From 3c01489940f2a685ad4f54a42f2acc867a733231 Mon Sep 17 00:00:00 2001 From: mrdudz Date: Mon, 22 Aug 2022 23:26:09 +0200 Subject: [PATCH] softfloat compiles and produces a working binary --- test/float/softfloat/processors/6502-CC65.h | 2 + test/float/softfloat/processors/SPARC-GCC.h | 68 - .../softfloat/bits32/6502-CC65/Makefile | 10 +- .../bits32/6502-CC65/softfloat-specialize | 14 +- .../softfloat/bits32/6502-CC65/softfloat.h | 8 +- .../bits32/SPARC-Solaris-GCC/Makefile | 24 - .../bits32/SPARC-Solaris-GCC/milieu.h | 38 - .../SPARC-Solaris-GCC/softfloat-specialize | 225 - .../bits32/SPARC-Solaris-GCC/softfloat.h | 127 - .../softfloat/softfloat/bits32/softfloat.c | 11 +- .../softfloat/bits32/templates/Makefile | 28 - .../softfloat/bits32/templates/milieu.h | 38 - .../bits32/templates/softfloat-specialize | 235 - .../softfloat/bits32/templates/softfloat.h | 127 - .../softfloat/bits32/timesoftfloat.c | 57 +- .../softfloat/bits64/386-Win32-GCC/Makefile | 24 - .../softfloat/bits64/386-Win32-GCC/milieu.h | 38 - .../bits64/386-Win32-GCC/softfloat-specialize | 457 -- .../bits64/386-Win32-GCC/softfloat.h | 252 - .../bits64/SPARC-Solaris-GCC/Makefile | 24 - .../bits64/SPARC-Solaris-GCC/milieu.h | 38 - .../SPARC-Solaris-GCC/softfloat-specialize | 405 -- .../bits64/SPARC-Solaris-GCC/softfloat.h | 252 - .../softfloat/bits64/softfloat-macros | 713 --- .../softfloat/softfloat/bits64/softfloat.c | 5165 ----------------- .../softfloat/bits64/templates/Makefile | 28 - .../softfloat/bits64/templates/milieu.h | 38 - .../bits64/templates/softfloat-specialize | 425 -- .../softfloat/bits64/templates/softfloat.h | 252 - .../softfloat/bits64/timesoftfloat.c | 2629 --------- 30 files changed, 81 insertions(+), 11671 deletions(-) delete mode 100644 test/float/softfloat/processors/SPARC-GCC.h delete mode 100644 test/float/softfloat/softfloat/bits32/SPARC-Solaris-GCC/Makefile delete mode 100644 test/float/softfloat/softfloat/bits32/SPARC-Solaris-GCC/milieu.h delete mode 100644 test/float/softfloat/softfloat/bits32/SPARC-Solaris-GCC/softfloat-specialize delete mode 100644 test/float/softfloat/softfloat/bits32/SPARC-Solaris-GCC/softfloat.h delete mode 100644 test/float/softfloat/softfloat/bits32/templates/Makefile delete mode 100644 test/float/softfloat/softfloat/bits32/templates/milieu.h delete mode 100644 test/float/softfloat/softfloat/bits32/templates/softfloat-specialize delete mode 100644 test/float/softfloat/softfloat/bits32/templates/softfloat.h delete mode 100644 test/float/softfloat/softfloat/bits64/386-Win32-GCC/Makefile delete mode 100644 test/float/softfloat/softfloat/bits64/386-Win32-GCC/milieu.h delete mode 100644 test/float/softfloat/softfloat/bits64/386-Win32-GCC/softfloat-specialize delete mode 100644 test/float/softfloat/softfloat/bits64/386-Win32-GCC/softfloat.h delete mode 100644 test/float/softfloat/softfloat/bits64/SPARC-Solaris-GCC/Makefile delete mode 100644 test/float/softfloat/softfloat/bits64/SPARC-Solaris-GCC/milieu.h delete mode 100644 test/float/softfloat/softfloat/bits64/SPARC-Solaris-GCC/softfloat-specialize delete mode 100644 test/float/softfloat/softfloat/bits64/SPARC-Solaris-GCC/softfloat.h delete mode 100644 test/float/softfloat/softfloat/bits64/softfloat-macros delete mode 100644 test/float/softfloat/softfloat/bits64/softfloat.c delete mode 100644 test/float/softfloat/softfloat/bits64/templates/Makefile delete mode 100644 test/float/softfloat/softfloat/bits64/templates/milieu.h delete mode 100644 test/float/softfloat/softfloat/bits64/templates/softfloat-specialize delete mode 100644 test/float/softfloat/softfloat/bits64/templates/softfloat.h delete mode 100644 test/float/softfloat/softfloat/bits64/timesoftfloat.c diff --git a/test/float/softfloat/processors/6502-CC65.h b/test/float/softfloat/processors/6502-CC65.h index 846eaa15f..d2e4eaae6 100644 --- a/test/float/softfloat/processors/6502-CC65.h +++ b/test/float/softfloat/processors/6502-CC65.h @@ -1,4 +1,6 @@ +#undef DOUBLES // implement double precision floats + /*---------------------------------------------------------------------------- | One of the macros `BIGENDIAN' or `LITTLEENDIAN' must be defined. *----------------------------------------------------------------------------*/ diff --git a/test/float/softfloat/processors/SPARC-GCC.h b/test/float/softfloat/processors/SPARC-GCC.h deleted file mode 100644 index ab3d37192..000000000 --- a/test/float/softfloat/processors/SPARC-GCC.h +++ /dev/null @@ -1,68 +0,0 @@ - -/*---------------------------------------------------------------------------- -| One of the macros `BIGENDIAN' or `LITTLEENDIAN' must be defined. -*----------------------------------------------------------------------------*/ -#define BIGENDIAN - -/*---------------------------------------------------------------------------- -| The macro `BITS64' can be defined to indicate that 64-bit integer types are -| supported by the compiler. -*----------------------------------------------------------------------------*/ -#define BITS64 - -/*---------------------------------------------------------------------------- -| Each of the following `typedef's defines the most convenient type that holds -| integers of at least as many bits as specified. For example, `uint8' should -| be the most convenient type that can hold unsigned integers of as many as -| 8 bits. The `flag' type must be able to hold either a 0 or 1. For most -| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed -| to the same as `int'. -*----------------------------------------------------------------------------*/ -typedef int flag; -typedef int uint8; -typedef int int8; -typedef int uint16; -typedef int int16; -typedef unsigned int uint32; -typedef signed int int32; -#ifdef BITS64 -typedef unsigned long long int uint64; -typedef signed long long int int64; -#endif - -/*---------------------------------------------------------------------------- -| Each of the following `typedef's defines a type that holds integers -| of _exactly_ the number of bits specified. For instance, for most -| implementation of C, `bits16' and `sbits16' should be `typedef'ed to -| `unsigned short int' and `signed short int' (or `short int'), respectively. -*----------------------------------------------------------------------------*/ -typedef unsigned char bits8; -typedef signed char sbits8; -typedef unsigned short int bits16; -typedef signed short int sbits16; -typedef unsigned int bits32; -typedef signed int sbits32; -#ifdef BITS64 -typedef unsigned long long int bits64; -typedef signed long long int sbits64; -#endif - -#ifdef BITS64 -/*---------------------------------------------------------------------------- -| The `LIT64' macro takes as its argument a textual integer literal and -| if necessary ``marks'' the literal as having a 64-bit integer type. -| For example, the GNU C Compiler (`gcc') requires that 64-bit literals be -| appended with the letters `LL' standing for `long long', which is `gcc's -| name for the 64-bit integer type. Some compilers may allow `LIT64' to be -| defined as the identity macro: `#define LIT64( a ) a'. -*----------------------------------------------------------------------------*/ -#define LIT64( a ) a##LL -#endif - -/*---------------------------------------------------------------------------- -| The macro `INLINE' can be used before functions