 00D0
0977 00D0 C210 REP #$10
0978 00D2 LONGI ON
0979 00D2
0980 00D2 AE0080 LDX SAVSTACK GET ORIGINAL STACK POINTER
0981 00D5 E8 INX
0982 00D6 E8 INX
0983 00D7 9A TXS
0984 00D8
0985 00D8 F40000 PEA 0 RESTORE ZERO PAGE
0986 00DB 2B PLD
0987 00DC
0988 00DC 28 PLP
0989 00DD FB XCE
0990 00DE 28 PLP
0991 00DF 60 RTS
0992 00E0
0993 00E0 STEPCNTRL ENTRY
0994 00E0 00 DS 1
0995 00E1 END

Local Symbols

DOPAUSE 00006B GO 000093 NBRKIN 000010 QUIT 0000CA
RESUME 000075 STEPCNTRL 0000E0 TBEGIN 000079

The Western Design Center

259

CHKSPCL

This routine checks the opcode about to be executed to see if it will cause a transfer of control. Is it a
branch, a jump, or a call? If it is any of the three, the destination of the transfer must be calculated and stored at
PCREG so that a BRK instruction can be stored there to maintain control after the current instruction is
executed.

A table that contains all of the opcodes which can cause a branch or jump (SCODES) is scanned. If a
match with the current instruction is not found, the routine exists and tracing resumes.

If a match is found, the value of the index into the table is checked. The opcodes for all the branches
are stored at the beginning of SCODES, so if the value of the index is less than 9, the opcode was a branch and
can be handled by the same general routine.

The first thing that must be determined if the opcode is a branch is whether or not the branch will be
taken. By shifting the index right (dividing by two) an index for each pair of different types of branches is
obtained. This index is used to get a mask for the bit in the status register to be checked. The value shifted into
the carry determines whether the branch is taken if the status bit is set or clear.

If a branch is not taken, the routine exits. If, however, a branch is taken, the new program counter value
must be calculated by sign extending the operand and adding it to the current program counter.

Each of the other opcodes (jumps and calls) are dispatched to handler routines through a jump table.
Since only the new program counter values must be calculated, jumps and calls with the same addressing mode
can be handled by the same routine.

Breaks, co-processor calls, and RTIs are not handled at all; a more robust tracer would handle BRKs by
letting breakpoints be set and cleared. Since the software interrupts are not implemented, and software tracing
of hardware interrupts is impractical, RTI is left unimplemented. The program counter is incremented by one,
causing these instructions to be bypassed completely.

All of the jumps and calls are straightforward. Long addressing is used to force the stack and indirect
addressing modes to access bank zero. Also notice the way the data bank register is copied to the program
counter bank for indirect indexed addressing. Finally, note how the long addressing modes call their absolute
analogs as subroutines, then handle the bank byte.

The Western Design Center

260

0996 0000
0997 0000
0998 0000 ; LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
0999 0000 ; CHKSPCL
1000 0000 ;
1001 0000 ; CHECK CURRENT OPCODE (IN CODE) FOR SPECIAL CASES
1002 0000 ; ­ ­ INSTRUCTIONS WHICH TRANSFER CONTROL (JMP, BRA, ETC.)

;
1003 0000 ;
1004 0000 ; ASSUMES SHORTA, LONGI ­ ­CALLED BY EBRKIN
1005 0000 ; LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
1006 0000 ;
1007 0000
1008 0000
1009 0000 CHKSPCL START
1010 0000 LONGA OFF
1011 0000 LONGI ON
1012 0000
1013 0000 A20000 LDX #SCX-SCODES
1014 0003 A587 LDA CODE
1015 0005
1016 0005 DD0080 LOOP CMP SCODES,X CHECK TO SEE IF CURRENT OPCODE
1017 0008 F004 BEQ HIT IS IN EXCEPTION TABLE
1018 000A CA DEX
1019 000B 10F8 BPL LOOP
1020 000D 60 RTS EXIT IF NOT
1021 000E
1022 0003
1023 0003 E210 HIT SEP #X
1024 0010 LONGI OFF
1025 0010
1026 0010 8A TXA IF INDEX WAS LESS THAN 9, IT’S
1027 0011 C909 CMP #9 A BRANCH
1028 0013 B00F BGE NOTBR
1029 0015
1030 0015 4A LSR A SEE IF ‘ODD OR EVEN’
1031 0016 AA TAX
1032 0017 BD0080 LDA PHASK,X GET MASK TO SELECT CORRECT
1033 001A ; PREG BIT
1034 001A 2596 AND PREG IS IT SET?
1035 001C
1036 001C B003 BCS BBS IF INDEX WAS ODD, BRANCH IF
1037 001E ; PREG BIT IS SET
1038 001E F00B BEQ DOBRANCH ELSE IF EVEN, BRANCH IF CLEAR

1039 0020 60 RTS
1040 0021
1041 0021 D008 BBS BNE DOBRANCH “BRANCH IF BIT SET”
1042 0023 60 RTS
1043 0024
1044 0024 0A NOTBR ASL A NOT A BRANCH INSTRUCTION;
1045 0025 ; MULTIPLY BY TWO
1046 0025 AA TAX AND INDEX INTO HANDLER JUMP
1047 0026 TABLE
1048 0026 C210 REP #X
1049 0028 7CEE7F JMP (SPJMP-18,X) BIAS JUMP TABLE BY 9
1050 0028
1051 0028 DOBRANCH ENTRY
1052 002B A9FF LDA #$FF SET ACCUMULATOR BYTE HIGH
1053 002D ; (ANTICIPATE NEGATIVE)
1054 002D EB XBA AND SIGN EXTEND INTO X
1055 002E

1056 002E A588 LDA OPRNDL
1057 0030

The Western Design Center

261

1058 0030 C231 REP #M+X+C MAKE REGS LONG; CLEAR CARRY
1059 0032 LONGA ON (ANTICIPATE ADC)
1060 0032 LONGI ON
1061 0032
1062 0032 3003 BMI OK NUMBER WAS NEGATIVE; ALL IS OK
1063 0034
1064 0034 297F00 AND #$7F CLEAR HIGH BYTE OF ACCUM
1065 0037 ; (POSITIVE NUMBER)
1066 0037 6580 OK ADC PCREG
1067 0039 8580 STA PCREG
1068 003B E220 SEP #M RETURN WITH ACCUM SHORT
1069 003D 60 RTS
1070 003E END

Local Symbols

BBS 000021 DOBRANCH 00002B HIT 00000E LOOP 000005
NOTBR 000024 OK 000037

1071 0000
1072 0000 SBRK START THESE ARE NOT IMPLEMENTED!
1073 0000 SRTI ENTRY (AN EXERCISE FOR READER)
1074 0000 SCOP ENTRY
1075 0000 60 RTS
1076 0001
1077 0001 SJSRABS ENTRY ABSOLUTES ­ ­
1078 0001 SJMPABS ENTRY
1079 0001 A688 LDX OPRNDL MOVE OPERAND TO PC
1080 0003 8680 STX PCREG
1081 0005 60 RTS
1082 0006
1083 0006 SBRL ENTRY LONG BRANCH
1084 0006 C221 REP #M+C LONG ACCUM AND CLEAR CARRY
1085 0008 LONGA ON
1086 0008 A588 LDA OPRNDL ADD DISPLACMENT TO
1087 000A 6580 ADC PCREG PROGRAM COUNTER
1088 000C 8580 STA PCREG
1089 000E E220 SEP #M
1090 0010 LONGA OFF
1091 0010 60 RTS
1092 0011
1093 0011 SJSRABSL ENTRY ABSOLUTE LONGS
1094 0011 SJMPABSL ENTRY
1095 0011 A688 LDX OPRNDL MOVE OPERAND, INCLUDING BANK,
1096 0013 8680 STX PCREG TO PROGRAM COUNTER
1097 0015 A58A LDA OPRNDB
1098 0017 8582 STA PCREGB
1099 0019 60 RTS
1100 001A
1101 001A SRTS ENTRY RETURN
1102 001A A691 LDX STACK PEEK ON STACK
1103 001C EC0080 CPX SAVSTACK IF ORIGINAL STACK . . .
1104 001F D003 BNE CONT
1105 0021 4C0080 JMP QUIT RETURN TO MONITOR
1106 0024 E8 CONT INX
1107 0025
1108 0025 C220 REP #M
1109 0027 BF000000 LDA >0,X ALWAYS IN BANK ZERO
1110 002B 1A INC A ADD ONE TO GET TRUE RETURN
1111 002C 8580 STA PCREG VALUE
1112 002E E220 SEP #M
1113 0030
1114 0030 60 RTS
1115 0031
1116 0031
1117 0031 SRTL ENTRY RETURN LONG

The Western Design Center

262

1118 0031 201A00 JSR SRTS DO NORMAL RETURN,
1119 0034
1120 0034 E8 INX THEN GET BANK BYTE
1121 0035 E8 INX
1122 0036 BF000000 LDA >0,X A IS NOW SHORT FOR BANK BYTE
1123 003A 8582 STA PCREGB
1124 003C 60 RTS
1125 003D
1126 003D
1127 003D SJMPIND ENTRY INDIRECT
1128 003D A688 LDX OPRNDL GET OPERAND
1129 003F
1130 003F C220 REP #M

1131 0041 BF000000 LDA >0,X JMP IND ALWAYS IN BANK ZERO
1132 0045 8580 STA PCREG
1133 0047 E220 SEP #M
1134 0049 60 RTS
1135 004A
1136 004A
1137 004A SJMPINDL ENTRY
1138 004A 203D00 JSR SJMPIND SAME AS JMP INDIRECT,
1139 004D E8 INX PLUS BANK BYTE
1140 004E E8 IJNX
1141 004F BF000000 LDA >0,X ACCUM IS SHORT NOW
1142 0053 8582 STA PCREGB
1143 0055 60 RTS
1144 0056
1145 0056
1146 0056 SJMPINDX ENTRY INDEX JUMPS
1147 0056 SJSRINDX ENTRY
1148 0056 A48B LDY XREG LET CPU DO ADDITION
1149 0058 A688 LDX OPRNDL GET INSIRECT POINTER
1150 005A 8699 STX TEMP
1151 005C A582 LDA RCREGB INDEXED JUMPS ARE IN PROGRAM
1152 005E 859B STA TEMP+2 BANK
1153 0060
1154 0060 C220 REP #M
1155 0062 B799 LDA [TEMP],Y ‘Y IS X’
1156 0064 8680 STA PCREG
1157 0066 E220 SEP #M
1158 0068
1159 0068 60 RTS
1160 0069
1161 0069
1162 0069 END

Local Symbols
CONT 000024 SBRL 000006 SCOP 000000 SJMPABS 000001
SJMPABSL 000011 SJMPIND 00003D SJMPINDL 00004A SJMPINDX 000056
SJJSRABS 000001 SJSRABSL 000011 SJSRINDX 000056 SRTI 000000
SRTL 000031 SRTS 00001A

The Western Design Center

263

DUMPREGS

This routine forms an output line that will display the contents of the various registers. The routine is
driven in a loop by a table containing single-character register names (“A,” “X,” and so on) and the address of
the direct page variable that contains the corresponding register value. It is interesting in that a direct page
pointer to a direct page address is used, since the two index registers are occupied with accessing the table
entries and pointing to the next available location in the output buffer.

1163 0000
1164 0000
1165 0000 ; LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
1166 0000 ;
1167 0000 ; DUMPREGS
1168 0000 ;
1169 0000 ; DISPLAYS CONTENTS OF REGISTER VARIABLES IN ‘LINE’
1170 0000 ;
1171 0000 ; SAVES AND RESTORES MODE
1172 0000 ; LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
1173 0000 ;
1174 0000
1175 0000 DUMPREGS START
1176 0000 08 PHP
1177 0001 E230 SEP #M+X
1178 0003 LONGA OFF
1179 0003 LONGI OFF
1180 0003
1181 0003 A000 LDY #0
1182 0005
1183 0005 A903 LDA #>DPAGE STOE DPAGE HIGH IN TEMP HIGH

1184 0007 859A STA TEMPH
1185 0009
1186 0009 A209 LDX #ENDTABLE-TABLE LENGTH OF COMMAND TABLE
1187 000B
1188 000B BD4400 LOOP LDA TABLE,X GET ADDRESS OF NEXT REGISTER
1189 000E 8599 STA TEMP
1190 0010 CA DEX
1191 0011 BD4400 LDA TABLE,X GET REGISTER ‘NAME’
1192 0014 200080 JSR PUTREG16
1193 0017 CA DEX
1194 0018 10F1 BPL LOOP
1195 001A
1196 001A 1995 LDA #DBREG NOW ALL THE 8-BIT REGISTERS
1197 001C 8599 STA TEMP
1198 001E A9C2 LDA #’B’
1199 0020 200080 JSR PUTREG8
1200 0023 A996 LDA #PREG
1201 0025 8599 STA TEMP
1202 0027 A9D0 LDA #’P’
1203 0029 200080 JSR PUTREG8
1204 002C A9C5 LDA #’E’
1205 002E 990080 STA LINE,Y
1206 0031 C8 INY
1207 0032 A9BA LDA #’:’
1208 0034 990080 STA LINE,Y
1209 0037 C8 INY
1210 0038
1211 0038 A9B0 LDA #’0’
1212 003A A697 LDX EBIT
1213 003C F001 BEQ OK
1214 003E 1A INC A ‘0’ BECOMES ‘1’
1215 003F 990080 OK STA LINE,Y
1216 0042

The Western Design Center

264

1217 0042
1218 0042 28 PLP
1219 0043 60 RTS
1220 0044
1221 0044 C494 TABLE DC C’D’,I1’DIRREGH’ DIRECT PAGE
1222 0046 D392 DC C’S’,I1’STACKH’ ADDRESS OF
1223 0048 D98E DC C’Y’,I1’YREGH’ REGISTER
1224 004A D88C DC C’X’,I1’XREGH’ VARIABLES
1225 004C C1 DC C’A’
1226 004D 90 ENDTABLE DC I1’AREGH’
1227 004E END

Local Symbols

ENDTABLE 00004D LOOP 00000B OK 00003F TABLE 000044

The Western Design Center

265

PUTRTEG8

This routine, along with PUTREG16, is called by DUMPREGS to actually output a register value
once its label and storage location have been loaded from the table. Naturally, it calls PUTREX to convert the
register values to hexadecimal.

1228 0000
1229 0000
1230 0000 ; LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
1231 0000 ;
1232 0000 ; PUTREGS
1233 0000 ;
1234 0000 ; LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
1235 0000 ;
1236 0000
1237 0000
1238 0000
1239 0000 PUTREG8 START
1240 0000 990080 STA LINE,Y A CONTAINS REGISTER ‘NAME’
1241 0003 C8 INY
1242 0004 A9BC LDA #’=’ EQUALS . .
1243 0006 990080 STA LINE,Y
1244 0009 C8 INY
1245 000A 8012 BRA PRIN USE PUTREG16 CODE
1246 000C
1247 000C PUTREG16 ENTRY
1248 000C 990080 STA LINE,Y A CONTAINS REGISTER ‘NAME’
1249 000F C8 INY
1250 0010 A9BD LDA #’=’ EQUALS . .
1251 0012 990080 STA LINE,Y
1252 0015 C8 INY
1253 0016 C8 INY
1254 0017 B299 LDA (TEMP) TEMP POINTS TO REGISTER
1255 0019 C699 DEC TEMP VARIABLE HIGH
1256 001B 200080 JSR PUTHEX
1257 001E
1258 001E C8 PRIN INY
1259 001F B299 LDA (TEMP) TEMP POINTS TO REGISTER
1260 0021 20080 JSR PUTHEX VARIABLE LOW (OR 8 BIT)
1261 0024 C8 INY
1262 0025 60 RTS
1263 0026 END

Local Symbols

PRIN 0000IE PUTREG16 00000C

The Western Design Center

266

TABLES

The next several pages list the tables used by the program – SPJMP, PMASK, SCODES, MN,
MODES, LENS, and ATRIBL.

SPJMP is a jump table of entry points to the trace handlers for those instructions which modify the
flow of control.

PMASK contains the masks used to check the status of individual flag bits to determine if a branch will
be taken.

SCODS is a table containing the opcodes of the special (flow-altering) instructions.
ATRBL is the attribute table for all 256 opcodes. Each table entry is two bytes, one is an index into the

mnemonic table, the other the address mode. This information is the key to the other tables, all used by the
UPDATE routine, which puts a description of the current instruction’s attributes into the respective direct page
variables. MN is the table of instruction mnemonics that the ‘mnemonic index’ attribute points into. MODES
is a jump table with addresses of the disassembly routine for each addressing mode, and LENS contains the
length of instructions for each addressing mode. Both of these tables are indexed into directly with the ‘address
mode’ attribute.

The Western Design Center

267

1264 0000
1265 0000 ; LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
1266 0000 ;
1267 0000 ; SP JMP
1268 0000 ; JUMP TABLE FOR ‘SPECIAL’ OPCODE HANDLERS
1269 0000 ; LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
1270 0000 ;
1271 0000
1272 0000 SPJMP START JUMP TABLE FOR
1273 0000 0080 DC A’SBRK’ NON-BRANCH HANDLERS
1274 0002 0080 DC A’SJSRABS’
1275 0004 0080 DC A’SRTI’
1276 0006 0080 DC A’SRTS’
1277 0008 0080 DC A’SCOP’
1278 000A 0080 DC A’SJSRABSL’
1279 000C 0080 DC A’SBRL’
1280 000E 0080 DC A’SRTL’
1281 0010 0080 DC A’SJMPABS’
1282 0012 0080 DC A’SJMPABSL’
1283 0014 0080 DC A’SJMPIND’
1284 0016 0080 DC A’SJMPINDX’
1285 0018 0080 DC A’SJMPINDL’
1286 001A 0080 SCT DC A’SJSRINDX’
1287 001C
1288 001C END

Local Symbols

SCT 00001A

1289 0000
1290 0000
1291 0000
1292 0000 ; LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
1293 0000 ;
1294 0000 ; PMASK
1295 0000 ; STATUS REGISTER MASKS FOR BRANCH HANDLING CODE
1296 0000 ; LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
1297 0000 ;
1298 0000
1299 0000 PMASK START MASKS FOR STATUS REGISTER
1300 0000 80 DC H’80’ N FLAG
1301 0001 40 DC H’40’ V FLAG
1302 0002 01 DC H’01’ C FLAG
1303 0003 02 DC H’02’ Z FLAG
1304 0004 00 DC H’00’ BRA
1305 0005 END

1306 0000
1307 0000
1308 0000
1309 0000
1310 0000
1311 0000 SCODES START SPECIAL OPCODES
1312 0000
1313 0000 10 DC H’10’ BPL
1314 0001 30 DC H’30’ BMI
1315 0002 50 DC H’50’ BVC
1316 0003 70 DC H’70’ BVS
1317 0004 90 DC H’90’ BCC
1318 0005 B0 DC H’B0’ BCS
1319 0006 D0 DC H’D0’ BNE
1320 0007 F0 DC H’F0’ BEQ

The Western Design Center

268

1321 0008 80 DC H’80’ BRA
1322 0009 00 DC H’00’ BRK
1323 000A 20 DC H’20’ JSR
1324 000B 40 DC H’40’ RTI
1325 000C 60 DC H’60’ RTS
1326 000D 02 DC H’02’ COP
1327 000E 22 DC H’22’ JSR ABSL
1328 000F 82 DC H’82’ BRL
1329 0010 6B DC H’6B’ RTL
1330 0011 4C DC H’4C’ JMP ABS
1331 0012 5C DC H’5C’ JMP ABSL
1332 0013 6C DC H’6C’ JMP ()
1333 0014 7C DC H’7C’ JMP (,X)
1334 0015 DC DC H’DC’ JMP []
1335 0016 SCX ENTRY
1336 0016 FC DC H’FC’ JSR (,X)
1337 0017 END

Local Symbols

SCX 000016

1138 0000 APPEND DB. TABLE
1139 0000
1340 0000
1341 0000 MN DATA
1342 0000 000000 DX 3
1343 0003 C1C4C3 DC C’ADC’ 1
1344 0006 C1C3C4 DC C’AND’ 2
1345 0009 C1D3CC DC C’ASL’ 3
1346 000C C2C3C3 DC C’BCC’ 4
1347 000F C2C3D3 DC C’BCS’ 5
1348 0012 C2C5D1 DC C’BEQ’ 6
1349 0015 C2C9D4 DC C’BIT’ 7
1350 0018 C2CDC9 DC C’BMI’ 8
1351 001B C2C3C5 DC C’BNE’ 9
1352 001E C2D0CC DC C’BPL’ 10
1353 0021 C2D2CB DC C’BRK’ 11
1354 0024 C2D6C3 DC C’BVC’ 12
1355 0027 C2D6D3 DC C’BVS’ 13
1356 002A C3CCC3 DC C’CLC’ 14
1357 002D C3CCC4 DC C’CLD’ 15
1358 0030 C3CCC9 DC C’CLI’ 16
1359 0033 C3CCD6 DC C’CLV’ 17
1360 0036 C3CDD0 DC C’CMP’ 18
1361 0039 C3D0D8 DC C’CPX’ 19
1362 003C C3D0D9 DC C’CPY’ 20
1363 003F C4C5C3 DC C’DEC’ 21
1364 0042 C4C5D8 DC C’DEX’ 22
1365 0045 C4C5D9 DC C’DEY’ 23
1366 0048 C5CFD2 DC C’EOR’ 24
1367 004B C9CEC3 DC C’INC’ 25
1368 004E C9C3D8 DC C’INX’ 26
1369 0051 C9C3D9 DC C’INY’ 27
1370 0054 CACDD0 DC C’JMP’ 28
1371 0057 CAD3D2 DC C’JSR’ 29
1372 005A CCC4C1 DC C’LDA’ 30
1373 005D CCC4D8 DC C’LDX’ 31
1374 0060 CCC9D9 DC C’LDY’ 32
1375 0063 CDC3D2 DC C’LSR’ 33
1376 0066 CECFD0 DC C’NOP’ 34
1377 0069 CFD2C1 DC C’ORA’ 35
1378 006C D0C8C1 DC C’PHA’ 36
1379 006F D0C8D0 DC C’PHP’ 37

The Western Design Center

269

1380 0072 D0CCC1 DC C’PLA’ 38
1381 0075 D0CCD0 DC C’PLP’ 39
1382 0078 D2CFCC DC C’ROL’ 40
1383 007B D2CFD2 DC C’ROR’ 41
1384 007E D2D4C9 DC C’RIT’ 42
1385 0081 D2D4D3 DC C’RTS’ 43
1386 0084 D3C2C3 DC C’SBC’ 44
1387 0087 D3C5C3 DC C’SEC’ 45
1388 008A D3C5C4 DC C’SED’ 46
1389 008D D3C5C9 DC C’SEI’ 47
1390 0090 D3D4C1 DC C’STA’ 48
1391 0093 D3D4D8 DC C’STX’ 49
1392 0096 D3D4D9 DC C’STY’ 50
1393 0099 D4C1D8 DC C’TAX’ 51
1394 009C D4C1D9 DC C’TAY’ 52
1395 009F D4D3D8 DC C’TSX’ 53
1396 00A2 D4D8C1 DC C’TXA’ 54
1397 00A5 D4D8D3 DC C’TXS’ 55
1398 00A8 D4D9C1 DC C’TYA’ 56
1399 00AB C2D2C1 DC C’BRA’ 57
1400 00AE D0CCD8 DC C’PLX’ 58
1401 00B1 D0CCD9 DC C’PLY’ 59
1402 00B4 D0C8D8 DC C’PHX’ 60
1403 00B7 D0D8D0 DC C’PHY’ 61
1404 00BA D3D4DA DC C’STZ’ 62
1405 00BD D4D3C2 DC C’TRB’ 63
1406 00C0 D4D3C2 DC C’TSB’ 64
1407 00C3
1408 00C3 D0C5C1 DC C’PEA’ 65
1409 00C6 D0C5C9 DC C’PEI’ 66
1410 00C9 D0C5D2 DC C’PER’ 67
1411 00CC D0CCC2 DC C’PLB’ 68
1412 00CF D0CCC4 DC C’PLD’ 69
1413 00D2 D0C8C2 DC C’PHB’ 70
1414 00D5 D0C8C4 DC C’PHD’ 71
1415 00D8 D0C8CB DC C’PHK’ 72
1416 00DB
1417 00DB D2C5D0 DC C’REP’ 73
1418 00DE D3C5D0 DC C’SEP’ 74
1419 00E1
1420 00E1 D4C3C4 DC C’TCD’ 75
1421 00E4 D4C4C3 DC C’TDC’ 76
1422 00E7 D4C3D3 DC C’TCS’ 77
1423 00EA D4D3C3 DC C’TSC’ 78
1424 00ED D4D8D9 DC C’TXY’ 79
1425 00F0 D4D9D8 DC C’TYX’ 80
1426 00F3 D8C2C1 DC C’XBA’ 81
1427 00F6 D8C3C5 DC C’XCE’ 82
1428 00F9
1429 00F9 C2D2CC DC C’BRL’ 83
1430 00FC CAD3CC DC C’JSL’ 84
1431 00FF D2D4CC DC C’RTL’ 85
1432 0102 CDD6CE DC C’MVN’ 86
1433 0105 CDD6D0 DC C’MVP’ 87
1434 0108 C3CFD0 DC C’COP’ 88
1435 010B D7C1C9 DC C’WAI’ 89
1436 010E D3D4D0 DC C’STP’ 100
1437 0111 D7C4CD DC C’WDM’ 101
1438 0114 END

1439 0000
1440 0000 MODES DATA
1441 0000 0000 DS 2
1442 0002 0080 DC A’FIMM’ 1
1443 0004 0080 DC A’FABS’ 2
1444 0006 0080 DC A’FABSL’ 3

The Western Design Center

270

1445 0008 0080 DC A’FDIR’ 4
1446 000A 0080 DC A’FACC’ 5
1447 000C 0080 DC A’FIMP’ 6
1448 000E 0080 DC A’FINDINX’ 7
1449 0010 0080 DC A’FINDINXL’ 8
1450 0012 0080 DC A’FINXIND’ 9
1451 0014 0080 DC A’FDIRINXX’ 10
1452 0016 0080 DC A’FDIRINXY’ 11
1453 0018 0080 DC A’FABSX’ 12
1454 001A 0080 DC A’FABSLX’ 13
1455 001C 0080 DC A’FABSY’ 14
1456 001E 0080 DC A’FPCR’ 15
1457 0020 0080 DC A’FPCRL’ 16
1458 0022 0080 DC A’FABSIND’ 17
1459 0024 0080 DC A’FIND’ 18
1460 0026 0080 DC A’FINDL’ 19
1461 0028 0080 DC A’FABSINXIND’ 20
1462 002A 0080 DC A’FSTACK’ 21
1463 002C 0080 DC A’FSTACKREL’ 22
1464 002E 0080 DC A’FSRINDINX’ 23
1465 0030 0080 DC A’FBLOCK’ 24
1466 0032
1467 0032 END

1468 0000
1469 0000 LENS START
1470 0000 02 DC H’02’ IMM
1471 0001 03 DC H’03’ ABS
1472 0002 04 DC H’04’ ABS LONG
1473 0003 02 DC H’02’ DIRECT
1474 0004 01 DC H’01’ ACC
1475 0005 01 DC H’01’ IMPLIED
1476 0006 02 DC H’02’ DIR IND INX
1477 0007 02 DC H’02’ DIR IND INX L
1478 0008 02 DC H’02’ DIR INX IND
1479 0009 02 DC H’02’ DIR INX X
1480 000A 02 DC H’02’ DIR INX Y
1481 000B 03 DC H’03’ ABS X
1482 000C 04 DC H’04’ ABS L X
1483 000D 03 DC H’03’ ABS Y
1484 000E 02 DC H’02’ PCR
1485 000F 03 DC H’03’ PCR L
1486 0010 03 DC H’03’ ABS IND
1487 0011 02 DC H’02’ DIR IND
1488 0012 02 DC H’02’ DIR IND L
1489 0013 03 DC H’03’ ABS INX IND
1490 0014 01 DC H’01’ STACK
1491 0015 02 DC H’02’ SR
1492 0016 02 DC H’02’ SR INX
1493 0017 03 DC H’03’ MOV
1494 0018 END
1495 0000
1496 0000 APPEND DB. ATRIB
1497 0000
1498 0000 ATRIBL DATA
1499 0000
1500 0000 0B06 DC I1’11,6’ BRK 00
1501 0002 2309 DC I1’35,9’ ORA D,X 01
1502 0004 5804 DC I1’88,4’ COP (REALLY 2) 02
1503 0006 2316 DC I1’35,22’ ORA-,X 03
1504 0008 4004 DC I1’64,4’ TSB D 04
1505 000A 2304 DC I1’34,4’ ORA D 05
1506 000C 0304 DC I1’3,4’ ASL D 06
1507 000E 2313 DC I1’35,19’ ORA [D] 07
1508 0010 2515 DC I1’37,21’ PHP 08
1509 0012 2301 DC I1’35,1’ ORA IMM 09

The Western Design Center

271

1510 0014 0305 DC I1’3,5’ ASL ACC 0A
1511 0016 4715 DC I1’71,21’ PHD 0B
1512 0018 4002 DC I1’64,2’ TSB ABS 0C
1513 001A 2302 DC I1’35,2’ ORA ABS 0D
1514 001C 0302 DC I1’3,2’ ASL ABS 0E
1515 001E 2303 DC I1’35,3’ ORA ABS L 0F
1516 0020 0A0F DC I1’10,15’ BPL 10
1517 0022 2307 DC I1’35,7’ ORA (D),Y 11
1518 0024 2312 DC I1’35,18’ ORA (D) 12
1519 0026 2317 DC I1’35,23’ ORA S,Y 13
1520 0028 3FO4 DC I1’63,4’ TRB D 14
1521 002A 230A DC I1’35,10’ ORA D,X 15
1522 002C 030A DC I1’3,10’ ASL D,X 16
1523 002E 2308 DC I1’35,8’ ORA (DL),Y 17
1524 0030 0E06 DC I1’14,6’ CLC 18
1525 0032 230E DC I1’35,14’ ORA ABS,Y 19
1526 0034 1905 DC I1’25,5’ NC ACC 1A
1527 0036 4D06 DC I1’77,6’ TCS 1B
1528 0038 3F02 DC I1’63,2’ TRB ABS,X 1C
1529 003A 230C DC I1’35,12’ ORA ABS,X 1D
1530 003C 030C DC I1’3,12’ ASL ABS,X 1E
1531 003E 230D DC I1’35,13’ ORA ABSL,X 1F
1532 0040 1D02 DC I1’29,2’ JSR ABS 20
1533 0042 0207 DC I1’2,7’ AND (D, X) 21
1534 0044 1D03 DC I1’29,3’ JSL ABS L 22
1535 0046 0216 DC I1’2,22’ AND SR 23
1536 0048 0704 DC I1’7,4’ BIT D 24
1537 004A 0204 DC I1’2,4’ AND D 25
1538 004C 2804 DC I1’40,4’ ROL D 26
1539 004E 0213 DC I1’2,19’ AND (DL) 27
1540 0050 2706 DC I1’39,6’ PLP 28
1541 0052 0201 DC I1’2,1’ AND IMM 29
1542 0054 2805 DC I1’40,5’ ROL ACC 2A
1543 0056 4515 DC I1’69,21’ PLD 2B
1544 0058 0705 DC I1’7,2’ BIT ABS 2C
1545 005A 0202 DC I1’2,2’ AND ABS 2D
1546 005C 28005 DC I1’40,5’ ROL A 2E
1547 005E 0203 DC I1’2,3’ AND ABS L 2F
1548 0060 080F DC I1’8,15’ BMI 30
1549 0062 020B DC I1’2,11’ AND D,Y 31
1550 0064 0212 DC I1’2,18’ AND (D) 32
1551 0066 0217 DC I1’2,23’ AND (SR),Y 33
1552 0068 070A DC I1’7,10’ BIT D,X 34
1553 006A 020A DC I1’2,10’ AND D,X 35
1554 006C 280A DC I1’40,10’ ROL D,X 36
1555 006E 0208 DC I1’2,8’ AND (DL),Y 37
1556 0070 2D06 DC I1’45,6’ SEC 38
1557 0072 020E DC I1’25,14’ AND ABS,Y 39
1558 0074 1505 DC I1’21,5’ DEC 3A
1559 0076 4E06 DC I1’78,6’ TSC 3B
1560 0078 070C DC I1’7,12’ BIT A,X 3C
1561 007A 020C DC I1’2,12’ AND ABS,X 3D
1562 007C 280C DC I1’40,12’ ROL A,X 3E
1563 007E 020D DC I1’2,13’ AND AL,X 3F
1564 0080 2A06 DC I1’42,6’ RTI 40
1565 0082 1809 DC I1’24,9’ EOR (D,X) 41
1566 0084 6506 DC I1’101,6’ WDM 42
1567 0086 1816 DC I1’24,22’ EOR (D,X) 43
1568 0088 5718 DC I1’87,24’ MVP 44
1569 008A 1804 DC I1’24,4’ EOR D 45
1570 008C 2104 DC I1’33,4’ LSR D 46
1571 008E 1813 DC I1’24,19’ EOR (DL) 47
1572 0090 2406 DC I1’36,6’ PHA 48
1573 0092 1801 DC I1’24,1’ EOR IMM 49
1574 0094 2105 DC I1’33,5’ LSR ABS L 4A
1575 0096 4806 DC I1’72,6’ PHK 4B
1576 0098 1C02 DC I1’28,2’ JMP ABS 4C
1577 009A 1802 DC I1’24,2’ EOR ABS 4D

