1
0
mirror of https://github.com/catseye/SixtyPical.git synced 2025-01-10 02:29:23 +00:00
SixtyPical/tests/SixtyPical Analysis.md

1933 lines
33 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

SixtyPical Analysis
===================
This is a test suite, written in [Falderal][] format, for the SixtyPical
static analysis rules.
[Falderal]: http://catseye.tc/node/Falderal
-> Functionality "Analyze SixtyPical program" is implemented by
-> shell command "bin/sixtypical --analyze --traceback %(test-body-file) && echo ok"
-> Tests for functionality "Analyze SixtyPical program"
### Rudiments ###
Routines must declare their inputs, outputs, and memory locations they trash.
| routine up
| inputs a
| outputs a
| trashes c, z, v, n
| {
| st off, c
| add a, 1
| }
= ok
Routines may not declare a memory location to be both an output and trashed.
| routine main
| outputs a
| trashes a
| {
| ld a, 0
| }
? InconsistentConstraintsError: a
If a routine declares it outputs a location, that location should be initialized.
| routine main
| outputs a, x, z, n
| {
| ld x, 0
| }
? UnmeaningfulOutputError: a in main
| routine main
| inputs a
| outputs a
| {
| }
= ok
If a routine declares it outputs a location, that location may or may not have
been initialized. Trashing is mainly a signal to the caller.
| routine main
| trashes x, z, n
| {
| ld x, 0
| }
= ok
| routine main
| trashes x, z, n
| {
| }
= ok
If a routine modifies a location, it needs to either output it or trash it.
| routine main
| {
| ld x, 0
| }
? ForbiddenWriteError: x in main
| routine main
| outputs x, z, n
| {
| ld x, 0
| }
= ok
| routine main
| trashes x, z, n
| {
| ld x, 0
| }
= ok
If a routine reads or writes a user-define memory location, it needs to declare that too.
| byte b1 @ 60000
| byte b2 : 3
| word w1 @ 60001
| word w2 : 2000
|
| routine main
| inputs b1, w1
| outputs b2, w2
| trashes a, z, n
| {
| ld a, b1
| st a, b2
| copy w1, w2
| }
= ok
### ld ###
Can't `ld` from a memory location that isn't initialized.
| routine main
| inputs a, x
| trashes a, z, n
| {
| ld a, x
| }
= ok
| routine main
| inputs a
| trashes a
| {
| ld a, x
| }
? UnmeaningfulReadError: x in main
Can't `ld` to a memory location that doesn't appear in (outputs trashes).
| routine main
| trashes a, z, n
| {
| ld a, 0
| }
= ok
| routine main
| outputs a
| trashes z, n
| {
| ld a, 0
| }
= ok
| routine main
| outputs z, n
| trashes a
| {
| ld a, 0
| }
= ok
| routine main
| trashes z, n
| {
| ld a, 0
| }
? ForbiddenWriteError: a in main
| routine main
| trashes a, n
| {
| ld a, 0
| }
? ForbiddenWriteError: z in main
Can't `ld` a `word` type.
| word foo
|
| routine main
| inputs foo
| trashes a, n, z
| {
| ld a, foo
| }
? TypeMismatchError: foo and a in main
### st ###
Can't `st` from a memory location that isn't initialized.
| byte lives
| routine main
| inputs x
| trashes lives
| {
| st x, lives
| }
= ok
| byte lives
| routine main
| trashes x, lives
| {
| st x, lives
| }
? UnmeaningfulReadError: x in main
Can't `st` to a memory location that doesn't appear in (outputs trashes).
| byte lives
| routine main
| trashes lives
| {
| st 0, lives
| }
= ok
| byte lives
| routine main
| outputs lives
| {
| st 0, lives
| }
= ok
| byte lives
| routine main
| inputs lives
| {
| st 0, lives
| }
? ForbiddenWriteError: lives in main
Can't `st` a `word` type.
| word foo
|
| routine main
| outputs foo
| trashes a, n, z
| {
| ld a, 0
| st a, foo
| }
? TypeMismatchError: a and foo in main
### tables ###
Storing to a table, you must use an index, and vice-versa.