that should be inlined. If -| a compiler does not support explicit inlining, this macro should be defined -| to be `static'. -*----------------------------------------------------------------------------*/ -#define INLINE extern inline - diff --git a/test/float/softfloat/softfloat/bits32/6502-CC65/Makefile b/test/float/softfloat/softfloat/bits32/6502-CC65/Makefile index 6acc7cf7a..6103f347b 100644 --- a/test/float/softfloat/softfloat/bits32/6502-CC65/Makefile +++ b/test/float/softfloat/softfloat/bits32/6502-CC65/Makefile @@ -2,11 +2,14 @@ PROCESSOR_H = ../../../processors/6502-CC65.h SOFTFLOAT_MACROS = ../softfloat-macros +TARGET=-t sim6502 + OBJ = .o EXE = INCLUDES = -I. -I.. -COMPILE_C = ../../../../../../bin/cl65 -c -o $@ $(INCLUDES) -I- -O -LINK = ../../../../../../bin/cl6 -o $@ +COMPILE_C = ../../../../../../bin/cl65 $(TARGET) -c -o $@ $(INCLUDES) -I- -O +COMPILE_ONLY = ../../../../../../bin/cl65 $(TARGET) --add-source -S -o $@.s $(INCLUDES) -I- -O +LINK = ../../../../../../bin/cl65 $(TARGET) -o $@ #------------------------------------------------------------------------------ # Probably okay below here. @@ -21,8 +24,11 @@ softfloat$(OBJ): milieu.h softfloat.h softfloat-specialize $(SOFTFLOAT_MACROS) . $(COMPILE_C) ../softfloat.c timesoftfloat$(OBJ): milieu.h softfloat.h ../timesoftfloat.c + $(COMPILE_ONLY) ../timesoftfloat.c $(COMPILE_C) ../timesoftfloat.c timesoftfloat$(EXE): softfloat$(OBJ) timesoftfloat$(OBJ) $(LINK) softfloat$(OBJ) timesoftfloat$(OBJ) +clean: + $(RM) softfloat$(OBJ) timesoftfloat$(EXE) timesoftfloat$(OBJ) timesoftfloat$(OBJ).s diff --git a/test/float/softfloat/softfloat/bits32/6502-CC65/softfloat-specialize b/test/float/softfloat/softfloat/bits32/6502-CC65/softfloat-specialize index fc9a1b14d..8052d82bf 100644 --- a/test/float/softfloat/softfloat/bits32/6502-CC65/softfloat-specialize +++ b/test/float/softfloat/softfloat/bits32/6502-CC65/softfloat-specialize @@ -88,16 +88,15 @@ flag float32_is_signaling_nan( float32 a ) | exception is raised. *----------------------------------------------------------------------------*/ -static commonNaNT float32ToCommonNaN( float32 a ) +static commonNaNT *float32ToCommonNaN( float32 a ) { - commonNaNT z; + static commonNaNT z; if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); z.sign = a>>31; z.low = 0; z.high = a<<9; - return z; - + return &z; } /*---------------------------------------------------------------------------- @@ -105,10 +104,10 @@ static commonNaNT float32ToCommonNaN( float32 a ) | precision floating-point format. *----------------------------------------------------------------------------*/ -static float32 commonNaNToFloat32( commonNaNT a ) +static float32 commonNaNToFloat32( commonNaNT *a ) { - return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>9 ); + return ( ( (bits32) a->sign )<<31 ) | 0x7FC00000 | ( a->high>>9 ); } @@ -138,6 +137,7 @@ static float32 propagateFloat32NaN( float32 a, float32 b ) } +#ifdef DOUBLES /*---------------------------------------------------------------------------- | The pattern for a default generated double-precision NaN. The `high' and | `low' values hold the most- and least-significant bits, respectively. @@ -233,3 +233,5 @@ static float64 propagateFloat64NaN( float64 a, float64 b ) } +#endif + diff --git a/test/float/softfloat/softfloat/bits32/6502-CC65/softfloat.h b/test/float/softfloat/softfloat/bits32/6502-CC65/softfloat.h index 0594d5ea6..561fb3c0b 100644 --- a/test/float/softfloat/softfloat/bits32/6502-CC65/softfloat.h +++ b/test/float/softfloat/softfloat/bits32/6502-CC65/softfloat.h @@ -72,14 +72,14 @@ void float_raise( signed char ); /*---------------------------------------------------------------------------- | Software IEEE integer-to-floating-point conversion routines. *----------------------------------------------------------------------------*/ -float32 int32_to_float32( signed short ); -float64 int32_to_float64( signed short ); +float32 int32_to_float32( int32 ); +float64 int32_to_float64( int32 ); /*---------------------------------------------------------------------------- | Software IEEE single-precision conversion routines. *----------------------------------------------------------------------------*/ -signed short float32_to_int32( float32 ); -signed short float32_to_int32_round_to_zero( float32 ); +int32 float32_to_int32( float32 ); +int32 float32_to_int32_round_to_zero( float32 ); float64 float32_to_float64( float32 ); /*---------------------------------------------------------------------------- diff --git a/test/float/softfloat/softfloat/bits32/SPARC-Solaris-GCC/Makefile b/test/float/softfloat/softfloat/bits32/SPARC-Solaris-GCC/Makefile deleted file mode 100644 index bf71c756b..000000000 --- a/test/float/softfloat/softfloat/bits32/SPARC-Solaris-GCC/Makefile +++ /dev/null @@ -1,24 +0,0 @@ - -PROCESSOR_H = ../../../processors/SPARC-GCC.h -SOFTFLOAT_MACROS = ../softfloat-macros - -OBJ = .o -EXE = -INCLUDES = -I. -I.. -COMPILE_C = gcc -c -o $@ $(INCLUDES) -I- -O2 -LINK = gcc -o $@ - -ALL: softfloat$(OBJ) timesoftfloat$(EXE) - -milieu.h: $(PROCESSOR_H) - touch milieu.h - -softfloat$(OBJ): milieu.h softfloat.h softfloat-specialize $(SOFTFLOAT_MACROS) ../softfloat.c - $(COMPILE_C) ../softfloat.c - -timesoftfloat$(OBJ): milieu.h softfloat.h ../timesoftfloat.c - $(COMPILE_C) ../timesoftfloat.c - -timesoftfloat$(EXE): softfloat$(OBJ) timesoftfloat$(OBJ) - $(LINK) softfloat$(OBJ) timesoftfloat$(OBJ) - diff --git a/test/float/softfloat/softfloat/bits32/SPARC-Solaris-GCC/milieu.h b/test/float/softfloat/softfloat/bits32/SPARC-Solaris-GCC/milieu.h deleted file mode 100644 index 3bab0f481..000000000 --- a/test/float/softfloat/softfloat/bits32/SPARC-Solaris-GCC/milieu.h +++ /dev/null @@ -1,38 +0,0 @@ - -/*============================================================================ - -This C header file is part of the Berkeley SoftFloat IEEE Floating-Point -Arithmetic Package, Release 2c, by John R. Hauser. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has -been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES -RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS -AND ORGANIZATIONS WHO CAN AND WILL TOLERATE ALL LOSSES, COSTS, OR OTHER -PROBLEMS THEY INCUR DUE TO THE SOFTWARE WITHOUT RECOMPENSE FROM JOHN HAUSER OR -THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE, AND WHO FURTHERMORE EFFECTIVELY -INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE -(possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR OTHER -PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE, OR -INCURRED BY ANYONE DUE TO A DERIVATIVE WORK THEY CREATE USING ANY PART OF THE -SOFTWARE. - -Derivative works require also that (1) the source code for the derivative work -includes prominent notice that the work is derivative, and (2) the source code -includes prominent notice of these three paragraphs for those parts of this -code that are retained. - -=============================================================================*/ - -/*---------------------------------------------------------------------------- -| Include common integer types and flags. -*----------------------------------------------------------------------------*/ -#include "../../../processors/SPARC-GCC.h" - -/*---------------------------------------------------------------------------- -| Symbolic Boolean literals. -*----------------------------------------------------------------------------*/ -enum { - FALSE = 0, - TRUE = 1 -}; - diff --git a/test/float/softfloat/softfloat/bits32/SPARC-Solaris-GCC/softfloat-specialize b/test/float/softfloat/softfloat/bits32/SPARC-Solaris-GCC/softfloat-specialize deleted file mode 100644 index 8c34d679c..000000000 --- a/test/float/softfloat/softfloat/bits32/SPARC-Solaris-GCC/softfloat-specialize +++ /dev/null @@ -1,225 +0,0 @@ - -/*============================================================================ - -This C source fragment is part of the Berkeley SoftFloat IEEE Floating-Point -Arithmetic Package, Release 2c, by John R. Hauser. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has -been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES -RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS -AND ORGANIZATIONS WHO CAN AND WILL TOLERATE ALL LOSSES, COSTS, OR OTHER -PROBLEMS THEY INCUR DUE TO THE SOFTWARE WITHOUT RECOMPENSE FROM JOHN HAUSER OR -THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE, AND WHO FURTHERMORE EFFECTIVELY -INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE -(possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR OTHER -PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE, OR -INCURRED BY ANYONE DUE TO A DERIVATIVE WORK THEY CREATE USING ANY PART OF THE -SOFTWARE. - -Derivative works require also that (1) the source code for the derivative work -includes prominent notice that the work is derivative, and (2) the source code -includes prominent notice of these three paragraphs for those parts of this -code that are retained. - -=============================================================================*/ - -/*---------------------------------------------------------------------------- -| Underflow tininess-detection mode, statically initialized to default value. -| (The declaration in `softfloat.h' must match the `int8' type here.) -*----------------------------------------------------------------------------*/ -int8 float_detect_tininess = float_tininess_before_rounding; - -/*---------------------------------------------------------------------------- -| Raises the exceptions specified by `flags'. Floating-point traps can be -| defined here if desired. It is currently not possible for such a trap -| to substitute a result value. If traps are not implemented, this routine -| should be simply `float_exception_flags |= flags;'. -*----------------------------------------------------------------------------*/ - -void float_raise( int8 flags ) -{ - - float_exception_flags |= flags; - -} - -/*---------------------------------------------------------------------------- -| Internal canonical NaN format. -*----------------------------------------------------------------------------*/ -typedef struct { - flag sign; - bits32 high, low; -} commonNaNT; - -/*---------------------------------------------------------------------------- -| The pattern for a default generated single-precision NaN. -*----------------------------------------------------------------------------*/ -enum { - float32_default_nan = 0x7FFFFFFF -}; - -/*---------------------------------------------------------------------------- -| Returns 1 if the single-precision floating-point value `a' is a NaN; -| otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag float32_is_nan( float32 a ) -{ - - return ( 0xFF000000 < (bits32) ( a<<1 ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the single-precision floating-point value `a' is a signaling -| NaN; otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag float32_is_signaling_nan( float32 a ) -{ - - return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the single-precision floating-point NaN -| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid -| exception is raised. -*----------------------------------------------------------------------------*/ - -static commonNaNT float32ToCommonNaN( float32 a ) -{ - commonNaNT z; - - if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); - z.sign = a>>31; - z.low = 0; - z.high = a<<9; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the canonical NaN `a' to the single- -| precision floating-point format. -*----------------------------------------------------------------------------*/ - -static float32 commonNaNToFloat32( commonNaNT a ) -{ - - return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>9 ); - -} - -/*---------------------------------------------------------------------------- -| Takes two single-precision floating-point values `a' and `b', one of which -| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a -| signaling NaN, the invalid exception is raised. -*----------------------------------------------------------------------------*/ - -static float32 propagateFloat32NaN( float32 a, float32 b ) -{ - flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; - - aIsNaN = float32_is_nan( a ); - aIsSignalingNaN = float32_is_signaling_nan( a ); - bIsNaN = float32_is_nan( b ); - bIsSignalingNaN = float32_is_signaling_nan( b ); - a |= 0x00400000; - b |= 0x00400000; - if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); - return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a; - -} - -/*---------------------------------------------------------------------------- -| The pattern for a default generated double-precision NaN. The `high' and -| `low' values hold the most- and least-significant bits, respectively. -*----------------------------------------------------------------------------*/ -enum { - float64_default_nan_high = 0x7FFFFFFF, - float64_default_nan_low = 0xFFFFFFFF -}; - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-precision floating-point value `a' is a NaN; -| otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag float64_is_nan( float64 a ) -{ - - return - ( 0xFFE00000 <= (bits32) ( a.high<<1 ) ) - && ( a.low || ( a.high & 0x000FFFFF ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-precision floating-point value `a' is a signaling -| NaN; otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag float64_is_signaling_nan( float64 a ) -{ - - return - ( ( ( a.high>>19 ) & 0xFFF ) == 0xFFE ) - && ( a.low || ( a.high & 0x0007FFFF ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the double-precision floating-point NaN -| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid -| exception is raised. -*----------------------------------------------------------------------------*/ - -static commonNaNT float64ToCommonNaN( float64 a ) -{ - commonNaNT z; - - if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); - z.sign = a.high>>31; - shortShift64Left( a.high, a.low, 12, &z.high, &z.low ); - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the canonical NaN `a' to the double- -| precision floating-point format. -*----------------------------------------------------------------------------*/ - -static float64 commonNaNToFloat64( commonNaNT a ) -{ - float64 z; - - shift64Right( a.high, a.low, 12, &z.high, &z.low ); - z.high |= ( ( (bits32) a.sign )<<31 ) | 0x7FF80000; - return z; - -} - -/*---------------------------------------------------------------------------- -| Takes two double-precision floating-point values `a' and `b', one of which -| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a -| signaling NaN, the invalid exception is raised. -*----------------------------------------------------------------------------*/ - -static float64 propagateFloat64NaN( float64 a, float64 b ) -{ - flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; - - aIsNaN = float64_is_nan( a ); - aIsSignalingNaN = float64_is_signaling_nan( a ); - bIsNaN = float64_is_nan( b ); - bIsSignalingNaN = float64_is_signaling_nan( b ); - a.high |= 0x00080000; - b.high |= 0x00080000; - if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); - return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a; - -} - diff --git a/test/float/softfloat/softfloat/bits32/SPARC-Solaris-GCC/softfloat.h b/test/float/softfloat/softfloat/bits32/SPARC-Solaris-GCC/softfloat.h deleted file mode 100644 index a52ba5d8b..000000000 --- a/test/float/softfloat/softfloat/bits32/SPARC-Solaris-GCC/softfloat.h +++ /dev/null @@ -1,127 +0,0 @@ - -/*============================================================================ - -This C header file is part of the Berkeley SoftFloat IEEE Floating-Point -Arithmetic Package, Release 2c, by John R. Hauser. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has -been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES -RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS -AND ORGANIZATIONS WHO CAN AND WILL TOLERATE ALL LOSSES, COSTS, OR OTHER -PROBLEMS THEY INCUR DUE TO THE SOFTWARE WITHOUT RECOMPENSE FROM JOHN HAUSER OR -THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE, AND WHO FURTHERMORE EFFECTIVELY -INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE -(possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR OTHER -PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE, OR -INCURRED BY ANYONE DUE TO A DERIVATIVE WORK THEY CREATE USING ANY PART OF THE -SOFTWARE. - -Derivative works require also that (1) the source code for the derivative work -includes prominent notice that the work is derivative, and (2) the source code -includes prominent notice of these three paragraphs for those parts of this -code that are retained. - -=============================================================================*/ - -/*---------------------------------------------------------------------------- -| Software IEEE floating-point types. -*----------------------------------------------------------------------------*/ -typedef unsigned int float32; -typedef struct { - unsigned int high, low; -} float64; - -/*---------------------------------------------------------------------------- -| Software IEEE floating-point underflow tininess-detection mode. -*----------------------------------------------------------------------------*/ -extern int float_detect_tininess; -enum { - float_tininess_after_rounding = 0, - float_tininess_before_rounding = 1 -}; - -/*---------------------------------------------------------------------------- -| Software IEEE floating-point rounding mode. -*----------------------------------------------------------------------------*/ -extern int float_rounding_mode; -enum { - float_round_nearest_even = 0, - float_round_to_zero = 1, - float_round_up = 2, - float_round_down = 3 -}; - -/*---------------------------------------------------------------------------- -| Software IEEE floating-point exception flags. -*----------------------------------------------------------------------------*/ -extern int float_exception_flags; -enum { - float_flag_inexact = 1, - float_flag_divbyzero = 2, - float_flag_underflow = 4, - float_flag_overflow = 8, - float_flag_invalid = 16 -}; - -/*---------------------------------------------------------------------------- -| Routine to raise any or all of the software IEEE floating-point exception -| flags. -*----------------------------------------------------------------------------*/ -void float_raise( int ); - -/*---------------------------------------------------------------------------- -| Software IEEE integer-to-floating-point conversion routines. -*----------------------------------------------------------------------------*/ -float32 int32_to_float32( int ); -float64 int32_to_float64( int ); - -/*---------------------------------------------------------------------------- -| Software IEEE single-precision conversion routines. -*----------------------------------------------------------------------------*/ -int float32_to_int32( float32 ); -int float32_to_int32_round_to_zero( float32 ); -float64 float32_to_float64( float32 ); - -/*---------------------------------------------------------------------------- -| Software IEEE single-precision operations. -*----------------------------------------------------------------------------*/ -float32 float32_round_to_int( float32 ); -float32 float32_add( float32, float32 ); -float32 float32_sub( float32, float32 ); -float32 float32_mul( float32, float32 ); -float32 float32_div( float32, float32 ); -float32 float32_rem( float32, float32 ); -float32 float32_sqrt( float32 ); -int float32_eq( float32, float32 ); -int float32_le( float32, float32 ); -int float32_lt( float32, float32 ); -int float32_eq_signaling( float32, float32 ); -int float32_le_quiet( float32, float32 ); -int float32_lt_quiet( float32, float32 ); -int float32_is_signaling_nan( float32 ); - -/*---------------------------------------------------------------------------- -| Software IEEE double-precision conversion routines. -*----------------------------------------------------------------------------*/ -int float64_to_int32( float64 ); -int float64_to_int32_round_to_zero( float64 ); -float32 float64_to_float32( float64 ); - -/*---------------------------------------------------------------------------- -| Software IEEE double-precision operations. -*----------------------------------------------------------------------------*/ -float64 float64_round_to_int( float64 ); -float64 float64_add( float64, float64 ); -float64 float64_sub( float64, float64 ); -float64 float64_mul( float64, float64 ); -float64 float64_div( float64, float64 ); -float64 float64_rem( float64, float64 ); -float64 float64_sqrt( float64 ); -int float64_eq( float64, float64 ); -int float64_le( float64, float64 ); -int float64_lt( float64, float64 ); -int float64_eq_signaling( float64, float64 ); -int float64_le_quiet( float64, float64 ); -int float64_lt_quiet( float64, float64 ); -int float64_is_signaling_nan( float64 ); - diff --git a/test/float/softfloat/softfloat/bits32/softfloat.c b/test/float/softfloat/softfloat/bits32/softfloat.c index 11f0e8231..b26216b08 100644 --- a/test/float/softfloat/softfloat/bits32/softfloat.c +++ b/test/float/softfloat/softfloat/bits32/softfloat.c @@ -211,6 +211,7 @@ static float32 } +#ifdef DOUBLES /*---------------------------------------------------------------------------- | Returns the least-significant 32 fraction bits of the double-precision | floating-point value `a'. @@ -256,6 +257,7 @@ INLINE flag extractFloat64Sign( float64 a ) return a.high>>31; } +#endif /*---------------------------------------------------------------------------- | Normalizes the subnormal double-precision floating-point value represented @@ -267,6 +269,7 @@ INLINE flag extractFloat64Sign( float64 a ) | by `zSig1Ptr'. *----------------------------------------------------------------------------*/ +#ifdef DOUBLES static void