The Western Design Center

272

1578 009C 2102 DC I1’33,2’ LSR ABS 4E
1579 009E 1805 DC I1’24,5’ EOR ABS L 4F
1580 00A0 0C0F DC I1’12,15’ BVC 50
1581 00A2 1807 DC I1’24,7’ EOR (D),Y 51
1582 00A4 1812 DC I1’24,18’ EOR (D) 52
1583 00A6 1817 DC I1’24,23’ EOR (SR),Y 53
1584 00A8 56148 DC I1’86,24’ MVN 54
1585 00AA 180A DC I1’24,10’ EOR D,X 55
1586 00AC 210A DC I1’33,10’ LSR D,X 56
1587 00AE 1808 DC I1’24,8’ EOR (DL),Y 57
1588 00B0 1006 DC I1’16,6’ CLI 58
1589 00B2 180E DC I1’24,14’ EOR 59
1590 00B4 3D15 DC I1’61,21’ PHY 5A
1591 00B6 4B06 DC I1’75,6’ TCD 5B
1592 00B8 1C03 DC I1’28,3’ JMP ABSL 5C
1593 00BA 180C DC I1’24,12’ EOR ABS,X 5D
1594 00BC 210C DC I1’33,12’ LSR ABS,X 5E
1595 00BE 180D DC I1’24,13’ EOR ABSL,X 5F
1596 00C0 2B06 DC I1’43,6’ RTS 60
1597 00C2 0109 DC I1’1,9’ ADC (D, X) 61
1598 00C4 4340 DC I1’67,16’ PER 62
1599 00C6 0116 DC I1’1,22’ ADC SR 63
1600 00C8 3E04 DC I1’62,4’ STZ D 64
1601 00CA 0104 DC I1’1,4’ ADC D 65
1602 00CC 2904 DC I1’41,4’ ROR D 66
1603 00CE 0113 DC I1’1,19’ ADC (DL) 67
1604 00D0 2615 DC I1’38,21’ PLA 68
1605 00D2 0101 DC I1’1,1’ ADC 69
1606 00D4 2905 DC I1’41,5’ ROR ABSL 6A
1607 00D6 5506 DC I1’85,6’ RTL 6B
1608 00D8 1C11 DC I1’28,17’ JMP (A) 6C
1609 00DA 0102 DC I1’1,2’ ADC ABS 6D
1610 00DC 2902 DC I1’41,2’ ROR ABS 6E
1611 00DE 0103 DC I1’1,3’ ADC ABSL 6F
1612 00E0 0D0F DC I1’13,15’ BVS 70
1613 00E2 0108 DC I1’1,8’ ADC (D),Y 71
1614 00E4 0112 DC I1’1,18’ ADC (D) 72
1615 00E6 0117 DC I1’1,23’ ADC (SR),Y 73
1616 00E8 3E0A DC I1’62,10’ STZ D,X 74
1617 00EA 010A DC I1’1,10’ ADC D,X 75
1618 00EC 290A DC I1’41,10’ ROR D,X 76
1619 00EE 0108 DC I1’1,8’ ADC (DL),Y 77
1620 00F0 2F06 DC I1’47,6’ SEI 78
1621 00F2 010E DC I1’1,14’ ADC ABS,Y 79
1622 00F4 3B15 DC I1’59,21’ PLY 7A
1623 00F6 4C06 DC I1’76,6’ TDC 7B
1624 00F8 1C14 DC I1’28,20’ JMP (A, X) 7C
1625 00FA 010C DC I1’1,12’ ADC ABS,X 7D
1626 00FC 290C DC I1’41,12’ ROR ABS,X 7E
1627 00FE 010D DC I1’1,13’ ADC ABSL,X 7F
1628 0100
1629 0100 END

1630 0000
1631 0000 ATRIBH START
1632 0000 390F DC I1’57,15’ BRA 80
1633 0002 3009 DC I1’48,9’ STA (D, X) 81
1634 0004 5310 DC I1’83,16’ BRL 82
1635 0006 3016 DC I1’48,22’ STA-,S 83
1636 0008 3204 DC I1’50,4’ STY D 84
1637 000A 3004 DC I1’48,4’ STA D 85
1638 000C 3104 DC I1’49,4’ STX D 86
1639 000E 3013 DC I1’48,19’ STA [D] 87
1640 0010 1706 DC I1’23,6’ DEY 88
1641 0012 0701 DC I1’7,1’ BIT IMM 89
1642 0014 3606 DC I1’54,6’ TXA 8A
1643 0016 4615 DC I1’70,21’ PHB 8B

The Western Design Center

273

1644 0018 3203 DC I1’50,2’ STY ABS 8C
1645 001A 3002 DC I1’48,2’ STA ABS 8D
1646 001C 3102 DC I1’49,2’ STX ABS 8E
1647 001E 3003 DC I1’48,3’ STA ABS L 8F
1648 0020 040F DC I1’4,15’ BC 90
1649 0022 3007 DC I1’48,7’ STA (D),Y 91
1650 0024 3012 DC I1’48,18’ STA (D) 92
1651 0026 3017 DC I1’48,23’ STA (SR),Y 93
1652 0028 320A DC I1’50,10’ STY D,X 94
1653 002A 300A DC I1’48,10’ STA D,X 95
1654 002C 310B DC I1’49,11’ STX D,Y 96
1655 002E 3008 DC I1’48,8’ STA (DL),Y 97
1656 0030 3806 DC I1’56,6’ TYA 98
1657 0032 300E DC I1’48,14’ STA ABS,Y 99
1658 0034 3706 DC I1’55,6’ TXS D 9A
1659 0036 4F06 DC I1’79,6’ TXY 9B
1660 0038 3E02 DC I1’62,2’ STZ ABS 9C
1661 003A 300C DC I1’48,12’ STA ABS,X 9D
1662 003C 3E0C DC I1’62,12’ STZ ABS,X 9E
1663 003E 300D DC I1’48,13’ STA ABSL,X 9F
1664 0040 2001 DC I1’32,1’ LDY IMM A0
1665 0042 1E09 DC I1’30,9’ LDA (D,X) A1
1666 0044 1F01 DC I1’31,1’ LDX IMM A2
1667 0046 1E16 DC I1’30,22’ LDA SR A3
1668 0048 2004 DC I1’32,4’ LDY D A4
1669 004A 1E04 DC I1’30,4’ LDA D A5
1670 004C 1F04 DC I1’31,4’ LDX D A6
1671 004E 1E13 DC I1’30,19’ LDA (DL) A7
1672 0050 3406 DC I1’52,6’ TAY A8
1673 0052 1E01 DC I1’31,1’ LDA IMM A9
1674 0054 3306 DC I1’51,6’ TAX AA
1675 0056 4415 DC I1’68,21’ PLB AB
1676 0058 2002 DC I1’32,2’ LDY ABS AC
1677 005A 1E02 DC I1’30,2’ LDA ABS AD
1678 005C 1F02 DC I1’31,2’ LDX ABS AE
1679 005E 1E03 DC I1’30,3’ LDA ABS L AF
1680 0060 050F DC I1’5,15’ BCS B0
1681 0062 1E07 DC I1’30,7’ LDA (D),Y B1
1682 0064 1E12 DC I1’30,18’ LDA (D) B2
1683 0066 1E17 DC I1’30,23’ LDA (SR),Y B3
1684 0068 200A DC I1’32,10’ LDY D,X B4
1685 006A 1E0A DC I1’30,10’ LDA D,X B5
1686 006C 1E0B DC I1’30,11’ LDX D,Y B6
1687 006E 1E08 DC I1’30,8’ LDA (DL),Y B7
1688 0070 1106 DC I1’17,6’ CLV B8
1689 0072 1E0E DC I1’30,14’ LDA ABS,Y B9
1690 0074 3506 DC I1’53,6’ TSX BA
1691 0076 5006 DC I1’80,6’ TYX BB
1692 0078 200C DC I1’32,12’ LDY ABS,X BC
1693 007A 1E0C DC I1’30,12’ LDA ABS,X BD
1694 007C 1F0E DC I1’31,14’ LDX ABS,Y BE
1695 007E 1E0D DC I1’30,13’ LDA ABSL,X BF
1696 0080 1401 DC I1’30,13’ CPY C0
1697 0082 1209 DC I1’18,9’ CMP (D,X) C1
1698 0084 4901 DC I1’73,1’ REP C2
1699 0086 1216 DC I1’18,22’ CMP C3
1700 0088 1404 DC I1’20,4’ CPY D C4
1701 008A 1204 DC I1’18,4’ CMP D C5
1702 008C 1504 DC I1’21,4’ DEC D C6
1703 008E 1213 DC I1’18,19’ CMP (DL) C7
1704 0090 1B06 DC I1’27,6’ INY C8
1705 0092 1201 DC I1’18,1’ CMP IMM C9
1706 0094 1606 DC I1’22,6’ DEX CA
1707 0096 5906 DC I1’89,6’ WAI CB
1708 0098 1402 DC I1’20,2’ CPY ABS CC
1709 009A 1202 DC I1’18,2’ CMP ABS CD
1710 009C 1502 DC I1’21,2’ DEC ABS CE
1711 009E 1203 DC I1’18,3’ CMP ABSL CF

The Western Design Center

274

1712 00A0 090F DC I1’9,15’ BNE D0
1713 00A2 1207 DC I1’18,7’ CMP (D0,Y D1
1714 00A4 1212 DC I1’18,18’ CMP (D) D2
1715 00A6 1217 DC I1’18,23’ CMP D3
1716 00A8 4204 DC I1’66,4’ PEI D D4
1717 00AA 120A DC I1’18,10’ CMP D,X D5
1718 00AC 150A DC I1’21,10’ DEC D,X D6
1719 00AE 1208 DC I1’18,8’ CMP (DL),Y D7
1720 00B0 0F06 DC I1’15,6’ CLD D8
1721 00B2 120E DC I1’18,14’ CMP ABS,Y D9
1722 00B4 3C15 DC I1’60,21’ PHX DA
1723 00B6 6406 DC I1’100,6’ STP DB
1724 00B8 1C11 DC I1’28,17’ JMP (A) DC
1725 00BA 120C DC I1’18,12’ CMP ABS,X DD
1726 00BC 150C DC I1’21,12’ DEC ABS,X DE
1727 00BE 120D DC I1’18,13’ CMP ABSL,X DF
1728 00C0 1301 DC I1’19,1’ CPX IMM E0
1729 00C2 2C09 DC I1’44,9’ SBC (D,X) E1
1730 00C4 4A01 DC I1’74,1’ SEP IMM E2
1731 00C6 2C16 DC I1’44,22’ SBC SR E3
1732 00C8 1F04 DC I1’31,4’ LDX D E4
1733 00CA 2C04 DC I1’44,4’ SBC D E5
1734 00CC 1904 DC I1’25,4’ INC D E6
1735 00CE 2C13 DC I1’44,19’ SBD (DL) E7
1736 00D0 1A06 DC I1’26,6’ INX D E8
1737 00D2 2C01 DC I1’44,1’ SBC IMM E9
1738 00D4 2206 DC I1’34,6’ NOP EA
1739 00D6 5106 DC I1’81,6’ XBA EB
1740 00D8 1302 DC I1’19,2’ CPX ABS EC
1741 00DA 2C02 DC I1’44,2’ SBC ABS ED
1742 00DC 1902 DC I1’25,2’ INC ABS EE
1743 00DE 2C03 DC I1’44,3’ SBC ABSL EF
1744 00E0 060F DC I1’6,15’ BEQ F0
1745 00E2 2C07 DC I1’44,7’ SBC (D),Y F1
1746 00E4 2C12 DC I1’44,18’ SBC (D) F2
1747 00E6 2C17 DC I1’44,23’ SBC (SR),Y F3
1748 00E8 4102 DC I1’65,2’ PEA F4
1749 00EA 2C0A DC I1’44,10’ SBC D,X F5
1750 00EC 190A DC I1’25,10’ INC D,X F6
1751 00EE 2C08 DC I1’44,8’ SBC (DL),Y F7
1752 00F0 2E06 DC I1’46,6’ SED F8
1753 00F2 2C0E DC I1’44,14’ SBC ABS,Y F9
1754 00F4 3A15 DC I1’58,21’ PLX FA
1755 00F6 5206 DC I1’82,6’ XCE FB
1756 00F8 1D14 DC I1’29,20’ JSR (A,X) FC
1757 00FA 2C0C DC I1’44,12’ SBC ABS,X FD
1758 00FC 190C DC I1’25,12’ INC ABS,X FE
1759 00FE 2C0D DC I1’44,13’ SBC ABSL,X FF
1760 0100 END

Global Symbols

ADDRMODE 00009C AREG 00008F AREGH 000090 BRKN 00FFE6
C 000001 CODE 000087 CR 00008D DBREG 000095
DIRREG 000093 DIRREGH 000094 DPAGE 000300 EBIT 000097
M 000020 MNX 00009D NCODE 000083 OPCREG 000084
OPCREGB 000086 OPCREGH 000085 OPLEN 00009F OPRNDB 00008A
OPRNDH 000089 OPRNDL 000088 PCREG 000080 PCREGB 000082
PCREGH 000081 PREG 000096 STACK 000091 STACKH 000092
TEMP 000099 TEMPB 00009B TEMPH 00009A USRBRKV 003F0
X 000010 XREG 00008B XREGH 00008C YREG 00008D
YREGH 00008E

1760 source lines
0 macros expanded
0 lines generated
0 page faults

The Western Design Center

275

Link Editor 4.0

00008000 00000037 Code: MAIN
00008037 000000CF Code: EBRKIN
00008106 00000048 Code: FLIST
0000814E 00000120 Code: FRMOPRND
0000826E 00000019 Code: POB
00008287 0000002F Code: STEP
00008286 00000026 Code: PUTHEX
000082DC 0000005A Code: CLRLN
000088336 0000005D Code: UPDATE
00008393 0000001A Code: PRINTLN
000083AD 00000043 Code: TRACE
000083FO 0000003E Code: CHKSPCL
0000842E 00000069 Code: SBRK
00008497 0000004E Code: DUMPREGS
000084E5 00000026 Code: PUTREG8
000085OB 0000001C Code: SPJMP
00008527 00000005 Code: PMASK
0000852C 00000017 Code: SCODES
00008543 00000114 Data: MN
00008657 00000032 Data: MODES
00008689 00000018 Code: LENS
000086A1 00000100 Data: ATRIBL
000087A1 00000100 Code: ATRIBH

Global symbol table:

ADDRMODE 0000009C 00 AREG 0000008F 00 AREGH 00000090 00
ATRIBH 000087A1 00 ATRIBL 000086A1 03 BRKN 0000FFE6 00
C 00000001 00 CHKSPCL 00008DF0 00 CLRLN 000082DC 00
CODE 00000087 00 CR 0000008D 00 DBREG 00000095 00
DIRREG 00000093 00 DIRREGH 00000094 00 DOBRANCH 0000841B 00
DPAGE 00000300 00 DUMPREGS 00008497 00 EBIT 00000097 00
EBRXIN 00008037 00 FABS 0000816B 00 FABSIND 000081F5 00
FABSINXIND 00008224 00 FABSL 0000816E 00 FABSLX 000081C1 00
FABSX 000081BB 00 FABSY 000081C7 00 FACC 00008174 00
FBLOCK 00008526 00 FDIR 00008171 00 FDIRINXX 000081A2 00
FDIRINXY 000081A8 00 FIMM 00008159 00 FIMP 0000817A 00
FIND 00008204 00 FINDINX 0000817B 00 FINDINXL 0000818A 00
FINDL 00008214 00 FINX 000081AE 00 FINXIND 00008190 00
FINY 0000817E 00 FLIST 00008106 00 FPCR 000081CD 00
FPCRL 000081E4 00 FRMOPRND 0000814E 00 FSRINDINX 00008244 00
FSTACK 00008233 00 FSTACKREL 00008234 00 GO 000080C4 00
LENS 00008689 00 LINE 000082EE 00 LIST 00008003 00
M 00000020 00 MAIN 00008000 00 MN 00008543 01
MNX 0000009D 00 MODES 00008657 02 MOVE 0000814A 00
NBRKIN 00008047 00 NCODE 00000083 00 OPCREG 00000084 00
OPCREGB 00000086 00 OPCREGH 00000085 00 OPLEN 0000009F 00

The Western Design Center

276

16) Chapter Sixteen

Design and Debugging

Design and debugging stand on either side of the central coding phase of the development cycle. Good
techniques for both are as important as skill in actual coding. This chapter provides a checklist of some
commonly encountered bugs – ones you should immediately suspect – as well as some words of advice about
program design and good coding practice, which may help you avoid some of the bugs to begin with.

Debugging Checklist

Program bugs fall into two categories: those specific to the particular processor you’re writing assembly
code for, and those that are generic problems which can crop up in any assembly program for almost any
processor. This chapter will primarily consider bugs specific to the 65x processors, but will also discuss some
generic bugs as they specifically apply in 65x assembly programs.

You may want to put a checkmark beside the bugs listed here each time you find them in your
programs, giving you a personalized checklist of problems to look for. You may also want to add to the list
other bugs that you write frequently.

Decimal Flag

Seldom does the d decimal flag get miss set, but when it does, arithmetic results may seem to
inexplicably go south. This can be the result of a typo, attempting to execute data, or some other execution
error. Or it can result from coding errors in which the decimal flag is set to enable decimal arithmetic, then
never reset. If branching occurs before the decimal flag is reset, be sure all paths ultimately result in the flag
being cleared. Branching while in decimal mode is almost as dangerous as branching after temporarily pushing
a value onto the stack; equal care must be taken to clear d and clean the stack.

This bug may be doubly hard to find on the 6502, which does not clear d on interrupt or, worse, on
reset. An instruction inadvertently or mistakenly executed which sets d (only SED, RTI, or PLP have the
capability on the 6502) would require you to specifically reclear the decimal flag or to power off and power
back on again. As a result, it is always a good idea to clear the decimal flag at the beginning of every 6502
program.

Adjusting Carry Prior to Add / Subtract

If you’re not used to 65x processors (and even for many programmers who are), you may tend to write
an ADC instruction without first writing a CLC, or an SBC without first an SEC. After all, other processors
have add and subtract instructions that do not involve the carry. But the 65x processors do not; so notice the
“C” in each of the instructions each time you code them and be sure the carry has the appropriate value.

65x Left-to-Right Syntax

Unlike some other processors’ instructions, 65x mnemonics read from left to right, just like English:
TAX, for example, means to transfer the A accumulator to the X index register, not the opposite.

The Western Design Center

277

65x Branches

There are eight 65x conditional branches, each based on one of the two states of four condition code
flags. Remembering how to use them for arithmetic is necessary to code branches that work.

Keep in mind that compare instructions cannot be used for signed comparisons: they don’t affect the
overflow flag. Only the subtract instruction can be used to compare two signed numbers directly (except for the
relationships equal and not equal).

Remember that if the z flag is set (one), then the result was zero; and if the zero flag is clear (zero), then
the result was other than zero – the opposite of most first guesses about it.

A common code sequence is to test a value, then branch on the basis of the result of the test. A
common mistake is to code an instruction between the test and the branch that also affects the very flag your
branch is based on (often because an instruction you don’t expect to affect the flags does indeed do so).

Note that 65x pull instructions set the negative and zero flags, unlike 68xx and 8088/8086 processors;
that store instructions do not set any flags, unlike 68xx processors; that transfer and exchange instructions do set
flags, unlike Motorola and Intel processors; that load instructions do set flags, unlike the 8088; and increment
and decrement instructions do not affect the carry flag.

Also, in decimal mode on the 6502, the negative, overflow and zero flags are not valid.

6502 Jump Bug

There’s hardware bug on the 6502 that causes jump indirect, with an operand which ends in $FF (such
as $11FF), to bomb; the new high program counter value is taken incorrectly from $1100, not the correct $1200.

Interrupt-Handling Code

To correctly handle 65x interrupts, you should generally, at the outset, save all registers and, on the
6502 and in emulation mode, clear the decimal flag (to provide a consistent binary approach to arithmetic in the
interrupt handler). Returning from the interrupt restores the status register, including the previous state of the
decimal flag.

During interrupt handling, once the previous environment has been saved and the new one is solid,
interrupts may be enabled.

At the end of handling interrupts, restore the registers in the correct order. RTI will pull the program
counter and status register from the stack, finishing the return to the previous environment, except that in
65802/65816 native mode it also pulls the program bank register from the stack. This means you must restore
the mode in which the interrupt occurred (native or emulation) before executing an RTI.

65802/65816: Emulation Versus Native Mode

Emulation mode has been provided on the 65802 and 65816 to provide continuity with existing
applications. Native mode provides the powerful sixteen-bit data handling registers. But mixing emulation and
native modes requires careful attention to detail. You should deal with modes systematically.

Will you limit subroutines to be called only from a certain mode? All subroutines? You must carefully
document each for which mode it expects.

You must be in emulation mode on the Apple II or other 6502-based system to use the monitor and
operating system 6502 routines. Furthermore, you must put 0000 into D (the direct page register) before return
to the monitor or operating system, because zero page addressing now addresses the direct page, but the 6502
firmware left its variables in page zero before your program switched to native mode.

Any high bytes in the index registers are lost in the switch to emulation mode.
While native mode lets you set the stack anywhere, a non-page-one stack location is lost on return to

emulation mode (the high byte is thrown away, replaced by the obligatory page one high byte emulation mode).
Furthermore, when setting the stack with the TCS instruction, only the low accumulator byte is transferred to
the stack pointer in emulation mode, but in native mode, the high accumulator byte, even if it is hidden, is
transferred to the high stack pointer byte.

The Western Design Center

278

65802/65816: Eight-Bit Versus Sixteen-Bit Registers

Almost as potentially confusing as mixing emulation and native modes is mixing eight-bit and sixteen-
bit modes. Again, you should deal with modes systematically.

Will you limit subroutines to be called only from a certain mode setting? You must carefully document
each for the mode it expects.

Because instructions using immediate addressing are different lengths in eight- and sixteen-bit modes,
being in the wrong mode will cause the processor to grab the wrong number of operand bytes, followed by a
fetch for the next opcode which will miss by one and cause it to execute, as though it were an opcode, either the
last operand byte of the immediate instruction, or the first operand byte of the next instruction. Either way is
sure program failure.

65802/65816: The Direct Page

Avoid inadvertently branching from code written to access one direct page code written to access
another without executing an instruction to reset the direct page register to the second location first (and
resetting it to the original location before returning). Remember, too, that programs run faster when the direct
page register is set to a page boundary.

Pay particular attention to the peculiarities of the direct page in the emulation mode: as with the 6502
and 65C02, instructions which use direct page addressing modes will “wrap” to stay within the zero page, but
only when the direct page register is equal to zero. Opcodes which are not found on the 6502 or 65C02 will not
wrap at all, even when the direct page is equal to zero in the emulation mode.

65802/65816: Stack Overruns Program or Data

No longer limited to a single page, the native-mode stack will grow downward as far as your program
pushes bytes onto it. Large programs should either retrieve every byte pushed on or reset the stack periodically
(using TCS or TXS). The potential danger is when a stack grows uncontrollably until it overwrites variables,
your program, or the operating system.

In this connection it is important to be aware that, although the high byte of the stack register is
consistently forced to one, new 65816 opcodes executed in the emulation mode will not wrap the stack if the
low byte over- or underflowed in the middle of an instruction. For example, if the stack pointer is equal to
$101, and a JSL is executed, the final byte of the three bytes pushed on the stack will be at $FF, not $1FF; but
the stack pointer at the end of the instruction will point to $1FE. However, if JSR (a 6502 instruction) is
executed in the emulation mode with the stack pointer equal to $100, the second of the two bytes pushed will be
stored at $1FF.

65802/65816: JSR/JSL and RTS/RTL

RTL pulls one more byte off the stack than RTS: it requires that a long jump-to-subroutine (JSL) or its
equivalent pushed a full 24-bit return address, not just a sixteen-bit one. Equally important is that a JSL not be
made to a subroutine ended by an RTS, which pulls only sixteen of the 24 bits of return address pushed.

65802/65816: MVN/MVP

MVN and MVP require two operands, usually code or data labels from which the assembler strips the
bank bytes, in sourcebank,destbank order (opposite of object code order). Eight-bit index registers will cause
these two instructions to move only zero page memory. But eight-bit accumulator mode is irrelevant to the
count value; the accumulator is expanded to sixteen bits using hidden B accumulator as the high byte of the
count. Finally, the count in the accumulator is one less than the count of bytes to be moved: five in the
accumulator means six bytes will be moved.

The Western Design Center

279

Return Address

If your program removes the return address from the stack in order to use it in some fashion
other than using an RTS or RTL instruction to return, remember that you must add one to the stacked
value to form the true return address (an operation the return-from-subroutine instructions execute
automatically).

Inconsistent Assembler Syntax

6502 assemblers have been wildly inconsistent in their syntax, and early 65802 assemblers
have not set standard either. This book describes syntax recommended by the designers of the 65816,
the Western Design Center, as implemented in the ORCA/M assembler. Others, however, do and will
differ. For example, while many assemblers use the syntax of a pound sign (#) in front of a sixteen-bit
immediate value to specify that the low byte be accessed, with the greater-then sign (>) being used to
represent the high byte, at least one 6502 assembler uses the same two signs to mean just the opposite.
Syntax for the new block move instructions will undoubtedly vary from the recommended standard in
many assemblers. Beware and keep you assembler’s manual handy.

Generic Bugs: They Can Happen Anywhere

Uninitialized Variables

Failing to initialize variables may be the most common bug committed by
programmers. Its symptom is often a program which operates strangely only the first time it is
run (after which the variable has at some point been given a suitable value which remains in
memory for the program’s second try), or only after running a certain other program.
Sometimes the symptom appears only on computers with one brand of memory chips, and not
another; they happen to power up with different initial values.

Missing Code

The code you wrote on paper is perfect. The problem is one or more lines that never
got typed in, or were typed in wrong. The solution is to compare your original handwritten
code with the typed-in version, or compare a disassembly with your original code.

More enigmatically, a line may be accidentally deleted or an opcode or operand inadvertently
changed by a keypress during a subsequent edit (usually in a section of code which has just been
proven to work flawlessly). Regular source backups and a program that can compare text to spot
changes will often solve the problem. Or you can compare a disassembly with the previous source
listing.

Failure to Increment the Index in a Loop

The symptoms are: everything stops, and typing at the keyboard has no effect. The
problem is an endless loop – your branch out of the loop is waiting for an index to reach to
some specified value, but the index is never decremented or incremented and thus never
reaches the target value.

The Western Design Center

280

Failure to Clean Up Stack

This problem is typically found in code in which first a value is pushed, then there is a
conditional branch, but all paths do not pull the value still on the stack. It may result in a
return address being pulled off the stack which is not really a return address (one or more bytes
of it are really previously pushed data bytes).

Immediate Data Versus Memory Location

Failure to use the ‘#’ sign to signify a constant (or whatever other syntax a particular assembler
requires) will instruct the assembler to load, not the constant, but data from a memory location that it
assumes the constant specifies. That is, #VAR means access a constant (or the address of a variable);
VAR, on the other hand, means access its contents.

Initializing the Stack Pointer from a Subroutine

It won’t take much thought to realize that you can’t just reset the stack pointer from
within a subroutine and expect the return-from-subroutine instruction to work. The return
address was pointed to by the previous stack pointer. Who knows where it is in relation to the
newly set one?

Top-Down Design and Structured Programming

It’s wise to carefully consider the design of a program before beginning to write any of it. The
goals of design are to minimize program errors, or bugs; to reduce complexity; to maximize
readability; and to increase the speed and ease of coding and testing and thus the productivity of
programmers.

The top-down approach to structured programming combines two major design concepts. This
approach is generally recognized as the method of design which best achieves these goals, particularly
when coding large programs. Top-down design suggests that programs should be broken into levels:
at the top level is a statement of the goal of the program; beneath it are second-level modules, which
are the main control sections of the program; the sections can be broken into their parts; and so on.

A blackjack game (twenty-one), for example, might be broken down into four second-level
modules, the goals of which are to deal the cards, take and place bets on the hands dealt, respond to
requests for more cards, and finally compare each player’s hand with the dealer’s to determine
winnings. The dealing module might be broken down into two third-level modules, the goals of which
are to shuffle the cards, and to deliver a card to each player (executed twice so that each player gets
two cards). The shuffling module might be broken into two fourth-level modules which assign a
number to each card and then create a random order to the numbers.

The makeup of each level is clear. At the top level, the makeup describes the program itself.
At lower levels, the makeup describes the subprocess. At the lowest levels, the work is actually done.

A top-down design is then implemented using subroutines. The top level of the program is a
very short straight-line execution routine (or loop in the case of programs that start over when they
reach the end), that does nothing more than call a set of subroutines, one for each second-level module
of the program. The second-level subroutines may call third-level subroutines which may call fourth-
level subroutines, and so on.

Structure programming is a design concept which calls for modules to have only one entry
point; jumping into the middle of a module is not permitted. (A structured approach to the problem of
needing an entry point to the middle of a module is to make that portion of the module a sub-module

The Western Design Center

281

with its own single entry and exit points.) A second rule is that all exits return control to the calling
module; all branches (selections) are internal; no branches are permitted to code outside the module.

One of the side benefits of modular programming is the ability to reuse previously coded
modules in other programs: the dealing module could be dropped into any card game program that
calls for shuffling followed by the dealing of one card at a time to each player. And its shuffling sub-
module could be borrowed for other card game programs which only need shuffling. This use of the
modularity principle should not be confused with the top-down structured design; they are distinct but
related concepts. Modular programming in itself is not the same as top-down design.

A software development team could, using top-down design, readily assign one programmer
the task of coding the deck-shuffling routine, another programmer the betting module, another
responsibility for the dealing routines, and a fourth with writing the code for the end-of-game
comparison of hands and determination of the winner.

A new programmer trying to understand a top-down program avoids becoming mired in detail
while trying to get an understanding of the structure, yet can very easily figure how to get to the degree
of detail which interests him.

Finally, debugging, the process of finding and removing programming mistakes, is
exceptionally straightforward with top-down design: on seeing that, after shuffling, one of the 52 cards
seems to be missing, the programmer can go directly to the shuffling subroutines to fix the problem.

Top-down design sometimes seems like a waste of time to programmers anxious to get the
bytes flying; complex programs can take days or weeks of concerted thinking to break down into the
subparts which fit together most logically and efficiently. But the savings in time spent coding – and
recoding – and in being able to understand, debug, and modify the program later well justify the time
spent on design.

Documentation

One of the most important elements of good programming practice is documentation. It is
remarkable how little one can recall about the nitty-gritty details of a program written just last month
(or sometimes even yesterday) – the names of the key variables, their various settings and what each
means and how each interacts with other variables in various routines, and so on. “Clever”
programmers, those who bend programming principles to ends never anticipated, too often find they
(not to mention their co-workers) can no longer discover the meaning behind their cleverness when it
comes time to debug or modify that code.

The first principle of documentation is to make the program document itself. Choose labels
which are meaningful: DELLOOP is a much better label for the beginning of a loop which deals cards
in a card game than is LAB137. Substitute a label for all constants: branching if there’s a 1 in some
register after writing a byte to disk is, by itself, meaningless; branching because there’s a constant
named DISKFULL in the register provides clear documentation. When your program needs to
determine if an ASCII value is an upper-case letter, it’s much clearer to compare with “greater than or
equal to ‘A’” than with “greater than ‘@’”. Who remembers that ‘@’ precedes ‘A’ in the ASCII
chart?

Variables should be commented when they’re declared with a description of their purpose,
their potential settings, and any default states. And if any of that information changes during the
development of the program, the comment should be changed to match.

Routines should be commented when they’re written: Note the purpose of the routine, the
variables or parameters which need to be set before entry into the routine, and the variables or
parameters which will be passed back. If other data structures will be affected by the routine, this, too,
should be commented.

Nothing is as important both to debugging of code and to continuing development of programs
as documentation: self-documentation; a comment on every important line of code that explains and

The Western Design Center

282

expands it; a comment header on every routine; and a comment on every variable. While some
languages are said to be automatically “self-documenting,” no language can create documentation
which is half adequate compared to what the original programmer can provide while the program is
being written.

The Western Design Center

283

17) Chapter Seventeen
The Addressing Modes

There are fourteen addressing modes available to the 6502, all of those plus two more on the 65C02,
and another nine categories available on the 65802 and 65816. Each mode allows the location of the data being
referenced by a given instruction to be specified in a different manner. The availability of many different
addressing modes on the 65x processors is one key to their power.

The data found in operand bytes of an instruction is only one part of the effective address specification;
the addressing modes, expressed using the correct address-mode syntax in the operand field of an assembly-
language statement, cause the assembler to choose from among the instruction’s possible opcodes to one
specific to the addressing mode. Not all addressing modes are available for all instructions; but there is one
unique opcode for each combination of addressing mode and operation.

The addressing mode is the determinant of the effective address for an operation – the memory address
that the instruction will access for data or to transfer control within the program. For a few of the 65x
addressing modes, the effective address is provided in the operand field of the instruction. But for most of
them, formation of the effective address involves an address calculation, that is, the addition of two or more
values. The addressing mode used with a given instruction indicates where these values are to come from and
how they are to be added together to form the effective address. This effective address calculation has as many
forms as there are addressing modes.

An important aspect of effective address calculation on the 65802 and 65816, to be considered in
addition to the addressing modes themselves, is the state of the x index-register select flag and, to a lesser
extent, the m memory/accumulator select flag, both in the status register. In a sense, the x flag, for example,
extends the addressing mode specification part of an instruction, which uses an indexed addressing mode, by
determining whether or not an eight-bit or sixteen-bit index register is to be used. For every one of the indexed
addressing modes, there are two similar methods of forming an effective address, depending on the setting of
the index-register select flag. Pay special attention to the status and effects of the select flags.

In the following pages are graphic and written presentations of each of the addressing modes,
illustrating the effective address formation, complete with a listing of the processors on which, and the
instructions to which, each addressing mode is available. A sample of the assembler syntax used to invoke each
one is included as well.

The descriptions are the complete set available on the 65816. The differences between the four
processors, with their various modes, are graphically noted whenever possible.

The 65816’s native mode features index registers and an accumulator which may be either eight bits or
sixteen, depending on the settings of two mode select flags (x sets the index registers to eight or sixteen bits; m
sets the accumulator and memory to eight or sixteen).

The 65802’s native mode differs in that, while the bank registers are part of effective address formation,
bank values are not propagated to the bus, so long addressing modes have no bank effect. The bank accessed is
always bank zero, so there is, essentially, no bank portion to the effective address generated.

The 6502 emulation mode on the 65802 and 65816 processors (e = 1) differs in that the stack pointer’s
high byte is always $01; direct page indexed addressing always wraps around to remain in the direct page rather
than crossing over into the next page (so the high direct page byte remains the high byte of all direct page
addresses formed). The exception to this is that zero page stack wrapping is only enforced for 6502 and 65C02
instructions, and only when DP = 0 in the case of page zero wrapping. New opcodes will cause effective
addresses to be generated outside of the zero page or the emulation mode stack page if an effective address
calculation overflows the low byte.

Additionally, the index registers and the A accumulator are limited to eight bits. (There remains,
however, a hidden eight-bit B accumulator, as well as a 16-bit C accumulator which is the concatenation of B
and A but which is generally not accessible except to special instructions.)

The 65C02 and 6502 differ from 6502 emulation in that there are no bank registers whatsoever; direct
page addressing is, instead, zero page addressing ($0000 is the zero page base to which offsets and, sometimes,

The Western Design Center

284

index values are added; there is no direct page register); and there is no hidden B accumulator nor concatenated
C accumulator.

The symbols in Table 17.1 are used to describe the kinds of operands that are used with the various
addressing modes.

