1
0
mirror of https://github.com/dschmenk/PLASMA.git synced 2025-02-15 13:33:41 +00:00

Initial Import from Lawless Legends

This commit is contained in:
dschmenk 2014-05-26 21:02:26 -07:00
commit 45bd973607
27 changed files with 8899 additions and 0 deletions

400
README.md Normal file
View File

@ -0,0 +1,400 @@
#PLASMA
##Introduction
PLASMA is a combination of virtual machine and assembler/compiler matched closely to the 6502 architecture. It is an attempt to satisfy a few challenges surrounding code size, efficient execution, small runtime and fast just-in-time compilation. By architecting a unique bytecode that maps nearly one-to-one to the higher level representation, the compiler/assembler can be very simple and execute quickly on the Apple II for a self-hosted environment. A modular approach provides for incremental development and code reuse. Different projects have led to the architecture of PLASMA, most notably Apple Pascal, FORTH, and my own Java VM for the 6502, VM02. Each has tried to map a generic VM to the 6502 with varying levels of success. Apple Pascal, based on the USCD Pascal using the p-code interpreter, was a very powerful system and ran fast enough on the Apple II to be interactive but didn't win any speed contests. FORTH was the poster child for efficiency and obtuse syntax. Commonly referred to as a write only language, it was difficult to come up to speed as a developer, especially when using other's code. My own project in creating a Java VM for the Apple II uncovered the folly of shoehorning a large system into something never intended to run 32 bit applications.
##Low Level Implementation
Both the Pascal and Java VMs used a bytecode to hide the underlying CPU architecture and offer platform agnostic application execution. The application and tool chains were easily moved from platform to platform by simply writing a bytecode interpreter and small runtime to translate the higher level constructs to the underlying hardware. The performance of the system was dependent on the actual hardware and efficiency of the interpreter. Just-in-time compilation wasn't really an option on small, 8 bit systems. FORTH, on the other hand, was usually implemented as a threaded interpreter. A threaded interpreter will use the address of functions to call as the code stream instead of a bytecode, eliminating one level of indirection with a slight increase in code size. The threaded approach can be made faster at the expense of another slight increase in size by inserting an actual Jump SubRoutine opcode before each address, thus removing the interpreter's inner loop altogether.
All three systems were implemented using stack architecture. Pascal and Java were meant to be compiled high level languages, using a stack machine as a simple compilation target. FORTH was meant to be written directly as a stack oriented language, similar to RPN on HP calculators. The 6502 is a challenging target due to it's unusual architecture so writing a bytecode interpreter for Pascal and Java results in some inefficiencies and limitations. FORTH's inner interpreter loop on the 6502 tends to be less efficient than most other CPUs. Another difference is how each system creates and manipulates it's stack. Pascal and Java use the 6502 hardware stack for all stack operations. Unfortunately the 6502 stack is hard-limited to 256 bytes. However, in normal usage this isn't too much of a problem as the compilers don't put undue pressure on the stack size by keeping most values in global or local variables. FORTH creates a small stack using a portion of the 6502's zero page, a 256 byte area of low memory that can be accessed with only a byte address and indexed using either of the X or Y registers. With zero page, the X register can be used as an indexed, indirect address and the Y register can be used as an indirect, indexed address.
##A New Approach
PLASMA takes an approach that uses the best of all the above implementations to create a unique, powerful and efficient platform for developing new applications on the Apple II. One goal was to create a very small VM runtime, bytecode interpreter, and module loader. The decision was made early on to implement a stack based architecture duplicating the approach taken by FORTH. Space in the zero page would be assigned to a 16 bit, 16 element evaluation stack, indexed by the X register.
A simple compiler was written so that higher level constructs could be used and global/local variables would hold values instead of using clever stack manipulation. Function/procedure frames would allow for local variables, but with a limitation - the frame could be no larger than 256 bytes. By enforcing this limitation, the function frame could easily be accessed through a frame pointer value in zero page, indexed by the Y register. The call stack uses the 6502's hardware stack resulting in the same 256 byte limitation imposed by the hardware. However, this limitation could be lifted by extending the call sequence to save and restore the return address in the function frame. This was not done initially for performance reasons and simplicity of implementation. Even with these limitations, recursive functions can be effectively implemented.
One of the goals of PLASMA was to allow for intermixing of functions implemented as bytecode, or native code. Taking a page from the FORTH play book, a function call is implemented as a native subroutine call to an address. If the function is in bytecode, the first thing it does is call back into the interpreter to execute the following bytecode (or a pointer to the bytecode). Function call parameters are pushed onto the evaluation stack in order they are written. The first operation inside of the function call is to pull the parameters off the evaluation stack and put them in local frame storage. Function callers and callees must agree on the number of parameters to avoid stack underflow/overflow. All functions return a value on the evaluation stack regardless of it being used or not.
The bytecode interpreter is capable of executing code in main memory or banked memory, increasing the available code space and relieving pressure on the limited 48K of data memory. In the Apple IIe with 64K expansion card, the IIc, and the IIgs, there is an auxilliary memory that swaps in and out for the main memory in chunks. The interpreter resides in the Language Card memory area that can easily swap in and out the $0200 to $BFFF memory bank. The module loader will move the bytecode into the auxilliary memory and fix up the entrypoints to reflect the bytecode location.
Lastly, PLASMA is not a typed language. Just like assembly, any value can represent a character, integer, or address. It's the programmer's job to know the type. Only bytes and words are known to PLASMA. Bytes are unsigned 8 bit quantities, words are signed 16 bit quantities. All stack operations involve 16 bits of precision.
The PLASMA low level operations are defined as:
| OPCODE | Description
|:------:|-----------------------------------
| ZERO | push zero on the stack
| ADD | add top two values, leave result on top
| SUB | subtract next from top from top, leave result on top
| MUL | multiply two topmost stack values, leave result on top
| DIV | divide next from top by top, leave result on top
| MOD | divide next from top by top, leave remainder on top
| INCR | increment top of stack
| DECR | decrement top of stack
| NEG | negate top of stack
| COMP | compliment top of stack
| AND | bit wise AND top two values, leave result on top
| IOR | bit wise inclusive OR top two values, leave result on top
| XOR | bit wise exclusive OR top two values, leave result on top
| LOR | logical OR top two values, leave result on top
| LAND | logical AND top two values, leave result on top
| SHL | shift left next from top by top, leave result on top
| SHR | shift right next from top by top, leave result on top
| IDXB | add top of stack to next from top, leave result on top (ADD)
| IDXW | add 2X top of stack to next from top, leave result on top
| NOT | logical NOT of top of stack
| LA | load address
| LLA | load local address from frame offset
| CB | constant byte
| CW | constant word
| SWAP | swap two topmost stack values
| DROP | drop top stack value
| DUP | duplicate top stack value
| PUSH | push top to call stack
| PULL | pull from call stack
| BRGT | branch next from top greater than top
| BRLT | branch next from top less than top
| BREQ | branch next from top equal to top
| BRNE | branch next from top not equal to top
| ISEQ | if next from top is equal to top, set top true
| ISNE | if next from top is not equal to top, set top true
| ISGT | if next from top is greater than top, set top true
| ISLT | if next from top is less than top, set top true
| ISGE | if next from top is greater than or equal to top, set top true
| ISLE | if next from top is less than or equal to top, set top true
| BRFLS | branch if top of stack is zero
| BRTRU | branch if top of stack is non-zero
| BRNCH | branch to address
| CALL | sub routine call with stack parameters
| ICAL | sub routine call to indirect address on stack top with stack parameters
| ENTER | allocate frame size and copy stack parameters to local frame
| LEAVE | deallocate frame and return from sub routine call
| RET | return from sub routine call
| LB | load byte from top of stack address
| LW | load word from top of stack address
| LLB | load byte from frame offset
| LLW | load word from frame offset
| LAB | load byte from absolute address
| LAW | load word from absolute address
| SB | store top of stack byte into next from top address
| SW | store top of stack word into next from top address
| SLB | store top of stack into local byte at frame offset
| SLW | store top of stack into local word at frame offset
| SAB | store top of stack into byte at absolute address
| SAW | store top of stack into word at absolute address
| DLB | duplicate top of stack into local byte at frame offset
| DLW | duplicate top of stack into local word at frame offset
| DAB | duplicate top of stack into byte at absolute address
| DAW | duplicate top of stack into word at absolute address
##PLASMA Compiler/Assembler
Although the low-level operations could easily by coded by hand, they were chosen to be an easy target for a simple compiler. Think along the lines of an advanced assembler or stripped down C compiler ( C--). Taking concepts from BASIC, Pascal, C and assembler, the PLASMA compiler is simple yet expressive. The syntax is line oriented; there is no statement delimiter except newline.
Comments are allowed throughout the source, starting with the ; character. The rest of the line is ignored.
```
; Data and text buffer constants
```
Hexadecimal constants are preceded with a $ to identify them as such.
```
$C030 ; Speaker address
```
###Constants, Variables and Functions
The source code of a PLASMA module first defines imports, constants, variables and data. Constants must be initialized with a value. Variables can have sizes associated with them to declare storage space. Data can be declared with or without a variable name associated with it. Arrays, tables, strings and any predeclared data can be created and accessed in multiple ways.
```
;
; Import standard library functions.
;
import stdlib
predef putc, puts, getc, gets, cls, memcpy, memset, memclr
end
;
; Constants used for hardware and flags
;
const speaker = $C030
const changed = 1
const insmode = 2
;
; Array declaration of screen row addresses
;
word txtscrn[] = $0400,$0480,$0500,$0580,$0600,$0680,$0700,$0780
word = $0428,$04A8,$0528,$05A8,$0628,$06A8,$0728,$07A8
word = $0450,$04D0,$0550,$05D0,$0650,$06D0,$0750,$07D0
;
; Misc global variables
;
byte flags = 0
word numlines = 0
byte cursx, cursy
word cursrow, scrntop, cursptr
```
Variables can have optional brackets; empty brackets dont reserve any space for the variable but are useful as a label for data that is defined following the variable. Brackets with a constant inside defines a minimum size reserved for the variable. Any data following the variable will take at least the amount of reserved space, but potentially more.
Strings are defined like Pascal strings, a length byte followed by the string characters so they can be a maximum of 255 characters long. Strings can only appear in the variable definitions of a module. String constants cant be used in expressions or statements.
```
;
; An initialized string of 64 characters
;
byte txtfile[64] = "UNTITLED"
```
Functions are defined after all constants, variables and data. Functions can be forward declared with a *predef* type in the constant and variable declarations. Functions have optional parameters and always return a value. Functions can have their own variable declarations. However, unlike the global declarations, no data can be predeclared, only storage space. There is also a limit of 254 bytes of local storage. Each parameter takes two bytes of local storage, plus two bytes for the previous frame pointer. If a function has no parameters or local variables, no local frame will be created, improving performance. A function can specify a value to return. If no return value is specified, a default of 0 will be returned.
After functions are defined, the main code for the module follows. The main code will be executed as soon as the module is loaded. For library modules, this is a good place to do any runtime initialization, before any of the exported functions are called. The last statement in the module must be done, or else a compile error is issued.
There are four basic types of data that can be manipulated: constants, variables, addresses, and functions. Memory can only be read or written as either a byte or a word. Bytes are unsigned 8 bit quantities, words are signed 16 bit quantities. Everything on the evaluation stack is treated as a word. Other than that, any value can be treated as a pointer, address, function, character, integer, etc. There are convenience operations in PLASMA to easily manipulate addresses and expressions as pointers, arrays, structures, functions, or combinations thereof. If a variable is declared as a byte, it can be accessed as a simple, single dimension byte array by using brackets to indicate the offset. Any expression can calculate the indexed offset. A word variable can be accessed as a word array in the same fashion. In order to access expressions or constants as arrays, a type identifier has to be inserted before the brackets. a . character denotes a byte type, a : character denotes a word type. Along with brackets to calculate an indexed offset, a constant can be used after the . or : and will be added to the base address. The constant can be a defined const to allow for structure style syntax. If the offset is a known constant, using the constant offset is a much more efficient way to address the elements over an array index. Multidimensional arrays are treated as arrays of array pointers. Multiple brackets can follow the . or : type identifier, but all but the last index will be treated as a pointer to an array.
```
word hgrscan[] = $2000,$2400,$2800,$2C00,$3000,$3400,$3800,$3C00
word = $2080,$2480,$2880,$2C80,$3080,$3480,$3880,$3C80
hgrscan:[yscan][xscan] = fillval
```
Values can be treated as pointers by preceding them with a ^ for byte pointers, * for word pointers.
```
strlen = ^srcstr
```
Addresses of variables and functions can be taken with a preceding @, address-of operator. Parenthesis can surround an expression to be used as a pointer, but not address-of.
Functions can have optional parameters when called and local variables. Defined functions without parameters can be called simply, without any paranthesis.
```
def drawscrn(topline, leftpos)
byte i
for i = 0 to 23
drawline(textbuff[i + topline], leftpos)
next
end
def redraw
cursoff
drawscrn(scrntop, scrnleft)
curson
end
redraw
```
Functions with parameters or expressions to be used as a function address to call must use parenthesis, even if empty.
```
predef keyin2plus
word keyin
byte key
keyin = @keyin2plus ; address-of keyin2plus function
key = keyin()
```
Expressions and Statements
Expressions are algebraic. Data is free-form, but all operations on the evaluation stack use 16 bits of precision with the exception of byte load and stores. A stand-alone expression will be evaluated and read from or called. This allows for easy access to the Apples soft switches and other memory mapped hardware. The value of the expression is dropped.
```
const speaker=$C030
^speaker ; click speaker
close(refnum)
```
More complex expressions can be built up using algebraic unary and binary operations.
| OP | Unary Operation |
|:----:|---------------------|
| ^ | byte pointer
| * | word pointer
| @ | address of
| - | negate
| ~ | bitwise compliment
| NOT | logical NOT
| OP | Binary Operation |
|:----:|----------------------|
| * | multiply
| / | divide
| % | modulo
| + | add
| - | subtract
| << | shift left
| >> | shift right
| & | bitwise AND
| ^ | bitwise XOR
| &#124; | bitwise OR
| == | equals
| <> | not equal
| >= | greater than or equal
| > | greater than
| <= | less than or equal
| < | less than
| OR | logical OR
| AND | logical AND
Statements are built up from expressions and control flow keywords. Simplicity of syntax took precedence over flexibility and complexity. The simplest statement is the basic assignment using =.
```
byte numchars
numchars = 0
```
Expressions can be built up with constants, variables, function calls, addresses, and pointers/arrays. Comparison operators evaluate to 0 or -1 instead of the more traditional 0 or 1. The use of -1 allows binary operations to be applied to other non-zero values and still retain a non-zero result. Any conditional tests check only for zero and non-zero values.
Control structures affect the flow of control through the program. There are conditional and looping constructs. The most widely used is probably the if/elsif/else/fin construct.
```
if ^pushbttn3 < 128
if key == $C0
key = $D0 ; P
elsif key == $DD
key = $CD ; M
elsif key == $DE
key = $CE ; N
fin
else
key = key | $E0
fin
```
The when/is/otherwise/wend statement is similar to the if/elsif/else/fin construct except that it is more efficient. It selects one path based on the evaluated expressions, then merges the code path back together at the end. However only the 'when' value is compared against a list of expressions. The expressions do not need to be constants, they can be any valid expression. The list of expressions is evaluated in order, so for efficiency sake, place the most common cases earlier in the list.
```
when keypressed
is keyarrowup
cursup
is keyarrowdown
cursdown
is keyarrowleft
cursleft
is keyarrowright
cursright
is keyctrlx
cutline
is keyctrlv
pasteline
is keyescape
cursoff
cmdmode
redraw
otherwise
bell
wend
```
The most common looping statement is the for/next construct.
```
for xscan = 0 to 19
(scanptr):[xscan] = val
next
```
The for/next statement will efficiently increment or decrement a variable form the starting value to the ending value. The increment/decrement amount can be set with the step option after the ending value; the default is one. If the ending value is less than the starting value, use downto instead of to to progress in the negative direction. Only use positive step values. The to or downto will add or subtract the step value appropriately.
```
for i = heapmapsz - 1 downto 0
if sheapmap.[i] <> $FF
mapmask = szmask
fin
next
```
while/loop statements will continue looping as long as the while expression is non-zero.
```
while !(mask & 1)
addr = addr + 16
mask = mask >> 1
loop
```
Lastly, the repeat/until statement will continue looping as long as the until expression is zero.
```
repeat
txtbuf = read(refnum, @txtbuf + 1, maxlnlen)
numlines = numlines + 1
until txtbuf == 0 or numlines == maxlines
```
###Runtime
PLASMA includes a very minimal runtime that nevertheless provides a great deal of functionality to the system. Two system calls are provided to access native 6502 routines (usually in ROM) and ProDOS.
romcall(aReg, xReg, yReg, statusReg, addr) returns a pointer to a four byte structure containing the A,X,Y and STATUS register results.
```
const xreg = 1
const getlin = $FD6A
numchars = (romcall(0, 0, 0, 0, getlin)).xreg ; return char count in X reg
```
syscall(cmd, params) calls ProDOS, returning the status value.
```
def read(refnum, buff, len)
byte params[8]
params.0 = 4
params.1 = refnum
params:2 = buff
params:4 = len
perr = syscall($CA, @params)
return params:6
end
```
putc(char), puts(string), home, gotoxy(x,y), getc() and gets() are other handy utility routines for interacting with the console.
```
putc('.')
byte okstr[] = "OK"
puts(@okstr)
```
memset(addr, len, val) will fill memory with a 16 bit value. memcpy(dstaddr, srcaddr, len) will copy memory from one address to another, taking care to copy in the proper direction.
```
byte nullstr[] = ""
memset(strlinbuf, maxfill * 2, @nullstr) ; fill line buff with pointer to null string
memcpy(scrnptr, strptr + ofst + 1, numchars)
```
##Implementation Details
###The Original PLASMA
The original design concept was to create an efficient, flexible, and expressive environment for building applications directly on the Apple II. Choosing a stack based architecture was easy after much experience with other stack based implementations. It also makes the compiler simple to implement. The first take on the stack architecture was to make it a very strict stack architecture in that everything had to be on the stack. The only opcode with operands was the CONSTANT opcode. This allowed for a very small bytecode interpreter and a very easy compile target. However, only when adding an opcode with operands that would greatly improved performance, native code generation or code size was it done. The opcode table grew slowly over time but still retains a small runtime interpreter with good native code density.
The VM was constructed such that code generation could ouput native 6502 code, threaded code into the opcode functions, or interpreted bytecodes. This gave a level of control over speed vs memory.
###The Lawless Legends PLASMA
This version of PLASMA has dispensed with the native/threaded/bytecode code generation from the original version to focus on code density and the ability to interpret bytecode from AUX memory, should it be available. By focussing on the bytecode interpreter, certain optimizations were implemented that weren't posssible when allowing for threaded/native code; the interpreted bytecode is now about the same performance as the directly threaded code.
Dynamically loadable modules, a backward compatible extension to the .REL format introduced by EDASM, is the new, main feature for this version of PLASMA. A game like Lawless Legends will push the capabilities of the Apple II well beyond anything before it. A powerful OS + language + VM environment is required to achieve the goals set out.
## References
PLASMA User Manual: https://github.com/badvision/lawless-legends/blob/master/Docs/Tutorials/PLASMA/User%20Manual.md
B Programming Language User Manual http://cm.bell-labs.com/cm/cs/who/dmr/kbman.html
FORTH http://en.wikipedia.org/wiki/Forth_(programming_language)
UCSD Pascal http://wiki.freepascal.org/UCSD_Pascal
p-code https://www.princeton.edu/~achaney/tmve/wiki100k/docs/P-code_machine.html
VM02: Apple II Java VM http://sourceforge.net/projects/vm02/
Threaded code http://en.wikipedia.org/wiki/Threaded_code