normalizeFloat64Subnormal( bits32 aSig0, @@ -451,6 +454,7 @@ static float64 return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 ); } +#endif /*---------------------------------------------------------------------------- | Returns the result of converting the 32-bit two's complement integer `a' @@ -469,6 +473,7 @@ float32 int32_to_float32( int32 a ) } +#ifdef DOUBLES /*---------------------------------------------------------------------------- | Returns the result of converting the 32-bit two's complement integer `a' | to the double-precision floating-point format. The conversion is performed @@ -496,6 +501,7 @@ float64 int32_to_float64( int32 a ) return packFloat64( zSign, 0x412 - shiftCount, zSig0, zSig1 ); } +#endif /*---------------------------------------------------------------------------- | Returns the result of converting the single-precision floating-point value @@ -607,6 +613,7 @@ int32 float32_to_int32_round_to_zero( float32 a ) } +#ifdef DOUBLES /*---------------------------------------------------------------------------- | Returns the result of converting the single-precision floating-point value | `a' to the double-precision floating-point format. The conversion is @@ -635,6 +642,7 @@ float64 float32_to_float64( float32 a ) return packFloat64( aSign, aExp + 0x380, zSig0, zSig1 ); } +#endif /*---------------------------------------------------------------------------- | Rounds the single-precision floating-point value `a' to an integer, @@ -1290,6 +1298,7 @@ flag float32_lt_quiet( float32 a, float32 b ) } +#ifdef DOUBLES /*---------------------------------------------------------------------------- | Returns the result of converting the double-precision floating-point value | `a' to the 32-bit two's complement integer format. The conversion is @@ -2256,4 +2265,4 @@ flag float64_lt_quiet( float64 a, float64 b ) : lt64( a.high, a.low, b.high, b.low ); } - +#endif diff --git a/test/float/softfloat/softfloat/bits32/templates/Makefile b/test/float/softfloat/softfloat/bits32/templates/Makefile deleted file mode 100644 index ffb26fe4c..000000000 --- a/test/float/softfloat/softfloat/bits32/templates/Makefile +++ /dev/null @@ -1,28 +0,0 @@ - -PROCESSOR_H = ../../../processors/!!!processor.h -SOFTFLOAT_MACROS = ../softfloat-macros - -OBJ = .o -EXE = -INCLUDES = -I. -I.. -COMPILE_C = gcc -c -o $@ $(INCLUDES) -I- -O2 -LINK = gcc -o $@ - -#------------------------------------------------------------------------------ -# Probably okay below here. -#------------------------------------------------------------------------------ - -ALL: softfloat$(OBJ) timesoftfloat$(EXE) - -milieu.h: $(PROCESSOR_H) - touch milieu.h - -softfloat$(OBJ): milieu.h softfloat.h softfloat-specialize $(SOFTFLOAT_MACROS) ../softfloat.c - $(COMPILE_C) ../softfloat.c - -timesoftfloat$(OBJ): milieu.h softfloat.h ../timesoftfloat.c - $(COMPILE_C) ../timesoftfloat.c - -timesoftfloat$(EXE): softfloat$(OBJ) timesoftfloat$(OBJ) - $(LINK) softfloat$(OBJ) timesoftfloat$(OBJ) - diff --git a/test/float/softfloat/softfloat/bits32/templates/milieu.h b/test/float/softfloat/softfloat/bits32/templates/milieu.h deleted file mode 100644 index f9c25de13..000000000 --- a/test/float/softfloat/softfloat/bits32/templates/milieu.h +++ /dev/null @@ -1,38 +0,0 @@ - -/*============================================================================ - -This C header file template is part of the Berkeley SoftFloat IEEE Floating- -Point Arithmetic Package, Release 2c, by John R. Hauser. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has -been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES -RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS -AND ORGANIZATIONS WHO CAN AND WILL TOLERATE ALL LOSSES, COSTS, OR OTHER -PROBLEMS THEY INCUR DUE TO THE SOFTWARE WITHOUT RECOMPENSE FROM JOHN HAUSER OR -THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE, AND WHO FURTHERMORE EFFECTIVELY -INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE -(possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR OTHER -PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE, OR -INCURRED BY ANYONE DUE TO A DERIVATIVE WORK THEY CREATE USING ANY PART OF THE -SOFTWARE. - -Derivative works require also that (1) the source code for the derivative work -includes prominent notice that the work is derivative, and (2) the source code -includes prominent notice of these three paragraphs for those parts of this -code that are retained. - -=============================================================================*/ - -/*---------------------------------------------------------------------------- -| Include common integer types and flags. -*----------------------------------------------------------------------------*/ -#include "../../../processors/!!!processor.h" - -/*---------------------------------------------------------------------------- -| Symbolic Boolean literals. -*----------------------------------------------------------------------------*/ -enum { - FALSE = 0, - TRUE = 1 -}; - diff --git a/test/float/softfloat/softfloat/bits32/templates/softfloat-specialize b/test/float/softfloat/softfloat/bits32/templates/softfloat-specialize deleted file mode 100644 index fc9a1b14d..000000000 --- a/test/float/softfloat/softfloat/bits32/templates/softfloat-specialize +++ /dev/null @@ -1,235 +0,0 @@ - -/*============================================================================ - -This C source fragment is part of the Berkeley SoftFloat IEEE Floating-Point -Arithmetic Package, Release 2c, by John R. Hauser. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has -been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES -RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS -AND ORGANIZATIONS WHO CAN AND WILL TOLERATE ALL LOSSES, COSTS, OR OTHER -PROBLEMS THEY INCUR DUE TO THE SOFTWARE WITHOUT RECOMPENSE FROM JOHN HAUSER OR -THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE, AND WHO FURTHERMORE EFFECTIVELY -INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE -(possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR OTHER -PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE, OR -INCURRED BY ANYONE DUE TO A DERIVATIVE WORK THEY CREATE USING ANY PART OF THE -SOFTWARE. - -Derivative works require also that (1) the source code for the derivative work -includes prominent notice that the work is derivative, and (2) the source code -includes prominent notice of these three paragraphs for those parts of this -code that are retained. - -=============================================================================*/ - -/*---------------------------------------------------------------------------- -| Underflow tininess-detection mode, statically initialized to default value. -| (The declaration in `softfloat.h' must match the `int8' type here.) -*----------------------------------------------------------------------------*/ -int8 float_detect_tininess = float_tininess_after_rounding; - -/*---------------------------------------------------------------------------- -| Raises the exceptions specified by `flags'. Floating-point traps can be -| defined here if desired. It is currently not possible for such a trap -| to substitute a result value. If traps are not implemented, this routine -| should be simply `float_exception_flags |= flags;'. -*----------------------------------------------------------------------------*/ - -void float_raise( int8 flags ) -{ - - float_exception_flags |= flags; - -} - -/*---------------------------------------------------------------------------- -| Internal canonical NaN format. -*----------------------------------------------------------------------------*/ -typedef struct { - flag sign; - bits32 high, low; -} commonNaNT; - -/*---------------------------------------------------------------------------- -| The pattern for a default generated single-precision NaN. -*----------------------------------------------------------------------------*/ -enum { - float32_default_nan = 0xFFFFFFFF -}; - -/*---------------------------------------------------------------------------- -| Returns 1 if the single-precision floating-point value `a' is a NaN; -| otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag float32_is_nan( float32 a ) -{ - - return ( 0xFF000000 < (bits32) ( a<<1 ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the single-precision floating-point value `a' is a signaling -| NaN; otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag float32_is_signaling_nan( float32 a ) -{ - - return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the single-precision floating-point NaN -| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid -| exception is raised. -*----------------------------------------------------------------------------*/ - -static commonNaNT float32ToCommonNaN( float32 a ) -{ - commonNaNT z; - - if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); - z.sign = a>>31; - z.low = 0; - z.high = a<<9; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the canonical NaN `a' to the single- -| precision floating-point format. -*----------------------------------------------------------------------------*/ - -static float32 commonNaNToFloat32( commonNaNT a ) -{ - - return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>9 ); - -} - -/*---------------------------------------------------------------------------- -| Takes two single-precision floating-point values `a' and `b', one of which -| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a -| signaling NaN, the invalid exception is raised. -*----------------------------------------------------------------------------*/ - -static float32 propagateFloat32NaN( float32 a, float32 b ) -{ - flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; - - aIsNaN = float32_is_nan( a ); - aIsSignalingNaN = float32_is_signaling_nan( a ); - bIsNaN = float32_is_nan( b ); - bIsSignalingNaN = float32_is_signaling_nan( b ); - a |= 0x00400000; - b |= 0x00400000; - if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); - if ( aIsNaN ) { - return ( aIsSignalingNaN & bIsNaN ) ? b : a; - } - else { - return b; - } - -} - -/*---------------------------------------------------------------------------- -| The pattern for a default generated double-precision NaN. The `high' and -| `low' values hold the most- and least-significant bits, respectively. -*----------------------------------------------------------------------------*/ -enum { - float64_default_nan_high = 0xFFFFFFFF, - float64_default_nan_low = 0xFFFFFFFF -}; - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-precision floating-point value `a' is a NaN; -| otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag float64_is_nan( float64 a ) -{ - - return - ( 0xFFE00000 <= (bits32) ( a.high<<1 ) ) - && ( a.low || ( a.high & 0x000FFFFF ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-precision floating-point value `a' is a signaling -| NaN; otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag float64_is_signaling_nan( float64 a ) -{ - - return - ( ( ( a.high>>19 ) & 0xFFF ) == 0xFFE ) - && ( a.low || ( a.high & 0x0007FFFF ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the double-precision floating-point NaN -| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid -| exception is raised. -*----------------------------------------------------------------------------*/ - -static commonNaNT float64ToCommonNaN( float64 a ) -{ - commonNaNT z; - - if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); - z.sign = a.high>>31; - shortShift64Left( a.high, a.low, 12, &z.high, &z.low ); - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the canonical NaN `a' to the double- -| precision floating-point format. -*----------------------------------------------------------------------------*/ - -static float64 commonNaNToFloat64( commonNaNT a ) -{ - float64 z; - - shift64Right( a.high, a.low, 12, &z.high, &z.low ); - z.high |= ( ( (bits32) a.sign )<<31 ) | 0x7FF80000; - return z; - -} - -/*---------------------------------------------------------------------------- -| Takes two double-precision floating-point values `a' and `b', one of which -| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a -| signaling NaN, the invalid exception is raised. -*----------------------------------------------------------------------------*/ - -static float64 propagateFloat64NaN( float64 a, float64 b ) -{ - flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; - - aIsNaN = float64_is_nan( a ); - aIsSignalingNaN = float64_is_signaling_nan( a ); - bIsNaN = float64_is_nan( b ); - bIsSignalingNaN = float64_is_signaling_nan( b ); - a.high |= 0x00080000; - b.high |= 0x00080000; - if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); - if ( aIsNaN ) { - return ( aIsSignalingNaN & bIsNaN ) ? b : a; - } - else { - return b; - } - -} - diff --git a/test/float/softfloat/softfloat/bits32/templates/softfloat.h b/test/float/softfloat/softfloat/bits32/templates/softfloat.h deleted file mode 100644 index eeab5e975..000000000 --- a/test/float/softfloat/softfloat/bits32/templates/softfloat.h +++ /dev/null @@ -1,127 +0,0 @@ - -/*============================================================================ - -This C header file template is part of the Berkeley SoftFloat IEEE Floating- -Point Arithmetic Package, Release 2c, by John R. Hauser. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has -been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES -RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS -AND ORGANIZATIONS WHO CAN AND WILL TOLERATE ALL LOSSES, COSTS, OR OTHER -PROBLEMS THEY INCUR DUE TO THE SOFTWARE WITHOUT RECOMPENSE FROM JOHN HAUSER OR -THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE, AND WHO FURTHERMORE EFFECTIVELY -INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE -(possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR OTHER -PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE, OR -INCURRED BY ANYONE DUE TO A DERIVATIVE WORK THEY CREATE USING ANY PART OF THE -SOFTWARE. - -Derivative works require also that (1) the source code for the derivative work -includes prominent notice that the work is derivative, and (2) the source code -includes prominent notice of these three paragraphs for those parts of this -code that are retained. - -=============================================================================*/ - -/*---------------------------------------------------------------------------- -| Software IEEE floating-point types. -*----------------------------------------------------------------------------*/ -typedef !!!bits32 float32; -typedef struct { - !!!bits32 