Figures 17.1 through 17.4 repeat the illustrations of the programming models for the four possible
processor configurations: 6502/65C02, 65802 native mode, 65816 native mode, and 65816 emulation mode.
The programming model for the native mode 65816 is used in the addressing mode figures that follow; for
different processors or modes, compare the addressing mode figure with the processor-mode programming
model for clarification of the operation of the addressing mode for that model.

addr two-byte address
addr/const two-byte value: either an address or a constant
const one- or two-byte constant
destbk 64K bank to which string will be moved
dp one-byte direct page offset (6502/65C02: zero page)
label label of code in same 64K bank as instruction
long three-byte address (includes bank byte)
nearlabel label of code close enough to instruction to be reachable

by a one-byte signed offset
sr one-byte stack relative offset
srcebk 64K bank from which string will be moved

Table 17-1 Operand Symbols

6502/65C02 Programming Model
7 0

Accumulator (A)

X Index Register (X)

Y Index Register (Y)
 15

0 0 0 0 0 0 0 1 Stack Pointer (S)

Program Counter (PC)

Processor Status Register (P)
n v b d i z c

Carry 1= Carry
Zero 1= Result Zero

IRQ Disable 1= Disabled
Decimal Mode 1= Decimal Mode

Break Instruction 1= Break caused
interrupt

Overflow 1= Overflow
Negative 1= Negative

Figure 17-1 6502/65C02 Programming Model

The Western Design Center

285

65802 Native Mode Programming Model
(16-bit accumulator & index register modes: m = 0 &x = 0)

15 7 0
Accumulator (B) (A or C) Accumulator (A)

X Index Register (X)

Y Index Register (Y)

Direct Page Register (D)

Stack Pointer (S)

Program Counter (PC)

Data Bank Register (DBR)

Program Bank Register (PBR)

Processor Status Register (P)
7 0

e Emulation
0= Native
Mode

n v m x d i z c

Carry 1= Carry
Zero 1= Result Zero

IRQ Disable 1= Disabled
Decimal Mode 1= Decimal, 0= Binary

Index Register Select 1= 8-bit, 0= 16-bit
Memory/Accumulator Select 1= 8-bit, 0= 16-bit

Overflow 1= Overflow
Negative 1= Negative

Figure 17-2. 65802 Native Mode Programming Model

The Western Design Center

286

65816 Native Mode Programming Model
(16-bit accumulator & index register modes: m = 0 & x = 0)

23 15 7 0
Accumulator (B) (A or C) Accumulator (A)

Data Bank Register (DBR)

X Index Register (X)

Y Index Register (Y)

0 0 0 0 0 0 0 0 Direct Page Register (D)

0 0 0 0 0 0 0 0 Stack Pointer (S)

Program Bank Register (PBR) Program Counter (PC)

Processor Status Register (P)
7 0

e Emulation 0= Native Mode
n v m x d i z c

Carry 1= Carry
Zero 1= Result Zero

IRQ Disable 1= Disabled
Decimal Mode 1= Decimal, 0= Binary

Index Register Select 1= 8-bit, 0= 16-bit
Memory/Accumulator Select 1= 8-bit, 0= 16-bit

Overflow 1= Overflow
Negative 1= Negative

Figure 17-3 65816 Native Mode Programming Model

The Western Design Center

287

65816 Emulation Mode Programming Model

23 15 7 0
Accumulator (B) (C) Accumulator (A)

Data Bank Register (DBR)

X Index Register (X)

Y Index Register (Y)

0 0 0 0 0 0 0 0 Direct Page Register (D)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Stack Pointer (S)

Program Bank Register (PBR) Program Counter (PC)

Processor Status Register (P)

7 0
e Emulation 1= 6502 Emulation Mode

n v b d i z c

Carry 1= Carry
Zero 1= Result Zero

IRQ Disable 1= Disabled
Decimal Mode 1= Decimal, 0= Binary

Break Instruction 1= Break caused
interrupt

Overflow 1= Overflow
Negative 1= Negative

Figure 17-4 65816 Emulation Mode Programming Model

The Western Design Center

288

Absolute Addressing

Effective Address:
Bank: Data Bank Register (DBR) if locating data: Program Bank Register (PBR) if transferring

control.
High: Second operand byte.
Low: First operand byte.

Sample Syntax:
LDA addr Effective Address:

23 15 7 0
Bank High Low

Instruction:
Opcode Operand Low Operand High

65816 Register:
Bank High Low

23 15 7 0
Data Bank (DBR)

if locating data

X Index Register (X)

Y Index Register (Y)

Accumulator (A or C)

0000 0000 Direct Page Register (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)
of transferring control

Status (P)

Instructions Using It:

Effective Address Locates Data
ADC CPY LDY STA
AND DEC LSR STX
ASL EOR ORA STY
BIT INC ROL STZ
CMP LDA ROR TRB
CPX LDX SBC TSB

Transfer Control to Effective Address
JMP JSR

1 65C02 and 65802/65816 only.

The Western Design Center

289

Absolute Indexed, X Addressing

Effective Address: The Data Bank Register is concatenated with the 16-bit Operand: the 24 bit
result is added to X (16 bits if 65802/65816 native mode, x = 0; else 8).

Sample Syntax:
 LDA addr, X

Effective Address:
23 15 7 0

Bank High Low

Instruction:
Opcode Operand Low Operand High

65816 Registers:
Bank High Low

15 7 0
Data Bank (DBR)

+

X Index Register (X)
x-1
x 0

Y Index Register (Y)

Accumulator (A or C)

0000 0000 Direct Page Register (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)

Status (P)

Instructions Using It:

Effective Address Locates Data
ADC DEC LSR STA
AND EOR ORA STZ
ASL INC ROL
BIT LDA ROR
CMP LDY SBC

1 65C02 and 65802/65816 only.

The Western Design Center

290

Absolute Indexed, Y Addressing

Effective Address: The Data Bank Register is concatenated to the 16-bit Operand: the 24-bit
result is added to Y (16 bits if 65802/65816 native mode, x = 0; else 8).

Sample Syntax:
 LDA addr, Y

Effective Address:
23 15 7 0

Bank High Low

Instruction:
Opcode Operand Low Operand High

65816 Registers:
Bank High Low

23 15 7 0
Data Bank (DBR)

X Index Register (X)
+

Y Index Register (Y)
x 1
x 0

Accumulator (A or C)

0000 0000 Direct Page Register (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)

Status (P)

Instructions Using It:

Effective Address Locates Data
ADC EOR ORA
AND LDA SBC
CMP LDX STA

The Western Design Center

291

Absolute Indexed Indirect Addressing

Effective Address:
Bank: Program Bank Register (PBR).
High/Low: The Indirect Address.
Indirect Address: Located in the Program Bank at the sum of the Operand double byte and X (16 bits

if 65802/65816 native mode, x = 0; else 8 bits).

Sample Syntax:
 JMP (addr, X)

Effective Address:
23 15 7 0

Bank High Low

Instruction:
Opcode Operand Low Operand High

65816 Registers:
Bank High Low

23 15 7 0
Data Bank (DBR)

High Indirect Address

+

+1

Low Indirect Address

X Index Register (X) Program Bank
Memory

x=1
x=0

Y Index Register (Y)

Accumulator (A or C)

0000 0000 Direct Page Register (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)

Stack (P)

Instructions Using It:

Transfer Control to Effective Address
JMP1 JSR2

1 65C02 and 65802/65816 only.
2 65802/65816 only.

The Western Design Center

292

Absolute Indirect Addressing

Effective Address:
Bank: Program Bank Register (PBR).
High/Low: The Indirect Address.
Indirect Address: Located in Bank Zero, at the Operand double byte.

Sample Syntax:
 JMP (addr)

Effective Address:
23 15 7 0

Bank High Low

Instruction:

Opcode Operand Low Operand High High Indirect Address
+1

Low Indirect Address

65816 Registers:
Bank High Low

23 15 7 0 Bank 0 Memory

Data Bank (DBR)

X Index Register (X)

Y Index Register (Y)

Accumulator (A or C)

0000 0000 Direct Page Register (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)

Status (P)

Instructions Using It:

Transfer Control to Effective Address
JMP

The Western Design Center

293

Absolute Indirect Long Addressing

Effective Address:
Bank/High/Low: The 24-bit Indirect Address.
Indirect Address: Located in Bank Zero, at the Operand double byte.

Sample Syntax:
 JMP [addr]

Effective Address:
23 15 7 0

Bank High Low

Instruction:
Opcode Operand Low Operand High Bank Indirect Address

+2
High Indirect Address

65816 Registers:
+1

Low Indirect Address
Bank High Low

23 15 7 0 Bank 0 Memory

Data Bank (DBR)

X Index Register (X)

Y Index Register (Y)

Accumulator (A or C)

0000 0000 Direct Page Register (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)

Status (P)

Instructions Using It:

Transfer Control to Effective Address
JMP/JML

Note: 65802/65816 only;
65802: Data bank value is not propagated to the bus
(bank accessed is always bank 0).

The Western Design Center

294

Absolute Long Addressing

Effective Address:

Bank: Third operand byte.
High: Second operand byte.
Low: First operand byte.

Sample Syntax:
LDA long

Effective Address:
23 15 7 0

Bank High Low

Instruction:
Opcode Operand Low Operand High Operand Bank

65816 Register:
Bank High Low

23 15 7 0
Data Bank (DBR)

X Index Register (X)

Y Index Register (Y)

Accumulator (A or C)

0000 0000 Direct Page Register (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)

Status (P)

Instruction Using It:

Effective Address Locates Data
ADC CMP LDA SBC
AND EOR ORA STA

Transfer Control to Effective Address
JMP(JML) JSR(JSL)

Note: All are 65802/65816 only;
65802: Data bank value is not propagated to the bus
(bank accessed is always bank 0).

The Western Design Center

295

Absolute Long Indexed, X Addressing

Effective Address: The 24-bit Operand is added to (16 bits if 65802/65816 native mode, x = 0; else
8 bits)

Sample Syntax:
 LDA long, X

Effective Address:
23 15 7 0

Bank High Low

Instruction:
Opcode Operand Low Operand High Operand Bank

65816 Registers:
Bank High Low

23 15 7 0
Data Bank (DBR) +

X Index Register (X)
x 1
x 0

Y Index Register (Y)

Accumulator (A or C)

0000 0000 Direct Page Register (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)

Stack

Instructions Using It:

Effective Address Locates Data
ADC CMP LDA SBC
AND EOR ORA STA

Note: All are 65802/65816 only;
65802: Data bank value is not propagated to the bus
(bank accessed is always bank 0).

The Western Design Center

296

Accumulator Addressing

8-Bit Data (all processors): Data: Byte in accumulator A. Data
7 0

Accumulator B Accumulator A

16-Bit Data (65802/65816, native mode. 16-bit accumulator (m = 0):
Data High: High byte in accumulator A.
Data Low: Low byte in accumulator A. Data

Accumulator (A or C)

Sample Syntax:
 ASLA

Instruction:
Opcode

65816 Registers:
Bank High Low

23 15 7 0
Data Bank (DBR)

X Index Register (X)

Y Index Register (Y)

Accumulator (A or C)
m 1
m 0

0000 0000 Direct Page Register (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)

Status (P)

Instructions Using It:

ASL INC1 ROL
DEC1 LSR ROR

1 65C02 and 65802/65816 only.

The Western Design Center

297

Block Move Addressing

Source Effective Address:
Bank: Second operand byte.

High/Low: The 16-bit value in X; if X is only 8 bits (mode flag x = 1), the high byte is 0.
Destination Effective Address:
Bank: First operand byte.
High/Low: The 16-bit value in Y; if Y is only 8 bits (mode flag x = 1), the high byte

is 0.
Count:
Number of bytes to be moved: 16-bit value in Accumulator C plus 1.
Sample Syntax:
 MVN srcebk,destbk

Source Effective Address:
23 15 7 0

Bank High Low

Instruction:
Opcode Destination Bank Source Bank

65816 Registers:
Bank High Low Destination Effective Address:

23 15 7 0 23 15 7 0
Data Bank (DBR) Bank High Low

X Index Register (X)
x 0

00000000 x 1
Y Index Register (Y)

x 0
00000000 x 1

Accumulator (A or C)

1 16 bit count
0000 0000 Direct Page Register (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR Program Counter (PC)

Status (P)

Instructions Using It:

Effective Address Locates Data
MVN MVP

Note: Both are 65802/65816 only;
65802: Data bank values are not propagated
to the bus (bank accessed is always bank 0).

The Western Design Center

298

Direct Page Addressing

Effective Address:
Bank:
High/Low Direct Page Register plus Operand byte.

Sample Syntax:
 LDA dp

Effective Address:
23 15 7 0

Bank High Low

00000000
Instruction:

Opcode Operand

65816 Registers:
Bank High Low

23 15 7 0
Data Bank (DBR)

X Index Register (X)
+

Y Index Register (Y)

Accumulator (A or C)

0000 0000 Direct Page (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)

Status (P)

Instructions Using It:

Effective Address Locates Data
ADC CPY LDY STA
AND DEC LSR STX
ASL EOR ORA STY
BIT INC ROL STZ1

CMP LDA ROR TRB1

CPX LDX SBC TSB1

1 65C02 and 65802/65816 only.

The Western Design Center

299

Direct Page Indexed, X Addressing

Effective Address:

Bank: Zero
High/Low: Direct Page Register plus Operand byte plus X (16 bits if 65802/65816 native mode, x =

0; else 8 bits).

Sample Syntax:
 LDA dp, X

Effective Address:
23 15 7 0

Bank High Low

00000000
Instruction:

Opcode Operand

65816 Registers:
Bank High Low

23 15 7 0
Data Bank (DBR) +

+
X Index Register (X)

x 1
x 0

Y Index Register (Y)

Accumulator (A or C)

0000 0000 Direct Page (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)

Status (P)

Instruction Using It:

Effective Address Locates Data
ADC DEC LSR STA
AND EOR ORA STY
ASL INC ROL STZ1

BIT1 LDA ROR
CMP LDY SBC

1 65C02 and 65802/65816 only.

The Western Design Center

300

Direct Page Indexed, Y Addressing

Effective Address:
Bank: Zero
High/Low: Direct Page Register plus Operand byte plus Y (16 bits if 65802/65816 native mode, x =

0; else 8 bits).

Sample Syntax:
 LDA dp, Y

Effective Address:
23 15 7 0

Bank High Low

00000000
Instruction:

Opcode Operand

65816 Registers:
Bank High Low

23 15 7 0
Data Bank (DBR)

+
X Index Register (X)

+

Y Index Register (Y)
x 1
x 0

0000 0000 Direct Page (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)

Status (P)

Instruction Using It:

Effective Address Locates Data
LDX STX

The Western Design Center

301

Direct Page Indexed Indirect, X Addressing

Effective Address:
Bank: Data bank register.
High/Low: The indirect address.
Indirect Address: Located in the direct page at the sum of the direct page register, the operand

byte, and X (16 bits if 65802/65816 native mode, x = 0; else 8), in bank 0.

Sample Syntax:
 LDA (dp, X)

Effective Address:
23 15 7 0

Bank High Low

Instruction:
Opcode Operand

65816 Registers:
Bank High Low

23 15 7 0
Data Bank (DBR)

X Index Register (X)
x 1
x 0

High Indirect
Address

Y Index Register (Y)
+1

+
Low Indirect

Address

Accumulator (A or C) Bank 0 Memory
+

0000 0000 Direct Page (D)

0000 0000 Stack Pointer (PC)

Program Bank (PBR) Program Counter (PC)

Status (P)

Instructions Using It:

Effective Address Locates Data
ADC CMP LDA SBC
AND EOR ORA STA

The Western Design Center

302

Direct Page Indirect Addressing

Effective Address:
Bank: Data Bank Register (DBR)
High/Low: The 16-bit Indirect Address
Indirect Address: The Operand byte plus the Direct Page Register, in Bank Zero.

Sample Syntax:
 LDA (dp)

Effective Address:
23 15 7 0

Bank High Low

Instruction:
Opcode Operand

65816 Registers:
Bank High Low

23 15 7 0
Data Bank (DBR)

X Index Register (X)
High Indirect

Address
+1

+
Low Indirect

Address
Y Index Register (Y)

Bank 0 Memory

Accumulator (A or C)

0000 0000 Direct Page (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)

Status (P)

Instructions Using It:

Effective Address Located Data
ADC CMP LDA SBC
AND EOR ORA STA

Note: All are 65C02 and 65802/65816 only.

The Western Design Center

303

Direct Page Indirect Long Addressing

Effective Address:
Bank/High/Low: The 24-bit Indirect Address.
Indirect Address: The Operand byte plus the Direct Page Register, in Bank Zero.

Sample Syntax:
 LDA [dp]

Effective Address:
23 15 7 0

Bank High Low

Instruction:
Opcode Operand

65816 Registers:
Bank High Low

23 15 7 0
Data Bank (DBR)

X Index Register (X)
Bank Indirect

Address
+2

High Indirect
Address

Y Index Register (Y)
+1

+
Low Indirect

Address

Accumulator (A or C) Bank 0 Memory

0000 0000 Direct Page (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)

Status (P)

Instruction Using It:

Effective Address Locates Data
ADC CMP LDA SBC
AND EOR ORA STA

Note: All are 65802/65816 only;
65802: Data bank value is not propagated to the bus
(bank accessed is always bank 0).

The Western Design Center

304

Direct Page Indirect Indexed, Y Addressing

Effective Address: Found by concatenating the data bank to the double-byte indirect address, then
adding Y (16 bits if 65802/65816 native mode, x = 0; else 8).

Indirect Address: Located in the Direct Page at the sum of the direct page register and the operand
byte, in bank zero.

Sample Syntax:
 LDA (dp), Y

Effective Address:
23 15 7 0

Bank High Low

Instruction:
Opcode Operand

65816 Registers:
Bank High Low

23 15 7 0
Data Bank (DBR)

X Index Register (X) High Indirect
Address

+1

Y Index Register (Y)
+

Low Indirect
Address

+

Bank 0 Memory
x=1
x=0

Accumulator (A or C)

0000 0000 Direct Page (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)

Status (P)

Instruction Using It:

Effective Address Locates Data
ADC CMP LDA SBC
AND EOR ORA STA

The Western Design Center

305

Direct Page Indirect Long Indexed, Y Addressing

Effective Address: Found by adding to the triple-byte indirect address Y (16 bits if 65802/65816
native mode, x = 0; else 8 bits).

Indirect Address: Located in the Direct Page at the sum of the direct page register and the operand
byte in bank zero.

Sample Syntax:
 LDA (dp), Y

Effective Address:
23 15 7 0

Bank High Low

Instruction:
Opcode Operand

65816 Registers:
Bank High Low

23 15 7 0
Data Bank (DBR) Bank Indirect

Address
+2

X Index Register (X)
High Indirect

Address
+1

+
Low Indirect

Address
Y Index Register (Y)

+

Bank 0 Memory
x 1
x 0

Accumulator (A or C)

0000 0000 Direct Page (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)

Status (P)

Instructions Using It:

Effective Address Locates Data
ADC CMP LDA SBC
AND EOR ORA STA

Note: All are 65802/65816 only;
65802: Data bank value is not propagated to the bus
(bank accessed is always bank 0).

The Western Design Center

306

Immediate Addressing

8-Bit Data (all processors): Data Operand byte.
16-Bit Data (65802/65816, native mode, applicable mode flag m or x = 0):
Data High: Second Operand byte.
Data Low: First Operand byte.

Sample Syntax:
 LDA const.

Instruction:
Opcode Data Low = Operand Low Data High = Operand High

Instruction:
Opcode Data = Operand

65816 Registers:
Bank High Low

23 15 7 0
Data Bank (DBR)

X Index Register (X)

Y Index Register (Y)

Accumulator (A or C)

0000 0000 Direct Page Register (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)

Status (P)

Instructions Using It:
ADC CPX LDX SBC
AND CPY LDY SEP1

BIT1 EOR ORA
CMP LDA REP1

1. 65C02 and 65802/65816 only.
2. 65802/65816 only.

The Western Design Center

307

Implied Addressing

Type 1: Mnemonic specifies register(s) to be operated on
Type 2: Mnemonic specifies flag bit(s) to be operated on
Type 3: Mnemonic specifies operation; no data involved

Sample Syntax:
 NOP

Instruction:
Opcode

65816 Registers:
Bank High Low

23 15 7 0
Data Bank (DBR)

X Index Register (X)

Y Index Register (Y)

Accumulator (A or C)

0000 0000 Direct Page Register (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)

Status (P)

Instructions Using It:

Mnemonic Specifies Register(s)
DEX TAY TSX TYX
DEY TCD TXA XBA
INX TCS TXS
INY TDC TXY
TAX TSC TYA

Mnemonics Specifies Flag Bit(s)
CLC CLI SEC SEI
CLD CLV SED XCE

Mnemonics Specifies Operation
NOP STP WAP

1 65802/65816 only.

The Western Design Center

308

Program Counter Relative Addressing

Effective Address:
Bank: Program Bank Register (PBR).
High/Low The Operand byte, a two’s complement signed value, is sign-extended to 16 bits, then

added to the Program Counter (its value is the address of the opcode following this
one).

Sample Syntax:
 BRA nearlabel

Effective Address:
23 15 7 0

Bank High Low

Instruction:
Opcode Operand

sign extended to 16 bits

65816 Registers:
Bank High Low

23 15 7 0
Data Bank (DBR)

+
X Index Register (X)

Y Index Register (Y)

Accumulator (A or C)

0000 0000 Direct Page Register (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)

Status (PC)

Instructions Using It:

Transfer Control to Effective Address
BCC BMI BRA1

BCS BNE BVC
BEQ BPL BVS

1 65C02 and 65802/65816 only.

The Western Design Center

309

Program Counter Relative Long Address

Effective Address:
Bank: Program Bank Register (PBR).
High/Low: The Operand double byte, a two’s complement signed value, is added to the Program

Counter (its value is the address of the opcode following this one).

Sample Syntax:
 BRL label

Effective Address:
23 15 7 0

Bank High Low

Instruction:
Opcode Operand Low Operand High

65816 Registers:
Bank High Low

23 15 7 0
Data Bank (DBR)

+
X Index Register (X)

Y Index Register (Y)

Accumulator (A or C)

0000 0000 Direct Page Register (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)

Status (P)

Instructions Using It:

Transfer Control to Effective Address
BRL

Note: 65802/65816 only.

The Western Design Center

310

Stack (Absolute) Addressing

Source of data to be pushed: The 16-bit operand, which can be either an absolute address or
immediate data.

Destination effective address: Provided by Stack Pointer.

Sample Syntax:
 PEA addr/const

Instruction:
Opcode Data Low = Operand Low Data High = Operand High

(Data)
65816 Registers:

Bank High Low
23 15 7 0

Data Bank (DBR)

X Index Register (X)

Y Index Register (Y)

Accumulator (A or C)

0000 0000 Direct Page Register (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)

Status (P)

Instruction Using It:
PEA
Note: 65802/65816 only.

The Western Design Center

311

Stack
before

Data High
Data

Stack Pointer (S) Data Low

after

Bank 0

The Western Design Center

312

Stack (Direct Page Indirect) Addressing

Source of data to be pushed: The 16-bit indirect address (or double-byte data) located at the sum of
the Operand byte plus the Direct Page Register, in Bank Zero.

Destination effective address: Provided by Stack Pointer.

Sample Syntax:
 PEI dp

Effective Address:
23 15 7 0

Bank High Low
Instruction:

Opcode Operand

65816 Registers:
Bank High Low

23 15 7 0
Data Bank (DBR)

+

X Index Register (X)

Y Index Register (Y)

Accumulator (A or C)

0000 0000 Direct Page Register (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)

Status (P)

Instruction Using It:

Effective Address Locates Data
PEI

Note: 65802/65816 only.

The Western Design Center

313

Source
Effective Address + 1

High Indirect Address
Source
Effective Address:

Low Indirect Address

Bank 0

Stack
before

High Indirect Address

Stack Pointer (S) Low Indirect Address

after

Bank 0

The Western Design Center

314

Stack (Interrupt) Addressing

Effective Address: After pushing the Program Bank (65802/816 native mode only), followed by the
Program Counter and the Status Register, the Effective Address is loaded into the Program Counter
and Program Bank Register, transferring control there.

Bank: Zero

High/Low: The contents of the instruction- and processor-specific interrupt vector.

Data: Source: Program Bank, Program Counter, and Status Register.
Destination Effective Address: Provided by Stack Pointer.

Sample Syntax:
BRK

Effective Address:
23 15 7 0

Bank High Low

00000000
Instruction:

Opcode Optimal Signature
Byte

Note: Hardware interrupt addressing differs only
 in that there is no instruction involved Interrupt Vector

Address +1

65816 Registers:
Contents of
Vector High

Bank High Low
Interrupt Vector
Address

23 15 7 0
Contents of
Vector Low

Data Bank (DBR)
Bank 0 Memory

X Index Register (X)
Vectors 6502/C02/emulation Native

Y Index Register (Y)
IRQ 00FFFE.F (with BRK) 00FFEE.F

Accumulator (A or C) RESET 00FFFC.D

NMI 00FFFA.B 00FFEA.B

0000 0000 Direct Page Register (D) ABORT 00FFF8.9 00FFE8.9

BRK 00FFFE.F 00FFE6.7

0000 0000 Stack Pointer (S) COP 00FFF4.5 00FFE4.5

Program Bank (PBR) Program Counter (PC)
Instructions Using It:

Status (P) Transfer Control to Effective Address
BRK COP

The Western Design Center

315

Stack (Interrupt) Addressing
6502/65C02/Emulation Mode

Stack
before

PC High
PC Low

Program Counter (PC)
Stack Pointer (S)

Status (P) Status (P)
after

Bank 0

65802/65816 Native Mode

Stack
before

Program Bank (PBR) Program Bank (PBR)
PC High

Stack Pointer (S)
PC Low

Program Counter (PC)

Status (P) Status (P)
after

Bank 0

The Western Design Center

316

Stack (Program Counter Relative) Addressing

Source of data to be pushed: The 16-bit sum of the 16-bit Operand plus the 16-bit Program Counter.
(Note that the 16-bit Operand which is added is the object code operand; the operand used in the
instruction’s syntax required by most assemblers is a label which is converted to the object operand.)

Destination Effective Address: Provided by Stack Pointer.

Sample Syntax:
PER label

Instruction:
Opcode Operand Low Operand High

65816 Registers:
Bank High Low

23 15 7 0
Data Bank (DBR)

X Index Register (X) + Data

Y Index Register (Y)

Accumulator (A or C)

0000 0000 Direct Page Register (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)

Instructions Using It:
PER

Status (P) Note: 65802/65816 only.

Stack
before

Data High
Stack Pointer (S)

Data Low
Data

after

Bank 0

The Western Design Center

317

Stack (Pull) Addressing

Source Effective Address: Provided by Stack Pointer.

Destination of data to be pulled: Register specified by the opcode. The Stack Pointer (S) is
incremented, specifying the location from which an 8-bit register – or the low byte of a 16-bit register
– will be loaded. If the register is 16 bits, the Stack Pointer will be incremented a second time, and the
register’s high byte will be loaded from this second new Stack Pointer location.

Sampler Syntax:
PLA

Instruction:
Opcode

65816 Registers:
Bank High Low

23 15 7 0
Data Bank (DBR)

(also called B)

X Index Register (X)

Y Index Register (Y)

Accumulator (A or C)

0000 0000 Direct Page Register (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)

Status (P)

Instruction Using It:

Effective Address Locates Data
PLA PLD PLX
PLB PLP `PLY

1. 65802/65816 only.
2. 8 bit register, except on 65802/816 may either 8 or 16 bits, dependent on flag m.
3. 8 bit register, except on 65802/816 may be either 8 or 16 bits, dependent on flag x.
4. 16 bits always.
5. 8 bits always.

The Western Design Center

318

Pull 8-bit Register

Stack
after

Register

before

Bank 0

Pull 16-bit Register

Stack
after

Register High

Register Low

before

Bank 0

Stack Pointer (S)

Stack Pointer (S)

The Western Design Center

319

Stack (Push) Addressing

Source of data to be pushed: Register specified by the opcode.

Destination Effective Address: Provided b Stack Pointer.
The Stack Pointer (S) specifies the location to which an 8-bit register – or the high byte of a 16-bit
register – will be stored. The low byte of a 16-bit register will be stored to the Stack Pointer location
minus one. After storage of an 8-bit register, S is decremented by 1; after a 16-bit register, S is
decremented by 2.

Sample Syntax:
PHA

Instructions:
Opcode

65816 Registers:
Bank High Low

23 15 7 0
Data Bank (DBR)

(also called B)

X Index Register (X)

Y Index Register (Y)

Accumulator (A or C)

0000 0000 Direct Page Register (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)
(also called K)

Status (P)

Instruction Using It:

Effective Address Locates Data
PHA PHD PHP
PHB PHK PHX

1 65802/65816 only.
2 8 bit register, except on 65802/816, may be either 8 or 16 bits, dependent on flag m.
3 8 bit register, except on 65802/816, may be either 8 or 16 bits, dependent on flag x.
4 16 bit always.
5 8 bit always.

The Western Design Center

320

Push 8-bit Register

Stack
before

Register

after

Bank 0

Push 16-bit Register

Stack
before

Register High

Register Low

after

Bank 0

Stack Pointer (S)

Stack Pointer (S)

The Western Design Center

321

Stack (RTI) Addressing

Source Effective Address: Provided by Stack Pointer.

Destination of values to be pulled: First the Status Register, then the Program Counter is pulled,
followed (65802/65816 native mode only) by the Program Bank.

Control is transferred to the new Program Counter (and Program Bank) value(s).

Sample Syntax:
RTI

Instruction:
Opcode

65816 Registers:
Bank High Low

23 15 7 0
Data Bank (DBR)

X Index Register (X)

Y Index Register (Y)

Accumulator (A or C)

0000 0000 Direct Page Register (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)

Status (P)

Instructions Using It:

RTI

Stack (RTI) Addressing
6502/65C02/Emulation Mode

Stack
after

PC High
PC Low

Program Counter (PC)
Stack Pointer (S)

Status (P) Status (P)
before

Bank 0

65802/65816 Native Mode

Stack
after

Program Bank (PBR) Program Bank (PBR)
PC High

Stack Pointer (S)
PC Low

Program Counter (PC)

Status (P) Status (P)
before

Bank 0

The Western Design Center

322

Stack (RTL) Addressing

Source Effective Address: Provided by Stack Pointer.

Destination of values to be pulled: First the Program Counter is pulled and incremented by one.
Then the Program Bank is pulled back.

Sample Syntax:
RTL

Instruction:
Opcode

65816 Registers:
Bank High Low

23 15 7 0
Data Bank (DBR)

X Index Register (X)

Y Index Register (Y)

Accumulator (A or C)

0000 0000 Direct Page Register (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)

Status (P)

Stack (RTL) Addressing

Stack
after

Program Bank (PBR) Program Bank (PBR)
Stack Pointer (S) PC High

PC Low
+1 Program Counter (PC)

before

Bank 0

The Western Design Center

323

Stack (RTS) Addressing

Source Effective Address: Provided by Stack Pointer.

Destination of values to be pulled: The Program Counter is pulled and incremented by one. The
Program Bank remains unchanged.

Control is transferred to the new Program Counter value.

Sample Syntax:
RTS

Instruction:
Opcode

65816 Registers:
Bank High Low

23 15 7 0
Data Bank (DBR)

X Index Register (X)

Y Index Register (Y)

Accumulator (A or C)

0000 0000 Direct Page Register (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)

Instruction Using It:
RTS Status (P)

Stack (RTS) Addressing

Stack
after

PC High
Stack Pointer (S)

PC Low
+1 Program

Counter
(PC)befor

e
Bank 0

The Western Design Center

324

Stack Relative Addressing

Effective Address:
Bank: Zero.

High/Low: The 16-bit sum of the 8-bit Operand and the 16-bit Stack Pointer.

Sample Syntax:
LDA sr,S

Effective:
23 15 7 0

Bank High Low

00000000

Instruction:
Opcode Operand

65816 Registers:
Bank High Low

23 15 7 0
Data Bank (DBR)

X Index Register (X) +

Y Index Register (Y)

Accumulator (A or C)

0000 0000 Direct Page Register (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)

Status (P)

Instruction Using It:

Effective Address Locates Data
ADC CMP
AND EOR

Note: All are 65802/65816 only.

The Western Design Center

325

Stack Relative Indirect Indexed, Y Addressing

Effective Address: The Data Bank Register is concatenated to the Indirect Address; the 24-bit result
is added to Y (16 bits if 65802/65816 native mode, x = 0; else 8 bits).

Indirect Address: Located at the 16-bit sum of the 8-bit Operand and the 16-bit Stack Pointer.

Sample Syntax:
LDA (sr,S),Y

Effective Address:
23 15 7 0

Bank High Low

Instruction:
Opcode Operand

65816 Registers:
Bank High Low

23 15 7 0
Data Bank (DBR)

Stack

X Index Register (X)
High Indirect Address

+
+1

+ Low Indirect Address

Y Index Register (Y) Bank 0
x-1 Memory
x-0

Accumulator (A or C)

0000 0000 Direct Page Register (D)

0000 0000 Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)

Status (P)

Instructions Using It:

Effective Address Locates Data
ADC CMP LDA SBC
AND EOR ORA STA

Note: All are 65802/65816 only;
65802: Data bank value is not propagated to the bus
(bank accessed is always bank 0).

The Western Design Center

326

18) Chapter Eighteen
The Instruction Sets

This chapter devotes a page to each of the 94 different 65816 operations. Each operation may have
more than one addressing mode available to it; these are detailed for each instruction. The symbols in Table
18.1 are used to express the different kinds of values that instruction operands may have. The effect of each
operation on the status flags varies. The symbols in Table 18.2 are used to indicate the flags that are affected by
a given operation.

addr two-byte address
addr / const two-byte value: either an address or a constant
const one- or two-byte constant
destbk 64K bank to which string will be moved
dp one-byte direct page offset (6502/65C02: zero page)
label label of code in same 64 bank as instruction
long three-byte address (includes bank byte)
nearlabel label of code close enough to instruction to be reachable

by a one-byte signed offset
sr one-byte stack relative offset
srcebk 64K bank from which string will be moved

Table 18-1 Operand Symbols

Flags:

bits: 7 6 5 4 3 2 1 0

6502/65C02/6502 emulation: n v - b d i z c

65802/65816 native: n v m x d i z c

n — negative result
v — overflow
m — 8-bit memory/accumulator
x — 8-bit index registers
b — BRK caused interrupt
d — decimal mode
i — IRQ interrupt disable
z — zero result
c — carry

Table 18-2 65x Flags

The Western Design Center

327

Add With Carry ADC

Add the data located at the effective address specified by the operand to the contents of the
accumulator; add one to the result if the carry flag is set, and store the final result in the accumulator.

The 65x processors have no add instruction that does not involve the carry. To avoid adding the carry
flag to the result, you must either be sure that it is already clear, or you must explicitly clear it (using CLC)
prior to executing the ADC instruction.

In a multi-precision (multi-word) addition, the carry should be cleared before the low-order words are
added; the addition of the low word will generate a new carry flag value based on the addition. This new value
in the carry flag is added into the next (middle-order or high-order) addition; each intermediate result will
correctly reflect the carry from the previous addition.

d flag clear: Binary addition is performed.
d flag set: Binary coded decimal (BCD) addition is performed.
8-bit accumulator (all processors): Data added from memory is eight-bit.
16-bit accumulator (65802/65816 only, m = 0): Data added from memory is sixteen-bit: the low-order

eight bits are located at the effective address; the high-order eight bits are located at the effective address plus
one.