497
User Manual.md Normal file
View File

@ -0,0 +1,497 @@
# PLASMA Programming User Manual
## ( Proto Language AsSeMbler for Apple)
## Introduction
PLASMA is a medium level programming language targetting the 8 bit 6502 processor. Historically, there were simple languages developed in the early history of computers that improved on the tedium of assembly language programming while still being low level enough for system coding. Languages like B, FORTH, and PLASMA fall into this category. The following will take you through the process of writing, building and running a PLASMA module.
### PLASMA Modules
To keep development compartmentalized and easily managed, PLASMA uses relatively small, dynamically loaded and linked modules. The module format extends the .REL filetype originally defined by the EDASM assembler from the DOS/ProDOS Toolkit from Apple Computer, Inc. PLASMA extends the file format through a backwards compatible extension that the PLASMA loader recognizes to locate the PLASMA bytecode and provide for advanced dynamic loading of module dependencies.
### Obligatory 'Hello World'
To start things off, here is the standard introductory program:
```
import stdlib
predef puts
end
byte hello[] = "Hello, world.\n"
puts(@hello)
done
```
Three tools are required to build and run this program: **plasm**, **acme**, and **plvm**. The PLASMA compiler, **plasm**, will convert the PLASMA source code (usually with an extension of .pla) into an assembly language source file. **acme**, the portable 6502 assembler, will convert the assembly source into a binary ready for loading. To execute the module, the PLASMA portable VM, **plvm**, can load and interpret the bytecode. The same binary can be loaded onto the target platform and run there with the appropriate VM. On Linux/Unix from lawless-legends/PLASMA/src, the steps would be entered as:
```
./plasm -AM < hello.pla > hello.a
acme --setpc 4096 -o HELLO.REL hello.a
./plvm HELLO.REL
```
The computer will respond with:
```
Load module HELLO.REL
Hello, world.
```
A couple of things to note: **plasm** only accepts input from stdin and output to stdout. To build **acme** compatible module source, tha '-AM' flags must be passed in. The **acme** assembler needs the --setpc 4096 to assemble the module at the proper address, and the -o option sets the output file. The makefile in the lawless-legends/PLASMA/src directory has automated this process. Enter:
```
make hello
```
for the **make** program to build all the dependencies and run the module.
## Organization of a PLASMA Source File
### Character Case
All identifiers and reserved words are case insensitive. Case is only significant inside character constants and strings. Imported and exported symbols are always promoted to upper case when resolved. Because some Apple IIs only work easily with uppercase, the eases the chance of mismatched symbol names.
### Comments
Comments are allowed throughout a PLASMA source file. The format follows that of an assembler: they begin with a `;` and comment out the rest of the line:
```
; This is a comment, the rest of this line is ignored
```
### Declarations
The beginning of the source file is the best place for certain declarations. This will help when reading others' code as well as returning to your own after a time.
#### Module Dependencies
Module dependencies will direct the loader to make sure these modules are loaded first, thus resolving any outstanding references. A module dependency is declared with the `import` statement block with predefined function and data definitions. The `import` block is completed with an `end`. An example:
```
import stdlib
const reshgr1 = $0004
predef putc, puts, getc, gets, cls, gotoxy
end
import testlib
predef puti
byte testdata, teststring
word testarray
end
```
The `predef` pre-defines functions that can be called throughout the module. The data declarations, `byte` and `word` will refer to data in those modules. `const` can appear in an `import` block, although not required. It does keep values associated with the imported module in a well-contained block for readability and useful with pre-processor file inclusion. Case is not significant for either the module name nor the pre-defined function/data labels. They are all converted to uppercase with 16 characters significant when the loader resolves them.
#### Constant Declarations
Constants help with the readability of source code where hard-coded numbers might not be very descriptive.
```
const MACHID = $BF98
const speaker = $C030
const bufflen = 2048
```
These constants can be used in expressions just like a variable name.
#### Predefined Functions
Sometimes a function needs to be referenced before it is defined. The `predef` declaration reserves the label for a function. The `import` declaration block also uses the `predef` declaration to reserve an external function. Outside of an `import` block, `predef` will only predefine a function that must be declared later in the source file, otherwise an error will occur.
```
predef exec_file, mydef
```
#### Global Data & Variable Declarations
One of the most powerful features in PLASMA is the flexible data declarations. Data must be defined after all the `import` declarations and before any function definitions, `asm` or `def`. Global labels and data can be defined in multiple ways, and exported for inclusion in other modules. Data can be initialized with constant values, addresses, calculated values (must resolve to a constant), and addresses from imported modules. Here is an exeample using the `predef` line from the previous examples to export an initialized array of 10 function pointer elements (2 defined + null delimiter):
```
export word myfuncs[10] = @exec_file, @mydef, $0000
```
See the section on arrays for more information.
#### Native Functions
An advanced feature of PLASMA is the ability to write functions in native assembly language. This is a very advanced topic that is covered more in-depth in the Advanced Topics section.
#### Function Definitions
Function definitions **must** come after all other declarations. Once a function definition is written, no other global declarations are allowed. Function definitions can be `export`ed for inclusion in other modules. Functions can take parameters, passed on the evaluation stack, then copied to the local frame for easy access. Note: there is no mechanism to ensure caller and callee agrre on the number of parameters. Historically, programmers have used Hungarian Notation (http://en.wikipedia.org/wiki/Hungarian_notation) to embedd the parameter number and type in the function name itself. This is a notational aid: the compiler enforces nothing.
Function definitions are completed with the `end` statement. All definitions return a value, even if not specified in the source. A return value of zero will be inserted by the compiler at the `end` of a definition (or a `return` statement without a value).
#### Module Initialization Function
After all the function definitions are complete, an optional module initiialization routine follows. This is an un-named defintion an is written in-line without a definition declaration. As such, it doesn't have parameters or local variables. Function definitions can be called from within the initialization code.
For libraries or class modules, the initialization routine can perform any up-front work needed before the module is called. For program modules, the initialization routine is the "main" routine, called after all the other module dependencies are loaded and initialized.
A return value is system specific. The default of zero should mean "no error". Negative values should mean "error", and positive values can instruct the system to do extra work, perhaps leaving the module in memory (terminate and stay resident).
#### Exported Declarations
Data and function labels can be exported so other modules may access this modules data and code. By prepending `export` to the data or functions declaration, the label will become available to the loader for inter-module resolution. Exported labels are converted to uppercase with 16 significant characters. Although the label will have to match the local version, external modules will match the case-insignificant, short version. Thus, "ThisIsAVeryLongLabelName" would be exported as: "THISISAVERYLONGL".
```
export def plot(x, y)
romcall(y, 0, x, 0, $F800)
end
```
#### Module Done
The final declaration of a module source file is the `done` statement. This declares the end of the source file. Anything following this statement is ignored.
### m4 Pre-Processor
The m4 pre-processor can be very helpful when managing module imports and macro facilities. The easiest way to use the pre-processor is to write a module import header for each library module. Any module that depends on a given library can `include()` the shared header file. See the GNU m4 documentation for more information: https://www.gnu.org/software/m4/manual/
## Stacks
The basic architecture of PLASMA relies on different stack based FIFO data structures. The stacks aren't directly manipulated from PLASMA, but almost every PLASMA operation involves one or more of the stacks. A stack architecture is a very flexible and convenient way to manage an interpreted language, even if it isn't the highest performance.
### Call Stack
The call stack, where function return addresses are saved, is implemented using the hardware call stack of the CPU. This makes for a fast and efficient implementation of function call/return.
### Local Frame Stack
Any function definition that involves parameters or local variables builds a local frame to contain the variables. Often called automatic variables, they only persist during the lifetime of the function. They are a very powerful tool when implementing recursive algorithms. PLASMA puts a limitation of 256 bytes for the size of the frame (2 bytes reserved for previous frame pointer, 254 bytes for local variables), due to the nature of the 6502 CPU (8 bit index register). With careful planning, this shouldn't be too constraining.
### Evaluation Stack
All temporary values are loaded and manipulated on the PLASMA evaluation stack. This is a small (16 element) stack implemeted in high performance memory/registers of the host CPU. Parameters to functions are passed on the evaluation stack, then moved to local variables for named reference inside the funtion.
## Data Types
PLASMA only really defines two data types: `byte`, `word`. All operations take place on word sized quantities, with the exception of loads and stores to byte sized addresses. The interpretation of a value can be an interger, an address, or anything that fits in 16 bits. There are a number of address operators to identify how an address value is to be interpreted.
### Decimal and Hexadecimal Numbers
Numbers can be represented in either decimal (base 10), or hexadecimal (base 16). Values beginning with a `$` will be parsed as hexadecimal, in keeping with 6502 assembler syntax.
### Character and String Literals
A character literal, represented by a single character or an escaped character enclosed in single quotes `'`, can be used wherever a number is used. String literals, a character sequence enclosed in double quotes `"`, can only appear in a data definition. A length byte will be calculated and prepended to the character data. This is the Pascal style of string definition used throughout PLASMA and ProDOS. When referencing the string, it's address is used:
```
char mystring[] = "This is my string; I am very proud of it.\n"
puts(@mystring)
```
Excaped characters, like the `\n` above are replaces with the Carriage Return character. The list of escaped characters is:
| Escaped Char | ASCII Value
|:------------:|------------
| \n | LF
| \t | TAB
| \r | CR
| \\\\ | \
| \\0 | NUL
### Words
Words, 16 bit signed values, are the native sized quanta of PLASMA. All calculations, parameters, and return values are words.
### Bytes
Bytes are unsigned, 8 bit values, stored at an address. Bytes cannot be manipulated as bytes, but are promoted to words as soon as they are read onto the evaluation stack. When written to a byte addres, the low order byte of a word is used.
### Addresses
Words can represent many things in PLASMA, including addresses. PLASMA uses a 16 bit address space for data and function entrypoints. There are many operators in PLASMA to help with address calculation and access. Due to the signed implementation of word in PLASMA, the Standard Library has some unsigned comparison functions to help with address comparisons.
#### Arrays
Arrays are the most useful data structure in PLASMA. Using an index into a list of values is indispensible. PLASMA has a flexible array operator. Arrays can be defined in many ways, usually as:
[`export`] <`byte`, `word`> [label] [= < number, character, string, address, ... >]
For example:
```
predef myfunc
byte smallarray[4]
byte initbarray[] = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
byte string[64] = "Initialized string"
word wlabel[]
word = 1000, 2000, 3000, 4000 ; Anonymous array
word funclist = @myfunc, $0000
```
Arrays can be uninitialized and reserve a size, as in `smallarray` above. Initilized arrays without a size specifier in the definition will take up as much data as is present, as in `initbarray` above. Strings are special arrays that include a hidden length byte in the beginning (Pascal strings). When specified with a size, a minimum size is reserved for the string value. Labels can be defined as arrays without size or initializers; this can be useful when overlapping labels with other arrays or defining the actual array data as anonymous arrays in following lines as in `wlabel` and following lines. Addresses of other data (must be defined previously) or function definitions (pre-defined with predef), including imported references, can be initializers.
##### Type Overrides
Arrays are usually identified by the data type specifier, `byte` or `word` when the array is defined. However, this can be overridden with the type override specifiers: `:` and `.`. `:` overrides the type to be `word`, `.` overrides the type to be `byte`. An example of accessing a `word` array as `bytes`:
```
word myarray[] = $AABB, $CCDD, $EEFF
def prarray
byte i
for i = 0 to 5
puti(myarray.[i])
next
end
```
The override operator becomes more useful when multi-dimenstional arrays are used.
##### Multi-Dimensional Arrays
Multi-dimensional arrays are implemented as arrays of arrays, not as a single block of memory. This allows constructs such as:
```
;
; Hi-Res scanline addresses
;
word hgrscan[] = $2000,$2400,$2800,$2C00,$3000,$3400,$3800,$3C00
word = $2080,$2480,$2880,$2C80,$3080,$3480,$3880,$3C80
```
...
```
def hgrfill(val)
byte yscan, xscan
for yscan = 0 to 191
for xscan = 0 to 19
hgrscan:[yscan][xscan] = val
next
next
end
```
Every array dimension except the last is a pointer to another array of pointers, thus the type is word. The last dimension is either `word` or `byte`, but cannot be specified with an array declaration, so the type override is used to identify the type of the final element. In the above example, the memory would be accessed as bytes with the following:
```
def hgrfill(val)
byte yscan, xscan
for yscan = 0 to 191
for xscan = 0 to 39
hgrscan.[yscan][xscan] = val
next
next
end
```
Notice how xscan goes to 39 instead of 19 in the byte accessed version.
#### Offsets (Structure Elements)
Structures are another fundamental construct when accessing in-common data. Using fixed element offsets from a given address means you only have to pass one address around to access the entire record. Offsets are specified with a constant expression following the type override specifier.
```
predef puti ; print an integer
byte myrec[]
word = 2
byte = "PLASMA"
puti(myrec:0) ; ID = 2
puti(myrec.2) ; Name length = 6 (Pascal string puts length byte first)
```
This contrived example shows how one can access offsets from a variable as either `byte`s or `word`s regardless of how they were defined. This operator becomes more powerful when combined with pointers, defined next.
#### Pointers
Pointers are values that represent addresses. In order to get the value pointed to by the address, one must 'dereference' the pointer. All data and code memory has a unique address, all 65536 of them (16 bits). In the Apple II, many addresses are actually connected to hardware instead of memory. Accessing these addresses can make thing happen in the Apple II, or read external inputs like the keyboard and joystick.
##### Pointer Dereferencing
Just as there are type override for arrays and offsets, there is a `byte` and `word` type override for pointers. Prepending a value with `^` dereferences a `byte`. Prepending a value with `*` dereferences a `word`. These are unary operators, so they won't be confused with the binary operators using the same symbol. An example getting the length of a Pascal string (length byte at the beginning of character array):
```
byte mystring[] = "This is my string"
byte len
word strptr
def strlen(strptr)
return ^strptr
end
```
##### Addresses of Data/Code
Along with dereferencing a pointer, there is the question of getting the address of a variable. The `@` operator prepended to a variable name or a function definition name, will return the address of the variable/definition. From the previous example, the call to `strlen` would look like:
```
puti(strlen(@mystring)) ; would print 17 in this example
```
##### Function Pointers
One very powerful combination of operations is the function pointer. This involves getting the address of a function and saving it in a `word` variable. Then, the function can be called be dereferencing the variable as a function call invocation. PLASMA is smart enough to know what you mean when your code looks like this:
```
word funcptr
def addvals(a, b)
return a + b
end
def subvals(a, b)
return a - b
end
funcptr = @addvals
puti(funcptr(5, 2)) ; Outputs 7
funcptr = @subvals
puti(funcptr(5, 2)) ; Outputs 3
```
These concepts can be combined with the structure offsets to create a function table that can be easily changed on the fly. Virtual functions in object oriented languages are implemented this way.
```
predef myinit, mynew, mydelete
export word myobject_class = @myinit, @mynew, @mydelete
; Rest of class data/code follows...
```
And an external module can call into this library (class) like:
```
import myclass
const init = 0
const new = 2
const delete = 4
word myobject_class
end
word an_obj ; an object pointer
myobject_class:init()
an_obj = myobject_class:new()
myobject_class:delete(an_obj)
```
## Function Definitions
Function definitions in PLASMA is what really seperates PLASMA from a low level language like assembly, or even a language like FORTH.
### Expressions
Exressions are comprised of operators and operations. Operator precedence follows address, arithmatic, binary, and logical from highest to lowest. Parantheses can be used to force operations to happen in a specific order.
#### Address Operators
Address operators can work on any value, i.e. anything can be an address. Parentheses can be used to get the value from a variable, then use that as an address to dereference for any of the post-operators.
| OP | Pre-Operation |
|:----:|---------------------|
| ^ | byte pointer
| * | word pointer
| @ | address of
| OP | Post-Operation |
|:----:|---------------------|
| . | byte type override
| : | word type override
| [] | array index
| () | functional call
#### Arithmetic, Bitwise, and Logical Operators
| OP | Unary Operation |
|:----:|---------------------|
| - | negate
| ~ | bitwise compliment
| NOT | logical NOT
| ! | logical NOT (alternate)
| OP | Binary Operation |
|:----:|----------------------|
| * | multiply
| / | divide
| % | modulo
| + | add
| - | subtract
| << | shift left
| >> | shift right
| & | bitwise AND
| ^ | bitwise XOR
| &#124; | bitwise OR
| == | equals
| <> | not equal
| >= | greater than or equal
| > | greater than
| <= | less than or equal
| < | less than
| OR | logical OR
| AND | logical AND
### Statements
PLASMA definitions are a list of statements the carry out the algorithm. Statements are generally assignment or control flow in nature.
#### Assignment
Assignments evaluate an expression and save the result into memory. They can be very simple or quite complex. A simple example:
```
byte a
a = 0
```
##### Empty Assignments
An assignment doesn't even have to save the expression into memory, although the expression will be avaluated. This can be useful when referencing hardware that responds just to being accessed. On the Apple II, the keyboard is read from location $C000, then the strobe, telling the hardware to prepare for another keypress is cleared by just reading the address $C010. In PLASMA, this looks like:
```
byte keypress
keypress = ^$C000 ; read keyboard
^$C010 ; read keyboard strobe, throw away value
```
#### Control Flow
PLASMA implements most of the control flow that most higher level languages provide. It may do it in a slightly different way, though. One thing you won't find in PLASMA is GOTO - there are other ways around it.
##### CALL
Function calls are the easiest ways to pass control to another function. Function calls can be part of an expression, or be all by itself - the same as an empty assignment statement.
##### RETURN
`return` will exit the current definition. An optional value can be returned, however, if a value isn't specified a default of zero will be returned. All definitions return a value, regardless of whether it used or not.
##### IF/[ELSIF]/[ELSE]/FIN
The common `if` test can have optional `elsif` and/or `else` clauses. Any expression that is evaluated to non-zero is treated as TRUE, zero is treated as FALSE.
##### WHEN/IS/[OTHERWISE]/WEND
The complex test case is handled with `when`. Basically a `if`, `elsifF`, `else` list of comparisons, it is gernerally more efficient. The `is` value can be any expression. It is evaluated and tested for equality to the `when` value.
```
when key
is 'A'
; handle A character
is 'B'
; handle B character
```
...
```
is 'Z'
; handle Z character
otherwise
; Not a known key
wend
```
With a little "Yoda-Speak", some fairly complex test can be made:
```
const FALSE = 0
const TRUE = NOT FALSE
byte a
when TRUE
is (a <= 10)
; 10 or less
is (a > 10) AND (a < 20)
; between 10 and 20
is (a >= 20)
; 20 or greater
wend
```
##### FOR \<TO,DOWNTO\> [STEP]/NEXT
Iteration over a range is handled with the `for`/`next` loop. When iterating from a smaller to larger value, the `to` construct is used; when iterating from larger to smaller, the `downto` construct is used.
```
for a = 1 to 10
; do something with a
next
for a = 10 downto 1
; do something else with a
next
```
An optional stepping value can be used to change the default iteration step from 1 to something else. Always use a positive value; when iterating using `downto`, the step value will be subtracted from the current value.
##### WHILE/LOOP
For loops that test at the top of the loop, use `while`. The loop will run zero or more times.
```
a = c ; Who knows what c could be
while a < 10
; do something
a = b * 2 ; b is something special, I'm sure
loop
```
##### REPEAT/UNTIL
For loops that always run at least once, use the `repeat` loop.
```
repeat
update_cursor
until keypressed
```
##### BREAK
To exit early from one of the looping constructs, the `break` statement will break out of it immediately and resume control immediately following the bottom of the loop.
## Advanced Topics
There are some things about PLASMA that aren't necessary to know, but can add to it's effectiveness in a tight situation. Usually you can just code along, and the system will do a pretty reasonable job of carrying out your task. However, a little knowledge in the way to implement small assembly language routines or some coding practices just might be the ticket.
### Native Assembly Functions
Assembly code in PLASMA is implemented strictly as a pass-through to the assembler. No syntax checking, or checking at all, is made. All assembly routines *must* come after all data has been declared, and before any PLASMA function definitions. Native assemlbly functions can't see PLASMA labels and definitions, so they are pretty much relegated to leaf functions. Lasltly, PLASMA modules are relocatable, but labels inside assembly functions don't get flagged for fixups. The assembly code must use all relative branches and only accessing data/code at a fixed address. Data passed in on the PLASMA evalution stack is readily accessed with the X register and the zero page address of the ESTK. The X register must be properly saved, incremented, and/or decremented to remain consistent with the rest of PLASMA. Parameters are "popped" off the evaluation stack with `INX`, and the return value is "pushed" with `DEX`.
### Code Optimizations
#### Functions Without Parameters Or Local Variables
Certain simple functions that don't take parameters or use local variables will skip the Frame Stack Entry/Leave setup. That can speed up the function significantly. The following could be a very useful function:
```
def keypress
while ^$C000 < 128
loop
^$C010
return ^$C000
end
```
#### Return Values
PLASMA always returns a value from a function, even if you don't supply one. Probably the easiest optimization to make in PLASMA is to cascade a return value if you don't care about the value you return. This only works if the last thing you do before returning from your routine is calling another definition. You would go from:
```
def mydef
; do some stuff
calldef(10) ; call some other def
end
```
PLASMA will effectively add a RETURN 0 to the end of your function, as well as add code to ignore the result of `calldef(10)`. As long as you don't care about the return value from `mydef` or want to use its return as the return value fromyour function (cascade the return), you can save some code bytes with:
```
def mydef
; do some stuff
return calldef(10) ; call some other def
end
```