| byte one
| byte table[256] many
|
| routine main
| outputs one
| trashes a, x, n, z
| {
| ld x, 0
| ld a, 0
| st a, one
| }
= ok
| byte one
| byte table[256] many
|
| routine main
| outputs many
| trashes a, x, n, z
| {
| ld x, 0
| ld a, 0
| st a, many
| }
? TypeMismatchError
| byte one
| byte table[256] many
|
| routine main
| outputs one
| trashes a, x, n, z
| {
| ld x, 0
| ld a, 0
| st a, one + x
| }
? TypeMismatchError
| byte one
| byte table[256] many
|
| routine main
| outputs many
| trashes a, x, n, z
| {
| ld x, 0
| ld a, 0
| st a, many + x
| }
= ok
Reading from a table, you must use an index, and vice-versa.
| byte one
|
| routine main
| outputs one
| trashes a, x, n, z
| {
| ld x, 0
| st x, one
| ld a, one
| }
= ok
| byte one
|
| routine main
| outputs one
| trashes a, x, n, z
| {
| ld x, 0
| st x, one
| ld a, one + x
| }
? TypeMismatchError
| byte table[256] many
|
| routine main
| outputs many
| trashes a, x, n, z
| {
| ld x, 0
| ld a, 0
| st a, many + x
| ld a, many
| }
? TypeMismatchError
| byte table[256] many
|
| routine main
| outputs many
| trashes a, x, n, z
| {
| ld x, 0
| ld a, 0
| st a, many + x
| ld a, many + x
| }
= ok
Copying to and from a word table.
| word one
| word table[256] many
|
| routine main
| inputs one, many
| outputs one, many
| trashes a, x, n, z
| {
| ld x, 0
| copy one, many + x
| copy many + x, one
| }
= ok
| word one
| word table[256] many
|
| routine main
| inputs one, many
| outputs one, many
| trashes a, x, n, z
| {
| ld x, 0
| copy one, many
| }
? TypeMismatchError
| word one
| word table[256] many
|
| routine main
| inputs one, many
| outputs one, many
| trashes a, x, n, z
| {
| ld x, 0
| copy one + x, many
| }
? TypeMismatchError
You can also copy a literal word to a word table.
| word table[256] many
|
| routine main
| inputs many
| outputs many
| trashes a, x, n, z
| {
| ld x, 0
| copy 9999, many + x
| }
= ok
### add ###
Can't `add` from or to a memory location that isn't initialized.
| routine main
| inputs a
| outputs a
| trashes c, z, v, n
| {
| st off, c
| add a, 0
| }
= ok
| byte lives
| routine main
| inputs a
| outputs a
| trashes c, z, v, n
| {
| st off, c
| add a, lives
| }
? UnmeaningfulReadError: lives in main
| byte lives
| routine main
| inputs lives
| outputs a
| trashes c, z, v, n
| {
| st off, c
| add a, lives
| }
? UnmeaningfulReadError: a in main
Can't `add` to a memory location that isn't writeable.
| routine main
| inputs a
| trashes c
| {
| st off, c
| add a, 0
| }
? ForbiddenWriteError: a in main
You can `add` a word constant to a word memory location.
| word score
| routine main
| inputs a, score
| outputs score
| trashes a, c, z, v, n
| {
| st off, c
| add score, 1999
| }
= ok
`add`ing a word constant to a word memory location trashes `a`.
| word score
| routine main
| inputs a, score
| outputs score, a
| trashes c, z, v, n
| {
| st off, c
| add score, 1999
| }
? UnmeaningfulOutputError: a in main
To be sure, `add`ing a word constant to a word memory location trashes `a`.
| word score
| routine main
| inputs score
| outputs score
| trashes c, z, v, n
| {
| st off, c
| add score, 1999
| }
? ForbiddenWriteError: a in main
You can `add` a word memory location to another word memory location.
| word score
| word delta
| routine main
| inputs score, delta
| outputs score
| trashes a, c, z, v, n
| {
| st off, c
| add score, delta
| }
= ok
`add`ing a word memory location to a word memory location trashes `a`.
| word score
| word delta
| routine main
| inputs score, delta
| outputs score
| trashes c, z, v, n
| {
| st off, c
| add score, delta
| }
? ForbiddenWriteError: a in main
You can `add` a word memory location, or a constant, to a pointer.
| pointer ptr
| word delta
| routine main
| inputs ptr, delta
| outputs ptr
| trashes a, c, z, v, n
| {
| st off, c
| add ptr, delta
| add ptr, word 1
| }
= ok
`add`ing a word memory location, or a constant, to a pointer, trashes `a`.