Flags Affected: n v — — — — z c
n Set if most significant bit of result is set; else cleared.
v Set if signed overflow; cleared if valid signed result.
z Set if result is zero; else cleared.
c Set if unsigned overflow; cleared if valid unsigned result.

Codes:

Opcode Available on: # of # of
Addressing Mode + + Syntax (hex) 6502 65C02 65802/816 Bytes Cycles
Immediate ADC #const 69 x x x 2* 21,4

Absolute ADC addr 6D x x x 3 41,4

Absolute Long ADC long 6F x 4 51,4

Direct Page (DP) ADC dp 65 x x x 2 31,2,4

DP Indirect ADC (dp) 72 x x 2 51,2,4

DP Indirect Long ADC [dp] 67 x 2 61,2,4

Absolute Indexed, X ADC addr, X 7D x x x 3 41,3,4

Absolute Long Indexed, X ADC long, X 7F x 4 51,4

Absolute Indexed Y ADC addr, Y 79 x x x 3 41,3,4

DP Indexed, X ADC dp, X 75 x x x 2 41,2,4

DP Indexed Indirect, X ADC (dp, X) 61 x x x 2 61,2,4

DP Indirect Indexed, Y ADC (dp), Y 71 x x x 2 51,2,3,4

DP Indirect Long Indexed, Y ADC [dp], Y 77 x 2 61,2,4

Stack Relative (SR) ADC sr, S 63 x 2 41,4

SR Indirect Indexed, Y ADC (sr, S), Y 73 x 2 71,4

+ + ADC, a Primary Group Instruction, has available all of the Primary Group addressing modes and bit patterns
* Add 1 byte if m = 0 (16-bit memory/accumulator)
1 Add 1 cycle if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (DL< >0)
3 Add 1 cycle if adding index crosses a page boundary
4 Add 1 cycle if 65C02 and d = 1 (decimal mode, 65C02)

The Western Design Center

328

And Accumulator with Memory AND

Bitwise logical AND the data located at the effective address specified by the operand with the contents
of the accumulator. Each bit in the accumulator is ANDed with the corresponding bit in memory, with the
result being stored in the respective accumulator bit.

The truth table for the logical AND operation is:

Second Operand
0 1

First Operand
0 0 0
1 0 1

Figure 18-1 AND Truth Table

That is, a 1 or logical true results in given bit being true only if both elements of the respective bits
being ANDed are 1s, or logically true.

8-bit accumulator (all processors): Data ANDed from memory is eight-bit.
16-bit accumulator (65802/65816 only, m = 0): Data ANDed from memory is sixteen-bit: the low-

order byte is located at the effective address; the high-order byte is located at the effective address plus one.

Flags Affected: n - - - - - z -
n Set if most significant bit of result is set; else cleared.
z Set if result is zero; else cleared.

Codes:

Opcode Available on: # of # of
Addressing Mode + + Syntax (hex) 6502 65C02 65802/816 Bytes Cycles
Immediate AND # const 29 x x x 2* 21

Absolute AND addr 2D x x x 3 41

Absolute Long AND long 2F x 4 51

Direct Page (DP) AND dp 25 x x x 2 31,2

DP Indirect AND(dp) 32 x x 2 51,2

DP Indirect Long AND [dp] 27 x 2 61,2

Absolute Indexed, X AND addr, X 3D x x x 3 41,3

Absolute Long Indexed, X AND long, X 3F x 4 51

Absolute Indexed,Y AND addr, Y 39 x x x 3 41,3

DP Indexed, X AND dp, X 35 x x x 2 41,2

DP Indexed Indirect, X AND (dp, X) 21 x x x 2 61,2

DP Indirect Indexed, Y AND (dp), Y 31 x x x 2 51,2,3

DP Indirect Long Indexed, Y AND [dp], Y 37 x 2 61,2,0

Stack Relative (SR) AND sr, S 23 x 2 41

SR Indirect Indexed, Y AND (sr, S), Y 33 x 2 71

+ + AND, a Primary Group Instruction, has available all of the Primary Group addressing modes and bit patterns
* Add 1 byte if m = 0 (16-bit memory/accumulator)
1 Add 1 cycle if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (DL< >0)
3 Add 1 cycle if adding index crosses a page boundary

The Western Design Center

329

Shift Memory or Accumulator Left ASL

Shift the contents of the location specified by the operand left one bit. That is, bit one takes on the
value originally found in bit zero, bit two takes the value originally in bit one, and so on; the leftmost bit (bit 7
on the 6502 and 65C02 or if m = 1 on the 65802/65816, or bit 15 if m = 0) is transferred into the carry flag; the
rightmost bit, bit zero, is cleared. The arithmetic result of the operation is an unsigned multiplication by two.

ASL

1 0 1 1 0 0 1 1 0

X

 Carry Flag

Figure 18-2 ASL

8-bit accumulator/memory (all processors): Data shifted is eight bits.
16-bit accumulator/memory (65802/65816 only, m = 0): Data shifted is sixteen bits: if in memory, the

low-order eight bits are located at the effective address; the high-order eight bits are located at the effective
address plus one.

Flags Affected:n - - - - - z c
n Set if most significant bit of result is set; else cleared.
z Set if result is zero; else cleared.
c High bit becomes carry: set if high bit was set; cleared if high bit was zero.

Codes:

Opcod
e

Available on: # of # of

Addressing Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles
Accumulator ASL A 0A x x x 2
Absolute ASL addr 0E x x x 61

Direct Page (DP) ASL dp 06 x x x 51,2

Absolute Indexed, X ASL addr, X 1E x x x 71,3

DP Indexed, X ASL dp, X 16 x x x

1
3
2
3
2 61,2

1 Add 2 cycles if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (DL< >0)
3 Subtract 1 cycle if 65C02 and no page boundary crossed

The Western Design Center

330

Branch if Carry Clear BCC

The carry flag in the P status register is tested. If it is clear, a branch is taken; if it is set, the instruction
immediately following the two-byte BCC instruction is executed.

If the branch is taken, a one-byte signed displacement, fetched from the second byte of the instruction,
is sign-extended to sixteen bits and added to the program counter. Once the branch address has been calculated,
the result is loaded into the program counter, transferring control to that location.

The allowable range of the displacement is – 128 to + 127 (from the instruction immediately following
the branch).

BCC may be used in several ways: to test the result of a shift into the carry; to determine if the result of
a comparison is either less than (in which case a branch will be taken), or greater than or equal (which causes
control to fall through the branch instruction); or to determine if further operations are needed in multi-precision
arithmetic.

Because the BCC instruction causes a branch to be taken after a comparison or subtraction if the
accumulator is less than the memory operand (since the carry flag will always be cleared as a result), many
assemblers allow an alternate mnemonic for the BCC instruction: BLT, or Branch if Less Than.

Flags Affected : - - - - - - - -

Codes:

Opcode Available on: # of # of
Addressing Mode +
+

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Program Counter
Relative

BCC nearlabel 90 x x x 2 21,2

(or BLT
nearlabel)

1 Add 1 cycle if branch is taken.
2 Add 1 more cycle if branch taken crosses page boundary on 6502, 65C02, or 65816/65802’s 6502

emulation mode (e = 1)

The Western Design Center

331

Branch if Carry Set BCS

The carry flag in the P status register is tested. If it is set, a branch is taken; if it is clear, the instruction
immediately following the two-byte BCS instruction is executed.

If the branch is taken, a one-byte signed displacement, fetched from the second byte of the instruction,
is sign-extended to sixteen bits and added to the program counter. Once the branch address has been calculated,
the result is loaded into the program counter, transferring control to that location.

The allowable range of the displacement is – 128 to + 127 (from the instruction immediately following
the branch).

BCS is used in several ways: to test the result of a shift into the carry; to determine if the result of a
comparison is either greater than or equal (which causes the branch to be taken) or less than; or to determine if
further operations are needed in multi-precision arithmetic operations.

Because the BCS instruction causes a branch to be taken after a comparison or subtraction if the
accumulator is greater than or equal to the memory operand (since the carry flag will always be set as a result),
many assemblers allow an alternate mnemonic for the BCS instruction: BGE or Branch if Greater or Equal.

Flags Affected: - - - - - - - -

Codes:

Opcode Available on: # of # of
Addressing Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles
Program Counter
Relative

BCS
nearlabel

B0 x x x 2 21,2

(or BGE
nearlabel)

1 Add 1 cycle if branch is taken
2 Add 1 more cycle if branch taken crosses page boundary on 6502, 65C02, or 65816/65802’s 6502

emulation mode (e = 1).

The Western Design Center

332

Branch if Equal BEQ

The zero flag in the P status register is tested. If it is set, meaning that the last value tested (which
affected the zero flag) was zero, a branch is taken; if it is clear, meaning the value tested was non-zero, the
instruction immediately following the two-byte BEQ instruction is executed.

If the branch is taken, a one-byte signed displacement, fetched from the second byte of the instruction,
is sign-extended to sixteen bits and added to the program counter. Once the branch address has been calculated,
the result is loaded into the program counter, transferring control to that location.

The allowable range of the displacement is – 128 to + 127 (from the instruction immediately following
the branch).

BEQ may be used in several ways: to determine if the result of a comparison is zero (the two values
compared are equal), for example, or if a value just loaded, pulled, shifted, incremented or decremented is zero;
or to determine if further operations are needed in multi-precision arithmetic operations. Because testing for
equality to zero does not require a previous comparison with zero, it is generally most efficient for loop counters
to count downwards, existing when zero is reached.

Flags Affected: - - - - - - - -

Codes:

Opcode Available on: # of # of

Addressing Mode Syntax (hex) 6502 65C02 65802/816
Byte

s
Cycle

s
Program Counter
Relative

BEQ
nearlabel

F0 x x x 2 21,2

1 Add 1 cycle if branch is taken
2 Add 1 more cycle if branch taken crosses page boundary on 6502, 65C02, or 65816/65802’s 6502

emulation mode (e = 1).

The Western Design Center

333

Test Memory Bits against Accumulator BIT

BIT sets the P status register flags based on the result of two different operations, making it a dual-
purpose instruction:

First, it sets or clears the n flag to reflect the value of the high bit of the data located at the effective
address specified by the operand, and sets or clears the v flag to reflect the contents of the next-to-highest bit of
the data addressed.

Second, it logically ANDs the data located at the effective address with the contents of the accumulator;
it changes neither value, but sets the z flag if the result is zero, or clears it if the result is non-zero.

BIT is usually used immediately preceding a conditional branch instruction: to test a memory value’s
highest or next-to-highest bits; with a mask in the accumulator, to test any bits of the memory operand; or with a
constant as the mask (using immediate addressing) or a mask in memory, to test any bits in the accumulator.
All of these tests are non-destructive of the data in the accumulator or in memory. When the BIT instruction is
used with the immediate addressing mode, the n and v flags are unaffected.

8-bit accumulator/memory (all processors): Data in memory is eight-bit; bit 7 is moved into the n
flag; bit 6 is moved into the v flag.

16-bit accumulator/memory (65802/65816 only, m = 0): Data in memory is sixteen-bit: the low-order
eight bits are located at the effective address; the high-order eight bits are located at the effective address plus
one. Bit 15 is moved into the n flag; bit 14 is moved into the v flag.

Flags Affected: n v - - - - z - (Other than immediate addressing)
- - - - - - z - (Immediate addressing only)
 n Takes value of most significant bit of memory data.
 v Takes value of next-to-highest bit of memory data.
 z Set if logical AND of memory and accumulator is zero; else cleared.

Codes:

Opcode Available on: # of # of
Addressing Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles
Immediate BIT # const 89 x x 2* 21

Absolute BIT addr 2C x x x 3 41

Direct Page (DP) BIT dp 24 x x x 2 31,2

Absolute Indexed,
X

BIT addr, X 3C x x 3 41,3

DP Indexed, X BIT dp, X 34 x x 2 41,2

* Add 1 byte if m = 0 (16-bit memory/accumulator)
1 Add 1 cycle if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (DL< >0)
3 Add 1 cycle if adding index crosses a page boundary

The Western Design Center

334

Branch if Minus BMI

The negative flag in the P status register is tested. If it is set, the high bit of the value which most
recently affected the n flag was set, and a branch is taken. A number with its high bit set may be interpreted as
a negative two’s-complement numbers, so this instruction tests, among other things, for the sign of two’s-
complement numbers. If the negative flag is clear, the high bit of the value which most recently affected the
flag was clear, or, in the two’s-complement system, was a positive number, and the instruction immediately
following the two-byte BMI instruction is executed.

If the branch is taken, a one-byte signed displacement, fetched from the second byte of the instruction,
is sign-extended to sixteen bits and added to the program counter. Once the branch address has been calculated,
the result is loaded into the program counter, transferring control to that location.

The allowable range of the displacement is – 128 to + 127 (from the instruction immediately following
the branch).

BMI is primarily used to either determine, in two’s-complement arithmetic, if a value is negative or, in
logic situations, if the high bit of the value is set. It can also be used when looping down through zero (the loop
counter must have a positive initial value) to determine if zero has been passed and to effect an exit from the
loop.

Flags Affected: - - - - - - - -

Codes:

Opcode Available on: # of # of

Addressing Mode Syntax (hex) 6502 65C02 65802/816 Bytes
Cycle

s
Program Counter
Relative

BMI
nearlabel

30 x x x 2 21,2

1 Add 1 cycle if branch is taken.
2 Add 1 more cycle if branch taken crosses page boundary on 6502, 65C02, or 65816/65802’s 6502

emulation mode (e = 1)

The Western Design Center

335

Branch if Not Equal BNE

The zero flag in the P status register is tested. If it is clear (meaning the value just tested is non-zero), a
branch is taken; if it is set (meaning the value tested is zero), the instruction immediately following the two-byte
BNE instruction is executed.

If the branch is taken, a one-byte signed displacement, fetched from the second byte of the instruction,
is sign-extended to sixteen bits and added to the program counter. Once the branch address has been calculated,
the result is loaded into the program counter, transferring control to that location.

The allowable range of the displacement is – 128 to + 127 (from the instruction immediately following
the branch).

BNE may be used in several ways: to determine if the result of a comparison is non-zero (the two
values compared are not equal), for example, or if the value just loaded or pulled from the stack is non-zero, or
to determine if further operations are needed in multi-precision arithmetic operations.

Flags Affected: - - - - - - - -

Codes:

Opcode Available on: # of # of
Addressing Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Program Counter
Relative

BNE
nearlabe
l

D0 x x x 2 21,2

1 Add 1 cycle if branch is taken
2 Add 1 more cycle if branch taken crosses page boundary on 6502, 65C02, or 65816/65802’s 6502

emulation mode (e = 1)

The Western Design Center

336

Branch if Plus BPL

The negative flag in the P status register is tested. If it is clear – meaning that the last value which
affected the zero flag had it’s high bit clear – a branch is taken. In the two’s complement system, values with
their high bit clear are interpreted as positive numbers. If the flag is set, meaning the high bit of the last value
was set, the branch is not taken; it is a two’s-complement negative number, and the instruction immediately
following the two-byte BPL instruction is executed.

If the branch is taken, a one-byte signed displacement, fetched from the second byte of the instruction,
is sign-extended to sixteen bits and added to the program counter. Once the branch address has been calculated,
the result is loaded into the program counter, transferring control to that location.

The allowable range of the displacement is – 128 to + 127 (from the instruction immediately following
the branch).

BPL is used primarily to determine, in two’s-complement arithmetic, if a value is positive or not or, in
logic situations, if the high bit of the value is clear.

Flags Affected: - - - - - - - -

Codes:

Opcode Available on: # of # of
Addressing Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles
Program Counter
Relative

BPL
nearlabel

10 x x x 2 21,2

1 Add 1 cycle if branch is taken
2 Add 1 more cycle if branch taken crosses page boundary on 6502, 65C02, or 65816/65802’s 6502

emulation mode (e = 1)

The Western Design Center

337

Branch Always BRA

A branch is always taken, and no testing is done: in effect, an unconditional JMP is executed, but since
signed displacements are used, the instruction is only two bytes, rather than the three bytes of a JMP.
Additionally, using displacements from the program counter makes the BRA instruction relocatable. Unlike a
JMP instruction, the BRA is limited to targets that lie within the range of the one-byte signed displacement of
the conditional branches: - 128 to + 127 bytes from the first byte following the BRA instruction.

To branch, a one-byte signed displacement, fetched from the second byte of the instruction, is sign-
extended to sixteen bits and added to the program counter. Once the branch address has been calculated, the
result is loaded into the program counter, transferring control to that location.

Flags Affected: - - - - - - - -

Codes:

Opcode Available on: # of # of
Addressing Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles
Program Counter
Relative

BRA
nearlabel

80 x x 2 31

1 Add 1 cycle if branch crosses page boundary on 65C02 or in 65816/65802’s 6502 emulation mode (e = 1)

The Western Design Center

338

Software Break BRK

Force a software interrupt. BRK is unaffected by the i interrupt disable flag.
Although BRK is a one-byte instruction, the program counter (which is pushed onto the stack by the

instruction) is incremented by two; this lets you follow the break instruction with a one-byte signature byte
indicating which break caused the interrupt. Even if a signature byte is not needed, either the byte following the
BRK instruction must be padded with some value or the break-handling routine must decrement the return
address on the stack to let an RTI (return from interrupt) instruction executed correctly.

6502, 65C02, and Emulation Mode (e = 1): The program counter is incremented by two, then pushed
onto the stack; the status register, with the b break flag set, is pushed onto the stack; the interrupt disable flag is
set; and the program counter is loaded from the interrupt vector at $FFFE-FFFF. It is up to the interrupt
handling routine at this address to check the b flag in the stacked status register to determine if the interrupt was
caused by a software interrupt (BRK) or by a hardware IRQ, which shares BRK vector but pushes the status
register onto the stack with the b break flag clear. For example,

0000 68 PLA copy status from
0001 48 PHA top of stack
0002 2910 AND #$10 check BRK bit
0004 D007 BNE ISBRK branch if set

Fragment 18.1

65802/65816 Native Mode (e = 0): The program counter bank register is pushed onto the stack; the
program counter is incremented by two and pushed onto the stack; the status register is pushed onto the stack;
the interrupt disable flag is set; the program bank register is cleared to zero; and the program counter is loaded
from the break vector at $00FFE6-00FFE7.

6502: The d decimal flag is not modified after a break is executed.
65C02 and 65816/65802: The d decimal flag is reset to 0 after a break is executed.

The Western Design Center

339

Stack

Bank Address

Address High

Address Low

Contents of
Status Register

Stack Pointer

Bank 0

Figure 18-3 65802/65816 Stack After BRK

Flags Affected: - - - b - i - - (6502)
- - - b d i - - (65C02, 65802/65816 emulation mode e = 1)
- - - - d i - - (65802/65816 native mode e = 0)
b b in the P register value pushed onto the stack is set.
d d is reset to 0, for binary arithmetic.
i The interrupt disable flag is set, disabling hardware IRQ interrupts.

Codes:

Opcode Available on: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Stack/Interrupt BRK 00 x x x 2* 71

* BRK is 1 byte, but program counter value pushed onto stack is incremented by 2 allowing for optional
signature

byte.
1 Add 1 cycle for 65802/65816 native mode (e = 0)

The Western Design Center

340

Branch Always Long BRL

A branch is always taken, similar to the BRA instruction. However, BRL is a three-byte instruction;
the two bytes immediately following the opcode form a sixteen-bit signed displacement from the program
counter. Once the branch address has been calculated, the result is loaded into the program counter, transferring
control to that location.

The allowable range of the displacement is anywhere within the current 64K program bank.
The long branch provides an unconditional transfer of control similar to the JMP instruction, with one

major advantage: the branch instruction is relocatable while jump instructions are not. However, the (non-
relocatable) jump absolute instruction executes one cycle faster.

Flags Affected: - - - - - - - -

Codes:

Opcode Available on: # of # of
Addressing Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles
Program Counter
Relative Long

BRL label 82 x 3 4

The Western Design Center

341

Branch if Overflow Clear BVC

The overflow flag in the P status register is tested. If it is clear, a branch is taken; if it is set, the
instruction immediately following the two-byte BVC instruction is executed.

If the branch is taken, a one-byte signed displacement, fetched from the second byte of the instruction,
is sign-extended to sixteen bits and added to the program counter. Once the branch address has been calculated,
the result is loaded into the program counter, transferring control to that location.

The allowable range of the displacement is – 128 to + 127 (from the instruction immediately following
the branch).

The overflow flag is altered by only four instructions on the 6502 and 65C02 – addition, subtraction, the
CLV clear-the-flag instruction, and the BIT bit-testing instruction. In addition, all the flags are restored from
the stack by the PLP and RTI instructions. On the 65802/65816, however, the SEP and REP instructions can
also modify the v flag.

BVC is used almost exclusively to check that a two’s-complement arithmetic calculation has not
overflowed, much as the carry is used to determine if an unsigned arithmetic calculation has overflowed. (Note,
however, that the compare instructions do not affect the overflow flag.) You can also use BVC to test the
second – highest bit in a value by using it after the BIT instruction, which moves the second – highest bit of the
tested value into the v flag.

The overflow flag can also be set by the Set Overflow hardware signal on the 6502, 65C02, and 65802;
on many systems, however, there is no connection to this pin.

Flags Affected: - - - - - - - -

Codes:

Opcode Available on: # of # of
Addressing Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles
Program Counter
Relative

BVC
nearlabel

50 x x x 2 21,2

1 Add 1 cycle if branch is taken
2 Add 1 more cycle if branch taken crosses page boundary on 6502, 65C02, or 65816/65802’s 6502

emulation mode (e = 1)

The Western Design Center

342

Branch if Overflow Set BVS

The overflow flag in the P status register is tested. If it is set, a branch is taken; if it is clear, the
instruction immediately following the two-byte BVS instruction is executed.

If the branch is taken, a one-byte signed displacement, fetched from the second byte of the instruction,
is sign-extended to sixteen bits and added to the program counter. Once the branch address has been calculated,
the result is loaded into the program counter, transferring control to that location.

The allowable range of the displacement is – 128 to + 127 (from the instruction immediately following
the branch).

The overflow flag is altered by only four instructions on the 6502 and 65C02 – addition, subtraction, the
CLV clear-the-flag instruction and the BIT bit-testing instructions. In addition, all the flags are restored from
the stack by the PLP and RTI instruction. On the 65802/65816, the SEP and REP instructions can also modify
the v flag.

BVS is used almost exclusively to determine if a two’s-complement arithmetic calculation has
overflowed, much as the carry is used to determine if an unsigned arithmetic calculation has overflowed. (Note,
however, that the compare instructions do not affect the overflow flag.) You can also use BVS to test the
second-highest bit in a value by using it after the BLT instruction, which moves the second-highest bit of the
tested value into the v flag.

The overflow flag can also be set by the Set Overflow hardware signal on the 6502, 65C02, and 65802;
on many systems, however, there is no hardware connection to this signal.

Flags Affected: - - - - - - - -

Codes:

Opcode Available on: # of # of

Addressing Mode Syntax (hex) 6502 65C02 65802/816 Bytes
Cycle

s
Program Counter
Relative

BVS
nearlabel

70 x x x 2 21,2

1 1 Add 1 cycle if branch is taken
2 Add 1 more cycle if branch taken crosses page boundary on 6502, 65C02, or 65816/65802’s 6502

emulation mode (e = 1)

The Western Design Center

343

Clear Carry Flag CLC

Clear the carry flag in the status register.
CLC is used prior to addition (using the 65x’s ADC instruction) to keep the carry flag from affecting

the result; prior to a BCC (branch on carry clear) instruction on the 6502 to force a branch-always; and prior to
an XCE (exchange carry flag with emulation bit) instruction to put the 65802 or 65816 into native mode.

Flags Affected: - - - - - - - c
c carry flag cleared always.

Codes:

Opcode Available on: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied CLC 18 x x x 1 2

The Western Design Center

344

Clear Decimal Mode Flag CLD

Clear the decimal mode flag in the status register.
CLD is used to shift 65x processors back into binary mode from decimal mode, so that the ADC and

SBC instructions will correctly operate on binary rather than BCD data.

Flags Affected: - - - - d - - -
d decimal mode flag cleared always.

Codes:

Opcode Available on: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied CLD D8 x x x 1 2

The Western Design Center

345

Clear Interrupt Disable Flag CLI

Clear the interrupt disable flag in the status register.
CLI is used to re-enable hardware interrupt (IRQ) processing. (When the i bit is set, hardware

interrupts are ignored.) The processor itself sets the i flag when it begins servicing an interrupt, so interrupt
handling routines must re-enable interrupts with CLI if the interrupt-service routine is designed to service
interrupts that occur while a previous interrupt is still being handled; otherwise, the RTI instruction will restore
a clear i flag from the stack, and CLI is not necessary. CLI is also used to re-enable interrupts if they have
been disabled during execution of time-critical or other code which cannot be interrupted.

Flags Affected: - - - - - i - -
i interrupt disable flag cleared always.

Codes:

Opcode Available on: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied CLI 58 x x x 1 2

The Western Design Center

346

Clear Overflow Flag CLV

Clear the overflow flag in the status register.
CLV is sometimes used prior to a BVC (branch on overflow clear) to force a branch-always on the

6502. Unlike the other clear flag instructions, there is no complementary “set flag” instruction to set the
overflow flag, although the overflow flag can be set by hardware via the Set Overflow input pin on the
processor. This signal, however, is often unconnected. The 65802/65816 REP instruction can, of course, clear
the overflow flag; on the 6502 and 65C02, a BIT instruction with a mask in memory that has bit 6 set can be
used to set the overflow flag.

Flags Affected: - v - - - - - -
v overflow flag cleared always.

Codes:

Opcode Available on: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied CLV B8 x x x 1 2

The Western Design Center

347

Compare Accumulator with Memory CMP

Subtract the data located at the effective address specified by the operand from the contents of the
accumulator, setting the carry, zero, and negative flags based on the result, but without altering the contents of
either the memory location or the accumulator. That is, the result is not saved. The comparison is of unsigned
binary values only.

The CMP instruction differs from the SBC instruction in several ways. First, the result is not saved.
Second, the value in the carry prior to the operation is irrelevant to the operation; that is, the carry does not have
to be set prior to a compare as it is with 65x subtractions. Third, the compare instruction does not set the
overflow flag, so it cannot be used for signed comparisons. Although decimal mode does not affect the CMP
instruction, decimal comparisons are effective, since the equivalent binary values maintain the same magnitude
relationships as the decimal values have, for example, $99 > $04 just as 99 > 4.

The primary use for the compare instruction is to set the flags so that a conditional branch can then be
executed.

8-bit accumulator (all processors): Data compared is eight-bit.
16-bit accumulator (65802/65816 only, m = 0): Data compared is sixteen-bit: the low-order eight bits

of the data in memory are located at the effective address; the high-order eight bits are located at the effective
address plus one.

Flags Affective: n — — — — — z c
n Set if most significant bit of result is set; else cleared.
z Set if result is zero; else cleared.
c Set if no borrow required (accumulator value higher or same);
 cleared if borrow required (accumulator value lower).

The Western Design Center

348

Codes:

Opcode Available on: # of # of
Addressing Mode + + Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Immediate
CMP
#const

C9 x x x 2* 21

Absolute CMP addr CD x x x 3 41

Absolute Long CMP long CF x 4 51

Direct Page (also DP) CMP dp C5 x x x 2 31, 2

DP Indirect CMP (dp) D2 x x 2 51, 2

DP Indirect Long CMP [dp] C7 x 2 61, 2

Absolute Indexed, X
CMP addr,
X

DD x x x 3 41, 3

Absolute Long Indexed,
X

CMP long,
X

DF x 4 51

Absolute Indexed, Y
CMP addr,
Y

D9 x x x 3 41, 3

DP Indexed, X CMP dp, X D5 x x x 2 41, 2

DP Indexed Indirect, X
CMP (dp,
X)

C1 x x x 2 61, 2

DP Indirect Indexed, Y
CMP (dp),
Y

D1 x x x 2 51, 2, 3

DP Indirect Long
Indexed, Y

CMP [dp],
Y

D7 x 2 61, 2

Stack Relative (also SR) CMP sr, S C3 x 2 41

SR Indirect Indexed, Y
CMP (sr,
S), Y

D3 x 2 71

+ + CMP, a Primary Group Instruction, has available all of the Primary Group addressing modes and
bit patterns

* Add 1 byte if m = 0 (16-bit memory/accumulator)
1 Add 1 cycle if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (DL< >0)
3 Add 1 cycle if adding index crosses a page boundary

The Western Design Center

349

Co-Processor Enable COP

Execution of COP causes a software interrupt, similarly to BRK, but through the separate COP vector.
Alternatively, COP may be trapped by a co-processor, such as a floating point or graphics processor, to call a
co-processor function. COP is unaffected by the i interrupt disable flag.

COP is much like BRK, with the program counter value pushed on the stack being incremented by
two; this lets you follow the co-processor instruction with a signature byte to indicate to the co-processor or co-
processor handling routine which operation to execute. Unlike the BRK instruction, 65816 assemblers require
you to follow the COP instruction with such a signature byte. Signature bytes in the range $80-$FF are
reserved by the Western Design Center for implementation of co-processor control; signatures in the range $00-
$7F are available for use with software-implemented COP handlers.

6502 Emulation Mode (65802/65816, e=1): The program counter is incremented by two and pushed
onto the stack; the status register is pushed onto the stack; the interrupt disable flag is set; and the program
counter is loaded from the emulation mode co-processor vector at $FFF4-FFF5. The d decimal flag is cleared
after a COP is executed.

65802/65816 Native Mode (e = 0): The program counter bank register is pushed onto the stack; the
program counter is incremented by two and pushed onto the stack; the status register is pushed onto the stack;
the interrupt disable flag is set; the program bank register is cleared to zero; and the program counter is loaded
from the native mode co-processor vector at $00FFE4-00FFE5. The d decimal flag is reset to 0 after a COP is
executed.

Stack

Bank Address

Address High

Address Low

Contents of Status
Register

Stack Pointer

Bank 0

Figure 18-4 Stack after COP

Flag Affected: - - - - d i - -
d d is rest to 0.
i The interrupt disable flag is set, disabling hardware interrupts.

Codes:
Opcode Available on: # of # of

Addressing
mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Stack/Interrupt COP const 02 x 2* 71

* COP is 1 byte, but program counter value pushed onto stack is incremented by 2 allowing for optional code
byte

1 Add 1 cycle for 65816/65802 native mode (e = 0)

The Western Design Center

350

Compare Index Register X with Memory CPX

Subtract the data located at the effective address specified by the operand from the contents of the X
register, setting the carry, zero, and negative flags based on the result, but without altering the contents of either
the memory location or the register. The result is not saved. The comparison is of unsigned values only (except
for signed comparison for equality).

The primary use for the CPX instruction is to test the value of the X index register against loop
boundaries, setting the flags so that a conditional branch can be executed.

8-bit index registers (all processors): Data compared is eight-bit.
16-bit index registers (65802/65816 only, x = 0): Data compared is sixteen-bit: the low-order eight

bits of the data in memory are located at the effective address; the high-order eight bits are located at the
effective address plus one.

Flags Affected: n - - - - - z c
n Set if most significant bit of result is set; else cleared.
z Set if result is zero; else cleared.
c Set if no borrow required (X register value higher or same);

cleared if borrow required (X register value lower).

Codes:

Opcode Available on: # of # of
Addressing Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Immediate
CPX
#const

E0 x x x 2* 21

Absolute CPX addr EC x x x 3 41

Direct Page (also
DP)

CPX dp E4 x x x 2 31, 2

* Add 1 byte if x = 0 (16-bit index registers)
1 Add 1 cycle if x = 0 (16-bit index registers)
2 Add 1 cycle if low byte of Direct Page register is other than zero (DL< >0)

The Western Design Center

351

Compare Index Register Y with Memory CPY CPY

Subtract the data located at the effective address specified by the operand from the contents of the Y
register, setting the carry, zero, and negative flags based on the result, but without altering the contents of either
the memory location or the register. The comparison is of unsigned values only (expect for signed comparison
for equality).

The primary use for the CPY instruction is to test the value of the Y index register against loop
boundaries, setting the flags so that a conditional branch can be executed.

8-bit index registers (all processors): Data compared is eight-bit.
16-bit index registers (65802/65816 only, x = 0): Data compared is sixteen-bit: the low-order eight

bits of the data in memory is located at the effective address; the high-order eight bits are located at the effective
address plus one.

Flags Affected: n - - - - - z c
n Set if most significant bit of result is set; else cleared.
z Set if result is zero; else cleared.
c Set if no borrow required (Y register value higher or same);
 cleared if borrow required (Y register value lower).

Codes:

Opcode Available on: # of # of
Addressing Mode +
+

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Immediate CPY # const C0 x x x 2* 21

Absolute CPY addr CC x x x 3 41

Direct Page (also
DP)

CPY dp C4 x x x 2 31, 2

* Add 1 byte if x = 0 (16-bit index registers)
1 Add 1 cycle if x = 0 (16-bit index registers)
2 Add 1 cycle if low byte of Direct Page register is other than zero (DL< >0)

The Western Design Center

352

Decrement DEC

Decrement by one the contents of the location specified by the operand (subtract one from the value).
Unlike subtracting a one using the SBC instruction, the decrement instruction is neither affected by nor

affected the carry flag. You can test for wraparound only by testing after every decrement to see if the value is
zero or negative. On the other hand, you don’t need to set the carry before decrementing.

DEC is unaffected by the setting of the d (decimal) flag.
8-bit accumulator/memory (all processors): Data decremented is eight-bit.
16-bit accumulator/memory (65802/65816 only, m = 0): Data Decremented is sixteen-bit: if in

memory, the low-order eight bits are located at the effective address; the high-order eight bits are located at the
effective address plus one.

Flags Affected: n - - - - - z -
n Set if most significant bit of result is set; else cleared.
z Set if result is zero; else cleared.

Codes:

Opcode Available on: # of # of
Addressing Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles
Accumulator DEC A 3A x x 1 2
Absolute DEC addr CE x x x 3 61

Direct Page (also
DP)

DEC dp C6 x x x 2 51, 2

Absolute Indexed,
X

DEC addr, X DE x x x 3 71, 3

DP Indexed, X DEC dp, X D6 x x x 2 61,2

1 Add 2 cycles if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (DL<>0)
3 Subtract 1 cycle if 65C02 and no page boundary crossed

The Western Design Center

353

Decrement Index Register X DEX

Decrement by one the contents of index register X (subtract one from the value). This is a special
purpose, implied addressing form of the DEC instruction.

Unlike using SBC to subtract a one from the value, the DEX instruction does not affect the carry flag;
you can test for wraparound only by testing after every decrement to see if the value is zero or negative. On the
other hand, you don’t need to set carry before decrementing.