31
src/class.pla Executable file
View File

@ -0,0 +1,31 @@
;
; Declare all imported modules and their data/functions.
;
import stdlib
predef putc, puts
end
import testcls
word print
const dec = 0
const hex = 2
end
byte spaces[] = " "
def putln
putc($0D)
end
def printnums
word i
i = 10000
repeat
print:dec(i)
puts(@spaces)
print:hex(i)
putln
i = i / 10
until i == 0
end
printnums
done

1411
src/cmd.pla Normal file

File diff suppressed because it is too large Load Diff

179
src/cmdexec.pla Normal file
View File

@ -0,0 +1,179 @@
const iobuffer = $0800
const databuff = $0C00
const memmap = $BF58
const sysfile = $0280
byte syshalt[] = "SYSTEM HALTED..."
byte perr
;
; Utility functions
;
; CALL PRODOS
; SYSCALL(CMD, PARAMS)
;
asm prodos
LDA ESTKL,X
LDY ESTKH,X
STA PARAMS
STY PARAMS+1
INX
LDA ESTKL,X
STA CMD
STX ESP
JSR $BF00
CMD: !BYTE 00
PARAMS: !WORD 0000
LDX ESP
STA ESTKL,X
LDY #$00
STY ESTKH,X
RTS
end
;
; CALL LOADED SYSTEM PROGRAM
;
asm exec
LDA #$00
STA IFPL
LDA #$BF
STA IFPH
LDX #$FE
TXS
LDX #ESTKSZ/2
BIT ROMEN
JMP $2000
end
;
; EXIT
;
asm reboot
BIT ROMEN
LDA #$00
STA $3F4 ; INVALIDATE POWER-UP BYTE
JMP ($FFFC) ; RESET
end
;
; SET MEMORY TO 0
; MEMCLR(ADDR, SIZE)
;
asm memclr
LDY #$00
LDA ESTKL+1,X
STA DSTL
LDA ESTKH+1,X
STA DSTH
INC ESTKL,X
INC ESTKH,X
TYA
SETMLP DEC ESTKL,X
BNE +
DEC ESTKH,X
BEQ ++
+ STA (DST),Y
INY
BNE SETMLP
INC DSTH
BNE SETMLP
++ INX
RTS
end
asm cin
BIT ROMEN
STX ESP
JSR $FD0C
LDX ESP
DEX
STA ESTKL,X
LDY #$00
STY ESTKH,X
BIT LCRDEN+LCBNK2
RTS
end
;
; PRINT STRING
; PRSTR(STR)
;
asm prstr
LDY #$00
LDA ESTKL,X
STA SRCL
LDA ESTKH,X
STA SRCH
BIT ROMEN
LDA (SRC),Y
STA ESTKL,X
BEQ +
- INY
LDA (SRC),Y
ORA #$80
JSR $FDED
TYA
CMP ESTKL,X
BNE -
+ BIT LCRDEN+LCBNK2
RTS
end
;
; ProDOS routines
;
def open(path, buff)
byte params[6]
params.0 = 3
params:1 = path
params:3 = buff
params.5 = 0
perr = prodos($C8, @params)
return params.5
end
def close(refnum)
byte params[2]
params.0 = 1
params.1 = refnum
perr = prodos($CC, @params)
return perr
end
def read(refnum, buff, len)
byte params[8]
params.0 = 4
params.1 = refnum
params:2 = buff
params:4 = len
params:6 = 0
perr = prodos($CA, @params)
return params:6
end
def resetmemfiles
;
; Close all files
;
^$BFD8 = 0
close(0)
;
; Set memory bitmap
;
memclr(memmap, 24)
^memmap.0 = $CF
^memmap.23 = $01
end
def execsys
byte refnum
if ^sysfile
refnum = open(sysfile, iobuffer)
if refnum
if read(refnum, $2000, $FFFF)
resetmemfiles()
exec()
fin
fin
fin
end
resetmemfiles()
execsys
prstr(@syshalt)
cin()
reboot()
done

31
src/cmdstub.s Normal file
View File

@ -0,0 +1,31 @@
;*
;* MOVE CMD DOWN TO $1000-$2000
;*
LDA #<_CMDBEGIN
STA $06
LDA #>_CMDBEGIN
STA $07
LDA #$00
STA $08
LDA #$10
STA $09
LDY #$00
- LDA ($06),Y
STA ($08),Y
INY
BNE -
INC $07
INC $09
LDA $09
CMP #$20
BNE -
LDA #<_CMDEND
STA $06
LDA #>_CMDEND
STA $07
JMP $1000
_CMDBEGIN = *
!PSEUDOPC $1000 {
!SOURCE "cmd.a"
_CMDEND = *
}