high, low; -} float64; - -/*---------------------------------------------------------------------------- -| Software IEEE floating-point underflow tininess-detection mode. -*----------------------------------------------------------------------------*/ -extern !!!int8 float_detect_tininess; -enum { - float_tininess_after_rounding = 0, - float_tininess_before_rounding = 1 -}; - -/*---------------------------------------------------------------------------- -| Software IEEE floating-point rounding mode. -*----------------------------------------------------------------------------*/ -extern !!!int8 float_rounding_mode; -enum { - float_round_nearest_even = 0, - float_round_to_zero = 1, - float_round_down = 2, - float_round_up = 3 -}; - -/*---------------------------------------------------------------------------- -| Software IEEE floating-point exception flags. -*----------------------------------------------------------------------------*/ -extern !!!int8 float_exception_flags; -enum { - float_flag_inexact = 1, - float_flag_underflow = 2, - float_flag_overflow = 4, - float_flag_divbyzero = 8, - float_flag_invalid = 16 -}; - -/*---------------------------------------------------------------------------- -| Routine to raise any or all of the software IEEE floating-point exception -| flags. -*----------------------------------------------------------------------------*/ -void float_raise( !!!int8 ); - -/*---------------------------------------------------------------------------- -| Software IEEE integer-to-floating-point conversion routines. -*----------------------------------------------------------------------------*/ -float32 int32_to_float32( !!!int32 ); -float64 int32_to_float64( !!!int32 ); - -/*---------------------------------------------------------------------------- -| Software IEEE single-precision conversion routines. -*----------------------------------------------------------------------------*/ -!!!int32 float32_to_int32( float32 ); -!!!int32 float32_to_int32_round_to_zero( float32 ); -float64 float32_to_float64( float32 ); - -/*---------------------------------------------------------------------------- -| Software IEEE single-precision operations. -*----------------------------------------------------------------------------*/ -float32 float32_round_to_int( float32 ); -float32 float32_add( float32, float32 ); -float32 float32_sub( float32, float32 ); -float32 float32_mul( float32, float32 ); -float32 float32_div( float32, float32 ); -float32 float32_rem( float32, float32 ); -float32 float32_sqrt( float32 ); -!!!flag float32_eq( float32, float32 ); -!!!flag float32_le( float32, float32 ); -!!!flag float32_lt( float32, float32 ); -!!!flag float32_eq_signaling( float32, float32 ); -!!!flag float32_le_quiet( float32, float32 ); -!!!flag float32_lt_quiet( float32, float32 ); -!!!flag float32_is_signaling_nan( float32 ); - -/*---------------------------------------------------------------------------- -| Software IEEE double-precision conversion routines. -*----------------------------------------------------------------------------*/ -!!!int32 float64_to_int32( float64 ); -!!!int32 float64_to_int32_round_to_zero( float64 ); -float32 float64_to_float32( float64 ); - -/*---------------------------------------------------------------------------- -| Software IEEE double-precision operations. -*----------------------------------------------------------------------------*/ -float64 float64_round_to_int( float64 ); -float64 float64_add( float64, float64 ); -float64 float64_sub( float64, float64 ); -float64 float64_mul( float64, float64 ); -float64 float64_div( float64, float64 ); -float64 float64_rem( float64, float64 ); -float64 float64_sqrt( float64 ); -!!!flag float64_eq( float64, float64 ); -!!!flag float64_le( float64, float64 ); -!!!flag float64_lt( float64, float64 ); -!!!flag float64_eq_signaling( float64, float64 ); -!!!flag float64_le_quiet( float64, float64 ); -!!!flag float64_lt_quiet( float64, float64 ); -!!!flag float64_is_signaling_nan( float64 ); - diff --git a/test/float/softfloat/softfloat/bits32/timesoftfloat.c b/test/float/softfloat/softfloat/bits32/timesoftfloat.c index c886193e2..9fdf42cc9 100644 --- a/test/float/softfloat/softfloat/bits32/timesoftfloat.c +++ b/test/float/softfloat/softfloat/bits32/timesoftfloat.c @@ -31,6 +31,15 @@ code that are retained. #include "milieu.h" #include "softfloat.h" +#ifndef CLOCKS_PER_SEC +#define CLOCKS_PER_SEC 50 +#warning "CLOCKS_PER_SEC not defined" +clock_t clock(void) { + static clock_t cnt; + ++cnt; +} +#endif + enum { minIterations = 1000 }; @@ -52,12 +61,13 @@ static char *functionName, *roundingModeName, *tininessModeName; static void reportTime( int32 count, long clocks ) { - +#if 0 printf( "%8.1f kops/s: %s", ( count / ( ( (float) clocks ) / CLOCKS_PER_SEC ) ) / 1000, functionName ); +#endif if ( roundingModeName ) { fputs( ", rounding ", stdout ); fputs( roundingModeName, stdout ); @@ -86,7 +96,8 @@ static const int32 inputs_int32[ numInputs_int32 ] = { 0xBFFFFFF8, 0x0001BF56, 0x000017F6, 0x000A908A }; -static void time_a_int32_z_float32( float32 function( int32 ) ) +//static void time_a_int32_z_float32( float32 function( int32 ) ) +static void time_a_int32_z_float32( float32 (*function)( int32 ) ) { clock_t startClock, endClock; int32 count, i; @@ -113,6 +124,7 @@ static void time_a_int32_z_float32( float32 function( int32 ) ) } +#ifdef DOUBLES static void time_a_int32_z_float64( float64 function( int32 ) ) { clock_t startClock, endClock; @@ -139,6 +151,7 @@ static void time_a_int32_z_float64( float64 function( int32 ) ) reportTime( count, endClock - startClock ); } +#endif enum { numInputs_float32 = 32 @@ -155,7 +168,8 @@ static const float32 inputs_float32[ numInputs_float32 ] = { 0xDB428661, 0x33F89B1F, 0xA3BFEFFF, 0x537BFFBE }; -static void time_a_float32_z_int32( int32 function( float32 ) ) +//static void time_a_float32_z_int32( int32 function( float32 ) ) +static void time_a_float32_z_int32( int32 (*function)( float32 ) ) { clock_t startClock, endClock; int32 count, i; @@ -182,6 +196,7 @@ static void time_a_float32_z_int32( int32 function( float32 ) ) } +#ifdef DOUBLES static void time_a_float32_z_float64( float64 function( float32 ) ) { clock_t startClock, endClock; @@ -208,8 +223,10 @@ static void time_a_float32_z_float64( float64 function( float32 ) ) reportTime( count, endClock - startClock ); } +#endif -static void time_az_float32( float32 function( float32 ) ) +//static void time_az_float32( float32 function( float32 ) ) +static void time_az_float32( float32 (*function)( float32 ) ) { clock_t startClock, endClock; int32 count, i; @@ -236,7 +253,8 @@ static void time_az_float32( float32 function( float32 ) ) } -static void time_ab_float32_z_flag( flag function( float32, float32 ) ) +//static void time_ab_float32_z_flag( flag function( float32, float32 ) ) +static void time_ab_float32_z_flag( flag (*function)( float32, float32 ) ) { clock_t startClock, endClock; int32 count, i; @@ -271,7 +289,8 @@ static void time_ab_float32_z_flag( flag function( float32, float32 ) ) } -static void time_abz_float32( float32 function( float32, float32 ) ) +//static void time_abz_float32( float32 function( float32, float32 ) ) +static void time_abz_float32( float32 (*function)( float32, float32 ) ) { clock_t startClock, endClock; int32 