DEX is unaffected by the setting of the d (decimal) flag.
8-bit index registers (all processors): Data decremented is eight-bit.
16-bit index registers (65802/65816 only, x = 0): Data decremented is sixteen-bit.

Flags Affected: n - - - - - z -
n Set if most significant bit of result is set; else cleared.
z Set if result is zero; else cleared.

Codes:

Opcode Available on: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied DEX CA x x x 1 2

The Western Design Center

354

Decrement Index Register Y DEY

Decrement by one the contents of index register Y (subtract one from the value). This is a special
purpose, implied addressing form of the DEC instruction.

Unlike using SBC to subtract a one from the value, the DEY instruction does not affect the carry flag;
you can test for wraparound only by testing after every decrement to see if the value is zero or negative. On the
other hand, you don’t need to set the carry before decrementing.

DEY is unaffected by the setting of the d (decimal) flag.
8-bit index registers (all processors): Data decremented is eight-bit.
16-bit index registers (65802/65816 only, x = 0): Data decremented is sixteen-bit.

Flags Affected: n - - - - - z -
n Set if most significant bit of result is set; else cleared.
z Set if result is zero; else clear.

Codes:

Opcode Available on: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied DEY 88 x x x 1 2

The Western Design Center

355

Exclusive-OR Accumulator with Memory EOR

Bitwise logical Exclusive-OR the data located at the effective address specified by the operand with the
contents of the accumulator. Each bit in the accumulator is exclusive-ORed with the corresponding bit in
memory, and the result is stored into the same accumulator bit.

The truth table for the logical exclusive-OR operation is:

Second Operand
0 1

First Operand
0 0 1
1 1 0

Figure 18-5Exclusive OR Truth Table

A 1 or logical true results only if the two elements of the Exclusive-OR operation are different.
8-bit accumulator (all processors): Data exclusive-ORed from memory is eight-bit.
16-bit accumulator (65802/65816 only, m = 0): Data exclusive-ORed from memory is sixteen-bit: the

low-order eight bits are located at the effective address; the high-order eight bits are located at the effective
address plus one.

Flags Affected: n - - - - - z -
n Set if most significant bit of result is set; else cleared.
z Set if result is zero; else cleared.

The Western Design Center

356

Codes:

Opcode Available on: # of # of

Addressing Mode Syntax (hex) 6502 65C02 65802/816
Byte

s
Cycle

s
Immediate EOR # const 49 x x x 2* 21

Absolute EOR addr 4D x x x 3 41

Absolute Long EOR long 4F x 4 51

Direct Page (also DP) EOR dp 45 x x x 2 31, 2

DP Indirect EOR (dp) 52 x x 2 51, 2

DP Indirect Long EOR [dp] 47 x 2 61, 2

Absolute Indexed, X EOR addr, X 5D x x x 3 41, 3

Absolute Long Indexed,
X

EOR long, X 5F x 4 51

Absolute Indexed, Y EOR addr, Y 59 x x x 3 41, 3

DP Indexed, X EOR dp, X 55 x x x 2 41, 2

DP Indexed Indirect, X EOR (dp, X) 41 x x x 2 61, 2

DP Indirect Indexed, Y EOR (dp), Y 51 x x x 2 51, 2, 3

DP Indirect Long
Indexed, Y

EOR [dp], Y 57 x 2 61, 2

Stack Relative (also SR) EOR sr, S 43 x 2 41

SR Indirect Indexed, Y
EOR (sr, S),
Y

53 x 2 71

+ + EOR, a Primary Group Instruction, has available all of the Primary Group addressing modes and bit patterns
* Add 1 byte if m = 0 (16-bit memory/accumulator)
1 Add 1 cycle if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (DL<>0)
3 Add 1 cycle if adding index crosses a page boundary

The Western Design Center

357

Increment INC

Increment by one the contents of the location specified by the operand (add one to the value).
Unlike adding a one with the ADC instruction, however, the increment instruction is neither affected by

nor affects the carry flag. You can test for wraparound only by testing after every increment to see if the result
is zero or positive. On the other hand, you don’t have to clear the carry before incrementing.

The INC instruction is unaffected by the d (decimal) flag.
8-bit accumulator/memory (all processors): Data incremented is eight-bit.
16-bit accumulator/memory (65802/65816 only, m=0): Data incremented is sixteen-bit: if in

memory, the low-order eight bits are located at the effective address; the high-order eight-bits are located at the
effective address plus one.

Flags Affected: n - - - - - z -
n Set if most significant bit of result is set; else cleared.
z Set if result is zero; else cleared.

Codes:

Opcode Available on: # of # of
Addressing Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles
Accumulator INC A 1A x x 1 2
Absolute INC addr EE x x x 3 61

Direct Page (also
DP)

INC dp E6 x x x 2 51, 2

Absolute Indexed,
X

INC addr,
X

FE x x x 3 71, 3

DP Indexed, X INC dp, X F6 x x x 2 61, 2

1 Add 2 cycles if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (DL<>0)
3 Subtract 1 cycle if 65C02 and no page boundary crossed

The Western Design Center

358

Increment Index Register X INX

Increment by one the contents of index register X (add one to the value). This is a special purpose,
implied addressing form of the INC instruction.

Unlike using ADC to add a one to the value, the INX instruction does not affect the carry flag. You can
execute it without first clearing the carry. But you can test for wraparound only by testing after every increment
to see if the result is zero or positive. The INX instruction is unaffected by the d (decimal) flag.

8-bit index registers (all processors): Data incremented is eight-bit.
16-bit index registers (65802/65816 only, x = 0): Data incremented is sixteen-bit.

Flags Affected: n - - - - - z -
n Set if most significant bit of result is set; else cleared.
z Set if result is zero; else cleared.

Codes:

Opcode Available on: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied INX E8 x x x 1 2

The Western Design Center

359

Increment Index Register Y INY

Increment by one the contents of index register Y (add one to the value). This is a special purpose,
implied addressing form of the INC instruction.

Unlike using ADC to add one to the value, the INY instruction does not affect the carry flag. You can
execute it without first clearing the carry. But you can test for wraparound only by testing after every increment
to see if the value is zero or positive. The INY instruction is unaffected by the d (decimal) flag.

8-bit index registers (all processors): Data incremented is eight-bit.
16-bit index registers (65802/65816 only, x = 0): Data incremented is sixteen-bit.

Flags Affected: n - - - - - z -
n Set if most significant bit of result is set; else cleared.
z Set if result is zero; else cleared.

Codes:

Opcode Available on: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied INY C8 x x x 1 2

The Western Design Center

360

Jump JMP

Transfer control to the address specified by the operand field.
The program counter is loaded with the target address. If a long JMP is executed, the program counter

bank is loaded from the third byte of the target address specified by the operand.

Flags Affected: - - - - - - - -

Codes:

Opcode Available on: # of # of
Addressing Mode +
+

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Absolute JMP addr 4C x x x 3 3
Absolute Indirect JMP (addr) 6C x x x 3 51, 2

Absolute Indexed
Indirect

JMP (addr,
X)

7C x x 3 6

Absolute Long JMP long 5C x 4 4
(or JML long)

Absolute Indirect
Long

JMP [addr] DC x 3 6

(or JML
[addr])

1 1 Add 1 cycle if 65C02
2 6502: If low byte of addr is $FF (i.e., addr is $xxFF): yields incorrect result

The Western Design Center

361

Jump to Subroutine Long (Inter-Bank) JSL

Jump-to-subroutine with long (24-bit) addressing: transfer control to the subroutine at the 24-bit address
which is the operand, after first pushing a 24-bit (long) return address onto the stack. This return address is the
address of the last instruction byte (the fourth instruction byte, or the third operand byte), not the address of the
next instruction; it is the return address minus one.

The current program counter bank is pushed onto the stack first, then the high-order byte of the return
address and then the low-order byte of the address are pushed on the stack in standard 65x order (low byte in the
lowest address, bank byte in the highest address). The stack pointer is adjusted after each byte is pushed to
point to the next lower byte (the next available stack location). The program counter bank register and program
counter are then loaded with the operand values, and control is transferred to the specified location.

Flags Affected: - - - - - - - -

Codes:

Opcode Available on: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Absolute Long JSL long 22 x 4 8
(or JSR
long)

The Western Design Center

362

Jump to Subroutine JSR

Transfer control to the subroutine at the location specified by the operand, after first pushing onto the
stack, as a return address, the current program counter value, that is, the address of the last instruction byte (the
third byte of a three-byte instruction, the fourth byte of a four-byte instruction), not the address of the next
instruction.

If an absolute operand is coded and is less than or equal to $FFFF, absolute addressing is assumed by
the assembler; if the value is greater than $FFFF, absolute long addressing is used.

If long addressing is used, the current program counter bank is pushed onto the stack first. Next – or
first in the more normal case of intra-bank addressing – the high order byte of the return address is pushed,
followed by the low order byte. This leaves it on the stack in standard 65x order (lowest byte at the lowest
address, highest byte at the highest address). After the return address is pushed, the stack pointer points to the
next available location (next lower byte) on the stack. Finally, the program counter (and, in the case of long
addressing, the program counter bank register) is loaded with the values specified by the operand, and control is
transferred to the target location.

Flags Affected: - - - - - - - -

Codes:

Opcode Available on: # of # of
Addressing Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles
Absolute JSR addr 20 x x x 3 6
Absolute Indexed
Indirect

JSR (addr,
X)

FC x 3 8

Absolute Long JSR long 22 x 4 8
(or JSL long)

The Western Design Center

363

Load Accumulator from Memory LDA

Load the accumulator with the data located at the effective address specified by the operand.
8-bit accumulator (all processors): Data is eight-bit
16-bit accumulator (65802/65816 only, m = 0): Data is sixteen-bit; the low-order eight bits are

located at the effective address; the high-order eight bits are located at the effective address plus one.

Flags Affected: n - - - - - z -
n Set if most significant bit of loaded value is set; else cleared.
z Set if value loaded is zero; else cleared.

Codes:

Opcode Available on: # of # of
Addressing Mode + + Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Immediate
LDA #
const

A9 x x x 2* 21

Absolute LDA addr AD x x x 3 41

Absolute Long LDA long AF x 4 51

Direct Page (DP) LDA dp A5 x x x 2 31, 2

DP Indirect LDA (dp) B2 x x 2 51, 2

DP Indirect Long LDA [dp] A7 x 2 61, 2

Absolute Indexed, X
LDA addr,
X

BD x x x 3 41, 3

Absolute Long Indexed,
X

LDA long,
X

BF x 4 51

Absolute Indexed, Y
LDA addr,
Y

B9 x x x 3 41, 3

DP Indexed, X LDA dp, X B5 x x x 2 41, 2

DP Indexed Indirect, X
LDA (dp,
X)

A1 x x x 2 61, 2

DP Indirect Indexed, Y
LDA (dp),
Y

B1 x x x 2 51, 2, 3

DP Indirect Long
Indexed, Y

LDA [dp],
Y

B7 x 2 61, 2

Stack Relative (also SR) LDA sr, S A3 x 2 41

SR Indirect Indexed, Y
LDA (sr,
S), Y

B3 x 2 71

+ + LDA, a Primary Group Instruction, has available all of the Primary Group addressing modes and bit patterns
* Add 1 byte if m = 0 (16-bit memory/accumulator)

1 Add 1 cycle if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (DL< >0)
3 Add 1 cycle if adding index crosses a page boundary

The Western Design Center

364

Load Index Register X from Memory LDX

Load index register X with the data located at the effective address specific by the operand.
8-bit index registers (all processors): Data is eight-bit.
16-bit index registers (65802/65816 only, x = 0): Data is sixteen-bit: the low-order eight bits are

located at the effective address; the high-order eight bits are located at the effective address plus one.

Flags Affected: n - - - - - z -

n Set if most significant bit of loaded value is set; else cleared.

z Set if value loaded is zero; else cleared.

Codes:

Opcode Available on: # of # of
Addressing Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Immediate
LDX #
const

A2 x x x 2* 21

Absolute LDX addr AE x x x 3 41

Direct Page (also
DP)

LDX dp A6 x x x 2 31, 2

Absolute Indexed,
Y

LDX addr,
Y

BE x x x 3 41, 3

DP Indexed, Y LDX dp, Y B6 x x x 2 41, 2

* Add 1 byte if x = 0 (16-bit index registers)
1 Add 1 cycle if x = 0 (16-bit index registers)
2 Add 1 cycle if low byte of Direct Page register is other than zero (DL< >0)
3 Add 1 cycle if adding index crosses a page boundary

The Western Design Center

365

Load Index Register Y from Memory LDY

Load index register Y with the data located at the effective address specified by the operand.
8-bit index registers (all processors): Data is eight-bit.
16-bit index registers (65802/65816 only, x = 0): Data is sixteen-bit: the low-order eight bits are

located at the effective address; the high-order eight bits are located at the effective address plus one.

Flags Affected: n - - - - - z -
n Set if most significant bit of loaded value is set; else cleared.
z Set if value loaded is zero; else cleared.

Codes:

Opcode Available on: # of # of
Addressing Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Immediate
LDY #
const

A0 x x x 2* 21

Absolute LDY addr AC x x x 3 41

Direct Page (also
DP)

LDY dp A4 x x x 2 31, 2

Absolute Indexed,
X

LDY addr,
X

BC x x x 3 41, 3

DP Indexed, X LDY dp, X B4 x x x 2 41,2

* Add 1 byte if x = 0 (16-bit index registers)
1 Add 1 cycle if x = 0 (16-bit index registers)
2 Add 1 cycle if low byte of Direct Page register is other than zero (DL< >0)
3 Add 1 cycle if adding index crosses a page boundary

The Western Design Center

366

Logical Shift Memory or Accumulator Right LSR

Logical shift the contents of the location specified by the operand right one bit. That is, bit zero takes
on the value originally found in bit one, bit one takes the value originally found in bit two, and so on; the
leftmost bit (bit 7 if the m memory select flag is one when the instruction is executed or bit 15 if it is zero) is
cleared; the rightmost bit, bit zero, is transferred to the carry flag. This is the arithmetic equivalent of unsigned
division by two.

0 1 0 1 1 0 0 1 1

X

Carry Flag

Figure 18-6 LSR

8-bit accumulator/memory (all processors): Data shifted is eight-bit.
16-bit accumulator/memory (65802/65816 only, m = 0): Data shifted is sixteen-bit: if in memory, the

low-order eight bits are located at the effective address; the high-order eight bits are located at the effective
address plus one.

Flags Affected: n - - - - - z c

n Cleared.

z Set if result is zero; else cleared.

c Low bit becomes carry: set if low bit was set; cleared if low bit was zero.

Codes:

Opcode Available on: # of # of

Addressing Mode Syntax (hex)
650

2
65C0

2
65802/8

16
Bytes Cycles

Accumulator LSR A 4A x x x 1 2
Absolute LSR addr 4E x x x 3 61

Direct Page (also
DP)

LSR dp 46 x x x 2 51, 2

Absolute Indexed,
X

LSR addr,
X

5E x x x 3 71, 3

DP Indexed, X LSR dp, X 56 x x x 2 61, 2

1 Add 2 cycles if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (DL< >0)
3 Subtract 1 cycle if 65C02 and no page boundary crossed

The Western Design Center

367

Block Move Next MVN

Moves (copies) a block of memory to a new location. The source, destination and length operands of
this instruction are taken from the X, Y, and C (double accumulator) registers; these should be loaded with the
correct values before executing the MVN instruction.

The source address for MVN, taken from the X register, should be the starting address (lowest in
memory) of the block to be moved. The destination address, in the Y register, should be the new starting
address for the moved block. The length, loaded into the double accumulator (the value in C is always used,
regardless of the setting of the m flag) should be the length of the block to be moved minus one; if C contains
$0005, six bytes will be moved. The two operand bytes of the MVN instruction specify the banks holding the
two blocks of memory: the first operand byte (of object code) specifies the destination bank; the second operand
byte specifies the source bank.

The execution sequence is: the first byte is moved from the address in X to the address in Y; then X and
Y are incremented, C is decremented, and the next byte is moved; this process continues until the number of
bytes specified by the value in C plus one is moved. In other words, until the value in C is $FFFF.

If the source and destination blocks do not overlap, then the source block remains intact after it has been
copied to the destination.

If the source and destination blocks do overlap, then MVN should be used only if the destination is
lower than the source to avoid overwriting source bytes before they’ve been copied to the destination. If the
destination is higher, then the MVP instruction should be used instead.

When execution is complete, the value in C is $FFFF, registers X and Y each point one byte past the
end of the blocks to which they were pointing, and the data bank register holds the destination bank value (the
first operand byte).

Assembler syntax for the block move instruction calls for the operand field to be coded as two
addresses, source first, then destination – the move intuitive ordering, but the opposite of the actual operand
order in the object code. The assembler strips the bank bytes from the addresses (ignoring the rest) and reverses
them to object code order. If a block move instruction is interrupted, it may be resumed automatically via
execution of an RTI if all of the registers are restored or intact. The value pushed onto the stack when a block
move is interrupted is the address of the block move instruction. The current byte-move is completed before the
interrupt is serviced.

If the index registers are in eight-bit mode (x = 1), or the processor is in 6502 emulation mode (e = 1),
then the blocks being specified must necessarily be in page zero since the high bytes of the index registers will
contain zeroes.

Flags Affected: - - - - - - - -

Codes:

Opcode Available on: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Block Move
MVN
srcbk,destbk

54 x 3 *

* 7 cycles per bye moved

The Western Design Center

368

Block Move Previous MVP

Moves (copies) a block of memory to a new location. The source, destination and length operands of
this instruction are taken from the X, Y, and C (double accumulator) registers; these should be loaded with the
correct values before executing the MVP instruction.

The source address for MVP, taken from the X register, should be the ending address (highest in
memory) of the block to be moved. The destination address, in the Y register, should be the new ending address
for the moved block. The length, loaded into the double accumulator (the value in C is always used, regardless
of the setting of the m flag) should be the length of the block to be moved minus one; if C contains $0005, six
bytes will be moved. The two operand bytes of the MVP instruction specify the banks holding the two blocks
of memory: the first operand byte (of object code) specifies the destination bank; the second operand byte
specifies the source bank.

The execution sequence is: the first byte is moved from the address in X to the address in Y; then X and
Y are decremented, C is decremented, and the previous byte is moved; this process continues until the number
of bytes specified by the value in C plus one is moved. In other words, until the value in C is $FFFF.

If the source and destination blocks do not overlap, then the source block remains intact after it has been
copied to the destination.

If the index registers are in eight-bit mode (x = 1), or the processor is in 6502 emulation mode
(e = 1), then the blocks If the source and destination blocks do overlap, then MVP should be used only if the
destination is higher than the source to avoid overwriting source bytes before they’ve been copied to the
destination. If the destination is lower, then the MVN instruction should be used instead.

When execution is complete, the value in C is $FFFF, registers X and Y each point one byte past the
beginning of the blocks to which they were pointing, and the data bank register holds the destination bank
value (the first operand byte).

Assembler syntax for the block move instruction calls for the operand field to be coded as two
addresses, source first, then destination – the more intuitive ordering, but the opposite of the actual operand
order in the object code. The assembler strips the bank bytes from the addresses (ignoring the rest) and reverses
them to object code order. If a block move instruction is interrupted, it may be resumed automatically via
execution of an RTI if all of the registers are restored or intact. The value pushed onto the stack when a block
move is interrupted is the address of the block move instruction. The current byte-move is completed before the
interrupt is serviced.being specified must necessarily be in page zero since the high bytes of the index registers
will contain zeroes.

Flags Affected: - - - - - - - -

Codes:

Opcode Available on: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Block Move
MVP
srcbk,destbk

44 x 3 *

* 7 cycles per byte moved

The Western Design Center

369

No Operation NOP

Executing a NOP takes no action; it has no effect on any 65x registers or memory, except the program
counter, which is incremented once to point to the next instruction.

Its primary uses are during debugging, where it is used to “patch out” unwanted code, or as a place-
holder, included in the assembler source, where you anticipate you may have to “patch in” instructions, and
want to leave a “hole” for the patch.

NOP may also be used to expand timing loops – each NOP instruction takes two cycles to execute, so
adding one or more may help fine tune a timing loop.

Flags Affected: - - - - - - - -

Codes:

Opcode Available on: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied NOP EA x x x 1 2

The Western Design Center

370

OR Accumulator with Memory ORA

Bitwise logical OR the data located at the effective address specified by the operand with the contents
of the accumulator. Each bit in the accumulator is ORed with the corresponding bit in memory. The result is
stored into the same accumulator bit.

The truth table for the logical OR operation is:

Second Operand
0 1

First Operand
0 0 1
1 1 1

Figure 18-7 Logical OR Truth Table

A 1 or logical true results if either of the two operands of the OR operation is true.
8-bit accumulator (all processors): Data ORed from memory is eight-bit.
16-bit accumulator (65802/65816 only, m=0): Data ORed from memory is sixteen-bit: the low-order

eight bits are located at the effective address; the high-order eight bits are located at the effective address plus
one.

Flags Affected: n - - - - - z -

n Set if most significant bit of result is set; else cleared.

z Set if result is zero; else cleared.

The Western Design Center

371

Codes:

Opcode Available on: # of # of
Addressing Mode + + Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Immediate
ORA #
const

09 x x x 2* 21

Absolute ORA addr 0D x x x 3 41

Absolute Long ORA long 0F x 4 51

Direct Page (also DP) ORA dp 05 x x x 2 31, 2

DP Indirect ORA (dp) 12 x x 2 51, 2

DP Indirect Long ORA [dp] 07 x 2 61, 2

Absolute Indexed, X
ORA addr,
X

1D x x x 3 41, 3

Absolute Long Indexed,
X

ORA long,
X

1F x 4 51

Absolute Indexed, Y
ORA,
addr, Y

19 x x x 3 41, 3

DP Indexed, X
ORA, dp,
X

15 x x x 2 41, 2

DP Indexed Indirect, X
ORA (dp,
X)

01 x x x 2 61, 2

DP Indirect Indexed, Y
ORA, (dp),
Y

11 x x x 2 51, 2, 3

DP Indirect Long
Indexed, Y

ORA [dp],
Y

17 x 2 61, 2

Stack Relative (also SR) ORA sr, S 03 x 2 41

SR Indirect Indexed, Y
ORA (sr,
S), Y

13 x 2 71

+ + ORA, a Primary Group Instruction, has available all of the Primary Group addressing modes and bit patterns
* Add 1 byte if m = 0 (16-bit memory/accumulator)
1 Add 1 cycle if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (DL< >0)
3 Add 1 cycle if adding index crosses a page boundary

The Western Design Center

372

Push Effective Absolute Address PEA

Push the sixteen-bit operand (typically an absolute address) onto the stack. The stack pointer is
decremented twice. This operation always pushes sixteen bits of data, irrespective of the settings of the m and x
mode select flags.

Although the mnemonic suggests that the sixteen-bit value pushed on the stack be considered an
address, the instruction may also be considered a “push sixteen-bit immediate data” instruction, although the
syntax of immediate addressing is not used. The assembler syntax is that of the absolute addressing mode, that
is, a label or sixteen-bit value in the operand field. Unlike all other instructions that use this assembler syntax,
the effective address itself, rather than the data stored at the effective address, is what is accessed (and in this
case, pushed onto the stack).

Flags Affected: - - - - - - - -

Codes:

Opcode Available on: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Stack
(Absolute)

PEA addr F4 x 3 5

The Western Design Center

373

Push Effective Indirect Address PEI

Push the sixteen-bit value located at the address formed by adding the direct page offset
specified by the operand to the data page register. The mnemonic implies that the sixteen-bit data
pushed is considered an address, although it can be any sixteen-bit data. This operation always pushes
sixteen bits of data, irrespective of the settings of the m and x mode select flags.

The first byte pushed is the byte at the direct page offset plus one (the high byte of the double
byte stored at the direct page offset). The byte at the direct page offset itself (the low byte) is pushed
next. The stack pointer now points to the next available stack location, directly below the last byte
pushed.

The assembler syntax is that of direct page indirect; however, unlike other instructions which
use this assembler syntax, the effective indirect address, rather than the data stored at that address, is
what is accessed and pushed onto the stack.

Flags Affected: - - - - - - - -

Codes:

Opcode Available on: # of # of

Addressing Mode Syntax (hex) 6502 65C02
65802/81

6
Bytes Cycles

Stack (Direct Page
Indirect)

PEI
(dp)

D4 x 2 61

1 Add 1 cycle if low byte of Direct Page register is other than zero (DL< >0)

The Western Design Center

374

Push Effective PC Relative Indirect Address PER

Add the current value of the program counter to the sixteen-bit signed displacement in the operand, and
push the result on the stack. This operation always pushes sixteen bits of data, irrespective of the settings of the
m and x mode select flags.

The high byte of the sum is pushed first, then the low byte is pushed. After the instruction is completed,
the stack pointer points to the next available stack location, immediately below the last by pushed.

Because PER’s operand is a displacement relative to the current value of the program counter (as with
the branch instructions), this instruction is helpful in writing self-relocatable code in which an address within
the program (typically of a data area) must be accessed. The address pushed onto the stack will be the run-time
address of the data area, regardless of where the program was loaded in memory; it may be pulled into a
register, stored in an indirect pointer, or used on the stack with the stack relative indirect indexed addressing
mode to access the data at that location.

As is the case with the branch instructions, the syntax used is to specify as the operand the label of the
data area you want to reference. This location must be in the program bank, since the displacement is relative
to the program counter. The assembler converts the assembly-time label into a displacement from the
assembly-time address of the next instruction.

The value of the program counter used in the addition is the address of the next instruction, that is, the
instruction following the PER instruction.

PER may also be used to push return addresses on the stack, either as part of a simulated branch-to-
subroutine or to place the return address beneath the stacked parameters to a subroutine call; always remember
that a pushed return address should be the desired return address minus one.

Flags Affected: - - - - - - - -

Codes:

Opcode Available on: # of # of
Addressing Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycle
Stack (Program Counter Relative
Long)

PER
label

62 x 3 6

The Western Design Center

375

Push Accumulator PHA

Push the accumulator onto the stack. The accumulator itself is uncharged.
8-bit accumulator (all processors): The single byte contents of the accumulator are pushed –

they are stored to the location pointed to by the stack pointer and the stack pointer is decremented.
16-bit accumulator (65802/65816 only, m = 0): Both accumulator bytes are pushed. The

high byte is pushed first, then the low byte. The stack point now points to the next available stack
location, directly below the last byte pushed.

Flags Affected: - - - - - - - -

Codes:

Opcode Available on: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Stack (Push) PHA 48 x x x 1 31

1 Add 1 cycle if m=0 (16-bit memory/accumulator)

The Western Design Center

376

Push Data Bank Register PHB

Push the contents of the data bank register onto the stack.
The single-byte contents of the data bank registers are pushed onto the stack; the stack pointer now

points to the next available stack location, directly below the byte pushed. The data bank register itself is
unchanged. Since the data bank register is an eight-bit register, only one byte is pushed onto the stack,
regardless of the settings of the m and x mode select flags.

While the 65816 always generates 24-bit addresses, most memory references are specified by a sixteen-
bit address. These addresses are concatenated with the contents of the data bank register to form a full 24-bit
address. This instruction lets the current value of the data bank register be saved prior to loading a new value.

Flags Affected: - - - - - - - -

Codes:

Opcode Available on: # of # of
Address
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Stack (Push) PHB 8B x 1 3

The Western Design Center

377

Push Direct Page Register PHD

Push the contents of the direct page register D onto the stack.
Since the direct page register is always a sixteen-bit register, this is always a sixteen-bit operation,

regardless of the settings of the m and x mode select flags. The high byte of the direct page register is pushed
first, then the low byte. The direct page register itself is unchanged. The stack pointer now points to the next
available stack location, directly below the last byte pushed.

By pushing the D register onto the stack, the local environment of a calling subroutine may easily be
saved a called subroutine before modifying the D register to provide itself with its own direct page memory.

Flags Affected: - - - - - - - -

Codes:

Opcode Available on: # of # of
Address
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Stack (Push) PHD 0B x 1 4

The Western Design Center

378

Push Program Bank Register PHK

Push the program bank register onto the stack.
The single-byte contents of the program bank register are pushed. The program bank register itself is

unchanged. The stack pointer now points to the next available stack location, directly below the byte pushed.
Since the program bank register is an eight-bit register, only one byte is pushed onto the stack, regardless of the
settings of the m and x mode select flags.

While the 65816 always generates 24-bit addresses, most jumps and branches specify only a sixteen-bit
address. These addresses are concatenated with the contents of the program bank register to form a full 24-bit
address. This instruction lets you determine the current value of the program bank register – for example, if you
want the data bank to be set to the same value as the program bank.

Flags Affected: - - - - - - - -

Codes:

Opcode Available on: # of # of
Address Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles
Stack (Push) PHK 4B x 1 3

The Western Design Center

379

Push Processor Status Register PHP

Push the contents of the processor status register P onto the stack.
Since the status register is always an eight-bit register, this is always an eight-bit operation, regardless

of the settings of the m and x mode select flags on the 65802/65816. The status register contents are not
changed by the operation. The stack pointer now points to the next available stack location, directly below the
byte pushed.

This provides the means for saving either the current mode settings or a particular set of status flags so
they may be restored or in some other way used later.

Note, however, that the e bit (the 6502 emulation mode flag on the 65802/65816) is not pushed onto the
stack or otherwise accessed or saved. The only access to the e flag is via the XCE instruction.

Flags Affected: - - - - - - - -

Codes:

Opcode Available on: # of # of
Address Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles
Stack (Push) PHP 08 x x x 1 3

The Western Design Center

380

Push Index Register PHX

Push the contents of the X index register onto the stack. The register itself is unchanged.
8-bit index registers (all processors): The eight-bit contents of the index register are pushed onto the

stack. The stack pointer now points to the next available stack location, directly below the byte pushed.
16-bit index registers (65802/65816 only, x=0): The sixteen-bit contents of the index register are

pushed. The high byte is pushed first, then the low byte. The stack pointer now points to the next available
stack location, directly below the last byte pushed.

Flags Affected: - - - - - - - -

Codes:

Opcode Available on: # of # of
Address Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles
Stack (Push) PHX DA x x 1 31

1 Add 1 cycle if x=0 (16-bit index registers)

The Western Design Center

381

Push Index Register PHY

Push the contents of the Y index register onto the stack. The register itself is unchanged.
8-bit index registers (all processors): The eight-bit contents of the index register are pushed onto the

stack. The stack pointer now points to the next available stack location, directly below the byte pushed.
16-bit index registers (65802/65816 only, x = 0): The sixteen-bit contents of the index register are

pushed. The high byte is pushed first, then the low byte. The stack pointer now points to the next available
stack location, directly below the last byte pushed.

Flags Affected: - - - - - - - -

Codes:

Opcode Available on: # of # of
Address Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles
Stack (Push) PHY 5A x x 1 31

1 Add 1 cycle if x=0 (16-bit index registers)

The Western Design Center

382

Pull Accumulator PLA

Pull the value on the top of the stack into the accumulator. The previous contents of the accumulator
are destroyed.

8-bit accumulator (all processors): The stack pointer is first incremented. Then the byte pointed to
by the stack pointer is loaded into the accumulator.

16-bit accumulator (65802/65816 only, m = 0): Both accumulator bytes are pulled. The
accumulator’s low byte is pulled first, then the high byte is pulled.

Note that unlike some other microprocessors, the 65x pull instructions set the negative and zero flags.

Flags Affected: n - - - - - z -

n Set if most significant bit of pulled value is set; else cleared.
z Set if value pulled is zero; else cleared.

Codes:

Opcode Available on: # of # of
Address Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles
Stack (Pull) PLA 68 x x x 1 41

a) Add 1 cycle if m=0 (16-bit memory/accumulator)

The Western Design Center

383

Pull Data Bank Register PLB

Pull the eight-bit value on top of the stack into the data bank register B, switching the data bank to that
value. All instructions which reference data that specify only sixteen-bit addresses will get their bank address
from the value pulled into the data bank register. This is the only instruction that can modify the data bank
register.

Since the bank register is an eight-bit register, only one byte is pulled from the stack, regardless of the
settings of the m and x mode select flags. The stack pointer is first incremented. Then the byte pointed to by
the stack pointer is loaded into the register.

Flags Affected: n - - - - - z -
n Set if most significant bit of pulled value is set; else cleared.
z Set if value pulled is zero; else cleared.

Codes:

Opcode Available on: # of # of
Address Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles
Stack (Pull) PLB AB x 1 4

The Western Design Center

384

Pull Direct Page Register PLD

Pull the sixteen-bit value on top of the stack into the direct page register D, switching the direct page to
that value.

PLD is typically used to restore the direct page register to a previous value.
Since the direct page register is a sixteen-bit register, two byte are pulled from the stack, regardless of

the settings of the m and x mode select flags. The low byte of the direct page register is pulled first, then the
high byte. The stack pointer now points to where the high byte just pulled was stored; this is now the next
available stack location.

Flags Affected: n - - - - - z -

n Set if most significant bit of pulled value is set; else cleared.
z Set if value pulled is zero; else cleared.

Codes:

Opcode Available on: # of # of

Addressing Mode Syntax (hex) 6502 65C02 65802/816 Byte
Cycle

s
Stack (Pull) PLD 2B x 1 5

The Western Design Center

385

Pull Status Flags PLP

Pull the eight-bit value on the top of the stack into the processor status register P, switching the status
byte to that value.

Since the status register is an eight-bit register, only one byte is pulled from the stack, regardless of the
settings of the m and x mode select flags on the 65802/65816. The stack pointer is first incremented. Then the
byte pointed to by the stack pointer is loaded into the status register.

This provides the means for restoring either previous mode settings or a particular set of status flags that
reflect the result of a previous operation.

Note, however, that the e flag–the 6502 emulation mode flag on the 65802/65816–is not on the stack so
cannot be pulled from it. The only means of setting the e flag is the XCE instruction.

Flags Affected: n v - b d i z c (6502, 65C02,
65802/65816 emulation mode e=1)

n v m x d i z c (65802/65816 native mode e=0)
All flags are replaced by the values in the byte pulled from the stack.

Codes:

Opcode Available on: # of # of
Address Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles
Stack (Pull) PLP 28 x x x 1 4

The Western Design Center

386

Pull Index Register X from Stack PLX

Pull the value on the top of the stack into the X index register. The previous contents of the register are
destroyed.

8-bit index registers (all processors): The stack pointer is first incremented. Then the byte pointed to
by the stack pointer is loaded into the register.

16-bit index registers (65802/65816 only, x = 0): Both bytes of the index register are pulled. First the
low-order byte of the index register is pulled, then the high-order byte of the index register is pulled.

Unlike some other microprocessors, the 65x instructions to pull an index register affect the negative and
zero flags.

Flags Affected: n - - - - - z -

n Set if most significant bit of pulled value is set; else cleared.
z Set if value pulled is zero; else cleared.