| pointer ptr
| word delta
| routine main
| inputs ptr, delta
| outputs ptr
| trashes c, z, v, n
| {
| st off, c
| add ptr, delta
| add ptr, word 1
| }
? ForbiddenWriteError: a in main
### sub ###
Can't `sub` from or to a memory location that isn't initialized.
| routine main
| inputs a
| outputs a
| trashes c, z, v, n
| {
| st off, c
| sub a, 0
| }
= ok
| byte lives
| routine main
| inputs a
| outputs a
| trashes c, z, v, n
| {
| st off, c
| sub a, lives
| }
? UnmeaningfulReadError: lives in main
| byte lives
| routine main
| inputs lives
| outputs a
| trashes c, z, v, n
| {
| st off, c
| sub a, lives
| }
? UnmeaningfulReadError: a in main
Can't `sub` to a memory location that isn't writeable.
| routine main
| inputs a
| trashes c
| {
| st off, c
| sub a, 0
| }
? ForbiddenWriteError: a in main
You can `sub` a word constant from a word memory location.
| word score
| routine main
| inputs a, score
| outputs score
| trashes a, c, z, v, n
| {
| st on, c
| sub score, 1999
| }
= ok
`sub`ing a word constant from a word memory location trashes `a`.
| word score
| routine main
| inputs a, score
| outputs score, a
| trashes c, z, v, n
| {
| st on, c
| sub score, 1999
| }
? UnmeaningfulOutputError: a in main
You can `sub` a word memory location from another word memory location.
| word score
| word delta
| routine main
| inputs score, delta
| outputs score
| trashes a, c, z, v, n
| {
| st off, c
| sub score, delta
| }
= ok
`sub`ing a word memory location from a word memory location trashes `a`.
| word score
| word delta
| routine main
| inputs score, delta
| outputs score
| trashes c, z, v, n
| {
| st off, c
| sub score, delta
| }
? ForbiddenWriteError: a in main
### inc ###
Location must be initialized and writeable.
| routine main
| outputs x
| trashes z, n
| {
| inc x
| }
? UnmeaningfulReadError: x in main
| routine main
| inputs x
| trashes z, n
| {
| inc x
| }
? ForbiddenWriteError: x in main
| routine main
| inputs x
| outputs x
| trashes z, n
| {
| inc x
| }
= ok
Can't `inc` a `word` type.
| word foo
|
| routine main
| inputs foo
| outputs foo
| trashes z, n
| {
| inc foo
| }
? TypeMismatchError: foo in main
### dec ###
Location must be initialized and writeable.
| routine main
| outputs x
| trashes z, n
| {
| dec x
| }
? UnmeaningfulReadError: x in main
| routine main
| inputs x
| trashes z, n
| {
| dec x
| }
? ForbiddenWriteError: x in main
| routine main
| inputs x
| outputs x
| trashes z, n
| {
| dec x
| }
= ok
Can't `dec` a `word` type.
| word foo
|
| routine main
| inputs foo
| outputs foo
| trashes z, n
| {
| dec foo
| }
? TypeMismatchError: foo in main
### cmp ###
Some rudimentary tests for cmp.
| routine main
| inputs a
| trashes z, c, n
| {
| cmp a, 4
| }
= ok
| routine main
| inputs a
| trashes z, n
| {
| cmp a, 4
| }
? ForbiddenWriteError: c in main
| routine main
| trashes z, c, n
| {
| cmp a, 4
| }
? UnmeaningfulReadError: a in main
### and ###
Some rudimentary tests for and.
| routine main
| inputs a
| outputs a, z, n
| {
| and a, 4
| }
= ok
| routine main
| inputs a
| trashes z, n
| {
| and a, 4
| }
? ForbiddenWriteError: a in main
| routine main
| trashes z, n
| {
| and a, 4
| }
? UnmeaningfulReadError: a in main
### or ###
Writing unit tests on a train. Wow.
| routine main
| inputs a
| outputs a, z, n
| {
| or a, 4
| }
= ok
| routine main
| inputs a
| trashes z, n
| {
| or a, 4
| }
? ForbiddenWriteError: a in main
| routine main
| trashes z, n
| {
| or a, 4
| }
? UnmeaningfulReadError: a in main
### xor ###
Writing unit tests on a train. Wow.