812
src/codegen.c Executable file
View File

@ -0,0 +1,812 @@
#include <stdio.h>
#include <ctype.h>
#include "tokens.h"
#include "lex.h"
#include "symbols.h"
#include "codegen.h"
/*
* Symbol table and fixup information.
*/
static int consts = 0;
static int externs = 0;
static int globals = 0;
static int locals = 0;
static int predefs = 0;
static int defs = 0;
static int asmdefs = 0;
static int codetags = 0;
static int fixups = 0;
static char idconst_name[1024][17];
static int idconst_value[1024];
static char idglobal_name[1024][17];
static int idglobal_type[1024];
static int idglobal_tag[1024];
static int localsize = 0;
static char idlocal_name[128][17];
static int idlocal_type[128];
static int idlocal_offset[128];
static char fixup_size[2048];
static int fixup_type[2048];
static int fixup_tag[2048];
#define FIXUP_BYTE 0x00
#define FIXUP_WORD 0x80
int id_match(char *name, int len, char *id)
{
if (len == id[0])
{
if (len > 16) len = 16;
while (len--)
{
if (name[len] != id[1 + len])
return (0);
}
return (1);
}
return (0);
}
int idconst_lookup(char *name, int len)
{
int i;
for (i = 0; i < consts; i++)
if (id_match(name, len, &(idconst_name[i][0])))
return (i);
return (-1);
}
int idlocal_lookup(char *name, int len)
{
int i;
for (i = 0; i < locals; i++)
if (id_match(name, len, &(idlocal_name[i][0])))
return (i);
return (-1);
}
int idglobal_lookup(char *name, int len)
{
int i;
for (i = 0; i < globals; i++)
if (id_match(name, len, &(idglobal_name[i][0])))
return (i);
return (-1);
}
int idconst_add(char *name, int len, int value)
{
char c = name[len];
if (consts > 1024)
{
printf("Constant count overflow\n");
return (0);
}
name[len] = '\0';
emit_idconst(name, value);
name[len] = c;
idconst_name[consts][0] = len;
if (len > 16) len = 16;
while (len--)
idconst_name[consts][1 + len] = name[len];
idconst_value[consts] = value;
consts++;
return (1);
}
int idlocal_add(char *name, int len, int type, int size)
{
char c = name[len];
if (localsize > 255)
{
printf("Local variable size overflow\n");
return (0);
}
name[len] = '\0';
emit_idlocal(name, localsize);
name[len] = c;
idlocal_name[locals][0] = len;
if (len > 16) len = 16;
while (len--)
idlocal_name[locals][1 + len] = name[len];
idlocal_type[locals] = type | LOCAL_TYPE;
idlocal_offset[locals] = localsize;
localsize += size;
locals++;
return (1);
}
int idglobal_add(char *name, int len, int type, int size)
{
char c = name[len];
if (globals > 1024)
{
printf("Global variable count overflow\n");
return (0);
}
name[len] = '\0';
name[len] = c;
idglobal_name[globals][0] = len;
if (len > 16) len = 16;
while (len--)
idglobal_name[globals][1 + len] = name[len];
idglobal_type[globals] = type;
if (!(type & EXTERN_TYPE))
{
emit_idglobal(globals, size, name);
idglobal_tag[globals] = globals;
globals++;
}
else
{
printf("\t\t\t\t\t; %s -> X%03d\n", &idglobal_name[globals][1], externs);
idglobal_tag[globals++] = externs++;
}
return (1);
}
int id_add(char *name, int len, int type, int size)
{
return ((type & LOCAL_TYPE) ? idlocal_add(name, len, type, size) : idglobal_add(name, len, type, size));
}
int idfunc_add(char *name, int len, int type, int tag)
{
if (globals > 1024)
{
printf("Global variable count overflow\n");
return (0);
}
idglobal_name[globals][0] = len;
if (len > 16) len = 16;
while (len--)
idglobal_name[globals][1 + len] = name[len];
idglobal_type[globals] = type;
idglobal_tag[globals++] = tag;
if (type & EXTERN_TYPE)
printf("\t\t\t\t\t; %s -> X%03d\n", &idglobal_name[globals - 1][1], tag);
return (1);
}
int idfunc_set(char *name, int len, int type, int tag)
{
int i;
if (((i = idglobal_lookup(name, len)) >= 0) && (idglobal_type[i] & FUNC_TYPE))
{
idglobal_tag[i] = tag;
idglobal_type[i] = type;
return (type);
}
parse_error("Undeclared identifier");
return (0);
}
void idglobal_size(int type, int size, int constsize)
{
if (size > constsize)
emit_data(0, 0, 0, size - constsize);
else if (size)
emit_data(0, 0, 0, size);
}
int idlocal_size(void)
{
return (localsize);
}
void idlocal_reset(void)
{
locals = 0;
localsize = 2;
}
int id_tag(char *name, int len)
{
int i;
if ((i = idlocal_lookup(name, len)) >= 0)
return (idlocal_offset[i]);
if ((i = idglobal_lookup(name, len)) >= 0)
return (idglobal_tag[i]);
return (-1);
}
int id_const(char *name, int len)
{
int i;
if ((i = idconst_lookup(name, len)) >= 0)
return (idconst_value[i]);
parse_error("Undeclared constant");
return (0);
}
int id_type(char *name, int len)
{
int i;
if ((i = idconst_lookup(name, len)) >= 0)
return (CONST_TYPE);
if ((i = idlocal_lookup(name, len)) >= 0)
return (idlocal_type[i] | LOCAL_TYPE);
if ((i = idglobal_lookup(name, len)) >= 0)
return (idglobal_type[i]);
parse_error("Undeclared identifier");
return (0);
}
int tag_new(int type)
{
if (type & EXTERN_TYPE)
{
if (externs > 254)
parse_error("External variable count overflow\n");
return (externs++);
}
if (type & PREDEF_TYPE)
return (predefs++);
if (type & ASM_TYPE)
return (asmdefs++);
if (type & DEF_TYPE)
return (defs++);
if (type & BRANCH_TYPE)
return (codetags++);
return globals++;
}
int fixup_new(int tag, int type, int size)
{
fixup_tag[fixups] = tag;
fixup_type[fixups] = type;
fixup_size[fixups] = size;
return (fixups++);
}
/*
* Emit assembly code.
*/
#define BYTECODE_SEG 8
#define INIT 16
#define SYSFLAGS 32
static int outflags = 0;
static char *DB = ".BYTE";
static char *DW = ".WORD";
static char *DS = ".RES";
static char LBL = ':';
char *supper(char *s)
{
static char su[80];
int i;
for (i = 0; s[i]; i++)
su[i] = toupper(s[i]);
su[i] = '\0';
return su;
}
char *tag_string(int tag, int type)
{
static char str[16];
char t;
if (type & EXTERN_TYPE)
t = 'X';
else if (type & DEF_TYPE)
t = 'C';
else if (type & ASM_TYPE)
t = 'A';
else if (type & BRANCH_TYPE)
t = 'B';
else if (type & PREDEF_TYPE)
t = 'P';
else
t = 'D';
sprintf(str, "_%c%03d", t, tag);
return str;
}
void emit_dci(char *str, int len)
{
if (len--)
{
printf("\t; DCI STRING: %s\n", supper(str));
printf("\t%s\t$%02X", DB, toupper(*str++) | (len ? 0x80 : 0x00));
while (len--)
printf(",$%02X", toupper(*str++) | (len ? 0x80 : 0x00));
printf("\n");
}
}
void emit_flags(int flags)
{
outflags = flags;
if (outflags & ACME)
{
DB = "!BYTE";
DW = "!WORD";
DS = "!FILL";
LBL = ' ';
}
}
void emit_header(void)
{
if (outflags & ACME)
printf("; ACME COMPATIBLE OUTPUT\n");
else
printf("; CA65 COMPATIBLE OUTPUT\n");
if (outflags & MODULE)
{
printf("\t%s\t_SEGEND-_SEGBEGIN\t; LENGTH OF HEADER + CODE/DATA + BYTECODE SEGMENT\n", DW);
printf("_SEGBEGIN%c\n", LBL);
printf("\t%s\t$DA7E\t\t\t; MAGIC #\n", DW);
printf("\t%s\t_SYSFLAGS\t\t\t; SYSTEM FLAGS\n", DW);
printf("\t%s\t_SUBSEG\t\t\t; BYTECODE SUB-SEGMENT\n", DW);
printf("\t%s\t_DEFCNT\t\t\t; BYTECODE DEF COUNT\n", DW);
printf("\t%s\t_INIT\t\t\t; MODULE INITIALIZATION ROUTINE\n", DW);
}
else
{
printf("\tJMP\t_INIT\t\t\t; MODULE INITIALIZATION ROUTINE\n");
}
}
void emit_rld(void)
{
int i;
printf(";\n; RE-LOCATEABLE DICTIONARY\n;\n");
/*
* First emit the bytecode definition entrypoint information.
*/
for (i = 0; i < globals; i++)
if (!(idglobal_type[i] & EXTERN_TYPE) && (idglobal_type[i] & DEF_TYPE))
{
printf("\t%s\t$02\t\t\t; CODE TABLE FIXUP\n", DB);
printf("\t%s\t_C%03d\t\t\n", DW, idglobal_tag[i]);
printf("\t%s\t$00\n", DB);
}
/*
* Now emit the fixup table.
*/
for (i = 0; i < fixups; i++)
{
if (fixup_type[i] & EXTERN_TYPE)
{
printf("\t%s\t$%02X\t\t\t; EXTERNAL FIXUP\n", DB, 0x11 + fixup_size[i] & 0xFF);
printf("\t%s\t_F%03d-_SEGBEGIN\t\t\n", DW, i);
printf("\t%s\t%d\t\t\t; ESD INDEX\n", DB, fixup_tag[i]);
}
else
{
printf("\t%s\t$%02X\t\t\t; INTERNAL FIXUP\n", DB, 0x01 + fixup_size[i] & 0xFF);
printf("\t%s\t_F%03d-_SEGBEGIN\t\t\n", DW, i);
printf("\t%s\t$00\n", DB);
}
}
printf("\t%s\t$00\t\t\t; END OF RLD\n", DB);
}
void emit_esd(void)
{
int i;
printf(";\n; EXTERNAL/ENTRY SYMBOL DICTIONARY\n;\n");
for (i = 0; i < globals; i++)
{
if (idglobal_type[i] & EXTERN_TYPE)
{
emit_dci(&idglobal_name[i][1], idglobal_name[i][0]);
printf("\t%s\t$10\t\t\t; EXTERNAL SYMBOL FLAG\n", DB);
printf("\t%s\t%d\t\t\t; ESD INDEX\n", DW, idglobal_tag[i]);
}
else if (idglobal_type[i] & EXPORT_TYPE)
{
emit_dci(&idglobal_name[i][1], idglobal_name[i][0]);
printf("\t%s\t$08\t\t\t; ENTRY SYMBOL FLAG\n", DB);
printf("\t%s\t%s\t\t\n", DW, tag_string(idglobal_tag[i], idglobal_type[i]));
}
}
printf("\t%s\t$00\t\t\t; END OF ESD\n", DB);
}
void emit_trailer(void)
{
if (!(outflags & BYTECODE_SEG))
emit_bytecode_seg();
if (!(outflags & INIT))
printf("_INIT\t=\t0\n");
if (!(outflags & SYSFLAGS))
printf("_SYSFLAGS\t=\t0\n");
if (outflags & MODULE)
{
printf("_DEFCNT\t=\t%d\n", defs);
printf("_SEGEND%c\n", LBL);
emit_rld();
emit_esd();
}
}
void emit_moddep(char *name, int len)
{
if (name)
emit_dci(name, len);
else
printf("\t%s\t$00\t\t\t; END OF MODULE DEPENDENCIES\n", DB);
}
void emit_sysflags(int val)
{
printf("_SYSFLAGS\t=\t$%04X\t\t; SYSTEM FLAGS\n", val);
outflags |= SYSFLAGS;
}
void emit_bytecode_seg(void)
{
if ((outflags & MODULE) && !(outflags & BYTECODE_SEG))
printf("_SUBSEG%c\t\t\t\t; BYTECODE STARTS\n", LBL);
outflags |= BYTECODE_SEG;
}
void emit_comment(char *s)
{
printf("\t\t\t\t\t; %s\n", s);
}
void emit_asm(char *s)
{
printf("%s\n", s);
}
void emit_idlocal(char *name, int value)
{
printf("\t\t\t\t\t; %s -> [%d]\n", name, value);
}
void emit_idglobal(int tag, int size, char *name)
{
if (size == 0)
printf("_D%03d%c\t\t\t\t\t; %s\n", tag, LBL, name);
else
printf("_D%03d%c\t%s\t%d\t\t\t; %s\n", tag, LBL, DS, size, name);
}
void emit_idfunc(int tag, int type, char *name)
{
printf("%s%c\t\t\t\t\t; %s()\n", tag_string(tag, type), LBL, name);
}
void emit_idconst(char *name, int value)
{
printf("\t\t\t\t\t; %s = %d\n", name, value);
}
int emit_data(int vartype, int consttype, long constval, int constsize)
{
int datasize, i;
char *str;
if (consttype == 0)
{
datasize = constsize;
printf("\t%s\t$%02X\n", DS, constsize);
}
else if (consttype & STRING_TYPE)
{
datasize = constsize;
str = (char *)constval;
printf("\t%s\t$%02X\n", DB, --constsize);
while (constsize-- > 0)
{
printf("\t%s\t$%02X", DB, *str++);
for (i = 0; i < 7; i++)
{
if (constsize-- > 0)
printf(",$%02X", *str++);
else
break;
}
printf("\n");
}
}
else if (consttype & ADDR_TYPE)
{
if (vartype & WORD_TYPE)
{
int fixup = fixup_new(constval, consttype, FIXUP_WORD);
datasize = 2;
if (consttype & EXTERN_TYPE)
printf("_F%03d%c\t%s\t0\t\t\t; %s\n", fixup, LBL, DW, tag_string(constval, consttype));
else
printf("_F%03d%c\t%s\t%s\n", fixup, LBL, DW, tag_string(constval, consttype));
}
else
{
int fixup = fixup_new(constval, consttype, FIXUP_BYTE);
datasize = 1;
if (consttype & EXTERN_TYPE)
printf("_F%03d%c\t%s\t0\t\t\t; %s\n", fixup, LBL, DB, tag_string(constval, consttype));
else
printf("_F%03d%c\t%s\t%s\n", fixup, LBL, DB, tag_string(constval, consttype));
}
}
else
{
if (vartype & WORD_TYPE)
{
datasize = 2;
printf("\t%s\t$%04lX\n", DW, constval & 0xFFFF);
}
else
{
datasize = 1;
printf("\t%s\t$%02lX\n", DB, constval & 0xFF);
}
}
return (datasize);
}
void emit_def(char *name, int is_bytecode)
{
if (!(outflags & MODULE))
{
//printf("%s%c\n", name, LBL);
if (is_bytecode)
printf("\tJSR $03D0\n");
}
}
void emit_codetag(int tag)
{
printf("_B%03d%c\n", tag, LBL);
}
void emit_const(int cval)
{
if (cval == 0)
printf("\t%s\t$00\t\t\t; ZERO\n", DB);
else if (cval > 0 && cval < 256)
printf("\t%s\t$2A,$%02X\t\t\t; CB\t%d\n", DB, cval, cval);
else
printf("\t%s\t$2C,$%02X,$%02X\t\t; CW\t%d\n", DB, cval&0xFF,(cval>>8)&0xFF, cval);
}
void emit_lb(void)
{
printf("\t%s\t$60\t\t\t; LB\n", DB);
}
void emit_lw(void)
{
printf("\t%s\t$62\t\t\t; LW\n", DB);
}
void emit_llb(int index)
{
printf("\t%s\t$64,$%02X\t\t\t; LLB\t[%d]\n", DB, index, index);
}
void emit_llw(int index)
{
printf("\t%s\t$66,$%02X\t\t\t; LLW\t[%d]\n", DB, index, index);
}
void emit_lab(int tag, int offset, int type)
{
int fixup = fixup_new(tag, type, FIXUP_WORD);
char *taglbl = tag_string(tag, type);
printf("\t%s\t$68\t\t\t; LAB\t%s+%d\n", DB, taglbl, offset);
printf("_F%03d%c\t%s\t%s+%d\t\t\n", fixup, LBL, DW, type & EXTERN_TYPE ? "0" : taglbl, offset);
}
void emit_law(int tag, int offset, int type)
{
int fixup = fixup_new(tag, type, FIXUP_WORD);
char *taglbl = tag_string(tag, type);
printf("\t%s\t$6A\t\t\t; LAW\t%s+%d\n", DB, taglbl, offset);
printf("_F%03d%c\t%s\t%s+%d\t\t\n", fixup, LBL, DW, type & EXTERN_TYPE ? "0" : taglbl, offset);
}
void emit_sb(void)
{
printf("\t%s\t$70\t\t\t; SB\n", DB);
}
void emit_sw(void)
{
printf("\t%s\t$72\t\t\t; SW\n", DB);
}
void emit_slb(int index)
{
printf("\t%s\t$74,$%02X\t\t\t; SLB\t[%d]\n", DB, index, index);
}
void emit_slw(int index)
{
printf("\t%s\t$76,$%02X\t\t\t; SLW\t[%d]\n", DB, index, index);
}
void emit_dlb(int index)
{
printf("\t%s\t$6C,$%02X\t\t\t; DLB\t[%d]\n", DB, index, index);
}
void emit_dlw(int index)
{
printf("\t%s\t$6E,$%02X\t\t\t; DLW\t[%d]\n", DB, index, index);
}
void emit_sab(int tag, int offset, int type)
{
int fixup = fixup_new(tag, type, FIXUP_WORD);
char *taglbl = tag_string(tag, type);
printf("\t%s\t$78\t\t\t; SAB\t%s+%d\n", DB, taglbl, offset);
printf("_F%03d%c\t%s\t%s+%d\t\t\n", fixup, LBL, DW, type & EXTERN_TYPE ? "0" : taglbl, offset);
}
void emit_saw(int tag, int offset, int type)
{
int fixup = fixup_new(tag, type, FIXUP_WORD);
char *taglbl = tag_string(tag, type);
printf("\t%s\t$7A\t\t\t; SAW\t%s+%d\n", DB, taglbl, offset);
printf("_F%03d%c\t%s\t%s+%d\t\t\n", fixup, LBL, DW, type & EXTERN_TYPE ? "0" : taglbl, offset);
}
void emit_dab(int tag, int type)
{
int fixup = fixup_new(tag, type, FIXUP_WORD);
char *taglbl = tag_string(tag, type);
printf("\t%s\t$7C\t\t\t; DAB\t%s\n", DB, taglbl);
printf("_F%03d%c\t%s\t%s\t\t\n", fixup, LBL, DW, type & EXTERN_TYPE ? "0" : taglbl);
}
void emit_daw(int tag, int type)
{
int fixup = fixup_new(tag, type, FIXUP_WORD);
char *taglbl = tag_string(tag, type);
printf("\t%s\t$7E\t\t\t; DAW\t%s\n", DB, taglbl);
printf("_F%03d%c\t%s\t%s\t\t\n", fixup, LBL, DW, type & EXTERN_TYPE ? "0" : taglbl);
}
void emit_localaddr(int index)
{
printf("\t%s\t$28,$%02X\t\t\t; LLA\t[%d]\n", DB, index, index);
}
void emit_globaladdr(int tag, int offset, int type)
{
int fixup = fixup_new(tag, type, FIXUP_WORD);
char *taglbl = tag_string(tag, type);
printf("\t%s\t$26\t\t\t; LA\t%s+%d\n", DB, taglbl, offset);
printf("_F%03d%c\t%s\t%s+%d\t\t\n", fixup, LBL, DW, type & EXTERN_TYPE ? "" : taglbl, offset);
}
void emit_indexbyte(void)
{
printf("\t%s\t$02\t\t\t; IDXB\n", DB);
}
void emit_indexword(void)
{
printf("\t%s\t$1E\t\t\t; IDXW\n", DB);
}
void emit_brfls(int tag)
{
printf("\t%s\t$4C\t\t\t; BRFLS\t_B%03d\n", DB, tag);
printf("\t%s\t_B%03d-*\n", DW, tag);
}
void emit_brtru(int tag)
{
printf("\t%s\t$4E\t\t\t; BRTRU\t_B%03d\n", DB, tag);
printf("\t%s\t_B%03d-*\n", DW, tag);
}
void emit_brnch(int tag)
{
printf("\t%s\t$50\t\t\t; BRNCH\t_B%03d\n", DB, tag);
printf("\t%s\t_B%03d-*\n", DW, tag);
}
void emit_breq(int tag)
{
printf("\t%s\t$3C\t\t\t; BREQ\t_B%03d\n", DB, tag);
printf("\t%s\t_B%03d-*\n", DW, tag);
}
void emit_brne(int tag)
{
printf("\t%s\t$3E\t\t\t; BRNE\t_B%03d\n", DB, tag);
printf("\t%s\t_B%03d-*\n", DW, tag);
}
void emit_brgt(int tag)
{
printf("\t%s\t$38\t\t\t; BRGT\t_B%03d\n", DB, tag);
printf("\t%s\t_B%03d-*\n", DW, tag);
}
void emit_brlt(int tag)
{
printf("\t%s\t$3A\t\t\t; BRLT\t_B%03d\n", DB, tag);
printf("\t%s\t_B%03d-*\n", DW, tag);
}
void emit_call(int tag, int type)
{
int fixup = fixup_new(tag, type, FIXUP_WORD);
char *taglbl = tag_string(tag, type);
printf("\t%s\t$54\t\t\t; CALL\t%s\n", DB, taglbl);
printf("_F%03d%c\t%s\t%s\t\t\n", fixup, LBL, DW, type & EXTERN_TYPE ? "0" : taglbl);
}
void emit_ical(void)
{
printf("\t%s\t$56\t\t\t; ICAL\n", DB);
}
void emit_leave(int framesize)
{
if (framesize > 2)
printf("\t%s\t$5A\t\t\t; LEAVE\n", DB);
else
printf("\t%s\t$5C\t\t\t; RET\n", DB);
}
void emit_ret(void)
{
printf("\t%s\t$5C\t\t\t; RET\n", DB);
}
void emit_enter(int framesize, int cparams)
{
if (framesize > 2)
printf("\t%s\t$58,$%02X,$%02X\t\t; ENTER\t%d,%d\n", DB, framesize, cparams, framesize, cparams);
}
void emit_start(void)
{
printf("_INIT%c\n", LBL);
outflags |= INIT;
defs++;
}
void emit_dup(void)
{
printf("\t%s\t$32\t\t\t; DUP\n", DB);
}
void emit_push(void)
{
printf("\t%s\t$34\t\t\t; PUSH\n", DB);
}
void emit_pull(void)
{
printf("\t%s\t$36\t\t\t; PULL\n", DB);
}
void emit_swap(void)
{
printf("\t%s\t$2E\t\t\t; SWAP\n", DB);
}
void emit_drop(void)
{
printf("\t%s\t$30\t\t\t; DROP\n", DB);
}
int emit_unaryop(int op)
{
switch (op)
{
case NEG_TOKEN:
printf("\t%s\t$10\t\t\t; NEG\n", DB);
break;
case COMP_TOKEN:
printf("\t%s\t$12\t\t\t; COMP\n", DB);
break;
case LOGIC_NOT_TOKEN:
printf("\t%s\t$20\t\t\t; NOT\n", DB);
break;
case INC_TOKEN:
printf("\t%s\t$0C\t\t\t; INCR\n", DB);
break;
case DEC_TOKEN:
printf("\t%s\t$0E\t\t\t; DECR\n", DB);
break;
case BPTR_TOKEN:
emit_lb();
break;
case WPTR_TOKEN:
emit_lw();
break;
default:
printf("emit_unaryop(%c) ???\n", op & 0x7F);
return (0);
}
return (1);
}
int emit_op(t_token op)
{
switch (op)
{
case MUL_TOKEN:
printf("\t%s\t$06\t\t\t; MUL\n", DB);
break;
case DIV_TOKEN:
printf("\t%s\t$08\t\t\t; DIV\n", DB);
break;
case MOD_TOKEN:
printf("\t%s\t$0A\t\t\t; MOD\n", DB);
break;
case ADD_TOKEN:
printf("\t%s\t$02\t\t\t; ADD\n", DB);
break;
case SUB_TOKEN:
printf("\t%s\t$04\t\t\t; SUB\n", DB);
break;
case SHL_TOKEN:
printf("\t%s\t$1A\t\t\t; SHL\n", DB);
break;
case SHR_TOKEN:
printf("\t%s\t$1C\t\t\t; SHR\n", DB);
break;
case AND_TOKEN:
printf("\t%s\t$14\t\t\t; AND\n", DB);
break;
case OR_TOKEN:
printf("\t%s\t$16\t\t\t; IOR\n", DB);
break;
case EOR_TOKEN:
printf("\t%s\t$18\t\t\t; XOR\n", DB);
break;
case EQ_TOKEN:
printf("\t%s\t$40\t\t\t; ISEQ\n", DB);
break;
case NE_TOKEN:
printf("\t%s\t$42\t\t\t; ISNE\n", DB);
break;
case GE_TOKEN:
printf("\t%s\t$48\t\t\t; ISGE\n", DB);
break;
case LT_TOKEN:
printf("\t%s\t$46\t\t\t; ISLT\n", DB);
break;
case GT_TOKEN:
printf("\t%s\t$44\t\t\t; ISGT\n", DB);
break;
case LE_TOKEN:
printf("\t%s\t$4A\t\t\t; ISLE\n", DB);
break;
case LOGIC_OR_TOKEN:
printf("\t%s\t$22\t\t\t; LOR\n", DB);
break;
case LOGIC_AND_TOKEN:
printf("\t%s\t$24\t\t\t; LAND\n", DB);
break;
case COMMA_TOKEN:
break;
default:
return (0);
}
return (1);
}