Codes:

Opcode Available on: # of # of
Address Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles
Stack (Pull) PLX FA x x 1 41

1. Add 1 cycle if x = 0 (16-bit index registers)

The Western Design Center

387

Pull Index Register Y from Stack PLY

Pull the value on the top of the stack into the Y index register. The previous contents of the register are
destroyed.

8-bit index registers (all processors): The stack pointer is first incremented. Then the byte pointed to
by the stack pointer is loaded into the register.

16-bit index registers (65802/65816 only, x = 0): Both bytes of the index register are pulled. First the
low-order byte of the index register is pulled, then the high-order byte of the index register is pulled.

Unlike some other microprocessors, the 65x instructions to pull an index register affect the negative and
zero flags.

Flags Affected: n - - - - - z -
n Set if most significant bit of pulled value is set; else cleared.
z Set if value pulled is zero; else cleared.

Codes:

Opcode Available to: # of # of
Addressing Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles
Stack (Pull) PLY 7A x x 1 41

1. 1 Add 1 cycle if x = 0 (16-bit index registers)

The Western Design Center

388

Reset Status Bits REP

For each bit set to one in the operand byte, reset the corresponding bit in the status register to zero. For
example, if bit three is set in the operand byte, bit three in the status register (the decimal flag) is reset to zero by
this instruction. Zeroes in the operand byte cause no change to their corresponding status register bits.

This instruction lets you reset any flag or flags in the status register with a single two-byte instruction.
Further, it is the only direct means of resetting several of the flags, including the m and x mode select flags
(although instructions that pull the P status register affect the m and x mode select flags).

6502 emulation mode (65802/65816, e=1): Neither the break flag nor bit five (the 6502’s undefined
flag bit) are affected by REP.

Flags Affected: n v - - d i z c (65802/65816 emulation mode e=1)
n v m x d i z c (65802/65816 native mode e=0)
All flags for which an operand bit is set are reset to zero.
All other flags are unaffected by the instruction.

Codes:

Opcode Available to: # of # of
Addressing Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles
Immediate REP # const C2 x 2 3

The Western Design Center

389

Rotate Memory or Accumulator Left ROL

Rotate the contents of the location specified by the operand left one bit. Bit one takes on the
value originally found in bit zero, bit two takes the value originally in bit one, and so on; the rightmost
bit, bit zero, takes the value in the carry flag; the leftmost bit (bit 7 on the 6502 and 65C02 or if m = 1
on the 65802/65816, or bit 15 if m = 0) is transferred into the carry flag.

1 0 1 1 0 0 1 1

X
Carry Flag

Figure 18-8 ROL

8-bit accumulator/memory (all processors): Data rotated is eight bits, plus carry.
16-bit accumulator/memory (65802/65816 only, m=0): Data rotated is sixteen bits, plus carry: if in

memory, the low-order eight bits are located at the effective address; the high eight bits are located at the
effective address plus one.

Flags Affected: n - - - - - z c
n Set if most significant bit of result is set; else cleared.
z Set if result is zero; else cleared.
c High bit becomes carry: set if high bit was set; cleared if high bit
 was clear.

Codes:

Opcode Available to: # of # of
Address Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles
Accumulator ROL A 2A x x x 1 2
Absolute ROL addr 2E x x x 3 61

Direct Page (also
DP)

ROL dp 26 x x x 2 51, 2

Absolute Indexed,
X

ROL addr,
X

3E x x x 3 71, 3

DP Indexed, X ROL dp, X 36 x x x 2 61, 2

1 Add 2 cycles if m=0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (DL< >0)
3 Subtract 1 cycle if 65C02 and no page boundary crossed

The Western Design Center

390

Rotate Memory or Accumulator Right ROR

Rotate the contents of the location specified by the operand right one bit. Bit zero takes on the value
originally found in bit one, bit one takes the value originally in bit two, and so on; the leftmost bit (bit 7 on the
6502 and 65C02 or if m = 1 on the 65802/65816, or bit 15 if m = 0) takes the value in the carry flag; the
rightmost bit, bit zero, is transferred into the carry flag.

1 0 1 1 0 0 1 1

X

Figure 18-9 ROR

8-bit accumulator/memory (all processors): Data rotated is eight bits, plus carry.
16-bit accumulator/memory (65802/65816 only, m=0): Data rotated is sixteen bits, plus carry: if in

memory, the low-order eight bits are located at the effective address; the high-order eight bits are located at the
effective address plus one.

Flags Affected: n - - - - - z c
n Set if most significant bit of result is set; else cleared.
z Set if result is zero; else cleared.
c Low bit becomes carry: set if low bit was set; cleared if low
 bit was clear.

Codes:

Opcode Available to: # of # of
Address Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles
Accumulator ROR A 6A x x x 1 2
Absolute ROR addr 6E x x x 3 61

Direct Page (also
DP)

ROR dp 66 x x x 2 51, 2

Absolute Indexed,
X

ROR addr,
X

7E x x x 3 71, 3

DP Indexed, X ROR dp, X 76 x x x 2 61, 2

1 Add 2 cycles if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (DL< >0)
3 Subtract 1 cycle if 65C02 and no page boundary crossed

The Western Design Center

391

Return from Interrupt RTI

Pull the status register and the program counter from the stack. If the 65802/65816 is set to
native mode (e = 0), also pull the program bank register from the stack.

RTI pulls values off the stack in the reverse order they were pushed onto it by hardware or
software interrupts. The RTI instruction, however, has no way of knowing whether the values pulled
off the stack into the status register and the program counter are valid – or even, for that matter, that an
interrupt has ever occurred. It blindly pulls the first three (or four) bytes off the top of the stack and
stores them into the various registers.

Unlike the RTS instruction, the program counter address pulled off the stack is the exact
address to return to; the value on the stack is the value loaded into the program counter. It does not
need to be incremented as a subroutine’s return address does.

Pulling the status register gives the status flags the values they had immediately prior to the
start of interrupt-processing.

One extra byte is pulled in the 65802/65816 native mode than in emulation mode, the same
extra byte that is pushed by interrupts in native mode, the program bank register. It is therefore
essential that the return from interrupt be executed in the same mode (emulation or native) as the
original interrupt.

6502, 65C02, and Emulation Mode (e = 1): The status register is pulled from the stack, then
the program counter is pulled from the stack (three bytes are pulled).

65802/65816 Native Mode (e = 0): The status register is pulled from the stack, then the
program counter is pulled from the stack, then the program bank register is pulled from the stack (four
bytes are pulled).

Stack

(Stack Pointer After) Old Status Register

Return Address Bank

Return Address High

Return Address Low

Stack Pointer Before

Bank 0

Figure 18-10Native Mode Stack before RTI.

Flags Affected: n v - - d i z c (6502, 65C02,
65802/65816 emulation mode e = 1)

n v m x d i z c (65802/65816 native mode e = 0)
All flags are restored to their values prior to interrupt (each flag takes
the value of its corresponding bit in the stacked status byte, except that
the Break flag is ignored).

The Western Design Center

392

Codes:

Opcode Available to: # of # of
Addressing Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles
Stack (RTI) RTI 40 x x x 1 61

1 Add 1 cycle for 65802/65816 native mode (e=0)

The Western Design Center

393

Return from Subroutine Long RTL

Pull the program counter (incrementing the stacked, sixteen-bit value by one before loading the
program counter with it), then the program bank register from the stack.

When a subroutine in another bank is called (via a jump to subroutine long instruction), the
current bank address is pushed onto the stack along with the return address. To return to the calling
bank, a long return instruction must be executed, which first pulls the return address from the stack,
increments it, and loads the program counter with it, then pulls the calling bank from the stack and
loads the program bank register. This transfers control to the instruction immediately following the
original jump to subroutine long.

Stack

(Stack Pointer After) Return Bank Address

Return Address High

Return Address Low

Stack Pointer Before

Bank 0

Figure 18-11 Stack before RTL

Flags Affected: - - - - - - - -

Codes:

Opcode Available to: # of # of

Address Mode Syntax (hex) 6502 65C02
65802/8

16
Bytes

Cycle
s

Stack (RTL) RTL 6B x 1 6

The Western Design Center

394

Return from Subroutine RTS

Pull the program counter, incrementing the stacked, sixteen-bit value by one before loading the
program counter with it.

When a subroutine is called (via a jump to subroutine instruction), the current return address is
pushed onto the stack. To return to the code following the subroutine call, a return instruction must be
executed, which pulls the return address from the stack, increments it, and loads the program counter
with it, transferring control to the instruction immediately following the jump to subroutine.

Stack

(Stack Pointer After) Return Address High

Return Address Low

Stack Pointer Before

Bank 0

Figure 18-12 Stack before RTS

Flags Affected: - - - - - - - -

Codes:

Opcode Available to: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Stack (RTS) RTS 60 x x x 1 6

The Western Design Center

395

Subtract with Borrow from Accumulator SBC

Subtract the data located at the effective address specified by the operand from the contents of the
accumulator; subtract one more if the carry flag is clear, and store the result in the accumulator.

The 65x processors have no subtract instruction that does not involve the carry. To avoid subtracting
the carry flag from the result, either you must be sure it is set or you must explicitly set it (using SEC) prior to
executing the SBC instruction.

In a multi-precision (multi-word) subtract, you set the carry before the low words are subtracted. The
low word subtraction generates a new carry flag value based on the subtraction. The carry is set if no borrow
was required and cleared if borrow was required. The complement of the new carry flag (one if the carry is
clear) is subtracted during the next subtraction, and so on. Each result thus correctly reflects the borrow from
the previous subtraction.

Note that this use of the carry flag is the opposite of the way the borrow flag is used by some other
processors, which clear (not set) the carry if no borrow was required.

d flag clear: Binary subtraction is performed.
d flag set: Binary coded decimal (BCD) subtraction is performed.
8-bit accumulator (all processors): Data subtracted from memory is eight-bit.
16-bit accumulator (65802/65816 only, m=0): Data subtracted from memory is sixteen-bit: the low

eight bits is located at the effective address; the high eight bits is located at the effective address plus one.

Flags Affected: n v - - - - z c
n Set if most significant bit of result is set; else cleared.
v Set if signed overflow; cleared if valid sign result.
z Set if result is zero; else cleared.
c Set if unsigned borrow not required; cleared if unsigned borrow.

The Western Design Center

396

Codes:

Opcode Available to: # of # of
Addressing Mode + + Syntax (hex) 6502 65C02 65802/816 Bytes Cycles
Immediate SBC # const E9 x x x 2* 21, 4

Absolute SBC addr ED x x x 3 41, 4

Absolute Long SBC long EF x 4 51, 4

Direct Page (also DP) SBC dp E5 x x x 2 31, 2, 4

DP Indirect SBC (dp) F2 x x 2 51, 2, 4

DP Indirect Long SBC [dp] E7 x 2 61, 2, 4

Absolute Indexed, X
SBC addr,
X

FD x x x 3 41, 3, 4

Absolute Long Indexed,
X

SBC long, X FF x 4 51, 4

Absolute Indexed, Y
SBC addr,
Y

F9 x x x 3 41, 3, 4

DP Indexed, X SBC dp, X F5 x x x 2 41, 2, 3, 4

DP Indexed Indirect, X SBC (dp, X) E1 x x x 2 61, 2, 4

DP Indirect Indexed, Y SBC (dp), Y F1 x x x 2 51, 2, 3, 4

DP Indirect Long
Indexed, Y

SBC [dp], Y F7 x 2 61, 2, 4

Stack Relative (also SR) SBC sr, S E3 x 2 41, 4

SR Indirect Indexed, Y
SBC (sr, S),
Y

F3 x 2 71, 4

+ + SBC, a Primary Group Instruction, has available all of the Primary Group addressing modes and bit patterns
* Add 1 byte if m=0 (16-bit memory/accumulator)
1 Add 1 cycle if m=0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (DL< >0)
3 Add 1 cycle if adding index crosses a page boundary
4 Add 1 cycle if 65C02 and d=1 (decimal mode, 65C02)

The Western Design Center

397

Set Carry Flag SEC

Set the carry flag in the status register.
SEC is used prior to subtraction (using the 65x’s SBC instruction) to keep the carry flag from affecting

the result, and prior to an XCE (exchange carry flag with emulation bit) instruction to put the 65802 or 65816
into 6502 emulation mode.

Flags Affected: - - - - - - - c
c Carry flag set always.

Codes:

Opcode Available to: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied SEC 38 x x x 1 2

The Western Design Center

398

Set Decimal Mode Flag SED

Set the decimal mode flag in the status register.
SED is used to shift 65x processors into decimal mode from binary mode, so that the ADC and SBC

instructions will operate correctly on the BCD data, performing automatic decimal adjustment.

Flags Affected: - - - - d - - -
d Decimal mode flag set always.

Codes:

Opcode Available to: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied SED F8 x x x 1 2

The Western Design Center

399

Set Interrupt Disable Flag SEI

Set the interrupt disable flag in the status register.
SEI is used to disable hardware interrupt processing. When the i bit is set, maskable hardware

interrupts (IRQ’) are ignored. The processor itself sets the i flag when it begins servicing an interrupt, so
interrupt handling routines that are intended to be interruptable must reenable interrupts with CLI. If interrupts
are to remain blocked during the interrupt service, exiting the routine via RTI will automatically restore the
status register with the i flag clear, re-enabling interrupts.

Flags Affected: - - - - - i - -
i Interrupt disable flag set always.

Codes:

Opcode Available to: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied SEI 78 x x x 1 2

The Western Design Center

400

Set Status Bits SEP

For each one-bit in the operand byte, set the corresponding bit in the status register to one. For
example, if bit three is set in the operand byte, bit three in the status register (the decimal flag) is set to one by
this instruction. Zeroes in the operand byte cause no change to their corresponding status register bits.

This instruction lets you set any flag or flags in the status register with a single two-byte instruction.
Furthermore, it is the only direct means of setting the m and x mode select flags. (Instructions that pull the P
status register indirectly affect the m and x mode select flags).

6502 emulation mode (65802/65816, e=1): Neither the break flag nor bit five (the 6502’s non-flag bit)
is affected by SEP.

Flags Affected: n v - - d i z c (65802/65816 emulation e=1)
n v m x d i z c (65802/65816 native mode e=0)
All flags for which an operand bit is set are set to one.
All other flags are unaffected by the instruction.

Codes:

Opcode Available to: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Immediate
SEP #
const

E2 x 2 3

The Western Design Center

401

Store Accumulator to Memory STA

Store the value in the accumulator to the effective address specified by the operand.
8-bit accumulator (all processors): Value is eight-bit.
16-bit accumulator (65802/65816 only, m=0): Value is sixteen-bit: the low-order eight bits are stored

to the effective address; the high-order eight bits are stored to the effective address plus one.
The 65x flags are unaffected by store instructions.

Flags Affected: - - - - - - - -

Codes:

Opcode Available on:: # of # of
Addressing Mode + + Syntax (hex) 6502 65C02 65802/816 Bytes Cycles
Absolute STA addr 8D x x x 3 41

Absolute Long STA long 8F x 4 51

Direct Page (also DP) STA dp 85 x x x 2 31,2

DP Indirect STA (dp) 92 x x 2 51,2

DP Indirect Long STA [dp] 87 x 2 61,2

Absolute Indexed, X
STA addr,
X

9D x x x 3 51

Absolute Long Indexed,
X

STA long,
X

9F x 4 51

Absolute Indexed, Y
STA addr,
Y

99 x x x 3 51

DP Indexed, X STA dp, X 95 x x x 2 41,2

DP Indexed Indirect, X
STA (dp,
X)

81 x x x 2 61,2

DP Indirect Indexed, Y
STA (dp),
Y

91 x x x 2 61,2

DP Indirect Long
Indexed, Y

STA [dp],
Y

97 x 2 61,2

Stack Relative (also SR) STA sr, S 83 x 2 41

SR Indirect Indexed, Y
STA (sr,
S), Y

93 x 2 71

+ + STA, a Primary Group Instruction, has available all of the Primary Group addressing modes and bit patterns

1 Add 1 cycle if m=0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (DL< >0)

The Western Design Center

402

Stop the Processor STP

During the processor’s next phase 2 clock cycle, stop the processor’s oscillator input; the processor is
effectively shut down until a reset occurs (until the RES’ pin is pulled low).

STP is designed to put the processor to sleep while it’s not (actively) in use in order to reduce power
consumption. Since power consumption is a function of frequency with CMOS circuits, stopping the clock cuts
power to almost nil.

Your reset handling routine (pointed to by the reset vector, $00:FFFC-FD) should be designed to either
reinitialize the system or resume control through a previously-installed reset handler.

Remember that reset is an interrupt-like signal that causes the emulation bit to be set to one. It also
causes the direct page register to be reset to zero; stack high to be set to one (forcing the stack pointer to page
one); and the mode select flags to be set to one (eight-bit registers; a side effect is that the high bytes of the
index registers are zeroed). STP is useful only in hardware systems (such as battery-powered systems)
specifically designed to support a low-power mode.

Flags Affected: - - - - - - - -

Codes:

Opcode Available on: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied STP DB x 1 31

1 Uses 3 cycles to shut the processor down; additional cycles are required by reset to restart it

The Western Design Center

403

Store Index Register X to Memory STX

Store the value in index register X to the effective address specified by the operand.
8-bit index registers (all processors): Value is eight-bit.
16-bit index registers (65802/65816 only, x = 0): Value is sixteen-bit: the low-order eight bits are

stored to the effective address; the high-order eight bits are stored to the effective address plus one.
The 65x flags are unaffected by store instructions.

Flags Affected: - - - - - - - -

Codes:

Opcode Available on: # of # of

Addressing Mode Syntax (hex) 6502 65C02
65802/81

6
Bytes Cycles

Absolute
STX
addr

8E x x x 3 41

Direct page STX dp 86 x x x 2 31,2

Direct Page
Indexed, Y

STX dp,
Y

96 x x x 2 41,2

1 Add 1 cycle if x=0 (16-bit index registers)
2 Add 1 cycle if low byte of Direct Page register is other than zero (DL< >0)

The Western Design Center

404

Store Index Register Y to Memory STY

Store the value in index register Y to the effective address specified by the operand.
8-bit index registers (all processors): Value is eight-bit.
16-bit index registers (65802/65816 only, x = 0): Value is sixteen-bit: the low-order eight bits are

stored to the effective address; the high-order eight bits are stored to the effective address plus one.
The 65x flags are unaffected by store instructions.

Flags Affected: - - - - - - - -

Codes:

Opcode Available on: # of # of
Addressing Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Absolute
STX
addr

8C x x x 3 41

Direct page STX dp 84 x x x 2 31,2

Direct Page Indexed,
X

STX dp,
X

94 x x x 2 41,2

1 Add 1 cycle if x=0 (16-bit index registers)
2 Add 1 cycle if low byte of Direct Page register is other than zero (DL< >0)

The Western Design Center

405

Store Zero to Memory STZ

Store zero to the effective address specified by the operand.
8-bit accumulator (all processors): Zero is stored at the effective address.
16-bit accumulator/memory (65802/65816 only, m = 0): Zero is stored at the effective address and at

the effective address plus one.
The 65x store zero instruction does not affect the flags.

Flags Affected: - - - - - - - -

Codes:

Opcode Available on: # of # of
Addressing Mode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles
Absolute STZ addr 9C x x 3 41

Direct Page STZ dp 64 x x 2 31,2

Absolute Indexed,
X

STZ addr,
X

9E x x 3 51

Direct Page
Indexed, X

STZ dp, X 74 x x 2 41,2

1 Add 1 cycle if m=0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (DL< >0)

The Western Design Center

406

Transfer Accumulator to Index Register X TAX

Transfer the value in the accumulator to index register X. If the registers are different sizes, the nature
of the transfer is determined by the destination register. The value in the accumulator is not changed by the
operation.

8-bit accumulator, 8-bit index registers (all processors): Value transferred is eight-bit.
8-bit accumulator, 16-bit index registers (65802/65816 only, m = 1, x = 0): Value transferred is

sixteen-bit; the eight-bit A accumulator becomes the low byte of the index register; the hidden eight-bit B
accumulator becomes the high byte of the index register.

16-bit accumulator, 8-bit index registers (65802/65816 only, m=0, x=1): Value transferred to the
eight-bit index register is eight-bit, the low byte of the accumulator.

16-bit accumulator, 16-bit index registers (65802/65816 only, m=0, x=0): Value transferred to the
sixteen-bit index register is sixteen-bit, the full sixteen-bit accumulator.

Flags Affected: n - - - - - z -
n Set if most significant bit of transferred value is set; else cleared.
z Set if value transferred is zero; else cleared.

Codes:

Opcode Available to: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied TAX AA x x x 1 2

The Western Design Center

407

Transfer Accumulator to Index Register Y TAY

Transfer the value in the accumulator to index register Y. If the registers are different sizes, the nature
of the transfer is determined by the destination register. The value in the accumulator is not changed by the
operation.

8-bit accumulator, 8-bit index registers (all processors): Value transferred is eight-bit.
8-bit accumulator, 16-bit index registers (65802/65816 only, m = 1, x = 0): Value transferred is

sixteen-bit; the eight-bit A accumulator becomes the low byte of the index register; the hidden eight-bit B
accumulator becomes the high byte of the index register.

16-bit accumulator, 8-bit index registers (65802/65816 only, m=0, x=1): Value transferred to the
eight-bit index register is eight-bit, the low byte of the accumulator.

16-bit accumulator, 16-bit index registers (65802/65816 only, m=0, x=0): Value transferred to the
sixteen-bit index register is sixteen-bit, the full sixteen-bit accumulator.

Flags Affected: n - - - - - z -
n Set if most significant bit of transferred value is set; else cleared.
z Set if value transferred is zero; else cleared.

Codes:

Opcode Available to: # of # of
Addressing
Mode

Syntax
(hex)

6502 65C02 65802/816 Bytes Cycles

Implied TAX AA x x x 1 2

The Western Design Center

408

Transfer 16-Bit Accumulator to Direct Page Register TCD

Transfer the value in the sixteen-bit accumulator C to the direct page register D, regardless of the
setting of the accumulator/memory mode flag.

An alternate mnemonic is TAD, (transfer the value in the A accumulator to the direct page register).
In TCD, the “C” is used to indicate that sixteen bits are transferred regardless of the m flag. If the A

accumulator is set to just eight bits (whether because the m flag is set, or because the processor is in 6502
emulation mode), then its value becomes the low byte of the direct page register and the value in the hidden B
accumulator becomes the high byte of the direct page register.

The accumulator’s sixteen-bit value is unchanged by the operation.

Flags Affected: n - - - - - z -
n Set if most significant bit of transferred value is set; else cleared.
z Set if value transferred is zero; else cleared.

Codes:

Opcode Available to: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied TCD 5B x 1 2
(or
TAD)

The Western Design Center

409

Transfer Accumulator to Stack Pointer TCS

Transfer the value in the accumulator to the stack pointer S. The accumulator’s value is unchanged by
the operation.

An alternate mnemonic is TAS (transfer the value in the A accumulator to the stack pointer).
In TCS, the “C” is used to indicate that, in native mode, sixteen bits are transferred regardless of the m

flag. If the A accumulator is set to just eight bits (because the m flag is set), then its value is transferred to the
low byte of the stack pointer and the value in the hidden B accumulator is transferred to the high byte of the
stack pointer. In emulation mode, only the eight-bit A accumulator is transferred, since the high stack pointer
byte is forced to one (the stack is confined to page one).

TCS, along with TXS, are the only two instructions for changing the value in the stack pointer. The
two are also the only two transfer instructions not to alter the flags.

Flags Affected: - - - - - - - -

Codes:

Opcode Available to: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied TCS 1B x 1 2
(or
TAS)

The Western Design Center

410

Transfer Direct Page Register to 16-Bit Accumulator TDC

Transfer the value in the sixteen-bit direct page register D to the sixteen-bit accumulator C, regardless
of the setting of the accumulator/memory mode flag.

An alternate mnemonic is TDA (transfer the value in the direct page register to the A accumulator).
In TDC, the “C” is used to indicate that sixteen bits are transferred regardless of the m flag. If the A

accumulator is set to just eight bits (whether because the m flag is set, or because the processor is in 6502
emulation mode), then it takes the value of the low byte of the direct page register and the hidden B accumulator
takes the value of the high byte of the direct page register.

The direct page register’s sixteen-bit value is unchanged by the operation.

Flags Affected: n - - - - - z -
n Set if most significant bit of transferred value is set; else cleared.
z Set if value transferred is zero; else cleared.

Codes:

Opcode Available to: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied TDC 7B x 1 2
(or
TDA)

The Western Design Center

411

Test and Reset Memory Bits Against Accumulator TRB

Logically AND together the complement of the value in the accumulator with the data at the effective
address specified by the operand. Store the result at the memory location.

This has the effect of clearing each memory bit for which the corresponding accumulator bit is set,
while leaving unchanged all memory bits in which the corresponding accumulator bits are zeroes.

Unlike the BIT instruction, TRB is a read-modify-write instruction, not only calculating a result and
modifying a flag, but also storing the result to memory as well.

The z zero flag is set based on a second and different operation the ANDing of the accumulator value
(not its complement) with the memory value (the same way the BIT instruction affects the zero flag). The
result of this second operation is not saved; only the zero flag is affected by it.

8-bit accumulator/memory (65C02;65802/65816, m=1): Values in accumulator and memory are
eight-bit.

16-bit accumulator/memory(65C02;65802/65816, m=1): Values in accumulator and memory are
sixteen-bit: the low-order eight bits are located at the effective address; the high-order eight bits are at the
effective address plus one.

Flags Affected: - - - - - - z -
z Set if memory value AND’ed with accumulator value is zero;
 else cleared.

Codes:

Opcode Available on: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes
Cycle

s

Absolute
TRB
addr

1C x x 3 61

Direct Page TRB dp 14 x x 2 51,2

1 Add 2 cycles if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (DL< >0)

The Western Design Center

412

Test and Set Memory Bits Against Accumulator TSB

Logically OR together the value in the accumulator with the data at the effective address specified by
the operand. Store the result at the memory location.

This has the effect of setting each memory bit for which the corresponding accumulator bit is set, while
leaving unchanged all memory bits in which the corresponding accumulator bits are zeroes.

Unlike the BIT instruction, TSB is a read-modify-write instruction, not only calculating a result and
modifying a flag, but storing the result to memory as well.

The z zero flag is set based on a second different operation, the ANDing of the accumulator value with
the memory value (the same way the BIT instruction affects the zero flag). The result of this second operation
is not saved; only the zero flag is affected by it.

8-bit accumulator/memory(65C02;65802/65816, m = 1): Values in accumulator and memory are
eight-bit.

16-bit accumulator/memory (65802/65816 only, m = 0): Values in accumulator and memory are
sixteen-bit: the low-order eight bits are located at the effective address; the high-order eight bits are at the
effective address plus one.

Flags Affected: - - - - - - z -
z Set if memory value AND’ed with accumulator value is zero;
 else cleared.

Codes:

Opcode Available on: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Absolute TSB addr 0C x x 3 61

Direct Page TSB dp 04 x x 2 51,2

1 Add 2 cycles if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (DL< >0)

The Western Design Center

413

Transfer Stack Pointer to 16-Bit Accumulator TSC

Transfer the value in the sixteen-bit stack pointer S to the sixteen-bit accumulator C, regardless of the
setting of the accumulator/memory mode flag.

An alternate mnemonic is TSA (transfer the value in the stack pointer to the A accumulator).
In TSC, the “C” is used to indicate that sixteen bits are transferred regardless of the m flag. If the A

accumulator is set to just eight bits (whether because the m flag is set, or because the processor is in 6502
emulation mode), then it takes the value of the low byte of the stack pointer and the hidden B accumulator takes
the value of the high byte of the stack pointer. (In emulation mode, B will always take a value of one, since the
stack is confined to page one.)

The stack pointer’s value is unchanged by the operation.

Flags Affected: n - - - - - z -
n Set if most significant bit of transferred value is set; else cleared.
z Set if value transferred is zero; else cleared.

Codes:
Opcode Available to: # of # of

Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied TSC 3B x 1 2
(or
TSA)

The Western Design Center

414

Transfer Stack Pointer to Index Register X TSX

Transfer the value in the stack pointer S to index register X. The stack pointer’s value is not changed
by the operation.

8-bit index registers (all processors): Only the low byte of the value in the stack pointer is transferred
to the X register. In the 6502, the 65C02, and the 6502 emulation mode, the stack pointer and the index
registers are only a single byte each, so the byte in the stack pointer is transferred to the eight-bit X register. In
65802/65816 native mode, the stack pointer is sixteen bits, so its most significant byte is not transferred if the
index registers are in eight-bit mode.

16-bit index registers (65802/65816 only, x=0): The full sixteen-bit value in the stack pointer is
transferred to the X register.

Flags Affected: n - - - - - z -
n Set if most significant bit of transferred value is set; else cleared.
z Set if value transferred is zero; else cleared.

Codes:

Opcode Available to: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied TSX BA x x x 1 2

The Western Design Center

415

Transfer Index Register X to Accumulator TXA

Transfer the value in index register X to the accumulator. If the registers are different sizes, the nature
of the transfer is determined by the destination (the accumulator). The value in the index register is not changed
by the operation.

8-bit index registers, 8-bit accumulator (all processors): Value transferred is eight-bit.
16-bit index registers, 8-bit accumulator (65802/65816 only, x=0, m=1): Value transferred to the

eight-bit accumulator is eight-bit, the low byte of the index register; the hidden eight-bit accumulator B is not
affected by the transfer.

8-bit index registers, 16-bit accumulator (65802/65816 only, x=1, m=0): The eight-bit index register
becomes of the low byte of the accumulator; the high accumulator byte is zeroed.

16-bit index registers, 16-bit accumulator (65802/65816 only, x=0, m=0): Value transferred to the
sixteen-bit accumulator is sixteen-bit, the full sixteen-bit index register.

Flags Affected: n - - - - - z -
n Set if most significant bit of transferred value is set; else cleared.
z Set if value transferred is zero; else cleared.

Codes:

Opcode Available to: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied TXA 8A x x x 1 2

The Western Design Center

416

Transfer Index Register X to Stack Pointer TXS

Transfer the value in index register X to the stack pointer, S. The index register’s value is not changed
by the operation.

TXS, along with TCS, are the only two instructions for changing the value in the stack pointer. The
two are also the only two transfer instructions that do not alter the flags.

6502, 65C02, and 6502 emulation mode (65802/65816, e=1): The stack pointer is only eight bits (it is
concatenated to a high byte of one, confining the stack to page one), and the index registers are only eight bits.
The byte in X is transferred to the eight-bit stack pointer.

8-bit index registers (65802/65816 native mode, x=1): The stack pointer is sixteen bits but the index
registers are only eight bits. A copy of the byte in X is transferred to the low stack pointer byte and the high
stack pointer byte is zeroed.

16-bit index registers (65802/65816 native mode, x=0): The full sixteen-bit value in X is transferred
to the sixteen-bit stack pointer.

Flags Affected: - - - - - - - -

Codes:

Opcode Available to: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied TXS 9A x x x 1 2

The Western Design Center

417

Transfer Index Register X to Y TXY

Transfer the value in index register X to index register Y. The value in index register X is not changed
by the operation. Note that the two registers are never different sizes.

8-bit index registers (x=1): Value transferred is eight-bit.
16-bit index registers (x=0): Value transferred is sixteen-bit.

Flags Affected: n - - - - - z -
n Set if most significant bit of transferred value is set; else cleared.
z Set if value transferred is zero; else cleared.

Codes:

Opcode Available to: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied TXY 9B x 1 2

The Western Design Center

418

Transfer Index Register Y to Accumulator TYA

Transfer the value in index register Y to the accumulator. If the registers are different sizes, the nature
of the transfer is determined by the destination (the accumulator). The value in the index register is not changed
by the operation.

8-bit index registers, 8-bit accumulator (all processors): Value transferred is eight-bit.
16-bit index registers, 8-bit accumulator (65802/65816 only, x=0, m=1): Value transferred to the

eight-bit accumulator is eight-bit, the low byte of the index register; the hidden eight-bit accumulator B is not
affected by the transfer.

8-bit index registers, 16-bit accumulator (65802/65816 only, x=1, m=0): The eight-bit index register
becomes of the low byte of the accumulator; the high accumulator byte is zeroed.

16-bit index registers, 16-bit accumulator (65802/65816 only, x=0, m=0): Value transferred to the
sixteen-bit accumulator is sixteen-bit, the full sixteen-bit index register.

Flags Affected: n - - - - - z -
n Set if most significant bit of transferred value is set; else cleared.
z Set if value transferred is zero; else cleared.

Codes:

Opcod
e

Available to: # of # of

Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied TYA 98 x x x 1 2

The Western Design Center

419

Transfer Index register Y to X TYX

Transfer the value in index register Y to index register X. The value in index register Y is not changed
by the operation. Note that the two registers are never different sizes.

8-bit index registers (x=1): Value transferred is eight-bit.
16-bit index registers (x=0): Value transferred is sixteen-bit.

Flags Affected: n - - - - - z -
n Set if most significant bit of transferred value is set; else cleared.
z Set if value transferred is zero; else cleared.

Codes:

Opcode Available to: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied TYX BB x 1 2

The Western Design Center

420

Wait for Interrupt WAI

Pull the RDY pin low. Power consumption is reduced and RDY remains low until an external
hardware interrupt (NMI, IRQ, ABORT, or RESET) is received.

WAI is designed to put the processor to sleep during an external event to reduce its power
consumption, to allow it to be synchronized with an external event, and/or to reduce interrupt latency (an
interrupt occurring during execution of an instruction is not acted upon until execution of the instruction is
complete, perhaps many cycles later; WAI ensures that an interrupt is recognized immediately).

Once an interrupt is received, control is vectored through one of the hardware interrupt vectors; an RTI
from the interrupt handling routine will return control to the instruction following the original WAI. However,
if by setting the i flag, interrupt have been disabled prior to the execution of the WAI instruction, and IRQ’ is
asserted, the “wait” condition is terminated and control resumes with the next instruction, rather than through
the interrupt vectors. This provides the quickest response to an interrupt, allowing synchronization with
external events. WAI also frees up the bus; since RDY is pulled low in the third instruction cycle, the
processor may be disconnected from the bus if BE is also pulled low.

Flags Affected: - - - - - - - -

Codes:

Opcode Available to: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied WAI CB x 1 31

1 Uses 3 cycles to shut the processor down; additional cycles are required by interrupt to restart it

The Western Design Center

421

Reserved for Future Expansion WDM

The 65802 and 65816 use 255 of the 256 possible eight-bit opcodes. One was reserved; it provides an
“escape hatch” for future 65x processors to expand their instruction set to sixteen bit opcodes; this opcode
would signal that the next byte is an opcode in the expanded instruction set. This reserved byte for future two-
byte opcodes was given a temporary mnemonic, WDM, which happen to be the initials of the processors’
designer – William D. Mensch, Jr.

WDM should never be used in a program, since it would render the object program incompatible with
any future 65x processors.