| routine main
| inputs a
| outputs a, z, n
| {
| xor a, 4
| }
= ok
| routine main
| inputs a
| trashes z, n
| {
| xor a, 4
| }
? ForbiddenWriteError: a in main
| routine main
| trashes z, n
| {
| xor a, 4
| }
? UnmeaningfulReadError: a in main
### shl ###
Some rudimentary tests for shl.
| routine main
| inputs a, c
| outputs a, c, z, n
| {
| shl a
| }
= ok
| routine main
| inputs a, c
| outputs c, z, n
| {
| shl a
| }
? ForbiddenWriteError: a in main
| routine main
| inputs a
| outputs a, c, z, n
| {
| shl a
| }
? UnmeaningfulReadError: c in main
### shr ###
Some rudimentary tests for shr.
| routine main
| inputs a, c
| outputs a, c, z, n
| {
| shr a
| }
= ok
| routine main
| inputs a, c
| outputs c, z, n
| {
| shr a
| }
? ForbiddenWriteError: a in main
| routine main
| inputs a
| outputs a, c, z, n
| {
| shr a
| }
? UnmeaningfulReadError: c in main
### call ###
When calling a routine, all of the locations it lists as inputs must be
initialized.
| byte lives
|
| routine foo
| inputs x
| trashes lives
| {
| st x, lives
| }
|
| routine main
| {
| call foo
| }
? UnmeaningfulReadError: x in main
Note that if you call a routine that trashes a location, you also trash it.
| byte lives
|
| routine foo
| inputs x
| trashes lives
| {
| st x, lives
| }
|
| routine main
| outputs x, z, n
| {
| ld x, 0
| call foo
| }
? ForbiddenWriteError: lives in main
| byte lives
|
| routine foo
| inputs x
| trashes lives
| {
| st x, lives
| }
|
| routine main
| outputs x, z, n
| trashes lives
| {
| ld x, 0
| call foo
| }
= ok
You can't output a value that the thing you called trashed.
| byte lives
|
| routine foo
| inputs x
| trashes lives
| {
| st x, lives
| }
|
| routine main
| outputs x, z, n, lives
| {
| ld x, 0
| call foo
| }
? UnmeaningfulOutputError: lives in main
...unless you write to it yourself afterwards.
| byte lives
|
| routine foo
| inputs x
| trashes lives
| {
| st x, lives
| }
|
| routine main
| outputs x, z, n, lives
| {
| ld x, 0
| call foo
| st x, lives
| }
= ok
If a routine declares outputs, they are initialized in the caller after
calling it.
| routine foo
| outputs x, z, n
| {
| ld x, 0
| }
|
| routine main
| outputs a
| trashes x, z, n
| {
| call foo
| ld a, x
| }
= ok
| routine foo
| {
| }
|
| routine main
| outputs a
| trashes x
| {
| call foo
| ld a, x
| }
? UnmeaningfulReadError: x in main
If a routine trashes locations, they are uninitialized in the caller after
calling it.
| routine foo
| trashes x, z, n
| {
| ld x, 0
| }
= ok
| routine foo
| trashes x, z, n
| {
| ld x, 0
| }
|
| routine main
| outputs a
| trashes x, z, n
| {
| call foo
| ld a, x
| }
? UnmeaningfulReadError: x in main
Calling an extern is just the same as calling a defined routine with the
same constraints.
| routine chrout
| inputs a
| trashes a
| @ 65490
|
| routine main
| trashes a, z, n
| {
| ld a, 65
| call chrout
| }
= ok
| routine chrout
| inputs a
| trashes a
| @ 65490
|
| routine main
| trashes a, z, n
| {
| call chrout
| }
? UnmeaningfulReadError: a in main
| routine chrout
| inputs a
| trashes a
| @ 65490
|
| routine main
| trashes a, x, z, n
| {
| ld a, 65
| call chrout
| ld x, a
| }
? UnmeaningfulReadError: a in main
### trash ###
Trash does nothing except indicate that we do not care about the value anymore.
| routine foo
| inputs a
| outputs x
| trashes a, z, n
| {
| st a, x
| ld a, 0
| trash a
| }
= ok
| routine foo
| inputs a
| outputs a, x
| trashes z, n
| {
| st a, x
| ld a, 0
| trash a
| }
? UnmeaningfulOutputError: a in foo
| routine foo
| inputs a
| outputs x
| trashes a, z, n
| {
| st a, x
| trash a
| st a, x
| }
? UnmeaningfulReadError: a in foo
### if ###
Both blocks of an `if` are analyzed.