59
src/codegen.h Executable file
View File

@ -0,0 +1,59 @@
#define ACME 1
#define MODULE 2
void emit_flags(int flags);
void emit_header(void);
void emit_trailer(void);
void emit_moddep(char *name, int len);
void emit_sysflags(int val);
void emit_bytecode_seg(void);
void emit_comment(char *s);
void emit_asm(char *s);
void emit_idlocal(char *name, int value);
void emit_idglobal(int value, int size, char *name);
void emit_idfunc(int tag, int type, char *name);
void emit_idconst(char *name, int value);
void emit_def(char *name, int is_bytecode);
int emit_data(int vartype, int consttype, long constval, int constsize);
void emit_codetag(int tag);
void emit_const(int cval);
void emit_lb(void);
void emit_lw(void);
void emit_llb(int index);
void emit_llw(int index);
void emit_lab(int tag, int offset, int type);
void emit_law(int tag, int offset, int type);
void emit_sb(void);
void emit_sw(void);
void emit_slb(int index);
void emit_slw(int index);
void emit_dlb(int index);
void emit_dlw(int index);
void emit_sab(int tag, int offset, int type);
void emit_saw(int tag, int ofset, int type);
void emit_dab(int tag, int type);
void emit_daw(int tag, int type);
void emit_call(int tag, int type);
void emit_ical(void);
void emit_localaddr(int index);
void emit_globaladdr(int tag, int offset, int type);
void emit_indexbyte(void);
void emit_indexword(void);
int emit_unaryop(int op);
int emit_op(t_token op);
void emit_brtru(int tag);
void emit_brfls(int tag);
void emit_brgt(int tag);
void emit_brlt(int tag);
void emit_brne(int tag);
void emit_brnch(int tag);
void emit_swap(void);
void emit_dup(void);
void emit_push(void);
void emit_pull(void);
void emit_drop(void);
void emit_leave(int framesize);
void emit_ret(void);
void emit_enter(int framesize, int cparams);
void emit_start(void);
void emit_rld(void);
void emit_esd(void);

8
src/hello.pla Normal file
View File

@ -0,0 +1,8 @@
import STDLIB
predef puts
end
byte hellostr[] = "Hello, world.\n"
puts(@hellostr)
done

21
src/hgr1.pla Normal file
View File

@ -0,0 +1,21 @@
import STDLIB
predef memset
;
; System flags: memory allocator screen holes.
;
const restxt1 = $0001
const restxt2 = $0002
const reshgr1 = $0004
const reshgr2 = $0008
const resxhgr1 = $0010
const resxhgr2 = $0020
end
sysflags reshgr1 ; Reserve HGR page 1
memset($2000, $2000, 0) ; Clear HGR page 1
^$C054
^$C052
^$C057
^$C050
done

127
src/hgr1test.pla Normal file
View File

@ -0,0 +1,127 @@
import STDLIB
predef memset, memcpy, getc, heapalloc, heapmark, heaprelease
end
import HGR1
end
const view_height = 64 ; scan count of ground view
const fix_bits = 8 ; number of fixed point bits
;
; Hardware addresses
;
const speaker=$C030
const showgraphics=$C050
const showtext=$C051
const showfull=$C052
const showmix=$C053
const showpage1=$C054
const showpage2=$C055
const showlores=$C056
const showhires=$C057
const keyboard=$C000
const keystrobe=$C010
const hgr1=$2000
const hgr2=$4000
const page1=0
const page2=1
word hgrpage[] = hgr1, hgr2
word hgrscan[] = $0000,$0400,$0800,$0C00,$1000,$1400,$1800,$1C00
word = $0080,$0480,$0880,$0C80,$1080,$1480,$1880,$1C80
word = $0100,$0500,$0900,$0D00,$1100,$1500,$1900,$1D00
word = $0180,$0580,$0980,$0D80,$1180,$1580,$1980,$1D80
word = $0200,$0600,$0A00,$0E00,$1200,$1600,$1A00,$1E00
word = $0280,$0680,$0A80,$0E80,$1280,$1680,$1A80,$1E80
word = $0300,$0700,$0B00,$0F00,$1300,$1700,$1B00,$1F00
word = $0380,$0780,$0B80,$0F80,$1380,$1780,$1B80,$1F80
word = $0028,$0428,$0828,$0C28,$1028,$1428,$1828,$1C28
word = $00A8,$04A8,$08A8,$0CA8,$10A8,$14A8,$18A8,$1CA8
word = $0128,$0528,$0928,$0D28,$1128,$1528,$1928,$1D28
word = $01A8,$05A8,$09A8,$0DA8,$11A8,$15A8,$19A8,$1DA8
word = $0228,$0628,$0A28,$0E28,$1228,$1628,$1A28,$1E28
word = $02A8,$06A8,$0AA8,$0EA8,$12A8,$16A8,$1AA8,$1EA8
word = $0328,$0728,$0B28,$0F28,$1328,$1728,$1B28,$1F28
word = $03A8,$07A8,$0BA8,$0FA8,$13A8,$17A8,$1BA8,$1FA8
word = $0050,$0450,$0850,$0C50,$1050,$1450,$1850,$1C50
word = $00D0,$04D0,$08D0,$0CD0,$10D0,$14D0,$18D0,$1CD0
word = $0150,$0550,$0950,$0D50,$1150,$1550,$1950,$1D50
word = $01D0,$05D0,$09D0,$0DD0,$11D0,$15D0,$19D0,$1DD0
word = $0250,$0650,$0A50,$0E50,$1250,$1650,$1A50,$1E50
word = $02D0,$06D0,$0AD0,$0ED0,$12D0,$16D0,$1AD0,$1ED0
word = $0350,$0750,$0B50,$0F50,$1350,$1750,$1B50,$1F50
word = $03D0,$07D0,$0BD0,$0FD0,$13D0,$17D0,$1BD0,$1FD0
word hcolor[] = $0000,$552A,$2A55,$7F7F,$8080,$D5AA,$AAD5,$FFFF
;
; def draw_scan(d8p8, scanptr)
;
asm draw_scan
!SOURCE "plvm02zp.inc"
WFIXL = $80
WFIXH = $81
WINT = $82
PIX = $83
LDA ESTKL,X
STA TMPL
LDA ESTKH,X
STA TMPH
LDA ESTKL+1,X
STA WFIXL
STA WFIXH
LDA ESTKH+1,X
LSR
STA WINT
ROR WFIXH
ROR WFIXL
LDA #$FF
SEC
SBC WFIXL
STA WFIXL
LDA #$FF
SBC WFIXH
STA WFIXH
LDA #$FF
SBC WINT
STA WINT
LDY #$01
STY PIX
DEY
- EOR ESTKH+1,X
LSR
BCC +
LDA PIX
ORA (TMP),Y
STA (TMP),Y
+ ASL PIX
BPL +
LDA #$01
STA PIX
INY
CPY #36
BEQ ++
+ LDA ESTKL+1,X
CLC
ADC WFIXL
STA WFIXL
LDA ESTKH+1,X
ADC WFIXH
STA WFIXH
LDA #$00
ADC WINT
STA WINT
BNE -
BEQ -
++ INX
RTS
end
def draw_ground(page)
byte ip
for ip = 1 to view_height
draw_scan((127 << fix_bits) / ip, hgrpage[page] + hgrscan[ip + 191 - view_height] + 2)
next
end
draw_ground(page1)
getc
^showpage1
^showtext
done

364
src/lex.c Executable file
View File

@ -0,0 +1,364 @@
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include "tokens.h"
#include "symbols.h"
char *statement, *scanpos, *tokenstr;
t_token scantoken, prevtoken;
int tokenlen;
long constval;
int lineno = 0;
t_token keywords[] = {
IF_TOKEN, 'I', 'F',
ELSE_TOKEN, 'E', 'L', 'S', 'E',
ELSEIF_TOKEN, 'E', 'L', 'S', 'I', 'F',
FIN_TOKEN, 'F', 'I', 'N',
WHILE_TOKEN, 'W', 'H', 'I', 'L', 'E',
LOOP_TOKEN, 'L', 'O', 'O', 'P',
CASE_TOKEN, 'W', 'H', 'E', 'N',
OF_TOKEN, 'I', 'S',
DEFAULT_TOKEN, 'O', 'T', 'H', 'E', 'R', 'W', 'I', 'S', 'E',
ENDCASE_TOKEN, 'W', 'E', 'N', 'D',
FOR_TOKEN, 'F', 'O', 'R',
TO_TOKEN, 'T', 'O',
DOWNTO_TOKEN, 'D', 'O', 'W', 'N', 'T', 'O',
STEP_TOKEN, 'S', 'T', 'E', 'P',
NEXT_TOKEN, 'N', 'E', 'X', 'T',
REPEAT_TOKEN, 'R', 'E', 'P', 'E', 'A', 'T',
UNTIL_TOKEN, 'U', 'N', 'T', 'I', 'L',
BREAK_TOKEN, 'B', 'R', 'E', 'A', 'K',
ASM_TOKEN, 'A', 'S', 'M',
DEF_TOKEN, 'D', 'E', 'F',
EXPORT_TOKEN, 'E', 'X', 'P', 'O', 'R', 'T',
IMPORT_TOKEN, 'I', 'M', 'P', 'O', 'R', 'T',
RETURN_TOKEN, 'R', 'E', 'T', 'U', 'R', 'N',
END_TOKEN, 'E', 'N', 'D',
EXIT_TOKEN, 'E', 'X', 'I', 'T',
DONE_TOKEN, 'D', 'O', 'N', 'E',
LOGIC_NOT_TOKEN, 'N', 'O', 'T',
LOGIC_AND_TOKEN, 'A', 'N', 'D',
LOGIC_OR_TOKEN, 'O', 'R',
BYTE_TOKEN, 'B', 'Y', 'T', 'E',
WORD_TOKEN, 'W', 'O', 'R', 'D',
CONST_TOKEN, 'C', 'O', 'N', 'S', 'T',
PREDEF_TOKEN, 'P', 'R', 'E', 'D', 'E', 'F',
SYSFLAGS_TOKEN, 'S', 'Y', 'S', 'F', 'L', 'A', 'G', 'S',
EOL_TOKEN
};
void parse_error(char *errormsg)
{
char *error_carrot = statement;
fprintf(stderr, "\n%4d: %s\n ", lineno, statement);
for (error_carrot = statement; error_carrot != tokenstr; error_carrot++)
putc(*error_carrot == '\t' ? '\t' : ' ', stderr);
fprintf(stderr, "^\nError: %s\n", errormsg);
exit(1);
}
t_token scan(void)
{
prevtoken = scantoken;
/*
* Skip whitespace.
*/
while (*scanpos && (*scanpos == ' ' || *scanpos == '\t')) scanpos++;
tokenstr = scanpos;
/*
* Scan for token based on first character.
*/
if (*scanpos == '\0' || *scanpos == '\n' || *scanpos == ';')
scantoken = EOL_TOKEN;
else if ((scanpos[0] >= 'a' && scanpos[0] <= 'z')
|| (scanpos[0] >= 'A' && scanpos[0] <= 'Z')
|| (scanpos[0] == '_'))
{
/*
* ID, either variable name or reserved word.
*/
int keypos = 0, matchpos = 0;
do
{
scanpos++;
}
while ((*scanpos >= 'a' && *scanpos <= 'z')
|| (*scanpos >= 'A' && *scanpos <= 'Z')
|| (*scanpos == '_')
|| (*scanpos >= '0' && *scanpos <= '9'));
scantoken = ID_TOKEN;
tokenlen = scanpos - tokenstr;
/*
* Search for matching keyword.
*/
while (keywords[keypos] != EOL_TOKEN)
{
while (keywords[keypos + 1 + matchpos] == toupper(tokenstr[matchpos]))
matchpos++;
if (IS_TOKEN(keywords[keypos + 1 + matchpos]) && (matchpos == tokenlen))
{
/*
* A match.
*/
scantoken = keywords[keypos];
break;
}
else
{
/*
* Find next keyword.
*/
keypos += matchpos + 1;
matchpos = 0;
while (!IS_TOKEN(keywords[keypos])) keypos++;
}
}
}
else if (scanpos[0] >= '0' && scanpos[0] <= '9')
{
/*
* Number constant.
*/
for (constval = 0; *scanpos >= '0' && *scanpos <= '9'; scanpos++)
constval = constval * 10 + *scanpos - '0';
scantoken = INT_TOKEN;
}
else if (scanpos[0] == '$')
{
/*
* Hexadecimal constant.
*/
constval = 0;
while (scanpos++)
{
if (*scanpos >= '0' && *scanpos <= '9')
constval = constval * 16 + *scanpos - '0';
else if (*scanpos >= 'A' && *scanpos <= 'F')
constval = constval * 16 + *scanpos - 'A' + 10;
else if (*scanpos >= 'a' && *scanpos <= 'f')
constval = constval * 16 + *scanpos - 'a' + 10;
else
break;
}
scantoken = INT_TOKEN;
}
else if (scanpos[0] == '\'')
{
/*
* Character constant.
*/
scantoken = CHAR_TOKEN;
if (scanpos[1] != '\\')
{
constval = scanpos[1];
if (scanpos[2] != '\'')
{
parse_error("Bad character constant");
return (-1);
}
scanpos += 3;
}
else
{
switch (scanpos[2])
{
case 'n':
constval = 0x0D;
break;
case 'r':
constval = '\r';
break;
case 't':
constval = '\t';
break;
case '\'':
constval = '\'';
break;
case '\\':
constval = '\\';
break;
case '0':
constval = '\0';
break;
default:
parse_error("Bad character constant");
return (-1);
}
if (scanpos[3] != '\'')
{
parse_error("Bad character constant");
return (-1);
}
scanpos += 4;
}
}
else if (scanpos[0] == '\"')
{
char *scanshift;
/*
* String constant.
*/
scantoken = STRING_TOKEN;
constval = (long)++scanpos;
while (*scanpos && *scanpos != '\"')
{
if (*scanpos == '\\')
{
switch (scanpos[1])
{
case 'n':
*scanpos = 0x0D;
break;
case 'r':
*scanpos = '\r';
break;
case 't':
*scanpos = '\t';
break;
case '\'':
*scanpos = '\'';
break;
case '\\':
*scanpos = '\\';
break;
case '0':
*scanpos = '\0';
break;
default:
parse_error("Bad string constant");
return (-1);
}
for (scanshift = scanpos + 1; *scanshift; scanshift++)
scanshift[0] = scanshift[1];
}
else
scanpos++;
}
if (!*scanpos++)
{
parse_error("Unterminated string");
return (-1);
}
}
else
{
/*
* Potential two and three character tokens.
*/
switch (scanpos[0])
{
case '>':
if (scanpos[1] == '>')
{
scantoken = SHR_TOKEN;
scanpos += 2;
}
else if (scanpos[1] == '=')
{
scantoken = GE_TOKEN;
scanpos += 2;
}
else
{
scantoken = GT_TOKEN;
scanpos++;
}
break;
case '<':
if (scanpos[1] == '<')
{
scantoken = SHL_TOKEN;
scanpos += 2;
}
else if (scanpos[1] == '=')
{
scantoken = LE_TOKEN;
scanpos += 2;
}
else if (scanpos[1] == '>')
{
scantoken = NE_TOKEN;
scanpos += 2;
}
else
{
scantoken = LT_TOKEN;
scanpos++;
}
break;
case '=':
if (scanpos[1] == '=')
{
scantoken = EQ_TOKEN;
scanpos += 2;
}
else
{
scantoken = SET_TOKEN;
scanpos++;
}
break;
case '+':
if (scanpos[1] == '+')
{
scantoken = INC_TOKEN;
scanpos += 2;
}
else
{
scantoken = ADD_TOKEN;
scanpos++;
}
break;
case '-':
if (scanpos[1] == '-')
{
scantoken = DEC_TOKEN;
scanpos += 2;
}
else
{
scantoken = SUB_TOKEN;
scanpos++;
}
break;
default:
/*
* Simple single character tokens.
*/
scantoken = TOKEN(*scanpos++);
}
}
tokenlen = scanpos - tokenstr;
return (scantoken);
}
void scan_rewind(char *backptr)
{
scanpos = backptr;
}
int scan_lookahead(void)
{
char *backpos = scanpos;
char *backstr = tokenstr;
int prevtoken = scantoken;
int prevlen = tokenlen;
int look = scan();
scanpos = backpos;
tokenstr = backstr;
scantoken = prevtoken;
tokenlen = prevlen;
return (look);
}
char inputline[512];
int next_line(void)
{
gets(inputline);
lineno++;
statement = inputline;
scanpos = inputline;
scantoken = EOL_TOKEN;
scan();
printf("; %03d: %s\n", lineno, inputline);
return (1);
}