If the 65802/65816 WDM instruction is accidentally executed, it will act like a two-byte NOP
instruction.

Flags Affected*: - - - - - - - -
* Flags will be affected variously by future two-byte instructions.

Codes:

Opcode Available to: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

WDM 42 x 2* *
* Byte and cycle counts subject to change in future processors which expand WDM into 2-byte
opcode portions of instructions of varying lengths

The Western Design Center

422

Exchange the B and A Accumulators XBA

B represents the high-order byte of the sixteen-bit C accumulator, and A in this case represents the low-
order byte. XBA swaps the contents of the low-order and high-order bytes of C.

An alternate mnemonic is SWA (swap the high and low bytes of the sixteen-bit A accumulator).
XBA can be used to invert the low-order, high-order arrangement of a sixteen-bit value, or to

temporarily store an eight-bit value from the A accumulator into B. Since it is an exchange, the previous
contents of both accumulators are changed, replaced by the previous contents of the other.

Neither the mode select flags nor the emulation mode flag affects this operation.
The flags are changed based on the new value of the low byte, the A accumulator (that is, on the former

value of the high byte, the B accumulator), even in sixteen-bit accumulator mode.

Flags Affected: n - - - - - z -
n Set if most significant bit of new 8-bit value A accumulator is
 set; else cleared.
z Set if new 8-bit value in A accumulator is zero; else cleared.

Codes:

Opcode Available to: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied XBA EB x 1 3
(or SWA)

The Western Design Center

423

Exchange Carry and Emulation Bits XCE

This instruction is the only means provided by the 65802 and 65816 to shift between 6502 emulation
mode and the full, sixteen-bit native mode.

The emulation mode is used to provide hardware and software compatibility between the 6502 and
65802/65816.

If the processor is in emulation mode, then to switch to native mode, first clear the carry bit, then
execute an XCE. Since it is an exchange operation, the carry flag will reflect the previous state of the
emulation bit. Switching to native mode causes bit five to stop functioning as the break flag, and function
instead as the x mode select flag. A second mode select flag, m, uses bit six, which was unused in emulation
mode. Both mode select flags are initially set to one (eight-bit modes). There are also other differences
described in the text.

If the processor is in native mode, then to switch to emulation mode, you first set the carry bit, then
execute an XCE. Switching to emulation mode causes the mode select flags (m and x) to be lost from the status
register, with x replaced by the b break flag. This forces the accumulator to eight bits, but the high accumulator
byte is preserved in the hidden B accumulator. It also forces the index registers to eight bits, causing the loss of
values in their high bytes, and the stack to page one, causing the loss of the high byte of the previous stack
address. There are also other differences described in the text.

 e
Flags Affected: - - m b/x - - - c

e Takes carry’s previous value: set if carry was set; else cleared.
c Takes emulation’s pervious value: set if previous mode was emulation; else
 cleared.
m m is a native mode flag only; switching to native mode sets it to 1.
x x is a native mode flag only; it becomes the b flag in emulation.
b b is an emulation mode flag only; it is set to 1 to become the x flag in native.

Codes:

Opcode Available to: # of # of
Addressing
Mode

Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied XCE FB x 1 2

The Western Design Center

424

19) Chapter Nineteen
Instruction Lists

Opcode Available on: # of # of
Hex Mnemonic Addressing Mode 6502 65C02 65802/816 Bytes Cycles
00 BRK Stack/Interrupt x x x 2** 79

01 ORA DP Indexed Indirect, X x x x 2 61,2

02 COP Stack/Interrupt x 2** 79

03 ORA Stack Relative x 2 41

04 TSB Direct Page x x 2 52,5

05 ORA Direct Page x x x 2 31,2

06 ASL Direct Page x x x 2 52,5

07 ORA DP Indirect Long x 2 61,2

08 PHP Stack (Push) x x x 1 3
09 ORA Immediate x x x 2* 21

0A ASL Accumulator x x x 1 2
0B PHD Stack (Push) x 1 4
0C TSB Absolute x x 3 65

0D ORA Absolute x x x 3 41

0E ASL Absolute x x x 3 65

0F ORA Absolute Long x 4 51

10 BLP Program Counter Relative x x x 2 27,8

11 ORA DP Indirect Indexed, Y x x x 2 51,2,3

12 ORA DP Indirect x x 2 51,2

13 ORA SR Indirect Indexed, Y x 2 71

14 TRB Direct Page x x 2 52,5

15 ORA DP Indexed, X x x x 2 41,2

16 ASL DP Indexed, X x x x 2 62,5

17 ORA DP Indirect Long Indexed, Y x 2 61,2

18 CLC Implied x x x 1 2
19 ORA Absolute Indexed, Y x x x 3 41,3

1A INC Accumulator x x 1 2
1B TCS Implied x 1 2
1C TRB Absolute x x 3 65

1D ORA Absolute Indexed, X x x x 3 41,3

1E ASL Absolute Indexed, X x x x 3 75,6

1F ORA Absolute Long Indexed, X x 4 51

20 JSR Absolute x x x 3 6
21 AND DP Indexed Indirect, X x x x 2 61,2

22 JSR Absolute Long x 4 8
23 AND Stack Relative x 2 41

24 BIT Direct Page x x x 2 31,2

25 AND Direct Page x x x 2 31,2

26 ROL Direct Page x x x 2 52,5

27 AND DP Indirect Long x 2 61,2

28 PLP Stack (Pull) x x x 1 4
29 AND Immediate x x x 2* 21

2A ROL Accumulator x x x 1 2
2B PLD Stack (Pull) x 1 5
2C BIT Absolute x x x 3 41

2D AND Absolute x x x 3 41

Continued.

The Western Design Center

425

Opcode Available on: # of # of
Hex Mnemonic Addressing Mode 6502 65C02 65802/816 Bytes Cycles
2E ROL Absolute x x x 3 65

2F AND Absolute Long x 4 51

30 BMI Program Counter Relative x x x 2 27,8

31 AND DP Indirect Indexed, Y x x x 2 51,2,3

32 AND DP Indirect x x 2 51,2

33 AND SR Indirect Indexed, Y x 2 71

34 BIT DP Indexed, X x x 2 41,2

35 AND DP Indexed, X x x x 2 41,2

36 ROL DP Indexed, X x x x 2 62,5

37 AND DP Indirect Long Indexed, Y x 2 61,2

38 SEC Implied x x x 1 2
39 AND Absolute Indexed, Y x x x 3 41,3

3A DEC Accumulator x x 1 2
3B TSC Implied x 1 2
3C BIT Absolute Indexed, X x x 3 41,3

3D AND Absolute Indexed, X x x x 3 41,3

3E ROL Absolute Indexed, x x x x 3 75,6

3F AND Absolute Long Indexed, X x 4 51

40 RTI Stack/RTI x x x 1 69

41 EOR DP Indexed Indirect, X x x x 2 61,2

42 WDM x 216 16

43 EOR Stack Relative x 2 41

44 MVP Block Move x 3 13

45 EOR Direct Page x x x 2 31,2

46 LSR Direct Page x x x 2 52,5

47 EOR DP Indirect Long x 2 61,2

48 PHA Stack (Push) x x x 1 31

49 EOR Immediate x x x 2* 21

4A LSR Accumulator x x x 1 2
4B PHK Stack (Push) x 1 3
4C JMP Absolute x x x 3 3
4D EOR Absolute x x x 3 41

4E LSR Absolute x x x 3 65

4F EOR Absolute Long x 4 51

50 BVC Program Counter Relative x x x 2 27,8

51 EOR DP Indirect Indexed, Y x x x 2 51,2,3,

52 EOR DP Indirect x x 2 51,2

53 EOR SR Indirect Indexed, Y x 2 71

54 MVN Block Move x 3 13

55 EOR DP Indexed, X x x x 2 41,2

56 LSR DP Indexed, X x x x 2 62,5

57 EOR DP Indirect Long Indexed, Y x 2 61,2

58 CLI Implied x x x 1 2
59 EOR Absolute Indexed, Y x x x 3 41,3

5A PHY Stack (Push) x x 1 310

5B TCD Implied x 1 2
5C JMP Absolute Long x 4 4
5D EOR Absolute Indexed, X x x x 3 41,3

5E LSR Absolute Indexed, X x x x 3 75,6

5F EOR Absolute Long Indexed, X x 4 51

Continued.

The Western Design Center

426

Opcode Available on: # of # of
Hex Mnemonic Addressing Mode 6502 65C02 65802/816 Bytes Cycles
60 RTS Stack (RTS) x x x 1 6
61 ADC DP Indexed Indirect, X x x x 2 61,2,4

62 PER Stack (PC Relative Long) x 3 6
63 ADC Stack Relative x 2 41,4

64 STZ Direct Page x x 2 31,2

65 ADC Direct Page x x x 2 31,2,4

66 ROR Direct Page x x x 2 52,5

67 ADC DP Indirect Long x 2 61,2,4

68 PLA Stack (Pull) x x x 1 41

69 ADC Immediate x x x 2* 21,4

6A ROR Accumulator x x x 1 2
6B RTL Stack (RTL) x 1 6
6C JMP Absolute Indirect x x x 3 511,12

6D ADC Absolute x x x 3 41,4

6E ROR Absolute x x x 3 65

6F ADC Absolute Long x 4 51,4

70 BVS Program Counter Relative x x x 2 27,8

71 ADC DP Indirect Indexed, Y x x x 2 51,2,3,4

72 ADC DP Indirect x x 2 51,2,4

73 ADC SR Indirect Indexed, Y x 2 71,4

74 STZ Direct Page Indexed, X x x 2 41,2

75 ADC DP Indexed, X x x x 2 41,2,4

76 ROR DP Indexed, X x x x 2 62,5

77 ADC DP Indirect Long Indexed, Y x 2 61,2,4

78 SEI Implied x x x 1 2
79 ADC Absolute Indexed, Y x x x 3 41,3,4

7A PLY Stack/Pull x x 1 410

7B TDC Implied x 1 2
7C JMP Absolute Indexed Indirect x x 3 6
7D ADC Absolute Indexed, X x x x 3 41,3,4

7E ROR Absolute Indexed, X x x x 3 75,6

7F ADC Absolute Long Indexed, X x 4 51,4

80 BRA Program Counter Relative x x 2 38

81 STA DP Indexed Indirect, X x x x 2 61,2

82 BRL Program Counter Relative Long x 3 4
83 STA Stack Relative x 2 41

84 STY Direct Page x x x 2 32,10

85 STA Direct Page x x x 2 31,2

86 STX Direct Page x x x 2 32,10

87 STA DP Indirect Long x 2 61,2

88 DEY Implied x x x 1 2
89 BIT Immediate x x 2* 21

8A TXA Implied x x x 1 2
8B PHB Stack (Push) x 1 3
8C STY Absolute x x x 3 410

8D STA Absolute x x x 3 41

8E STX Absolute x x x 3 410

8F STA Absolute Long x 4 51

90 BCC Program Counter Relative x x x 2 27,8

91 STA DP Indirect Indexed, Y x x x 2 61,2

Continued.

The Western Design Center

427

Opcode Available on: # of # of
Hex Mnemonic Addressing Mode 6502 65C02 65802/816 Bytes Cycles
92 STA DP Indirect x x 2 51,2

93 STA SR Indirect Indexed, Y x 2 71

94 STY Direct Page Indexed, X x x x 2 42,10

95 STA DP Indexed, X x x x 2 41,2

96 STX Direct Page Indexed, Y x x x 2 42,10

97 STA DP Indirect Long Indexed, Y x 2 61,2

98 TYA Implied x x x 1 2
99 STA Absolute Indexed, Y x x x 3 51

9A TXS Implied x x x 1 2
9B TXY Implied x 1 2
9C STZ Absolute x x 3 41

9D STA Absolute Indexed, X x x x 3 51

9E STZ Absolute Indexed, X x x 3 51

9F STA Absolute Long Indexed, X x 4 51

A0 LDY Immediate x x x 2+ 210

A1 LDA DP Indexed Indirect, X x x x 2 61,2

A2 LDX Immediate x x x 2+ 210

A3 LDA Stack Relative x 2 41

A4 LDY Direct Page x x x 2 32,10

A5 LDA Direct Page x x x 2 31,2

A6 LDX Direct Page x x x 2 32,10

A7 LDA DP Indirect Long x 2 61,2

A8 TAY Implied x x x 1 2
A9 LDA Immediate x x x 2* 21

AA TAX Implied x x x 1 2
AB PLB Stack (Pull) x 1 4
AC LDY Absolute x x x 3 410

AD LDA Absolute x x x 3 41

AE LDX Absolute x x x 3 410

AF LDA Absolute Long x 4 51

B0 BCS Program Counter Relative x x x 2 27,8

B1 LDA DP Indirect Indexed, Y x x x 2 51,2,3

B2 LDA DP Indirect x x 2 51,2

B3 LDA SR Indirect Indexed, Y x 2 71

B4 LDY DP Indexed, X x x x 2 42,10

B5 LDA DP Indexed, X x x x 2 41,2

B6 LDX DP Indexed, Y x x x 2 42,10

B7 LDA DP Indirect Long Indexed, Y x 2 61,2

B8 CLV Implied x x x 1 2
B9 LDA Absolute Indexed, Y x x x 3 41,3

BA TSX Implied x x x 1 2
BB TYX Implied x 1 2
BC LDY Absolute Indexed, X x x x 3 43,10

BD LDA Absolute Indexed, X x x x 3 41,3

BE LDX Absolute Indexed, Y x x x 3 43,10

BF LDA Absolute Long Indexed, X x 4 51

C0 CPY Immediate x x x 2+ 210

C1 CMP DP Indexed Indirect, X x x x 2 61,2

C2 REP Immediate x 2 3
C3 CMP Stack Relative x 2 41

Continued.

The Western Design Center

428

Opcode Available on: # of # of
Hex Mnemonic Addressing Mode 6502 65C02 65802/816 Bytes Cycles
C4 CPY Direct Page x x x 2 32,10

C5 CMP Direct Page x x x 2 31,2

C6 DEC Direct Page x x x 2 52,5

C7 CMP DP Indirect Long x 2 61,2

C8 INY Implied x x x 1 2
C9 CMP Immediate x x x 2* 21

CA DEX Implied x x x 1 2
CB WAI Implied x 1 315

CC CPY Absolute x x x 3 410

CD CMP Absolute x x x 3 41

CE DEC Absolute x x x 3 65

CF CMP Absolute Long x 4 51

D0 BNE Program Counter Relative x x x 2 27,8

D1 CMP DP Indirect Indexed, Y x x x 2 51,2,3

D2 CMP DP Indirect x x 2 51,2

D3 CMP SR Indirect Indexed, Y x 2 71

D4 PEI Stack (Direct Page Indirect) x 2 62

D5 CMP DP Indexed, X x x x 2 41,2

D6 DEC DP Indexed, X x x x 2 62,5

D7 CMP DP Indirect Long Indexed, Y x 2 61,2

D8 CLD Implied x x x 1 2
D9 CMP Absolute Indexed, Y x x x 3 41,3

DA PHX Stack (Push) x x 1 310

DB STP Implied x 1 314

DC JMP Absolute Indirect Long x 3 6
DD CMP Absolute Indexed, X x x x 3 41,3
DE DEC Absolute Indexed, X x x x 3 75,6

DF CMP Absolute Long Indexed, X x 4 51

E0 CPX Immediate x x x 2+ 210

E1 SBC DP Indexed Indirect, X x x x 2 61,2,4

E2 CPX Immediate x 2 3,

E3 SBC Stack Relative x 2 41,4

E4 INX Direct Page x x x 2 32,10

E5 SBC Direct Page x x x 2 31,2,4

E6 INC Direct Page x x x 2 52,5

E7 SBC DP Indirect Long x 2 61,2,4

E8 INX Implied x x x 1 2
E9 SBC Immediate x x x 2* 21,4

EA NOP Implied x x x 1 2
EB XBA Implied x 1 3
EC CPX Absolute x x x 3 410

ED SBC Absolute x x x 3 41,4

EE INC Absolute x x x 3 65

EF SBC Absolute Long x 4 51.4

F0 BEQ Program Counter Relative x x x 2 27.8

F1 SBC DP Indirect Indexed, Y x x x 2 51.2.3.4

F2 SBC DP Indirect x x 2 51.2.4

F3 SBC SR Indirect Indexed, Y x 2 71,4

F4 PEA Stack (absolute) x 3 5
F5 SBC DP Indexed, X x x x 2 41,2,4

Continued.

The Western Design Center

429

Opcode Available on: # of # of
Hex Mnemonic Addressing Mode 6502 65C02 65802/816 Bytes Cycles
F6 INC DP Indexed, X x x x 2 62,5

F7 SBC DP Indirect Long Indexed, Y x 2 61,2,4

F8 SED Implied x x x 1 2
F9 SBC Absolute Indexed, Y x x x 3 41,3,4

FA PLX Stack /Pull x x 1 410

FB XCE Implied x 1 2
FC JSR Absolute Indexed Indirect x 3 8
FD SBC Absolute Indexed, X x x x 3 41,3,4

FE INC Absolute Indexed, X x x x 3 75,6

FF SBC Absolute Long Indexed, X x 4 51,4

+ Add 1 byte if m=0 (16-bit memory/accumulator)
++ opcode is 1 byte, but program counter value pushed onto stack is incremented by 2 allowing for optional
 signature byte
+ Add 1 byte if x=0 (16-bit index register)
1. Add 1 cycle if m=0 (16-bit memory/accumulator)
2. Add 1 cycle if low byte of Direct Page register is other than zero (DL< >0)
3. Add 1 cycle if adding index crosses a page boundary
4. Add 1 cycle if 65C02 and d=1 (decimal mode, 65C02)
5. Add 2 cycles if m=0 (16-bit memory/accumulator)
6. Subtract 1 cycle if 65C02 and no page boundary crossed
7. Add 1 cycle if branch is taken
8. Add 1 more cycle if branch taken crosses page boundary on 6502, 65C02, or 65816/65802’s 6502 emulation mode

(e=1)
9. Add 1 cycle for 65802/65816 native mode (e=0)
10. Add 1 cycle if x=0 (16-bit index register)
11. Add 1 cycle if 65C02
12. 6502: If low byte of operand is $FF (i.e., operand is $xxFF): yields incorrect result
13. 7 cycles per byte moved
14. Uses 3 cycles to shut the processor down; additional cycles are required by reset to restart it
15. Uses 3 cycles to shut the processor down; additional cycles are required by interrupt to restart it
16. Bytes and cycle counts subject to change in future processors which expand WDM into 2-byte opcode portions of

instructions of varying lengths.

The Western Design Center

430

The Western Design Center

431

The Western Design Center

432

The Western Design Center

433

The Western Design Center

434

Processor
�Opcode or instruction first introduced on the 65C02
j Opcode or instruction first introduced on the 65816/65802

(not marked: first introduced on the NMOS 6502)

Addressing mode box:

Immediate Addressing Mode
const Assembler operand syntax

1 ~ #
Number of bytes
Number of cycles
Key to detailed instruction operation chart (see Appendix E: 65816 Data Sheet)

Operation column:
A Accumulator
X Index register X
Y Index register Y
M Contents of memory location specified by effective address
M(d) Contents of direct page memory location pointed to by operand
M(s) Contents of memory location pointed to by stack pointer
M(pc) Current opcode pointed to by the program counter
PC Memory location of current opcode pointed to by the program counter
rl Two-byte operand of relative long addressing mode instruction
+ Add
- Subtract
∧ And
∨ Or
∨ Exclusive Or

Logical complement of a value or status bit (A indicates the complement of the value in the
accumulator)

o2 Phase 2 clock (hardware signal)
RDY Ready (hardware signal)

The Western Design Center

435

Bytes, cycles, and status codes:

* Add 1 byte if M = 0 (16-bit memory/accumulator)
** opcode is one byte, but program counter value pushed onto stack is incremented by 2 allowing for

optional signature byte
+ Add 1 byte if x = 0 (16-bit index registers)
n number of bytes moved
1 Add 1 cycle if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (DL< >0)
3 Add 1 cycle if adding index crosses a page boundary
4 Add 1 cycle if 65C02 and d = 1 (decimal mode, 65C02)
5 Add 2 cycles if m = 0 (16-bit memory/accumulator)
6 Subtract 1 cycle if 65C02 and no page boundary crossed
7 Add 1 cycle if branch is taken
8 Add 1 more cycle if branch taken crosses page boundary on 6502, 655C02, or 65816/65802’s 6502

emulation mode (e = 1)
9 Add 1 cycle for 65802/65816 native mode (e = 0)
10 Add 1 cycle if x = 0 (16-bit index registers)
11 Add 1 cycle if 65C02
12 6502: If low byte of addr is $FF (i.e., addr is $xxFF): yields incorrect result
13 7 cycles per byte moved
14 Uses 3 cycles to shut the processor down; additional cycles are required by reset to restart it
15 Uses 3 cycles to shut the processor down; additional cycles are required by interrupt to restart it
16 Bytes and cycle counts subject to change in future processors which expand WDM into 2-byte opcode

portions of instructions of varying lengths
17 BIT: immediate n and v flags not affected; if m = 0, m(15) → n and M(14) → V; if m = 1, m(7) → n

and M(6) → v
18 BRK: if b = 1 in pushed status register (6502, 65C02 and emulation mode e = 1), then interrupt was

caused by software BRK:
if 6502, d is unaffected by BRK; if 65C02 or 65816/65802, d is 0 after BRK

The Western Design Center

436

The Western Design Center

437

Op Code Matrix Legend

symbol addressing mode symbol addressing mode
immediate [d] direct indirect long
A accumulator [d],y direct indirect long indexed
r program counter relative a absolute
rl program counter relative long a,x absolute indexed (with x)
i implied a,y absolute indexed (with y)
s stack al absolute long
d direct al,x absolute long indexed
d,x direct indexed (with x) d,s stack relative
d,y direct indexed (with y) (d,s),y stack relative indirect indexed
(d) direct indirect (a) absolute indirect
(d,x) direct indexed indirect (a,x) absolute indexed indirect
(d),y direct indirect indexed xyc block move

INSTRUCTION ADDRESSING
 MNEMONIC « = New W65C816/802 Opcodes MODE

l = New W65C02 Opcodes
 BASE Blank = NMOS 6502 Opcodes BASE
 NO. BYTES NO CYCLES

The Western Design Center

438

accumulators, 19
address, 12
AND, 15
arithmetic., 19

multiple-precision, 19
ASCII, 11, 14
assembler, 19
assembler directives, 21
Assembly Language, 21
back space, 14

BASIC, 19
Binary arithmetic, 19
binary digit, 11
binary-coded decimal, 11, 18
bit, 11
bitwise, 15
branch, 23

conditional, 23
macro assemblers, 21
number systems, 11

Western Design Center

1

Table of Contents
Appendices

A. 65x Signal Description..4
6502 Signals .. 6

Address Bus ... 6
Clock Signals ... 6
Data Bus... 6
Data Bus Enable ... 6
Read/Write ... 6
Ready... 6
Interrupt Request .. 6
Sync ... 7
Reset .. 7

65C02 Signals ... 7
Memory Lock... 7
Notes.. 7

65802 Signals .. 7
65816 Signals .. 7

Bank Address ... 8
Vector Pull ... 8
Abort.. 8
Valid Program Address and Valid Data Address.. 8
Memory and Index ... 8
Emulation... 9
Bus Enable ... 9

B. 65x Series Support Chips ..10
The 6551 Serial Chip.. 10

STATUS.. 11
COMMAND REGISTER ... 12

BIT .. 12
OPERATION... 12

The 6521 Parallel Chip ... 15

C. The Rockwell 65C02 ...18
BBR .. 19

Branch on Bit Reset .. 19
BBS ... 20

Branch on Bit Set ... 20
RMB ... 21
Reset Memory Bit... 21
SMB .. 22
Set Memory Bit... 22

D. Instruction Groups ..23
Group I Instructions... 23
Group II Instructions ... 24

Loading the Index Registers.. 25
Index Register Compares .. 25
Test-and-Change-Bits Instructions .. 25

E. The ASCII Character Set...26

Table of Figures
Figure A-1 65x Pinouts ... 5
Figure B-1. 6551 Status Register .. 11
Figure B-2. 6551 Control Register .. 12
Figure B-3Control Register .. 13

Western Design Center

2

Table of Tables
Table D-1 Group I Instructions Opcode Patterns .. 23
Table D-2 Address Mode Patterns for Group I Instructions .. 23
Table D-3 65802/65816 Group I Addressing Mode Patterns... 23
Table D-4 Group II Opcode Patterns.. 24
Table D-5 Address Mode Patterns for Group II Instruction .. 24
Table D-6 Address Mode Patterns for Load Index Register Instruction... 25
Table D-7 Address Mode Patterns for Compare Index Register Instructions ... 25

Western Design Center

3

Appendices

Western Design Center

4

A. 65x Signal Description
The four standard 65x parts considered in this book – the 6502, 65C02, 65802, and 65816 – are each housed in

a 40-pin dual in-line package. There are also a number of special versions of the basic parts, versions with external
clocks, fewer address pins, one-chip computers with on-board RAM and ROM, and with quadrature clocks. These are
not considered here; refer to the appropriate manufacturer’s literature for details about these special chips.

This appendix describes the pin signals found on the four standard parts – the pins that connect the processor to
the external system. Many of them are common to all processors, some are unique to each.

The descriptions are meant to satisfy the programmer with a general interest in the system implementation; the
engineer implementing a 65x system should consult the manufacturer’s data sheets for more detailed information.

To begin with, refer to Figure A.1, which illustrates the pin configurations of the four different processors.

Western Design Center

5

Figure A-1 65x Pinouts

VSS
RDY

PHI1O
IRQB

NC
NMIB
SYNC

VDD
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

RESB
PHI2O
SOB
PHI2I
NC
NC
RWB
D0
D1
D2
D3
D4
D5
D6
D7
A15
A14
A13
A12
VSS

6502

VSS
RDY

PHI1O
IRQB
MLB

NMIB
SYNC

VDD
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

RESB
PHI2O
SOB
PHI2I
NC
NC
RWB
D0
D1
D2
D3
D4
D5
D6
D7
A15
A14
A13
A12
VSS

65C02

VPB
RDY

ABORTB
IRQB
MLB

NMIB
VPA
VDD

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

RESB
VDA
M/X
PHI2I
BE
E
RWB
D0/BA0
D1/BA1
D2/BA2
D3/BA3
D4/BA4
D5/BA5
D6/BA6
D7/BA7
A15
A14
A13
A12
VSS

W65C816

VSS
RDY

PHI1O
IRQB

NC
NMIB
SYNC

VDD
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

RESB
PHI2O
SOB
PHI2I
NC
NC
RWB
D0
D1
D2
D3
D4
D5
D6
D7
A15
A14
A13
A12
VSS

W65C802

Western Design Center

6

6502 Signals

The 6502 defines the basic set of signals.

Address Bus

Pins A0 – A15 are the address lines. Every time an address is generated – opcodes fetch, operand read, intermediate
address, or effective address of a read or write operation – the binary value of the address appears on these pins, A0 representing the
low-order bit of the address, and A15 representing the high-order bit. These outputs are TTL compatible.

Clock Signals

All of the 65x series processors operate on a two-phase external cycle; a 65, processor’s frequency, expressed in
Megahertz, or millions of cycles per second, is also its memory-access cycle time. The 6502 has an internal clock generator based
on the phase zero input signal, a time base typically provided by a crystal oscillator. The two output signals, phase one and phase
two, are derived from this signal. Phase one goes high when phase zero is low; phase two goes low on the rising edge of phase one.

Data Bus

Pins D0-D7 are the data lines; these eight pins form a bi-directional data bus to read and write data between the processor
and memory and the peripheral devices. Like the address lines, the outputs can drive one standard TTL load.

Data Bus Enable

This controls the three-state output buffers of the processors; it normally is enabled by the phase two output, effectively
disabling the output buffers during phase one; this frees the bus for access by other devices during phase one. By pulling DBE low,
the buffers may be disabled externally.

Read/Write

R/W’ is high when data is being read from memory or peripherals into the processor, low when the processor is writing
data. When in the low state, data and address lines have valid data and addresses.

Ready

The RDY signal enables the processor to be single-stepped on all cycles except write cycles. When enabled during phase
one, the processor is halted and the address lines maintain the current address; this lets the processor interface with lower-speed
read-only memory devices, and can also be used in direct memory access implementations.

Interrupt Request

The IRQ’ signal requests that an interrupt-service cycle be initiated. This signal is connected to peripheral devices that are
designed to be interrupt-driven. This is the maskable interrupt signal, so the interrupt disable flag in the status register must be zero
for the interrupt to be effective. The RDY signal must be high for an interrupt to be recognized. IRQ’ is sampled during phase 2.

Non-maskable Interrupt

NMI’ is basically identical to IRQ’, except that it causes an unconditional interrupt when it is asserted, and
control vectors through the NMI’ vector rather than IRQ’.

Western Design Center

7

Set Overflow

When this line goes low on the trailing edge of phase one, the overflow flag in the processor status register is set.

Sync

This line goes high during phase one of those cycles that are opcode fetches. When used with the RDY signal, this allows
hardware implementation of a single-step debugging capability.

Reset

RESET’ reinitializes the processor, either at power-up or to restart the system from a known state. RESET’ must be held
low for at least two cycles after a power down. When it is asserted, an interrupt-like service routine begins (although the status and
program counter are not stacked), with the result that control is transferred through the RESET’ vector.

65C02 Signals

The 65C02 pinout is identical to the 6502, with the exception of memory lock and notes described below.

Memory Lock

The ML’ output signal assures the integrity of read-modify-write instructions by signaling other devices, for example,
other processors in a multiprocessor environment, that the bus may not be claimed until completion of the read-modify-write
operation. This signal goes low during the execution of the memory-referencing (non-register operand) ASL, DEC, INC, LSR,
ROL, ROR, TRB, and TSB instructions.

Notes

The 65C02, unlike the 6502, responds to RDY during a write cycle as well as a read, halting the processor.
Response of the 65C02 to a reset is different from the 6502 in that the 65C02’s program counter and status register are

written to the stack. Additionally, the 65C02 decimal flag is cleared after reset or interrupt; its value is indeterminate after reset and
not modified after interrupt on the 6502.

When an interrupt occurs immediately after the fetch of a BRK instruction on the 6502, the BRK is ignored; on the 65C02,
the BRK is executed, then the interrupt is executed.

Finally, the 65C02 R/W’ line is high during the modify (internal operation) cycle of the read-modify-write operations; on
the 6502, it is low.

65802 Signals

The 65802 signals are by definition 6502 pin-compatible. The 65C02 ML’ (memory lock) signal is not on the standard pin-
out, although it is available as a special-order mask option. Like the 6502, and unlike the 65C02, the 65802 does not write to the
stack during a reset.

Some of the enhancement of the 65C02 are available on the 65802 in the native mode, while in emulation mode the system
behaves as a 6502. R/W’ is low during the modify cycle of read-modify-write cycles in the emulation mode; high in the native
mode.

65816 Signals

Most of the signals behave as on the 65802, with the following additions and changes:

Western Design Center

8

Bank Address

The most important difference on the 65816 is the multiplexing of the bank address (BA0-BA7) with the data pins (D0-
D7). During phase two low, the bank address is valid; during phase two high, data is read or written on the same pins. The bank
address must be latched during phase one to provide a valid twenty-four bit address when concatenated with A0-A15.

Vector Pull

The VP’ signal is asserted whenever any of the vector addresses ($00:FFE4-FFEF, $00:FFF4-FFFF) are being accessed as
part of an interrupt-type service cycle. This lets external hardware modify the interrupt vector, eliminating the need for software
polling for interrupt sources.

Abort

The ABORT’ input pin, when it is asserted, causes the current instruction to be aborted. Unlike an interrupt, none of the
registers are updated and the instruction quits execution from the cycle where the ABORT’ signal was received. No registers are
modified. In other words, the processor is left in the state it was in before the instruction that was aborted. Control is shifted to the
ABORT’ vector after an interrupt-like context-saving cycle.

The ABORT’ signal lets external hardware abort instructions on the basis of undesirable address bus conditions; memory
protection and page virtual memory systems can be fully implemented using this signal.

ABORT’ should be held low for only one cycle; if held low during the ABORT interrupt sequence, the ABORT interrupt
will be aborted.

Valid Program Address and Valid Data Address

The VPA and VDA signals extend the concept of the SYNC signal. Together, these two pins encode one of four possible
internal processor states, based on the type of memory being accessed:

VPA VDA
0 0 -Internal operation
0 1 -Valid program address
1 0 -Valid data address
1 1 -Opcode fetch

During internal operations, the output buffers may be disabled by external logic, making address bus available for
transparent direct memory access. Also, since the 65816 sometimes generates a false read during instructions that cross page
boundaries, these may be trapped via these two signals if this is desirable. Note, however, that addresses should not be qualified in
emulation mode if hardware such as the Apple II disk controller is used, which requires false read to operate.

The other states may be used for virtual memory implementation and high-speed data or instruction cache control. VPA
and VDA high together are equivalent to the 6502 SYNC output.

Memory and Index

These two signals are multiplexed on pin 38. M is available during phase zero, X during phase one. These signals reflect
the contents of the status register m and x flags, allowing (along with E described below) external logic to fully decode opcode
fetches.

As a mask option, the 65816 may be specified with the 6502 SET OVERFLOW signal instead of the M/X signal.
M and X are invalid for the instruction cycle following the REP, SEP, and PLP instruction execution; this cycle is the

opcode fetch cycle of the next instruction.

Western Design Center

9

Emulation

The E signal reflects the state of the processor’s e flag; depending on whether or not the processor is in emulation mode or
not, external system compatibility feature (such as memory mapping or system speed) could be enabled or disabled.

Bus Enable

This signal replaces the data bus enable signal of the 6502; when asserted, it disables the address buffers and R/W’ as well
as the data buffers

Western Design Center

10

B. 65x Series Support Chips
There are a plethora of companion chips for the 65x processors. The ones every assembly language programmers runs into

eventually are serial and parallel input/output (I/O) chips. The 65x family serial I/O controller is the 6551 Asynchronous
Communication Interface Adapter (ACIA), while the simplest parallel I/O controller is the 6521 Peripheral Interface Adapter (PIA).

As the architecture section of this book has already noted, the 65x microprocessors have memory-mapped I/O, not special
I/O opcodes. That is, they assign each input and each output device one or more memory locations. An output device’s status
registers can be tested to determine if the device is ready to send a unit of data. Conversely, an input device’s status registers can be
tested to determine if a unit of data has arrived and can be read. Writing data is accomplished by storing it to one of the output
device’s memory locations; reading it is accomplished with a load-register instruction, with its operand one of the input device’s
memory locations.

One caution: Don’t attempt to use any peripheral chips without calling or writing the chip’s manufacturer for a data sheet,
usually provided for little or no charge. While data sheets are no joy to read, they contain enough information to sooner or later
explain the programming problems you will run into, if not on your current project, then on the next one.