| routine foo
| inputs a
| outputs x
| trashes a, z, n, c
| {
| cmp a, 42
| if z {
| ld x, 7
| } else {
| ld x, 23
| }
| }
= ok
If a location is initialized in one block, is must be initialized in the other as well.
| routine foo
| inputs a
| outputs x
| trashes a, z, n, c
| {
| cmp a, 42
| if z {
| ld x, 7
| } else {
| ld a, 23
| }
| }
? InconsistentInitializationError: x
| routine foo
| inputs a
| outputs x
| trashes a, z, n, c
| {
| cmp a, 42
| if z {
| ld a, 6
| } else {
| ld x, 7
| }
| }
? InconsistentInitializationError: x
| routine foo
| inputs a
| outputs x
| trashes a, z, n, c
| {
| cmp a, 42
| if not z {
| ld a, 6
| } else {
| ld x, 7
| }
| }
? InconsistentInitializationError: x
However, this only pertains to initialization. If a value is already
initialized, either because it was set previous to the `if`, or is an
input to the routine, and it is initialized in one branch, it need not
be initialized in the other.
| routine foo
| inputs x
| outputs x
| trashes a, z, n, c
| {
| ld a, 0
| cmp a, 42
| if z {
| ld x, 7
| } else {
| ld a, 23
| }
| }
= ok
An `if` with a single block is analyzed as if it had an empty `else` block.
| routine foo
| inputs a
| outputs x
| trashes a, z, n, c
| {
| cmp a, 42
| if z {
| ld x, 7
| }
| }
? InconsistentInitializationError: x
| routine foo
| inputs a
| outputs x
| trashes a, z, n, c
| {
| ld x, 0
| cmp a, 42
| if z {
| ld x, 7
| }
| }
= ok
| routine foo
| inputs a
| outputs x
| trashes a, z, n, c
| {
| ld x, 0
| cmp a, 42
| if not z {
| ld x, 7
| }
| }
= ok
### repeat ###
Repeat loop.
| routine main
| outputs x, y, n, z, c
| {
| ld x, 0
| ld y, 15
| repeat {
| inc x
| inc y
| cmp x, 10
| } until z
| }
= ok
You can initialize something inside the loop that was uninitialized outside.
| routine main
| outputs x, y, n, z, c
| {
| ld x, 0
| repeat {
| ld y, 15
| inc x
| cmp x, 10
| } until z
| }
= ok
But you can't UNinitialize something at the end of the loop that you need
initialized at the start.
| routine foo
| trashes y
| {
| }
|
| routine main
| outputs x, y, n, z, c
| {
| ld x, 0
| ld y, 15
| repeat {
| inc x
| inc y
| call foo
| cmp x, 10
| } until z
| }
? UnmeaningfulReadError: y in main
And if you trash the test expression (i.e. `z` in the below) inside the loop,
this is an error too.
| word one : 0
| word two : 0
|
| routine main
| inputs one, two
| outputs two
| trashes a, z, n
| {
| repeat {
| copy one, two
| } until z
| }
? UnmeaningfulReadError: z in main
The body of `repeat forever` can be empty.
| routine main
| {
| repeat {
| } forever
| }
= ok
### copy ###
Can't `copy` from a memory location that isn't initialized.
| byte lives
| routine main
| inputs x
| outputs lives
| trashes a, z, n
| {
| copy x, lives
| }
= ok
| byte lives
| routine main
| outputs lives
| trashes x, a, z, n
| {
| copy x, lives
| }
? UnmeaningfulReadError: x in main
Can't `copy` to a memory location that doesn't appear in (outputs trashes).
| byte lives
| routine main
| trashes lives, a, z, n
| {
| copy 0, lives
| }
= ok
| byte lives
| routine main
| outputs lives
| trashes a, z, n
| {
| copy 0, lives
| }
= ok
| byte lives
| routine main
| inputs lives
| trashes a, z, n
| {
| copy 0, lives
| }
? ForbiddenWriteError: lives in main
a, z, and n are trashed, and must be declared as such
| byte lives
| routine main
| outputs lives
| {
| copy 0, lives
| }
? ForbiddenWriteError: n in main
a, z, and n are trashed, and must not be declared as outputs.
| byte lives
| routine main
| outputs lives, a, z, n
| {
| copy 0, lives
| }
? UnmeaningfulOutputError: n in main
Unless of course you subsequently initialize them.