10
src/lex.h Executable file
View File

@ -0,0 +1,10 @@
extern char *statement, *scanpos, *tokenstr;
extern t_token scantoken, prevtoken;
extern int tokenlen;
extern long constval;
extern char inputline[];
void parse_error(char *errormsg);
int next_line(void);
void scan_rewind(char *backptr);
int scan_lookahead(void);
t_token scan(void);

82
src/makefile Executable file
View File

@ -0,0 +1,82 @@
.SUFFIXES =
AFLAGS = -o $@
LFLAGS = -C default.cfg
PLVM = plvm
PLVM02 = PLVM02.SYS
CMD = CMD.SYS
PLASM = plasm
INCS = tokens.h symbols.h lex.h parse.h codegen.h
OBJS = plasm.c parse.o lex.o codegen.o
#
# Image filetypes for Virtual ][
#
PLATYPE = .\$$ED
BINTYPE = .BIN
SYSTYPE = .SYS
TXTTYPE = .TXT
#
# Image filetypes for CiderPress
#
#PLATYPE = \#ed0000
#BINTYPE = \#060000
#SYSTYPE = \#ff0000
#TXTTYPE = \#040000
all: $(PLASM) $(PLVM) $(PLVM02) $(CMD) TESTLIB ROD.REL
clean:
-rm *.o *~ *.a *.SYM *.SYS *.REL TESTLIB $(PLASM) $(PLVM)
$(PLASM): $(OBJS) $(INCS)
cc $(OBJS) -o $(PLASM)
$(PLVM): plvm.c
cc plvm.c -o $(PLVM)
cmdexec.a: cmdexec.pla $(PLASM)
./$(PLASM) -A < cmdexec.pla > cmdexec.a
$(PLVM02): plvm02.s cmdexec.a
acme -o $(PLVM02) -l PLVM02.SYM plvm02.s
$(CMD): cmd.pla cmdstub.s $(PLVM) $(PLASM)
./$(PLASM) -A < cmd.pla > cmd.a
acme --setpc 8192 -o $(CMD) cmdstub.s
TESTLIB: testlib.pla $(PLVM) $(PLASM)
./$(PLASM) -AM < testlib.pla > testlib.a
acme --setpc 4094 -o TESTLIB testlib.a
test: test.pla TESTLIB $(PLVM) $(PLASM)
./$(PLASM) -AM < test.pla > test.a
acme --setpc 4094 -o TEST.REL test.a
./$(PLVM) TEST.REL
TESTCLS: testcls.pla $(PLVM) $(PLASM)
./$(PLASM) -AM < testcls.pla > testcls.a
acme --setpc 4094 -o TESTCLS testcls.a
class: class.pla TESTCLS $(PLVM) $(PLASM)
./$(PLASM) -AM < class.pla > class.a
acme --setpc 4094 -o CLASS.REL class.a
./$(PLVM) CLASS.REL
debug: test.pla TESTLIB $(PLVM) $(PLASM)
./$(PLASM) -AM < test.pla > test.a
acme --setpc 4094 -o TEST.REL test.a
./$(PLVM) -s TEST.REL MAIN
hello: hello.pla $(PLVM) $(PLASM)
./$(PLASM) -AM < hello.pla > hello.a
acme --setpc 4094 -o HELLO.REL hello.a
./$(PLVM) HELLO.REL
ROD.REL: rod.pla $(PLVM) $(PLASM)
./$(PLASM) -AM < rod.pla > rod.a
acme --setpc 4094 -o ROD.REL rod.a
HGR1: hgr1.pla hgr1test.pla $(PLVM) $(PLASM)
./$(PLASM) -AM < hgr1test.pla > hgr1test.a
acme --setpc 4094 -o HGR1TEST.REL hgr1test.a
./$(PLASM) -AM < hgr1.pla > hgr1.a
acme --setpc 4094 -o HGR1 hgr1.a

1335
src/parse.c Executable file

File diff suppressed because it is too large Load Diff

1
src/parse.h Executable file
View File

@ -0,0 +1 @@
int parse_module(void);

35
src/plasm.c Executable file
View File

@ -0,0 +1,35 @@
#include <stdio.h>
#include "tokens.h"
#include "lex.h"
#include "codegen.h"
#include "parse.h"
int main(int argc, char **argv)
{
int j, i, flags = 0;
for (i = 1; i < argc; i++)
{
if (argv[i][0] == '-')
{
j = 1;
while (argv[i][j])
{
switch(argv[i][j++])
{
case 'A':
flags |= ACME;
break;
case 'M':
flags |= MODULE;
break;
}
}
}
}
emit_flags(flags);
if (parse_module())
{
fprintf(stderr, "Compilation complete.\n");
}
return (0);
}

