1
0
mirror of https://github.com/catseye/SixtyPical.git synced 2025-01-10 17:31:18 +00:00
SixtyPical/README.md

88 lines
3.6 KiB
Markdown
Raw Normal View History

2014-03-31 23:31:30 +01:00
SixtyPical
==========
_Version 0.12. Work-in-progress, everything is subject to change._
SixtyPical is a very low-level programming language, similar to 6502 assembly,
with static analysis through abstract interpretation.
In practice, this means it catches things like
* you forgot to clear carry before adding something to the accumulator
* a subroutine that you call trashes a register you thought was preserved
2015-10-22 19:20:48 +01:00
* you tried to write the address of something that was not a routine, to
a jump vector
2015-10-22 19:20:48 +01:00
and suchlike. It also provides some convenient operations and abstractions
based on common machine-language programming idioms, such as
* copying values from one register to another (via a third register when
there are no underlying instructions that directly support it)
* explicit tail calls
* indirect subroutine calls
The reference implementation can analyze and compile SixtyPical programs to
6502 machine code.
Documentation
-------------
2014-04-01 14:33:57 +01:00
2017-11-21 11:13:21 +00:00
* [Design Goals](doc/Design%20Goals.md)
* [SixtyPical specification](doc/SixtyPical.md)
2017-11-21 11:13:21 +00:00
* [SixtyPical revision history](HISTORY.md)
2017-11-17 15:48:38 +00:00
* [Literate test suite for SixtyPical syntax](tests/SixtyPical%20Syntax.md)
* [Literate test suite for SixtyPical execution](tests/SixtyPical%20Execution.md)
* [Literate test suite for SixtyPical analysis](tests/SixtyPical%20Analysis.md)
* [Literate test suite for SixtyPical compilation](tests/SixtyPical%20Compilation.md)
* [6502 Opcodes used/not used in SixtyPical](doc/6502%20Opcodes.md)
TODO
----
2017-11-23 17:08:40 +00:00
### `low` and `high` address operators
2017-11-23 17:08:40 +00:00
To turn `word` type into `byte`.
2017-12-11 14:18:47 +00:00
### Save registers on stack
This preserves them, so that, semantically, they can be used later even though they
2017-11-23 17:08:40 +00:00
are trashed inside the block.
2017-12-11 14:18:47 +00:00
### Range checking in the abstract interpretation
If you copy the address of a buffer (say it is size N) to a pointer, it is valid.
If you add a value from 0 to N-1 to the pointer, it is still valid.
But if you add a value ≥ N to it, it becomes invalid.
This should be tracked in the abstract interpretation.
(If only because abstract interpretation is the major point of this project!)
2018-02-08 12:18:55 +00:00
Range-checking buffers might be too difficult. Range checking tables will be easier.
If a value is ANDed with 15, its range must be 0-15, etc.
### Re-order routines and optimize tail-calls to fallthroughs
Not because it saves 3 bytes, but because it's a neat trick. Doing it optimally
is probably NP-complete. But doing it adeuqately is probably not that hard.
2017-12-13 16:23:28 +00:00
### And at some point...
2018-02-09 11:32:16 +00:00
* `const`s, that can be used in defining the size of tables, etc
* Remove the need for `forward` and `vector () table` (make grammar changes)
* Tests, and implementation, ensuring a routine can be assigned to a vector of "wider" type
* Check that the buffer being read or written to through pointer, appears in approporiate inputs or outputs set.
2017-12-11 14:18:47 +00:00
* `interrupt` routines -- to indicate that "the supervisor" has stored values on the stack, so we can trash them.
* error messages that include the line number of the source code
2015-10-18 19:02:07 +01:00
* add absolute addressing in shl/shr, absolute-indexed for add, sub, etc.
* automatic tail-call optimization (could be tricky, w/constraints?)
2018-02-09 11:32:16 +00:00
* possibly `ld x, [ptr] + y`, possibly `st x, [ptr] + y`
2018-02-08 12:18:55 +00:00
* Maybe even `copy [ptra] + y, [ptrb] + y`, which can be compiled to indirect LDA then indirect STA!
Things it will not do
---------------------
(this will be moved to a FAQ document at some point)
* Check that a vector is initialized before it's called.
* Check for recursive calls, or prevent bad things happening because of recursive calls.
(You can always recursively call yourself through a vector.)