| byte lives
| routine main
| outputs lives, a, z, n
| {
| copy 0, lives
| ld a, 0
| }
= ok
Can `copy` from a `byte` to a `byte`.
| byte source : 0
| byte dest
|
| routine main
| inputs source
| outputs dest
| trashes a, z, n
| {
| copy source, dest
| }
= ok
Can `copy` from a `word` to a `word`.
| word source : 0
| word dest
|
| routine main
| inputs source
| outputs dest
| trashes a, z, n
| {
| copy source, dest
| }
= ok
Can't `copy` from a `byte` to a `word`.
| byte source : 0
| word dest
|
| routine main
| inputs source
| outputs dest
| trashes a, z, n
| {
| copy source, dest
| }
? TypeMismatchError
Can't `copy` from a `word` to a `byte`.
| word source : 0
| byte dest
|
| routine main
| inputs source
| outputs dest
| trashes a, z, n
| {
| copy source, dest
| }
? TypeMismatchError
### copy[] ###
Buffers and pointers.
Note that `^buf` is a constant value, so it by itself does not require `buf` to be
listed in any input/output sets.
However, if the code reads from it through a pointer, it *should* be in `inputs`.
Likewise, if the code writes to it through a pointer, it *should* be in `outputs`.
Of course, unless you write to *all* the bytes in a buffer, some of those bytes
might not be meaningful. So how meaningful is this check?
This is an open problem.
For now, convention says: if it is being read, list it in `inputs`, and if it is
being modified, list it in both `inputs` and `outputs`.
Write literal through a pointer.
| buffer[2048] buf
| pointer ptr
|
| routine main
| inputs buf
| outputs y, buf
| trashes a, z, n, ptr
| {
| ld y, 0
| copy ^buf, ptr
| copy 123, [ptr] + y
| }
= ok
It does use `y`.
| buffer[2048] buf
| pointer ptr
|
| routine main
| inputs buf
| outputs buf
| trashes a, z, n, ptr
| {
| copy ^buf, ptr
| copy 123, [ptr] + y
| }
? UnmeaningfulReadError
Write stored value through a pointer.
| buffer[2048] buf
| pointer ptr
| byte foo
|
| routine main
| inputs foo, buf
| outputs y, buf
| trashes a, z, n, ptr
| {
| ld y, 0
| copy ^buf, ptr
| copy foo, [ptr] + y
| }
= ok
Read through a pointer.
| buffer[2048] buf
| pointer ptr
| byte foo
|
| routine main
| inputs buf
| outputs foo
| trashes a, y, z, n, ptr
| {
| ld y, 0
| copy ^buf, ptr
| copy [ptr] + y, foo
| }
= ok
### routines ###
Routines are constants. You need not, and in fact cannot, specify a constant
as an input to, an output of, or as a trashed value of a routine.
| vector
| inputs x
| outputs x
| trashes z, n
| vec
|
| routine foo
| inputs x
| outputs x
| trashes z, n
| {
| inc x
| }
|
| routine main
| inputs foo
| outputs vec
| trashes a, z, n
| {
| copy foo, vec
| }
? ConstantConstraintError: foo in main
| vector
| inputs x
| outputs x
| trashes z, n
| vec
|
| routine foo
| inputs x
| outputs x
| trashes z, n
| {
| inc x
| }
|
| routine main
| outputs vec, foo
| trashes a, z, n
| {
| copy foo, vec
| }
? ConstantConstraintError: foo in main
| vector
| inputs x
| outputs x
| trashes z, n
| vec
|
| routine foo
| inputs x
| outputs x
| trashes z, n
| {
| inc x
| }
|
| routine main
| outputs vec
| trashes a, z, n, foo
| {
| copy foo, vec
| }
? ConstantConstraintError: foo in main
You can copy the address of a routine into a vector, if that vector is
declared appropriately.
| vector
| inputs x
| outputs x
| trashes z, n
| vec
|
| routine foo
| inputs x
| outputs x
| trashes z, n
| {
| inc x
| }
|
| routine main
| outputs vec
| trashes a, z, n
| {
| copy foo, vec
| }
= ok
But not if the vector is declared inappropriately.
| vector
| inputs y
| outputs y
| trashes z, n
| vec
|
| routine foo
| inputs x
| outputs x
| trashes z, n
| {
| inc x
| }
|
| routine main
| outputs vec
| trashes a, z, n
| {
| copy foo, vec
| }
? IncompatibleConstraintsError
"Appropriately" means, if the routine affects no more than what is named
in the input/output sets of the vector.