939
src/plvm.c Executable file
View File

@ -0,0 +1,939 @@
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <ctype.h>
typedef unsigned char code;
typedef unsigned char byte;
typedef signed short word;
typedef unsigned short uword;
typedef unsigned short address;
/*
* Debug
*/
int show_state = 0;
/*
* Bytecode memory
*/
#define BYTE_PTR(bp) ((byte)((bp)[0]))
#define WORD_PTR(bp) ((word)((bp)[0] | ((bp)[1] << 8)))
#define UWORD_PTR(bp) ((uword)((bp)[0] | ((bp)[1] << 8)))
#define TO_UWORD(w) ((uword)((w)))
#define MOD_ADDR 0x1000
#define DEF_CALL 0x0800
#define DEF_CALLSZ 0x0800
#define DEF_ENTRYSZ 6
#define MEM_SIZE 65536
byte mem_data[MEM_SIZE];
uword sp = 0x01FE, fp = 0xFFFF, heap = 0x0200, deftbl = DEF_CALL, lastdef = DEF_CALL;
#define EVAL_STACKSZ 16
#define PUSH(v) (*(--esp))=(v)
#define POP ((word)(*(esp++)))
#define UPOP ((uword)(*(esp++)))
#define TOS (esp[0])
word eval_stack[EVAL_STACKSZ];
word *esp = eval_stack + EVAL_STACKSZ;
#define SYMTBLSZ 1024
#define SYMSZ 16
#define MODTBLSZ 128
#define MODSZ 16
#define MODLSTSZ 32
byte symtbl[SYMTBLSZ];
byte *lastsym = symtbl;
byte modtbl[MODTBLSZ];
byte *lastmod = modtbl;
/*
* Predef.
*/
void interp(code *ip);
/*
* Utility routines.
*
* A DCI string is one that has the high bit set for every character except the last.
* More efficient than C or Pascal strings.
*/
int dcitos(byte *dci, char *str)
{
int len = 0;
do
str[len] = *dci & 0x7F;
while ((len++ < 16) && (*dci++ & 0x80));
str[len] = 0;
return len;
}
int stodci(char *str, byte *dci)
{
int len = 0;
do
dci[len] = toupper(*str) | 0x80;
while (*str++ && (len++ < 16));
dci[len - 1] &= 0x7F;
return len;
}
/*
* Heap routines.
*/
uword avail_heap(void)
{
return fp - heap;
}
uword alloc_heap(int size)
{
uword addr = heap;
heap += size;
if (heap >= fp)
{
printf("Error: heap/frame collision.\n");
exit (1);
}
return addr;
}
uword free_heap(int size)
{
heap -= size;
return fp - heap;
}
uword mark_heap(void)
{
return heap;
}
uword release_heap(uword newheap)
{
heap = newheap;
return fp - heap;
}
/*
* DCI table routines,
*/
void dump_tbl(byte *tbl)
{
int len;
byte *entbl;
while (*tbl)
{
len = 0;
while (*tbl & 0x80)
{
putchar(*tbl++ & 0x7F);
len++;
}
putchar(*tbl++);
putchar(':');
while (len++ < 15)
putchar(' ');
printf("$%04X\n", tbl[0] | (tbl[1] << 8));
tbl += 2;
}
}
uword lookup_tbl(byte *dci, byte *tbl)
{
char str[20];
byte *match, *entry = tbl;
while (*entry)
{
match = dci;
while (*entry == *match)
{
if (!(*entry & 0x80))
return entry[1] | (entry[2] << 8);
entry++;
match++;
}
while (*entry++ & 0x80);
entry += 2;
}
return 0;
}
uword add_tbl(byte *dci, int val, byte **last)
{
while (*dci & 0x80)
*(*last)++ = *dci++;
*(*last)++ = *dci++;
*(*last)++ = val;
*(*last)++ = val >> 8;
return 0;
}
/*
* Symbol table routines.
*/
void dump_sym(void)
{
printf("\nSystem Symbol Table:\n");
dump_tbl(symtbl);
}
uword lookup_sym(byte *sym)
{
return lookup_tbl(sym, symtbl);
}
uword add_sym(byte *sym, int addr)
{
return add_tbl(sym, addr, &lastsym);
}
/*
* Module routines.
*/
void dump_mod(void)
{
printf("\nSystem Module Table:\n");
dump_tbl(modtbl);
}
uword lookup_mod(byte *mod)
{
return lookup_tbl(mod, modtbl);
}
uword add_mod(byte *mod, int addr)
{
return add_tbl(mod, addr, &lastmod);
}
uword defcall_add(int bank, int addr)
{
mem_data[lastdef] = bank ? 2 : 1;
mem_data[lastdef + 1] = addr;
mem_data[lastdef + 2] = addr >> 8;
return lastdef++;
}
uword def_lookup(byte *cdd, int defaddr)
{
int i, calldef = 0;
for (i = 0; cdd[i * 4] == 0x02; i++)
{
if ((cdd[i * 4 + 1] | (cdd[i * 4 + 2] << 8)) == defaddr)
{
calldef = cdd + i * 4 - mem_data;
break;
}
}
return calldef;
}
uword extern_lookup(byte *esd, int index)
{
byte *sym;
char string[32];
while (*esd)
{
sym = esd;
esd += dcitos(esd, string);
if ((esd[0] & 0x10) && (esd[1] == index))
return lookup_sym(sym);
esd += 3;
}
printf("\nError: extern index %d not found in ESD.\n", index);
return 0;
}
int load_mod(byte *mod)
{
uword modsize, hdrlen, len, end, magic, bytecode, fixup, addr, sysflags, defcnt = 0, init = 0, modaddr = mark_heap();
word modfix;
byte *moddep, *rld, *esd, *cdd, *sym;
byte header[128];
int fd;
char filename[32], string[17];
dcitos(mod, filename);
printf("Load module %s\n", filename);
fd = open(filename, O_RDONLY, 0);
if ((fd > 0) && (len = read(fd, header, 128)) > 0)
{
moddep = header + 1;
modsize = header[0] | (header[1] << 8);
magic = header[2] | (header[3] << 8);
if (magic == 0xDA7E)
{
/*
* This is a relocatable bytecode module.
*/
sysflags = header[4] | (header[5] << 8);
bytecode = header[6] | (header[7] << 8);
defcnt = header[8] | (header[9] << 8);
init = header[10] | (header[11] << 8);
moddep = header + 12;
/*
* Load module dependencies.
*/
while (*moddep)
{
if (lookup_mod(moddep) == 0)
{
if (fd)
{
close(fd);
fd = 0;
}
load_mod(moddep);
}
moddep += dcitos(moddep, string);
}
if (fd == 0)
{
fd = open(filename, O_RDONLY, 0);
len = read(fd, header, 128);
}
}
/*
* Alloc heap space for relocated module (data + bytecode).
*/
moddep += 1;
hdrlen = moddep - header;
len -= hdrlen;
modaddr = mark_heap();
end = modaddr + len;
/*
* Read in remainder of module into memory for fixups.
*/
memcpy(mem_data + modaddr, moddep, len);
while ((len = read(fd, mem_data + end, 4096)) > 0)
end += len;
close(fd);
/*
* Apply all fixups and symbol import/export.
*/
modfix = modaddr - hdrlen + 2; // - MOD_ADDR;
bytecode += modfix - MOD_ADDR;
end = modaddr - hdrlen + modsize + 2;
rld = mem_data + end; // Re-Locatable Directory
esd = rld; // Extern+Entry Symbol Directory
while (*esd != 0x00) // Scan to end of RLD
esd += 4;
esd++;
cdd = rld;
if (show_state)
{
/*
* Dump different parts of module.
*/
printf("Module load addr: $%04X\n", modaddr);
printf("Module size: %d\n", end - modaddr + hdrlen);
printf("Module code+data size: %d\n", modsize);
printf("Module magic: $%04X\n", magic);
printf("Module sysflags: $%04X\n", sysflags);
printf("Module bytecode: $%04X\n", bytecode);
printf("Module def count: $%04X\n", defcnt);
printf("Module init: $%04X\n", init ? init + modfix - MOD_ADDR : 0);
}
/*
* Print out the Re-Location Dictionary.
*/
if (show_state)
printf("\nRe-Location Dictionary:\n");
while (*rld)
{
if (rld[0] == 0x02)
{
if (show_state) printf("\tDEF CODE");
addr = rld[1] | (rld[2] << 8);
addr += modfix - MOD_ADDR;
rld[1] = addr;
rld[2] = addr >> 8;
end = rld - mem_data + 4;
}
else
{
addr = rld[1] | (rld[2] << 8);
if (addr > 12)
{
addr += modfix;
if (rld[0] & 0x80)
fixup = (mem_data[addr] | (mem_data[addr + 1] << 8));
else
fixup = mem_data[addr];
if (rld[0] & 0x10)
{
if (show_state) printf("\tEXTERN[$%02X] ", rld[3]);
fixup += extern_lookup(esd, rld[3]);
}
else
{
fixup += modfix - MOD_ADDR;
if (fixup >= bytecode)
{
/*
* Replace with call def dictionary.
*/
if (show_state) printf("\tDEF[$%04X->", fixup);
fixup = def_lookup(cdd, fixup);
if (show_state) printf("$%04X] ", fixup);
}
else
if (show_state) printf("\tINTERN ");
}
if (rld[0] & 0x80)
{
if (show_state) printf("WORD");
mem_data[addr] = fixup;
mem_data[addr + 1] = fixup >> 8;
}
else
{
if (show_state) printf("BYTE");
mem_data[addr] = fixup;
}
}
else
{
if (show_state) printf("\tIGNORE (HDR) ");
}
}
if (show_state) printf("@$%04X\n", addr);
rld += 4;
}
if (show_state) printf("\nExternal/Entry Symbol Directory:\n");
while (*esd)
{
sym = esd;
esd += dcitos(esd, string);
if (esd[0] & 0x10)
{
if (show_state) printf("\tIMPORT %s[$%02X]\n", string, esd[1]);
}
else if (esd[0] & 0x08)
{
addr = esd[1] | (esd[2] << 8);
addr += modfix - MOD_ADDR;
if (show_state) printf("\tEXPORT %s@$%04X\n", string, addr);
if (addr >= bytecode)
addr = def_lookup(cdd, addr);
add_sym(sym, addr);
}
esd += 3;
}
}
else
{
printf("Error: Unable to load module %s\n", filename);
exit (1);
}
/*
* Reserve heap space for relocated module.
*/
alloc_heap(end - modaddr);
/*
* Call init routine.
*/
if (init)
{
interp(mem_data + init + modfix - MOD_ADDR);
return POP;
}
return 0;
}
void interp(code *ip);
void call(uword pc)
{
unsigned int i, s;
char c, sz[64];
switch (mem_data[pc++])
{
case 0: // NULL call
printf("NULL call code\n");
break;
case 1: // BYTECODE in mem_code
//interp(mem_code + (mem_data[pc] + (mem_data[pc + 1] << 8)));
break;
case 2: // BYTECODE in mem_data
interp(mem_data + (mem_data[pc] + (mem_data[pc + 1] << 8)));
break;
case 3: // LIBRARY STDLIB::VIEWPORT
printf("Set Viewport %d, %d, %d, %d\n", esp[3], esp[2], esp[1], esp[0]);
esp += 4;
PUSH(0);
break;
case 4: // LIBRARY STDLIB::PUTC
c = POP;
if (c == 0x0D)
c = '\n';
putchar(c);
PUSH(0);
break;
case 5: // LIBRARY STDLIB::PUTS
s = POP;
i = mem_data[s++];
PUSH(i);
while (i--)
{
c = mem_data[s++];
if (c == 0x0D)
c = '\n';
putchar(c);
}
break;
case 6: // LIBRARY STDLIB::PUTSZ
s = POP;
while ((c = mem_data[s++]))
{
if (c == 0x0D)
c = '\n';
putchar(c);
}
PUSH(0);
break;
case 7: // LIBRARY STDLIB::GETC
PUSH(getchar());
break;
case 8: // LIBRARY STDLIB::GETS
gets(sz);
for (i = 0; sz[i]; i++)
mem_data[0x200 + i] = sz[i];
mem_data[0x200 + i] = 0;
mem_data[0x1FF] = i;
PUSH(i);
break;
case 9: // LIBRARY STDLIB::CLS
puts("\033[2J");
fflush(stdout);
PUSH(0);
PUSH(0);
case 10: // LIBRARY STDLIB::GOTOXY
s = POP + 1;
i = POP + 1;
printf("\033[%d;%df", s, i);
fflush(stdout);
PUSH(0);
break;
case 11: // LIBRARY STDLIB::PUTNL
putchar('\n');
fflush(stdout);
PUSH(0);
break;
default:
printf("Bad call code\n");
}
}
/*
* OPCODE TABLE
*
OPTBL: DW ZERO,ADD,SUB,MUL,DIV,MOD,INCR,DECR ; 00 02 04 06 08 0A 0C 0E
DW NEG,COMP,AND,IOR,XOR,SHL,SHR,IDXW ; 10 12 14 16 18 1A 1C 1E
DW NOT,LOR,LAND,LA,LLA,CB,CW,SWAP ; 20 22 24 26 28 2A 2C 2E
DW DROP,DUP,PUSH,PULL,BRGT,BRLT,BREQ,BRNE ; 30 32 34 36 38 3A 3C 3E
DW ISEQ,ISNE,ISGT,ISLT,ISGE,ISLE,BRFLS,BRTRU ; 40 42 44 46 48 4A 4C 4E
DW BRNCH,IBRNCH,CALL,ICAL,ENTER,LEAVE,RET,??? ; 50 52 54 56 58 5A 5C 5E
DW LB,LW,LLB,LLW,LAB,LAW,DLB,DLW ; 60 62 64 66 68 6A 6C 6E
DW SB,SW,SLB,SLW,SAB,SAW,DAB,DAW ; 70 72 74 76 78 7A 7C 7E
*/
void interp(code *ip)
{
int val, ea, frmsz, parmcnt;
while (1)
{
if (show_state)
{
char cmdline[16];
word *dsp = &eval_stack[EVAL_STACKSZ - 1];
printf("$%04X: $%02X [ ", ip - mem_data, *ip);
while (dsp >= esp)
printf("$%04X ", (*dsp--) & 0xFFFF);
printf("]\n");
gets(cmdline);
}
switch (*ip++)
{
/*
* 0x00-0x0F
*/
case 0x00: // ZERO : TOS = 0
PUSH(0);
break;
case 0x02: // ADD : TOS = TOS + TOS-1
val = POP;
ea = POP;
PUSH(ea + val);
break;
case 0x04: // SUB : TOS = TOS-1 - TOS
val = POP;
ea = POP;
PUSH(ea - val);
break;
case 0x06: // MUL : TOS = TOS * TOS-1
val = POP;
ea = POP;
PUSH(ea * val);
break;
case 0x08: // DIV : TOS = TOS-1 / TOS
val = POP;
ea = POP;
PUSH(ea / val);
break;
case 0x0A: // MOD : TOS = TOS-1 % TOS
val = POP;
ea = POP;
PUSH(ea % val);
break;
case 0x0C: // INCR : TOS = TOS + 1
TOS++;;
break;
case 0x0E: // DECR : TOS = TOS - 1
TOS--;
break;
/*
* 0x10-0x1F
*/
case 0x10: // NEG : TOS = -TOS
TOS = -TOS;
break;
case 0x12: // COMP : TOS = ~TOS
TOS = ~TOS;
break;
case 0x14: // AND : TOS = TOS & TOS-1
val = POP;
ea = POP;
PUSH(ea & val);
break;
case 0x16: // IOR : TOS = TOS ! TOS-1
val = POP;
ea = POP;
PUSH(ea | val);
break;
case 0x18: // XOR : TOS = TOS ^ TOS-1
val = POP;
ea = POP;
PUSH(ea ^ val);
break;
case 0x1A: // SHL : TOS = TOS-1 << TOS
val = POP;
ea = POP;
PUSH(ea << val);
break;
case 0x1C: // SHR : TOS = TOS-1 >> TOS
val = POP;
ea = POP;
PUSH(ea >> val);
break;
case 0x1E: // IDXW : TOS = TOS * 2
TOS *= 2;
break;
/*
* 0x20-0x2F
*/
case 0x20: // NOT : TOS = !TOS
TOS = !TOS;
break;
case 0x22: // LOR : TOS = TOS || TOS-1
val = POP;
ea = POP;
PUSH(ea || val);
break;
case 0x24: // LAND : TOS = TOS && TOS-1
val = POP;
ea = POP;
PUSH(ea && val);
break;
case 0x26: // LA : TOS = @VAR ; equivalent to CW ADDRESSOF(VAR)
PUSH(WORD_PTR(ip));
ip += 2;
break;
case 0x28: // LLA : TOS = @LOCALVAR ; equivalent to CW FRAMEPTR+OFFSET(LOCALVAR)
PUSH(fp + BYTE_PTR(ip));
ip++;
break;
case 0x2A: // CB : TOS = CONSTANTBYTE (IP)
PUSH(BYTE_PTR(ip));
ip++;
break;
case 0x2C: // CW : TOS = CONSTANTWORD (IP)
PUSH(WORD_PTR(ip));
ip += 2;
break;
case 0x2E: // SWAP : TOS = TOS-1, TOS-1 = TOS
val = POP;
ea = POP;
PUSH(val);
PUSH(ea);
break;
/*
* 0x30-0x3F
*/
case 0x30: // DROP : TOS =
POP;
break;
case 0x32: // DUP : TOS = TOS
val = TOS;
PUSH(val);
break;
case 0x34: // PUSH : TOSP = TOS
val = POP;
mem_data[sp--] = val >> 8;
mem_data[sp--] = val;
break;
case 0x36: // PULL : TOS = TOSP
PUSH(mem_data[sp] | (mem_data[sp + 1] << 8));
sp += 2;
break;
case 0x38: // BRGT : TOS-1 > TOS ? IP += (IP)
val = POP;
if (TOS > val)
ip += WORD_PTR(ip);
else
ip += 2;
break;
case 0x3A: // BRLT : TOS-1 < TOS ? IP += (IP)
val = POP;
if (TOS < val)
ip += WORD_PTR(ip);
else
ip += 2;
break;
case 0x3C: // BREQ : TOS == TOS-1 ? IP += (IP)
val = POP;
if (TOS == val)
ip += WORD_PTR(ip);
else
ip += 2;
break;
case 0x3E: // BRNE : TOS != TOS-1 ? IP += (IP)
val = POP;
if (TOS != val)
ip += WORD_PTR(ip);
else
ip += 2;
break;
/*
* 0x40-0x4F
*/
case 0x40: // ISEQ : TOS = TOS == TOS-1
val = POP;
ea = POP;
PUSH((ea == val) ? -1 : 0);
break;
case 0x42: // ISNE : TOS = TOS != TOS-1
val = POP;
ea = POP;
PUSH((ea != val) ? -1 : 0);
break;
case 0x44: // ISGT : TOS = TOS-1 > TOS
val = POP;
ea = POP;
PUSH((ea > val) ? -1 : 0);
break;
case 0x46: // ISLT : TOS = TOS-1 < TOS
val = POP;
ea = POP;
PUSH((ea < val) ? -1 : 0);
break;
case 0x48: // ISGE : TOS = TOS-1 >= TOS
val = POP;
ea = POP;
PUSH((ea >= val) ? -1 : 0);
break;
case 0x4A: // ISLE : TOS = TOS-1 <= TOS
val = POP;
ea = POP;
PUSH((ea <= val) ? -1 : 0);
break;
case 0x4C: // BRFLS : !TOS ? IP += (IP)
if (!POP)
ip += WORD_PTR(ip) ;
else
ip += 2;
break;
case 0x4E: // BRTRU : TOS ? IP += (IP)
if (POP)
ip += WORD_PTR(ip);
else
ip += 2;
break;
/*
* 0x50-0x5F
*/
case 0x50: // BRNCH : IP += (IP)
ip += WORD_PTR(ip);
break;
case 0x52: // IBRNCH : IP += TOS
ip += POP;
break;
case 0x54: // CALL : TOFP = IP, IP = (IP) ; call
call(UWORD_PTR(ip));
ip += 2;
break;
case 0x56: // ICALL : IP = TOS ; indirect call
ea = UPOP;
call(ea);
break;
case 0x58: // ENTER : NEW FRAME, FOREACH PARAM LOCALVAR = TOS
frmsz = BYTE_PTR(ip);
ip++;
mem_data[fp - frmsz] = fp;
mem_data[fp - frmsz + 1] = fp >> 8;
if (show_state)
printf("< $%04X: $%04X > ", fp - frmsz, fp);
fp -= frmsz;
parmcnt = BYTE_PTR(ip);
ip++;
while (parmcnt--)
{
val = POP;
mem_data[fp + parmcnt * 2 + 2] = val;
mem_data[fp + parmcnt * 2 + 3] = val >> 8;
if (show_state)
printf("< $%04X: $%04X > ", fp + parmcnt * 2 + 2, mem_data[fp + parmcnt * 2 + 2] | (mem_data[fp + parmcnt * 2 + 3] >> 8));
}
if (show_state)
printf("\n");
break;
case 0x5A: // LEAVE : DEL FRAME, IP = TOFP
fp = mem_data[fp] | (mem_data[fp + 1] << 8);
case 0x5C: // RET : IP = TOFP
return;
case 0x5E: // ???
break;
/*
* 0x60-0x6F
*/
case 0x60: // LB : TOS = BYTE (TOS)
ea = TO_UWORD(POP);
PUSH(mem_data[ea]);
break;
case 0x62: // LW : TOS = WORD (TOS)
ea = UPOP;
PUSH(mem_data[ea] | (mem_data[ea + 1] << 8));
break;
case 0x64: // LLB : TOS = LOCALBYTE [IP]
PUSH(mem_data[TO_UWORD(fp + BYTE_PTR(ip))]);
ip++;
break;
case 0x66: // LLW : TOS = LOCALWORD [IP]
ea = TO_UWORD(fp + BYTE_PTR(ip));
PUSH(mem_data[ea] | (mem_data[ea + 1] << 8));
ip++;
break;
case 0x68: // LAB : TOS = BYTE (IP)
PUSH(mem_data[UWORD_PTR(ip)]);
ip += 2;
break;
case 0x6A: // LAW : TOS = WORD (IP)
ea = UWORD_PTR(ip);
PUSH(mem_data[ea] | (mem_data[ea + 1] << 8));
ip += 2;
break;
case 0x6C: // DLB : TOS = TOS, LOCALBYTE [IP] = TOS
mem_data[TO_UWORD(fp + BYTE_PTR(ip))] = TOS;
ip++;
break;
case 0x6E: // DLW : TOS = TOS, LOCALWORD [IP] = TOS
ea = TO_UWORD(fp + BYTE_PTR(ip));
mem_data[ea] = TOS;
mem_data[ea + 1] = TOS >> 8;
ip++;
break;
/*
* 0x70-0x7F
*/
case 0x70: // SB : BYTE (TOS) = TOS-1
val = POP;
ea = UPOP;
mem_data[ea] = val;
break;
case 0x72: // SW : WORD (TOS) = TOS-1
val = POP;
ea = UPOP;
mem_data[ea] = val;
mem_data[ea + 1] = val >> 8;
break;
case 0x74: // SLB : LOCALBYTE [TOS] = TOS-1
mem_data[TO_UWORD(fp + BYTE_PTR(ip))] = POP;
ip++;
break;
case 0x76: // SLW : LOCALWORD [TOS] = TOS-1
ea = TO_UWORD(fp + BYTE_PTR(ip));
val = POP;
mem_data[ea] = val;
mem_data[ea + 1] = val >> 8;
ip++;
break;
case 0x78: // SAB : BYTE (IP) = TOS
mem_data[UWORD_PTR(ip)] = POP;
ip += 2;
break;
case 0x7A: // SAW : WORD (IP) = TOS
ea = UWORD_PTR(ip);
val = POP;
mem_data[ea] = val;
mem_data[ea + 1] = val >> 8;
ip += 2;
break;
case 0x7C: // DAB : TOS = TOS, BYTE (IP) = TOS
mem_data[UWORD_PTR(ip)] = TOS;
ip += 2;
break;
case 0x7E: // DAW : TOS = TOS, WORD (IP) = TOS
ea = UWORD_PTR(ip);
mem_data[ea] = TOS;
mem_data[ea + 1] = TOS >> 8;
ip += 2;
break;
/*
* Odd codes and everything else are errors.
*/
default:
fprintf(stderr, "Illegal opcode 0x%02X @ 0x%04X\n", ip[-1], ip - mem_data);
}
}
}
char *stdlib_exp[] = {
"VIEWPORT",
"PUTC",
"PUTS",
"PUTSZ",
"GETC",
"GETS",
"CLS",
"GOTOXY",
"PUTNL",
0
};
byte stdlib[] = {
0x00
};
int main(int argc, char **argv)
{
byte dci[32];
int i;
if (--argc)
{
argv++;
if ((*argv)[0] == '-' && (*argv)[1] == 's')
{
show_state = 1;
argc--;
argv++;
}
/*
* Add default library.
*/
stodci("STDLIB", dci);
add_mod(dci, 0xFFFF);
for (i = 0; stdlib_exp[i]; i++)
{
mem_data[i] = i + 3;
stodci(stdlib_exp[i], dci);
add_sym(dci, i);
}
if (argc)
{
stodci(*argv, dci);
load_mod(dci);
if (show_state) dump_sym();
argc--;
argv++;
}
if (argc)
{
stodci(*argv, dci);
call(lookup_sym(dci));
}
}
return 0;
}