The 6551 Serial Chip

You may already be familiar with the 6551 ACIA. There is one controlling the serial port on every Apple II c, and one on
the plug-in Apple II e Super Serial Card.

The 6551 features an on-chip baud-rate generator, which lets your program set any of fifteen baud rates from 50 to 19,200.
Like most other serial chips, word length, number of stop bits, and parity bit generation and detection can also be set under program
control.

As an example, if the Super Serial Card were located, as it commonly is, in the Apple IIe’s port two, four consecutive
memory locations are allocated to the 6551 beginning at $C0A8. The 6511’s Transmit/Receive Data Register is located at $C0A8.
The current status of the chip (for example, indicating it has received a byte of data) is indicated in the Status Register, located at
$C0A9 (see Figure B.1). Two registers are used to initialize the chip. The Command Register, located at $C0AA, is used to set up
parity and several other parameters. As Figure B.2 indicates, writing $0B to the Command Register sets up a commonly used set of
parameters – no parity, and both the RTS and the DTR lines enabled. The Control Register, located at $C0AB, is used to set up stop
bits, word length, and baud rate; as Figure B.3 indicates, writing $1E to the Control Register sets up a commonly used set of
parameters – one stop bit, eight-bit data, and communications running at 9600 baud.

So the 6511 is initialized by the 65816 code shown in Fragment B.1.

0000 COMPORT GEQU $C0A8 6551 located at $C0A8, 9, A, B
0000
0000 E220 SEP #$20 use 8-bit accumulator
0002 LONGA OFF
0002
0002 A900 LDA #0
0004 8DA9C0 STA COMPORT+1 StatusReg: programmed reset first
0007 A91E LDA #$1E
0009 8DABC0 STA COMPORT+3 CtrlReg: 1 stop bit/8-bit data/960
000C A90B LDA #$0B
000E 8DAAC0 STA COMPORT+2 CmdReg: no parity/RTS, DTR enabled
0011 60 RTS

Fragment B.1

Actually, any value can be written to the status register to cause a programmed reset; this operation is done to reinitialize
the I/O registers – the three figures each show the effects on the non-data registers on each of their status bits.

Western Design Center

11

7 6 5 4 3 2 1 0

STATUS SET BY CLEARED BY
*NO INTERRUPT GENERATED FOR THESE CONDITIONS

Parity Error *
0 = No Error
1 = Error

Self Clearing * *
**CLEARED AUTOMATICALLY AFTER A READ OF RDR
 AND THE NEXT ERROR-FREE RECEIPT OF DATA

Framing Error *
0 = No Error
1 = Error

Self Clearing * *
7 6 5 4 3 2 1 0

HARDWARE
RESET

0 - - 1 0 0 0 0
Overrun *

0 = No Error
1 = Error

Self Clearing * * PROGRAM
RESET

- - - - - 0 - -

Receive Data
Register Full

0 = Not Full
1 = Full

Read Receive
Data Register

Transmit Data
Register Empty

0 = Not Full
1 = Full

Write Transmit
Data Register

DCD
0 = DCD Low
1 = DCD High

Not Resettable
Reflects DCD
State

DSR
0 = DSR Low
1 = DSR High

Not Resettable
Reflects DSR
State

IRQ
0 = No Interrupt
1 = Interrupt

Read
Status Register

Figure B-1. 6551 Status Register

Western Design Center

12

COMMAND REGISTER

7 6 5 4 3 2 1 0

 DATA TERMINAL READY

BIT
7 6 5

OPERATION

- - 0 Parity Disabled-No Parity Bit Generated-
No Parity Bit Received RECEIVER INTERRUPT ENABLE

0 0 1 Odd Parity Receiver and Transmitter
0 1 1 Even Parity Receiver and Transmitter

1 0 1 Mark Parity Bit Transmitted, Parity Check
Disabled

1 1 1 Space Parity Bit Transmitted, Parity Check
Disabled

TRANSMITTER CONTROLS
BIT

3 2
TRANSMIT
INTERRUPT

RTS
LEVEL

TRANSMITTER

NORMAL/ECHO MODE 0 0 Disabled High Off
FOR RECEIVER 0 1 Enabled Low On

1 0 Disabled Low On
1 1 Disabled Low Transmit BRK

7 6 5 4 3 2 1 0

HARDWARE RESET 0 0 0 0 0 0 0 0
PROGRAM RESET - - - 0 0 0 0 0

Figure B-2. 6551 Control Register

0 = Disable Receiver and All
 Interrupts (DTR high)
1 = Enable Receiver and All
 Interrupts (DTR low)

0 = IRQ Interrupt Enabled from Bit 3 of Status
 Register
1 = IRQ Interrupt Disabled

0 = Normal
1 = Echo (Bit 2 and 3
 must be “0”)

PARITY CHECK CONTROLS

Western Design Center

13

CONTROL REGISTER

7 6 5 4 3 2 1 0

STOP BITS BAUD RATE
GENERATOR

0 0 0 0 16x EXTERNAL CLOCK
0 0 0 1 50 BAUD
0 0 1 0 75
0 0 1 1 109.92
0 1 0 0 134.58
0 1 0 1 150

WORD LENGTH 0 1 1 0 300
0 1 1 1 600

BIT 1 0 0 0 1200
6 5

DATA WORD
LENGTH 1 0 0 1 1800

0 0 8 1 0 1 0 2400
0 1 7 1 0 1 1 3600
1 0 6 1 1 0 0 4800
1 1 5 1 1 0 1 7200

1 1 1 0 9600
RECEIVER CLOCK SOURCE 1 1 1 1 19,200

* This allows for 9-bit transmission
 (8 data bits plus parity).

7 6 5 4 3 2 1 0
HARDWARE RESET 0 0 0 0 0 0 0 0

PROGRAM RESET - - - - - - - -

Figure B-3Control Register

0 = 1 Stop Bit
1 = 2 Stop Bits
 1 Stop Bit if Word Length
 = 8 Bits and Parity
 11/2 Stop Bits if Word Length
 = 5 Bits and No Parity

0 = External Receiver Clock
1 = Baud Rate Generator

Western Design Center

15

When the 6551 connects a computer to a communications line-whether twisted-pair wire at 9600 baud or a modem at 300-
baud-reading a byte from the communications line is a matter of (once the 6551 has initialized waiting until the status register bit
three (receiver data register full) is set, then reading the byte from the data register, as shown in Fragment B.2.

0000 ; code to read a byte from the communications line (6551)
0000 ; returns byte in 8-bit A
0000
0000 COMPORT GEQU $C0A8 6551 located at $C0A8,9,A,B
0000
0000 E220 SEP #$20 use 8-bit accumulator
0002 LONGA OFF
0002
0002 ADA9C0 AWAITCH LDA COMPORT+1 read Status Reg
0005 2908 AND #8 single out bit 3 (revr data reg full)
0007 F0F9 BEQ AWAITCH loop until bit 3 set
0009
0009 ADA8C0 LDA COMPORT read the byte from Receive Data Reg
000C 60 RTS and return with it

Fragment B.2

Similarly, as Fragment B.3 shows, writing a byte out to the communications line is a matter of (once the 6551 has been
initialized) waiting until the status register bit four (transmitter data register empty) is set, the writing the byte to the data register.

Neither routine does any error checking using the other status register bits.

The 6521 Parallel Chip

The 6521 parallel I/O peripheral interface adapter is used to interface 65x microprocessors with printers, matrix-type
keyboards, and other devices. It features two programmable eight-bit bidirectional parallel I/O ports (Ports A and B), any lines of
which can be individually set for either reading or writing via a Data Direction Register. Provided all eight lines are set one way,
you can either read or write a byte at a time (as opposed to a bit at a time via a serial chip) through the port. For fancy I/O, the 6521
has several “handshake” lines for greater control of I/O.

Like the 6551, the 6521 occupies four address locations (those dependent on the hardwiring of the two Register Select
lines). But it has six registers, three for each port: a control register, a data register, and a data direct register. Each port’s data
register and data direction register are addressed at the same location. Bit two of the port’s control register determines which register
is connected to that address at any one time: if control register bit two is set, the data register is connected; if control register bit two
is clear, the data direction register is connected.

0000 ; routine to write a byte to the communications line (6551)
0000 ; enter with byte in 8-bit A
0000
0000 COMPORT GEQU $C0A8 6551 located at $C0A8,9,A,B
0000
0000 48 PHA save byte to write; free accum
0001
0001 ADA9C0 WAITRDY LDA COMPORT+1 read Status Reg
0004 291000 AND #$10 get bit 4 (trnsmt data reg empty)
0007 F0F8 BEQ WAITRDY loop until bit 4 set
0009
0009 68 PLA retrieve byte to write
000A 8DA8C0 STA COMPORT write the byte to Transmit Data Reg
000D 60 RTS

Fragment B.3

The data direction register is generally initialized for an application just once; then the data register is selected. Each data
direction register bit controls the same-numbered bit in the data register: if a data direction register bit is set, the corresponding data
register bit becomes an output line; if a data direction register bit is clear, the corresponding data register bit becomes an input line.

Western Design Center

16

Imagine an application in which a printer is wired through a Centronics-compatible printer port to a 6521’s port A: the
6521’s eight Port A bits are connected to Centronics pins two through none. Port B is used to control the interface between
computer and printer: the 6521’s Port B bit zero is connected to the printer’s Data Strobe (Centronics pin one); the 6521’s Port B bit
seven is connected to the printer Busy Line (Centronics pin 11).

The 6521 PIA is automatically initialed on power-up and reset to all be inputs (all registers are cleared). So every program
should initialize all the lines it will use, either as inputs or as outputs, every time it is run. In the case, setting up output to the printer
means al of Port A needs to be set up as inputs, while Port B bit zero must be initialized as an output and bit seven as an input.
Setting up the rest of Port B as inputs is a good habit to protect peripherals, as seen in Fragment B.4.

0000 E220 SEP #$20 use 8-bit accumulator
0002 LONGA OFF
0002
0002 ; set up Port A as entirely output
0002
0002 AD0080 LDA PORTACTRL get byte in Port A Control Reg
0005 29FB AND #%11111011 clear bit 2: select Data Direction Reg
0007 8D0080 STA PORTACTRL and store it back
000A
000A A9FF LDA #$FF
000C 8D0080 STA PORTA store all 1’s to make Port A an output
000F
000F AD0080 LDA PORTACTRL get byte in Port A Control Reg
0012 0904 ORA #%00000100 set bit 2: select Data Reg
0014 8D0080 STA PORTACTRL and store it back
0017
0017 ; set up Port B: bit 0 as output; bit 7 as input
0017
0017 AD0080 LDA PORTBCTRL get byte in Port B Control Reg
001A 29FB AND #%11111011 clear bit 2: select Data Direction Reg
001C 8D0080 STA PORTBCTRL and store it back
001F
001F A901 LDA #1
0021 8D0080 STA PORTB store 1 to bit 0 (output); 0 to bit 7
0024
0024 AD0080 LDA PORTBCTRL get byte in Port B Control Reg
0027 0904 ORA #%00000100 set bit 2: select Data Reg
0029 8D0080 STA PORTBCTRL and store it back
002C
002C A901 LDA #1 write 1 to printer’s Data Strobe
002E 8D0080 STA PORTB to initialize Data Strobe to 1 (high)
0031
0031 60 RTS

Fragment B.4

PORTACTRL, PORTA, PORTBCTRL, and PORTB must be elsewhere equated to the addresses at which each is located. The
value in the control register is loaded and bit two is ANDed out with the mask, then stored back to choose the data direction register
as the chosen register in each port. All ones are stored to Port A’s data direction register, selecting all eight lines as outputs. One is
stored to Port B’s data direction register, selecting bit zero as an output and the rest of the port as inputs. Then the control registers
are loaded again, this time ORing bit two back on before re-storing them, to choose the data register as the chosen register in each
port. Finally, one is written out Port B to the printer’s Data Strobe to initialize the line.

Now bytes can be written to the printer by waiting for a zero on the Printer Busy Line (bit seven of Port B was chosen so
that a positive/negative test could be made to test the nit), then storing the byte to be written to Port A, and finally toggling the Data
Strobe to zero and then back to one to inform the printer that a new character is ready to be printed.

Western Design Center

17

0000 ; write character in eight-bit accumulator to the printer
0000
0000 2C0080 POUT BIT PORTB move Port B bit 7 (Busy Line) to n flag
0003 30FB BMI POUT wait until printer is not busy
0005
0005 8D0080 STA PORTA write char in accum to printer
0008
0008 A90000 LDA #0 tell the printer to get and print it:
000B 8D0080 STA PORTB strobe the printer: write a 0 to bit 0
000E EA NOP allow a wait cycle
000F A90100 LDA #1
0012 8D0080 STA PORTB then toggle Strobe back to high (normal)
0015
0015 60 RTS

Fragment B.5

You must be sure, in toggling the Strobe by writing to it, that the zero written to bit seven (zeroes are written to bits one
through seven during both writes to Port B) not be read back as though it is a value being sent by the printer’s Busy Line indicating
the printer is not busy.

Remember that it is always important to have a data sheet for each peripheral support chip you attempt to write code for.

Western Design Center

18

C. The Rockwell 65C02
Rockwell International Corporation has a family of CPUs which it calls the R65C00 family. It includes their

R65C02; while the designation would lead you to believe it is the 65C02 to which a part of this book is devoted, in fact
its instruction set is a superset of the 65C02 instruction set discussed earlier. It is the 65C02 described earlier, not the
Rockwell part, which Apple employed in its IIc computer and the 1985 upgrade to its IIe computer.

Furthermore, the R65C02’s superset adds 32 instructions with opcodes that are the same as 32 very different
instructions on the 65816, making the Rockwell R65C02 incompatible with the 65802 and 65816. For this reason, the
R65C02 has been regulated to this appendix. If these additional instructions are disregarded and left unused, the
remaining available instructions correspond to the standard 65C02 instruction set.

This is not to say the additional instructions are without merit. Rockwell’s R65C02 has two additional
operations for manipulating a single zero page bit at a time, Reset Memory Bit (RMB) and Set Memory Bit (SMB), and
two additional operations for testing a single zero page bit and branching if it is clear or set, Branch on Bit Reset (BBR)
and Branch on Bit Set (BBS).All four have eight versions – one for each bit – which are specified by adding a bit
number (0 through 7) to the mnemonic. So there are 32 total additional instructions.

The operand to the bit-manipulating instructions is a zero page address (specified as dp, for “direct page”, in the
following pages to be consistent with the instructions chapter, although the direct page is actually limited to the zero
page). The operand to the bit-testing instructions is a compound operand: a zero page address to test, a comma, and a
nearby label to which to branch (which an assembler turns into a program counter relative offset).

While incompatible with the 65802/65816 family expansion, the Rockwell 65C02’s bit manipulation and testing
instructions can be valuable for control applications, in which single bits are used to store boolean true/false values and
to send signals to external devices.

Western Design Center

19

BBR Branch on Bit Reset

The specified bit in the zero page location specified in the operand is tested. If it is clear (reset), a branch is
taken; if it is set, the instruction immediately following the two-byte BBRx instruction is executed. The bit is specified
by a number (0 through 7) concatenated to the end of the mnemonic.

If the branch is performed, the third byte of the instruction is used as a signed displacement from the program
counter; that is, it is added to the program counter: a positive value (numbers less than or equal to $80; that is, numbers
with the high-order bit clear) results in a branch to a higher location; a negative value (greater than $80, with the high-
order bit set) results in a branch to a lower location. Once the branch address is calculated, the result is loaded into the
program counter, transferring control to that location.

Most assemblers calculate the displacement for you: you must specify as the operand, not the displacement but
rather the label to which you wish to branch. The assembler then calculates the correct offset.

Flags Affected: – – – – – – – –

Codes:

Opcode Available to: # of # of
Addressing Modes: Syntax (hex) 6502 65C02 R65C02 65802 Bytes Cycles
Direct Page / Program Counter Relative BBR0 dp, nearlabel 0F x 3 5
Direct Page / Program Counter Relative BBR1 dp, nearlabel 1F x 3 5
Direct Page / Program Counter Relative BBR2 dp, nearlabel 2F x 3 5
Direct Page / Program Counter Relative BBR3 dp, nearlabel 3F x 3 5
Direct Page / Program Counter Relative BBR4 dp, nearlabel 4F x 3 5
Direct Page / Program Counter Relative BBR5 dp, nearlabel 5F x 3 5
Direct Page / Program Counter Relative BBR6 dp, nearlabel 6F x 3 5
Direct Page / Program Counter Relative BBR7 dp, nearlabel 7F x 3 5

Western Design Center

20

BBS Branch on Bit Set

The specified bit in the zero page location specified in the operand is tested. If it is set, a branch is taken; if it is
clear (reset), the instructions immediately following the two-byte BBSx instruction is executed. The bit is specified by a
number (0 through 7) concatenated to the end of the mnemonic.

If the branch is performed, the third byte of the instruction is used as a signed displacement from the program
counter; that is, it is added to the program counter: a positive value (numbers less than or equal to $80; that is, numbers
with the high order bit clear) results in a branch to a higher location; a negative value (greater than $80, with the high-
order bit set) results in a branch to a lower location. Once the branch address is calculated, the result is loaded into the
program counter, transferring control to that location.

Most assemblers calculate the displacement for you: you must specify as the operand, not the displacement but
rather the label to which you wish to branch. The assembler then calculates the correct offset.

Flags Affected: d – – – – – – –

Codes:

Opcode
 Available to : # of # of

Addressing Mode Syntax (hex) 6502 65C02 R65C02 65802 Bytes
ycles

Direct Page / Program Counter Relative BBS0 dp, nearlabel 8F x 3 5
Direct Page / Program Counter Relative BBS1 dp, nearlabel 9F x 3 5
Direct Page / Program Counter Relative BBS2 dp, nearlabel AF x 3 5
Direct Page / Program Counter Relative BBS3 dp, nearlabel BF x 3 5
Direct Page / Program Counter Relative BBS4 dp, nearlabel CF x 3 5
Direct Page / Program Counter Relative BBS5 dp, nearlabel DF x 3 5
Direct Page / Program Counter Relative BBS6 dp, nearlabel EF x 3 5
Direct Page / Program Counter Relative BBS7 dp, nearlabel FF x 3 5

Western Design Center

21

RMB Reset Memory Bit

Clear the specified bit in the zero page memory location specified in the operand. The bit to clear is specified by
a number (0 through 7) concatenated to the end of the mnemonic.

Flags Affected: – – – – – – – –

Codes:

Opcode Available to: # of # of
Addressing Mode Syntax (hex) 6502 65C02 R65C02 65802 Bytes Cycles
Direct Page RMB0 dp 07 x 2 5
Direct Page RMB1 dp 17 x 2 5
Direct Page RMB2 dp 27 x 2 5
Direct Page RMB3 dp 37 x 2 5
Direct Page RMB4 dp 47 x 2 5
Direct Page RMB5 dp 57 x 2 5
Direct Page RMB6 dp 67 x 2 5
Direct Page RMB7 dp 77 x 2 5

Western Design Center

22

SMB Set Memory Bit

Set the specified bit in the zero page memory location specified in the operand. The bit to set is
specified by a number (0 through 7) concatenated to the end of the mnemonic.

Flags Affected: – – – – – – – –

Codes:

Opcode Available to: # of # of
Addressing Mode Syntax (hex) 6502 65C02 R65C02 65802 Bytes Cycles
Direct Page SMB0 dp 87 x 2 5
Direct Page SMB1 dp 97 x 2 5
Direct Page SMB2 dp A7 x 2 5
Direct Page SMB3 dp B7 x 2 5
Direct Page SMB4 dp C7 x 2 5
Direct Page SMB5 dp D7 x 2 5
Direct Page SMB6 dp E7 x 2 5
Direct Page SMB7 dp F7 x 2 5

Western Design Center

23

D. Instruction Groups
The 65x instructions can be divided into three groups, on the basis of both the types of actions of each

instruction and the addressing modes each can use. The opcodes in the first group and some in the second have similar
bit patterns, the same addressing modes available, and regularity which can make remembering the capabilities of a
particular instruction – or creating a compiler generator – much easier.

Group I instructions are the most commonly used load, store, logic, and arithmetic instructions, and have by far
the most addressing modes available to them. Group II instructions are mostly read-modify-write instructions, such as
increment, decrement, shift, and rotate, which both access and change one and only one register or memory location.

Group III is a catch-all for the remaining instructions, such as index register comparisons and stack operations.

Group I Instructions

The 65x Group I instructions, with their opcode’s bit patterns, are shown in Table D.1. The ‘aaaaa’s are filled
with addressing mode bit patterns – there is one pattern for each addressing mode available to Group I instruction.

Add with Carry to the Accumulator (ADC) 011a aaaa
And the Accumulator (AND) 001a aaaa
Compare the Accumulator (CMP) 110a aaaa
Exclusive Or the Accumulator (EOR) 010a aaaa
Load the Accumulator (LDA) 101a aaaa
Or the Accumulator (ORA) 000a aaaa
Subtract with Borrow from the Accumulator (SBC) 111a aaaa
Store the Accumulator (STA) 100a aaaa

Table D-1 Group I Instructions Opcode Patterns

The 6502 addressing modes available to the Group I instructions have bit patterns that all end in ‘01’. These bit
patterns are found in Table D.2. The exception to this scheme is STA immediate; since it is not possible to use
immediate addressing with a store instruction, its logical opcode 1000 1001 is used by a non-Group-I instruction.

Immediate 0 1001
Direct (Zero) Page 0 0101
Absolute 0 1101
Direct (Zero) Page Indexed by X 1 0101
Absolute Indexed by X 1 1101
Absolute Indexed by Y 1 1001
Direct (Zero) Page Indexed Indirect with X (pre-indexed) 0 0001
Direct (Zero) Page Indirect Indexed with Y (post-indexed) 1 0001

Table D-2 Address Mode Patterns for Group I Instructions

The 65C02 adds one more addressing mode for Group I instructions; it has the only Group I
addressing mode bit pattern to end in a zero:

Direct (Zero) Page Indirect 10010

The 65802 and 65816 add the six addressing modes for Group I instructions found in Table D.3.

Direct Page Indirect Long Indexed with Y (post-indexed long) 1 0111
Direct Page Indirect Long 0 0111
Absolute Long 0 1111
Absolute Long Indexed with X 1 1111
Stack Relative 0 0011
Stack Relative Indirect Indexed with Y 1 0011

Table D-3 65802/65816 Group I Addressing Mode Patterns

Western Design Center

24

Group II Instructions

Group II instructions are an amalgam of mostly read-modify-write instructions with very similar addressing
modes (differing only whether the have accumulator addressing to them on the 6502). The instructions, with their
opcode bit patterns, are listing in Table D.4.

There are either four or five addressing modes available to these instructions on the 6502 – five if the missing
bits are ‘bbc’ rather than just ‘bb’, the fifth addressing mode being accumulator addressing.

Table D.5 shows the five addressing modes with their bit patterns. All three bits in this table are filled into the
‘bbc’ missing bits in Table D.4; only the first two bits of each Table D.5 set are filled into ‘bb’ missing bits in Table
D.4.

Arithmetic Shift Left (ASL) 000b bc10
Decrement (DEC) 110b b110
Increment (INC) 111b b110
Logical Shift Right (LSR) 010b bc10
Rotate Left through Carry (ROL) 001b bc10
Rotate Right through Carry (ROR) 011b bc10
Store Index Register X (STX) 100b b110
Store Index Register Y (STY) 100b b100

Table D-4 Group II Opcode Patterns

Accumulator 0 10
Direct (Zero) Page 0 01
Absolute 0 11
Direct (Zero) Page Indexed by X 1 01
Absolute Indexed by X 1 11

Table D-5 Address Mode Patterns for Group II Instruction

Notice how the four ‘bb1’ addressing modes have the same bit patterns as the first three bits of their
corresponding bit patterns for the Group I instruction addressing mode.

There are a few exceptions.
Absolute indexing is not available for storing either index register. Furthermore, since the register cannot use

itself, the STX instruction can’t use direct page, X; instead, direct page, Y substitutes for this instruction’s direct page,
indexed store.

The two 65C02 instructions to increment and decrement the accumulator do not follow this scheme at all;
giving these instructions that addressing mode clearly was not planned when the 6502 was designed, since their opcodes
were assigned to other instructions. Nor does the 65C02’s STZ (store zero memory) instruction, which uses the main
four addressing modes, follow the scheme, even though it seems clearly to be a Group II instruction of this type. But
four of the five addressing modes of the BIT instruction on the 65C02, 65802, and 65816 (the 6502 has only two
addressing modes for this instruction)-the four ‘bb1’ addressing modes above-follow this scheme (its bit pattern is 001b
b100). It also has an immediate addressing mode, however, which is in no way regular.

Western Design Center

25

Loading the Index Registers

The two index registers can be loaded with regular opcodes:

Load Index Register X (LDX) 101d dd10
Load Index Register Y (LDY) 101d dd00

Available to them are the five addressing modes in table D.6.

Immediate 0 00
Direct Page 0 01
Absolute 0 11
Direct Page Indexed 1 01
Absolute Indexed 1 11

Table D-6 Address Mode Patterns for Load Index Register Instruction

The two indexed modes use the Y index register for indexing when loading the X register and vice versa.

Index Register Compares

The two instructions to compare an index register to memory have three addressing modes available to them.
The instructions are:

Compare Index Register X with Memory (CPX) 1110 ee00
Compare Index Register Y with Memory (CPY) 1100 ee00

Table D.7 lists the three addressing modes available.

Immediate 00
Direct Page 01
Absolute 11

Table D-7 Address Mode Patterns for Compare Index Register Instructions

Test-and-Change-Bits Instructions

The two test-and-change-bits instructions each have two addressing modes that they use in a regular manner.
The two instructions are:

Test and Reset Memory Bits (TRB) 0001 x100
Test and Set Memory Bits (TSB) 0000 x100

The two addressing modes are:

Direct Page x = 0
Absolute x = 1

Western Design Center

26

E. The ASCII Character Set
Low Bit Set: High Bit Set:

Decimal Hex Decimal Hex Character Names
0 00 128 80 Control-@ NUL, null
1 01 129 81 Control-A
2 02 130 82 Control-B
3 03 131 83 Control-C Break
4 04 132 84 Control-D
5 05 133 85 Control-E
6 06 134 86 Control-F
7 07 135 87 Control-G BEL, bell
8 08 136 88 Control-H BS, backspace
9 09 137 89 Control-I HT, horizontal tab

10 0A 138 8A Control-J LF, line feed
11 0B 139 8B Control-K VT, vertical tab
12 0C 140 8C Control-L FF, form feed, Page
13 0D 141 8D Control-M CR, carriage return
14 0E 142 8E Control-N
15 0F 143 8F Control-O
16 10 144 90 Control-P
17 11 145 91 Control-Q XON, resume
18 12 146 92 Control-R
19 13 147 93 Control-S XOFF, screen pause
20 14 148 94 Control-T
21 15 149 95 Control-U
22 16 150 96 Control-V
23 17 151 97 Control-W
24 18 152 98 Control-X CAN, cancel line
25 19 153 99 Control-Y
26 1A 154 9A Control-Z End of file
27 1B 155 9B Control-[ESC, escape
28 1C 156 9C Control-\
29 1D 157 9D Control-]
30 1E 158 9E Control-^
31 1F 159 9F Control-_
32 20 160 A0 Space
33 21 161 A1 ! Exclamation point
34 22 162 A2 " Quote
35 23 163 A3 # Pound sign
36 24 164 A4 $ Dollar sign
37 25 165 A5 % Percent sign
38 26 166 A6 & Ampersand
39 27 167 A7 ' Apostrophe
40 28 168 A8 (Left parenthesis
41 29 169 A9) Right parenthesis
42 2A 170 AA * Asterisk
43 2B 171 AB + Plus sign
44 2C 172 AC , Comma
45 2D 173 AD - Minus sign, dash
46 2E 174 AE . Period
47 2F 175 AF \ Backlash
48 30 176 B0 0
49 31 177 B1 1
50 32 178 B2 2
51 33 179 B3 3
52 34 180 B4 4
53 35 181 B5 5
54 36 182 B6 6

Western Design Center

27

Low Bit Set: High Bit Set:
Decimal Hex Decimal Hex Character Names
55 37 183 B7 7
56 38 184 B8 8
57 39 185 B9 9
58 3A 186 BA : Colon
59 3B 187 BB ; Semicolon
60 3C 188 BC < Less than
61 3D 189 BD = Equal
62 3E 190 BE > Greater than
63 3F 191 BF ? Question mark
64 40 192 C0 @ At sign
65 41 193 C1 A
66 42 194 C2 B
67 43 195 C3 C
68 44 196 C4 D
69 45 197 C5 E
70 46 198 C6 F
71 47 199 C7 G
72 48 200 C8 H
73 49 201 C9 I
74 4A 202 CA J
75 4B 203 CB K
76 4C 204 CC L
77 4D 205 CD M
78 4E 206 CE N
79 4F 207 CF O
80 50 208 D0 P
81 51 209 D1 Q
82 52 210 D2 R
83 53 211 D3 S
84 54 212 D4 T
85 55 213 D5 U
86 56 214 D6 V
87 57 215 D7 W
88 58 216 D8 X
89 59 217 D9 Y
90 5A 218 DA Z
91 5B 219 DB [Left bracket
92 5C 220 DC \ Backlash
93 5D 221 DD] Right bracket
94 5E 222 DE ^ Caret
95 5F 223 DF _ Underscore
96 60 224 E0 ` Accent grave
97 61 225 E1 a
98 62 226 E2 b
99 63 227 E3 c

100 64 228 E4 d
101 65 229 E5 e
102 66 230 E6 f
103 67 231 E7 g
104 68 232 E8 h
105 69 233 E9 i
106 6A 234 EA j
107 6B 235 EB k
108 6C 236 EC l
109 6D 237 ED m

Western Design Center

28

Low Bit Set: High Bit Set:
Decimal Hex Decimal Hex Character Names
110 6E 238 EE n
111 6F 239 EF o
112 70 240 F0 p
113 71 241 F1 q
114 72 242 F2 r
115 73 243 F3 s
116 74 244 F4 t
117 75 245 F5 u
118 76 246 F6 v
119 77 247 F7 w
120 78 248 F8 x
121 79 249 F9 y
122 7A 250 FA z
123 7B 251 FB { Left brace
124 7C 252 FC | Vertical line
125 7D 253 FD } Right brace
126 7E 254 FE ~ Tilde
127 7F 255 FF DEL delete, rubout

Western Design Center

29

Low Bit Set: High Bit Set:
Decimal Hex Decimal Hex Character Names

0 00 128 80 Control-@ NUL, null
1 01 129 81 Control-A
2 02 130 82 Control-B
3 03 131 83 Control-C Break
4 04 132 84 Control-D
5 05 133 85 Control-E
6 06 134 86 Control-F
7 07 135 87 Control-G BEL, bell
8 08 136 88 Control-H BS, backspace
9 09 137 89 Control-I HT, horizontal tab

10 0A 138 8A Control-J LF, line feed
11 0B 139 8B Control-K VT, vertical tab
12 0C 140 8C Control-L FF, form feed, Page
13 0D 141 8D Control-M CR, carriage return
14 0E 142 8E Control-N
15 0F 143 8F Control-O
16 10 144 90 Control-P
17 11 145 91 Control-Q XON, resume
18 12 146 92 Control-R
19 13 147 93 Control-S XOFF, screen pause
20 14 148 94 Control-T
21 15 149 95 Control-U
22 16 150 96 Control-V
23 17 151 97 Control-W
24 18 152 98 Control-X CAN, cancel line
25 19 153 99 Control-Y
26 1A 154 9A Control-Z End of file
27 1B 155 9B Control-[ESC, escape
28 1C 156 9C Control-\
29 1D 157 9D Control-]
30 1E 158 9E Control-^
31 1F 159 9F Control-_
32 20 160 A0 Space
33 21 161 A1 ! Exclamation point
34 22 162 A2 " Quote
35 23 163 A3 # Pound sign
36 24 164 A4 $ Dollar sign
37 25 165 A5 % Percent sign
38 26 166 A6 & Ampersand
39 27 167 A7 ' Apostrophe
40 28 168 A8 (Left parenthesis
41 29 169 A9) Right parenthesis
42 2A 170 AA * Asterisk
43 2B 171 AB + Plus sign
44 2C 172 AC , Comma
45 2D 173 AD - Minus sign, dash
46 2E 174 AE . Period
47 2F 175 AF \ Backlash
48 30 176 B0 0
49 31 177 B1 1
50 32 178 B2 2
51 33 179 B3 3
52 34 180 B4 4
53 35 181 B5 5
54 36 182 B6 6

Western Design Center

30

Low Bit Set: High Bit Set:
Decimal Hex Decimal Hex Character Names
55 37 183 B7 7
56 38 184 B8 8
57 39 185 B9 9
58 3A 186 BA : Colon
59 3B 187 BB ; Semicolon
60 3C 188 BC < Less than
61 3D 189 BD = Equal
62 3E 190 BE > Greater than
63 3F 191 BF ? Question mark
64 40 192 C0 @ At sign
65 41 193 C1 A
66 42 194 C2 B
67 43 195 C3 C
68 44 196 C4 D
69 45 197 C5 E
70 46 198 C6 F
71 47 199 C7 G
72 48 200 C8 H
73 49 201 C9 I
74 4A 202 CA J
75 4B 203 CB K
76 4C 204 CC L
77 4D 205 CD M
78 4E 206 CE N
79 4F 207 CF O
80 50 208 D0 P
81 51 209 D1 Q
82 52 210 D2 R
83 53 211 D3 S
84 54 212 D4 T
85 55 213 D5 U
86 56 214 D6 V
87 57 215 D7 W
88 58 216 D8 X
89 59 217 D9 Y
90 5A 218 DA Z
91 5B 219 DB [Left bracket
92 5C 220 DC \ Backlash
93 5D 221 DD] Right bracket
94 5E 222 DE ^ Caret
95 5F 223 DF _ Underscore
96 60 224 E0 ` Accent grave
97 61 225 E1 a
98 62 226 E2 b
99 63 227 E3 c

100 64 228 E4 d
101 65 229 E5 e
102 66 230 E6 f
103 67 231 E7 g
104 68 232 E8 h
105 69 233 E9 i
106 6A 234 EA j
107 6B 235 EB k
108 6C 236 EC l
109 6D 237 ED m

Western Design Center

31

Low Bit Set: High Bit Set:
Decimal Hex Decimal Hex Character Names
110 6E 238 EE n
111 6F 239 EF o
112 70 240 F0 p
113 71 241 F1 q
114 72 242 F2 r
115 73 243 F3 s
116 74 244 F4 t
117 75 245 F5 u
118 76 246 F6 v
119 77 247 F7 w
120 78 248 F8 x
121 79 249 F9 y
122 7A 250 FA z
123 7B 251 FB { Left brace
124 7C 252 FC | Vertical line
125 7D 253 FD } Right brace
126 7E 254 FE ~ Tilde
127 7F 255 FF DEL delete, rubout