| vector
| inputs a, x
| outputs x
| trashes a, z, n
| vec
|
| routine foo
| inputs x
| outputs x
| trashes z, n
| {
| inc x
| }
|
| routine main
| outputs vec
| trashes a, z, n
| {
| copy foo, vec
| }
= ok
Routines are read-only.
| vector
| inputs x
| outputs x
| trashes z, n
| vec
|
| routine foo
| inputs x
| outputs x
| trashes z, n
| {
| inc x
| }
|
| routine main
| outputs vec
| trashes a, z, n
| {
| copy vec, foo
| }
? TypeMismatchError
Indirect call.
| vector outputs x trashes z, n foo
|
| routine bar outputs x trashes z, n {
| ld x, 200
| }
|
| routine main outputs x, foo trashes a, z, n {
| copy bar, foo
| call foo
| }
= ok
Calling the vector does indeed trash the things the vector says it does.
| vector trashes x, z, n foo
|
| routine bar trashes x, z, n {
| ld x, 200
| }
|
| routine main outputs x, foo trashes z, n {
| ld x, 0
| copy bar, foo
| call foo
| }
? UnmeaningfulOutputError: x in main
`goto`, if present, must be in tail position (the final instruction in a routine.)
| routine bar trashes x, z, n {
| ld x, 200
| }
|
| routine main trashes x, z, n {
| ld x, 0
| goto bar
| }
= ok
| routine bar trashes x, z, n {
| ld x, 200
| }
|
| routine main trashes x, z, n {
| goto bar
| ld x, 0
| }
? IllegalJumpError
| routine bar trashes x, z, n {
| ld x, 200
| }
|
| routine main trashes x, z, n {
| ld x, 0
| if z {
| ld x, 1
| goto bar
| }
| }
= ok
| routine bar trashes x, z, n {
| ld x, 200
| }
|
| routine main trashes x, z, n {
| ld x, 0
| if z {
| ld x, 1
| goto bar
| }
| ld x, 0
| }
? IllegalJumpError
Can't `goto` a routine that outputs or trashes more than the current routine.
| routine bar trashes x, y, z, n {
| ld x, 200
| ld y, 200
| }
|
| routine main trashes x, z, n {
| ld x, 0
| goto bar
| }
? IncompatibleConstraintsError
| routine bar outputs y trashes z, n {
| ld y, 200
| }
|
| routine main trashes x, z, n {
| ld x, 0
| goto bar
| }
? IncompatibleConstraintsError
Can `goto` a routine that outputs or trashes less than the current routine.
| routine bar trashes x, z, n {
| ld x, 1
| }
|
| routine main trashes a, x, z, n {
| ld a, 0
| ld x, 0
| goto bar
| }
= ok
Indirect goto.
| vector outputs x trashes a, z, n foo
|
| routine bar outputs x trashes a, z, n {
| ld x, 200
| }
|
| routine main outputs x trashes foo, a, z, n {
| copy bar, foo
| goto foo
| }
= ok
Jumping through the vector does indeed trash, or output, the things the
vector says it does.
| vector
| trashes a, x, z, n
| foo
|
| routine bar
| trashes a, x, z, n {
| ld x, 200
| }
|
| routine sub
| trashes foo, a, x, z, n {
| ld x, 0
| copy bar, foo
| goto foo
| }
|
| routine main
| outputs a
| trashes foo, x, z, n {
| call sub
| ld a, x
| }
? UnmeaningfulReadError: x in main
| vector
| outputs x
| trashes a, z, n
| foo
|
| routine bar
| outputs x
| trashes a, z, n {
| ld x, 200
| }
|
| routine sub
| outputs x
| trashes foo, a, z, n {
| ld x, 0
| copy bar, foo
| goto foo
| }
|
| routine main
| outputs a
| trashes foo, x, z, n {
| call sub
| ld a, x
| }
= ok
### vector table ###
Copying to and from a vector table.
| vector
| outputs x
| trashes a, z, n
| one
| vector
| outputs x
| trashes a, z, n
| table[256] many
|
| routine bar outputs x trashes a, z, n {
| ld x, 200
| }
|
| routine main
| inputs one, many
| outputs one, many
| trashes a, x, n, z
| {
| ld x, 0
| copy bar, one
| copy one, many + x
| //copy many + x, one
| //call one
| }
= ok