2028
src/plvm02.s Normal file

File diff suppressed because it is too large Load Diff

32
src/plvm02zp.inc Normal file
View File

@ -0,0 +1,32 @@
;**********************************************************
;*
;* VM ZERO PAGE LOCATIONS
;*
;**********************************************************
ESTKSZ = $20
ESTK = $C0
ESTKL = ESTK
ESTKH = ESTK+ESTKSZ/2
VMZP = ESTK+ESTKSZ
IFP = VMZP
IFPL = IFP
IFPH = IFP+1
IP = IFP+2
IPL = IP
IPH = IP+1
IPY = IP+2
TMP = IP+3
TMPL = TMP
TMPH = TMP+1
TMPX = TMP+2
NPARMS = TMPL
FRMSZ = TMPH
DVSIGN = TMPX
ESP = TMPX
TICTOC = TMP+3
SRC = $06
SRCL = SRC
SRCH = SRC+1
DST = SRC+2
DSTL = DST
DSTH = DST+1

84
src/rod.pla Normal file
View File

@ -0,0 +1,84 @@
import STDLIB
predef romcall, puts
end
const speaker=$C030
const showgraphics=$C050
const showtext=$C051
const showfull=$C052
const showmix=$C053
const TRUE=$FFFF
const FALSE=$0000
const showpage1=$C054
const showpage2=$C055
const showlores=$C056
const showhires=$C057
const keyboard=$C000
const keystrobe=$C010
const hgr1=$2000
const hgr2=$4000
const page1=0
const page2=1
byte exitmsg[] = "PRESS ANY KEY TO EXIT.\n"
byte goodbye[] = "THAT'S ALL FOLKS!\n"
byte i, j, k, w, fmi, fmk, color
def textmode
romcall(0, 0, 0, 0, $FB39)
end
def home
romcall(0, 0, 0, 0, $FC58)
end
def gotoxy(x, y)
^($24) = x
romcall(y, 0, 0, 0, $FB5B)
end
def grmode
romcall(0, 0, 0, 0, $FB40)
^showlores
end
def grcolor(color)
romcall(color, 0, 0, 0, $F864)
end
def grplot(x, y)
romcall(y, 0, x, 0, $F800)
end
def colors
while TRUE
for w = 3 to 50
for i = 1 to 19
for j = 0 to 19
k = i + j
color = (j * 3) / (i + 3) + i * w / 12
fmi = 40 - i
fmk = 40 - k
romcall(color, 0, 0, 0, $F864) ;grcolor(color);
romcall(k, 0, i, 0, $F800) ;grplot(i, k);
romcall(i, 0, k, 0, $F800) ;grplot(k, i);
romcall(fmk, 0, fmi, 0, $F800) ;grplot(fmi, fmk);
romcall(fmi, 0, fmk, 0, $F800) ;grplot(fmk, fmi);
romcall(fmi, 0, k, 0, $F800) ;grplot(k, fmi);
romcall(k, 0, fmi, 0, $F800) ;grplot(fmi, k);
romcall(fmk, 0, i, 0, $F800) ;grplot(i, fmk);
romcall(i, 0, fmk, 0, $F800) ;grplot(fmk, i);
if ^keyboard >= 128
^keystrobe
return
fin
next
next
next
loop
end
grmode()
gotoxy(10,22)
puts(@exitmsg)
colors()
textmode()
home()
puts(@goodbye)
while ^keyboard < 128
loop
^keystrobe
done

150
src/samplib.s Executable file
View File

@ -0,0 +1,150 @@
;
; Sample PLASMA library.
;
!TO "samplib.bin", PLAIN
* = $1000
;
; DATA/CODE SEGMENT
;
_SEGBEGIN
!WORD _SEGEND-_SEGBEGIN ; LENGTH OF HEADER + CODE/DATA + BYTECODE SEGMENT
;
; MODULE HEADER
;
!WORD $DA7E ; MAGIC #
!WORD _SUBSEG ; BYTECODE SUB-SEGMENT
!WORD _INIT ; BYTECODE INIT ROUTINE
;
; MODULE DEPENDENCY LIST
; NOTE: DCI = PSUEDO OP FOR ASCII STRING WITH HI BIT SET EXCEPT LAST CHAR
;
;DCI "STDLIB"
!CT "hi.ascii"
!TX "STDLI"
!CT RAW
!TX 'B'
;DCI "FILEIO"
!CT "hi.ascii"
!TX "FILEI"
!CT RAW
!TX 'O'
!BYTE 0
;
; NATIVE CODE + GLOBAL DATA
;
COUNT !WORD 0
INCCNT
FIXUP1 INC COUNT
BNE XINIT
FIXUP2 INC COUNT+1
XINIT RTS
;
; BYTECODE SUB-SEGMENT
;
_SUBSEG
MYFUNC !BYTE $58, $01, $16 ; ENTER 1,16
!BYTE $66, $02 ; LLW 2
!BYTE $2A, $01 ; CB 1
!BYTE $54 ; CALL EXTERN(1) "OPEN"
FIXUP4 !WORD $0000
!BYTE $6E, $04 ; DLW 4
!BYTE $54 ; CALL EXTERN(3) "READ"
FIXUP5 !WORD $0000
!BYTE $30 ; DROP
!BYTE $66, $04 ; LLW 4
!BYTE $54 ; CALL EXTERN(2) ; "CLOSE"
FIXUP6 !WORD $0000
!BYTE $30 ; DROP
!BYTE $6A ; LAW COUNT
FIXUP7 !WORD $0000
!BYTE $54 ; CALL INCNT
FIXUP8 !WORD $0000
!BYTE $5A ; LEAVE
_INIT
!BYTE $5C ; RET
;
; END OF CODE/DATA + BYTECODE SEGMENT
;
_SEGEND
;
; BYTCODE FUNCTION DICTIONARY
;
!BYTE $A1 ; FIXUP FLAGS
!WORD MYFUNC ; FIXUP OFFSET
!BYTE $00 ; FIXUP LO BYTE (OF HI BYTE)/IMPORT INDEX
;
; RE-LOCATION DICTIONARY (FIXUP TABLE)
;
!BYTE $81 ; FIXUP FLAGS
!WORD FIXUP1+1 ; FIXUP OFFSET
!BYTE $00 ; FIXUP LO BYTE (OF HI BYTE)/IMPORT INDEX
!BYTE $81
!WORD FIXUP2+1
!BYTE $00
!BYTE $91 ; IMPORT FIXUP
!WORD FIXUP4
!BYTE $01 ; IMPORT INDEX 1
!BYTE $91
!WORD FIXUP5
!BYTE $03
!BYTE $91
!WORD FIXUP6
!BYTE $02
!BYTE $81
!WORD FIXUP7
!BYTE $00
!BYTE $81
!WORD FIXUP8
!BYTE $00
!BYTE 0 ; END OF RLD
;
; EXTERNAL/ENTRY SYMBOL DIRECTORY
;;
; IMPORT TABLE
;
IMPTBL ;DCI "OPEN" ; EXTERNAL SYMBOL NAME
!CT "hi.ascii"
!TX "OPE"
!CT RAW
!TX 'N'
!BYTE $10 ; EXTERNAL SYMBOL FLAG
!WORD 1 ; SYMBOL INDEX
;DCI "CLOSE"
!CT "hi.ascii"
!TX "CLOS"
!CT RAW
!TX 'E'
!BYTE $10
!WORD 2
;DCI "READ"
!CT "hi.ascii"
!TX "REA"
!CT RAW
!TX 'D'
!BYTE $10
!WORD 3
;DCI "MEMSET"
!CT "hi.ascii"
!TX "MEMSE"
!CT RAW
!TX 'T'
!BYTE $10
!WORD 4
;
; EXPORT TABLE
;
EXPTBL ;DCI "INCNT" ; ENTRY SYMBOL NAME
!CT "hi.ascii"
!TX "INCN"
!CT RAW
!TX 'T'
!BYTE $08 ; ENTRY SYMBOL FLAG
!WORD INCCNT ; OFFSET
;DCI "MYFUNC"
!CT "hi.ascii"
!TX "MYFUN"
!CT RAW
!TX 'C'
!BYTE $08
!WORD MYFUNC
!BYTE 0 ; END OF ESD

39
src/symbols.h Executable file
View File

@ -0,0 +1,39 @@
/*
* Symbol table types.
*/
#define GLOBAL_TYPE (0)
#define CONST_TYPE (1 << 0)
#define WORD_TYPE (1 << 1)
#define BYTE_TYPE (1 << 2)
#define VAR_TYPE (WORD_TYPE | BYTE_TYPE)
#define ASM_TYPE (1 << 3)
#define DEF_TYPE (1 << 4)
#define BRANCH_TYPE (1 << 5)
#define LOCAL_TYPE (1 << 6)
#define EXTERN_TYPE (1 << 7)
#define ADDR_TYPE (VAR_TYPE | FUNC_TYPE | EXTERN_TYPE)
#define WPTR_TYPE (1 << 8)
#define BPTR_TYPE (1 << 9)
#define PTR_TYPE (BPTR_TYPE | WPTR_TYPE)
#define STRING_TYPE (1 << 10)
#define TAG_TYPE (1 << 11)
#define EXPORT_TYPE (1 << 12)
#define PREDEF_TYPE (1 << 13)
#define FUNC_TYPE (ASM_TYPE | DEF_TYPE | PREDEF_TYPE)
int id_match(char *name, int len, char *id);
int idlocal_lookup(char *name, int len);
int idglobal_lookup(char *name, int len);
int idconst_lookup(char *name, int len);
int idlocal_add(char *name, int len, int type, int size);
int idglobal_add(char *name, int len, int type, int size);
int id_add(char *name, int len, int type, int size);
int idfunc_set(char *name, int len, int type, int tag);
int idfunc_add(char *name, int len, int type, int tag);
int idconst_add(char *name, int len, int value);
int id_tag(char *name, int len);
int id_const(char *name, int len);
int id_type(char *name, int len);
void idglobal_size(int type, int size, int constsize);
int idlocal_size(void);
void idlocal_reset(void);
int tag_new(int type);

57
src/test.pla Executable file
View File

@ -0,0 +1,57 @@
;
; Declare all imported modules and their data/functions.
;
import stdlib
predef cls, gotoxy, viewport, puts, putc, getc
end
import testlib
predef puti, putnl
end
const mainentry = 2
;
; Predeclare any functions called before defined.
;
predef ascii, main
;
; Declare all global variables for this module.
;
byte hello[] = "Hello, world.\n"
word defptr = @ascii, @main
word struct[] = 1, 10, 100
;
; Define functions.
;
def ascii
byte i
for i = 32 to 127
putc(i)
next
end
def nums(range)
word i
for i = -10 to range
puti(i)
putnl
next
end
export def main(range)
cls
nums(range)
viewport(12, 12, 16, 8)
ascii
viewport(0, 0, 40, 24)
gotoxy(15,5)
puts(@hello)
end
export def indirect
word mainptr
mainptr = @main
return defptr:mainentry(struct:2)
end
indirect
done

32
src/testcls.pla Executable file
View File

@ -0,0 +1,32 @@
;
; Declare all imported modules and their data/functions.
;
import stdlib
predef putc
end
predef puti, puth
export word print[] = @puti, @puth
byte valstr[] = '0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F'
;
; Define functions.
;
def puti(i)
if i < 0
putc('-')
i = -i
fin
if i < 10
putc(i + '0')
else
puti(i / 10)
putc(i % 10 + '0')
fin
end
def puth(h)
putc('$')
putc(valstr[(h >> 12) & $0F])
putc(valstr[(h >> 8) & $0F])
putc(valstr[(h >> 4) & $0F])
putc(valstr[ h & $0F])
end
done

29
src/testlib.pla Executable file
View File

@ -0,0 +1,29 @@
;
; Declare all imported modules and their data/functions.
;
import stdlib
predef cls, gotoxy, puts, putc
end
byte loadstr[] = "testlib loaded!"
;
; Define functions.
;
export def puti(i)
if i < 0
putc('-')
i = -i
fin
if i < 10
putc(i + '0')
else
puti(i / 10)
putc(i % 10 + '0')
fin
end
export def putnl
putc($0D)
end
puts(@loadstr)
putnl
done

106
src/tokens.h Executable file
View File

@ -0,0 +1,106 @@
#define TOKEN(c) (0x80|(c))
#define IS_TOKEN(c) (0x80&(c))
/*
* Identifier and constant tokens.
*/
#define ID_TOKEN TOKEN('V')
#define CHAR_TOKEN TOKEN('Y')
#define INT_TOKEN TOKEN('Z')
#define FLOAT_TOKEN TOKEN('F')
#define STRING_TOKEN TOKEN('S')
/*
* Keyword tokens.
*/
#define CONST_TOKEN TOKEN(1)
#define BYTE_TOKEN TOKEN(2)
#define WORD_TOKEN TOKEN(3)
#define IF_TOKEN TOKEN(4)
#define ELSEIF_TOKEN TOKEN(5)
#define ELSE_TOKEN TOKEN(6)
#define FIN_TOKEN TOKEN(7)
#define END_TOKEN TOKEN(8)
#define WHILE_TOKEN TOKEN(9)
#define LOOP_TOKEN TOKEN(10)
#define CASE_TOKEN TOKEN(11)
#define OF_TOKEN TOKEN(12)
#define DEFAULT_TOKEN TOKEN(13)
#define ENDCASE_TOKEN TOKEN(14)
#define FOR_TOKEN TOKEN(15)
#define TO_TOKEN TOKEN(16)
#define DOWNTO_TOKEN TOKEN(17)
#define STEP_TOKEN TOKEN(18)
#define NEXT_TOKEN TOKEN(19)
#define REPEAT_TOKEN TOKEN(20)
#define UNTIL_TOKEN TOKEN(21)
#define PREDEF_TOKEN TOKEN(22)
#define DEF_TOKEN TOKEN(23)
#define ASM_TOKEN TOKEN(24)
#define IMPORT_TOKEN TOKEN(25)
#define EXPORT_TOKEN TOKEN(26)
#define DONE_TOKEN TOKEN(27)
#define RETURN_TOKEN TOKEN(28)
#define BREAK_TOKEN TOKEN(29)
#define SYSFLAGS_TOKEN TOKEN(30)
#define EXIT_TOKEN TOKEN(31)
#define EVAL_TOKEN TOKEN(32)
/*
* Double operand operators.
*/
#define SET_TOKEN TOKEN('=')
#define ADD_TOKEN TOKEN('+')
#define ADD_SELF_TOKEN TOKEN('a')
#define SUB_TOKEN TOKEN('-')
#define SUB_SELF_TOKEN TOKEN('u')
#define MUL_TOKEN TOKEN('*')
#define MUL_SELF_TOKEN TOKEN('m')
#define DIV_TOKEN TOKEN('/')
#define DIV_SELF_TOKEN TOKEN('d')
#define MOD_TOKEN TOKEN('%')
#define OR_TOKEN TOKEN('|')
#define OR_SELF_TOKEN TOKEN('o')
#define EOR_TOKEN TOKEN('^')
#define EOR_SELF_TOKEN TOKEN('x')
#define AND_TOKEN TOKEN('&')
#define AND_SELF_TOKEN TOKEN('n')
#define SHR_TOKEN TOKEN('R')
#define SHR_SELF_TOKEN TOKEN('r')
#define SHL_TOKEN TOKEN('L')
#define SHL_SELF_TOKEN TOKEN('l')
#define GT_TOKEN TOKEN('>')
#define GE_TOKEN TOKEN('H')
#define LT_TOKEN TOKEN('<')
#define LE_TOKEN TOKEN('B')
#define NE_TOKEN TOKEN('U')
#define EQ_TOKEN TOKEN('E')
#define LOGIC_AND_TOKEN TOKEN('N')
#define LOGIC_OR_TOKEN TOKEN('O')
/*
* Single operand operators.
*/
#define NEG_TOKEN TOKEN('-')
#define COMP_TOKEN TOKEN('~')
#define LOGIC_NOT_TOKEN TOKEN('!')
#define INC_TOKEN TOKEN('P')
#define DEC_TOKEN TOKEN('K')
#define BPTR_TOKEN TOKEN('^')
#define WPTR_TOKEN TOKEN('*')
#define POST_INC_TOKEN TOKEN('p')
#define POST_DEC_TOKEN TOKEN('k')
#define OPEN_PAREN_TOKEN TOKEN('(')
#define CLOSE_PAREN_TOKEN TOKEN(')')
#define OPEN_BRACKET_TOKEN TOKEN('[')
#define CLOSE_BRACKET_TOKEN TOKEN(']')
/*
* Misc. tokens.
*/
#define AT_TOKEN TOKEN('@')
#define DOT_TOKEN TOKEN('.')
#define COLON_TOKEN TOKEN(':')
#define POUND_TOKEN TOKEN('#')
#define COMMA_TOKEN TOKEN(',')
#define COMMENT_TOKEN TOKEN(';')
#define EOL_TOKEN TOKEN(0)
#define EOF_TOKEN TOKEN(0x7F)
typedef unsigned char t_token;