count, i; @@ -317,7 +336,8 @@ static const float32 inputs_float32_pos[ numInputs_float32 ] = { 0x5B428661, 0x33F89B1F, 0x23BFEFFF, 0x537BFFBE }; -static void time_az_float32_pos( float32 function( float32 ) ) +//static void time_az_float32_pos( float32 function( float32 ) ) +static void time_az_float32_pos( float32 (*function)( float32 ) ) { clock_t startClock, endClock; int32 count, i; @@ -344,6 +364,7 @@ static void time_az_float32_pos( float32 function( float32 ) ) } +#ifdef DOUBLES enum { numInputs_float64 = 32 }; @@ -385,7 +406,8 @@ static const struct { { 0xC237FFFF, 0xFFFFFDFE } }; -static void time_a_float64_z_int32( int32 function( float64 ) ) +//static void time_a_float64_z_int32( int32 function( float64 ) ) +static void time_a_float64_z_int32( int32 (*function)( float64 ) ) { clock_t startClock, endClock; int32 count, i; @@ -633,13 +655,18 @@ static void time_az_float64_pos( float64 function( float64 ) ) reportTime( count, endClock - startClock ); } +#endif enum { INT32_TO_FLOAT32 = 1, +#ifdef DOUBLES INT32_TO_FLOAT64, +#endif FLOAT32_TO_INT32, FLOAT32_TO_INT32_ROUND_TO_ZERO, +#ifdef DOUBLES FLOAT32_TO_FLOAT64, +#endif FLOAT32_ROUND_TO_INT, FLOAT32_ADD, FLOAT32_SUB, @@ -653,6 +680,7 @@ enum { FLOAT32_EQ_SIGNALING, FLOAT32_LE_QUIET, FLOAT32_LT_QUIET, +#ifdef DOUBLES FLOAT64_TO_INT32, FLOAT64_TO_INT32_ROUND_TO_ZERO, FLOAT64_TO_FLOAT32, @@ -669,6 +697,7 @@ enum { FLOAT64_EQ_SIGNALING, FLOAT64_LE_QUIET, FLOAT64_LT_QUIET, +#endif NUM_FUNCTIONS }; @@ -679,10 +708,14 @@ static struct { } functions[ NUM_FUNCTIONS ] = { { 0, 0, 0, 0 }, { "int32_to_float32", 1, TRUE, FALSE }, +#ifdef DOUBLES { "int32_to_float64", 1, FALSE, FALSE }, +#endif { "float32_to_int32", 1, TRUE, FALSE }, { "float32_to_int32_round_to_zero", 1, FALSE, FALSE }, +#ifdef DOUBLES { "float32_to_float64", 1, FALSE, FALSE }, +#endif { "float32_round_to_int", 1, TRUE, FALSE }, { "float32_add", 2, TRUE, FALSE }, { "float32_sub", 2, TRUE, FALSE }, @@ -696,6 +729,7 @@ static struct { { "float32_eq_signaling", 2, FALSE, FALSE }, { "float32_le_quiet", 2, FALSE, FALSE }, { "float32_lt_quiet", 2, FALSE, FALSE }, +#ifdef DOUBLES { "float64_to_int32", 1, TRUE, FALSE }, { "float64_to_int32_round_to_zero", 1, FALSE, FALSE }, { "float64_to_float32", 1, TRUE, TRUE, }, @@ -712,6 +746,7 @@ static struct { { "float64_eq_signaling", 2, FALSE, FALSE }, { "float64_le_quiet", 2, FALSE, FALSE }, { "float64_lt_quiet", 2, FALSE, FALSE } +#endif }; enum { @@ -777,18 +812,22 @@ static void case INT32_TO_FLOAT32: time_a_int32_z_float32( int32_to_float32 ); break; +#ifdef DOUBLES case INT32_TO_FLOAT64: time_a_int32_z_float64( int32_to_float64 ); break; +#endif case FLOAT32_TO_INT32: time_a_float32_z_int32( float32_to_int32 ); break; case FLOAT32_TO_INT32_ROUND_TO_ZERO: time_a_float32_z_int32( float32_to_int32_round_to_zero ); break; +#ifdef DOUBLES case FLOAT32_TO_FLOAT64: time_a_float32_z_float64( float32_to_float64 ); break; +#endif case FLOAT32_ROUND_TO_INT: time_az_float32( float32_round_to_int ); break; @@ -828,6 +867,7 @@ static void case FLOAT32_LT_QUIET: time_ab_float32_z_flag( float32_lt_quiet ); break; +#ifdef DOUBLES case FLOAT64_TO_INT32: time_a_float64_z_int32( float64_to_int32 ); break; @@ -876,6 +916,7 @@ static void case FLOAT64_LT_QUIET: time_ab_float64_z_flag( float64_lt_quiet ); break; +#endif } } diff --git a/test/float/softfloat/softfloat/bits64/386-Win32-GCC/Makefile b/test/float/softfloat/softfloat/bits64/386-Win32-GCC/Makefile deleted file mode 100644 index b343deaf6..000000000 --- a/test/float/softfloat/softfloat/bits64/386-Win32-GCC/Makefile +++ /dev/null @@ -1,24 +0,0 @@ - -PROCESSOR_H = ../../../processors/386-GCC.h -SOFTFLOAT_MACROS = ../softfloat-macros - -OBJ = .o -EXE = .exe -INCLUDES = -I. -I.. -COMPILE_C = gcc -c -o $@ $(INCLUDES) -I- -O2 -LINK = gcc -o $@ - -ALL: softfloat$(OBJ) timesoftfloat$(EXE) - -milieu.h: $(PROCESSOR_H) - touch milieu.h - -softfloat$(OBJ): milieu.h softfloat.h softfloat-specialize $(SOFTFLOAT_MACROS) ../softfloat.c - $(COMPILE_C) ../softfloat.c - -timesoftfloat$(OBJ): milieu.h softfloat.h ../timesoftfloat.c - $(COMPILE_C) ../timesoftfloat.c - -timesoftfloat$(EXE): softfloat$(OBJ) timesoftfloat$(OBJ) - $(LINK) softfloat$(OBJ) timesoftfloat$(OBJ) - diff --git a/test/float/softfloat/softfloat/bits64/386-Win32-GCC/milieu.h b/test/float/softfloat/softfloat/bits64/386-Win32-GCC/milieu.h deleted file mode 100644 index 98c0b61d5..000000000 --- a/test/float/softfloat/softfloat/bits64/386-Win32-GCC/milieu.h +++ /dev/null @@ -1,38 +0,0 @@ - -/*============================================================================ - -This C header file is part of the Berkeley SoftFloat IEEE Floating-Point -Arithmetic Package, Release 2c, by John R. Hauser. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has -been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES -RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS -AND ORGANIZATIONS WHO CAN AND WILL TOLERATE ALL LOSSES, COSTS, OR OTHER -PROBLEMS THEY INCUR DUE TO THE SOFTWARE WITHOUT RECOMPENSE FROM JOHN HAUSER OR -THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE, AND WHO FURTHERMORE EFFECTIVELY -INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE -(possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR OTHER -PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE, OR -INCURRED BY ANYONE DUE TO A DERIVATIVE WORK THEY CREATE USING ANY PART OF THE -SOFTWARE. - -Derivative works require also that (1) the source code for the derivative work -includes prominent notice that the work is derivative, and (2) the source code -includes prominent notice of these three paragraphs for those parts of this -code that are retained. - -=============================================================================*/ - -/*---------------------------------------------------------------------------- -| Include common integer types and flags. -*----------------------------------------------------------------------------*/ -#include "../../../processors/386-GCC.h" - -/*---------------------------------------------------------------------------- -| Symbolic Boolean literals. -*----------------------------------------------------------------------------*/ -enum { - FALSE = 0, - TRUE = 1 -}; - diff --git a/test/float/softfloat/softfloat/bits64/386-Win32-GCC/softfloat-specialize b/test/float/softfloat/softfloat/bits64/386-Win32-GCC/softfloat-specialize deleted file mode 100644 index e87d175b7..000000000 --- a/test/float/softfloat/softfloat/bits64/386-Win32-GCC/softfloat-specialize +++ /dev/null @@ -1,457 +0,0 @@ - -/*============================================================================ - -This C source fragment is part of the Berkeley SoftFloat IEEE Floating-Point -Arithmetic Package, Release 2c, by John R. Hauser. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has -been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES -RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS -AND ORGANIZATIONS WHO CAN AND WILL TOLERATE ALL LOSSES, COSTS, OR OTHER -PROBLEMS THEY INCUR DUE TO THE SOFTWARE WITHOUT RECOMPENSE FROM JOHN HAUSER OR -THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE, AND WHO FURTHERMORE EFFECTIVELY -INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE -(possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR OTHER -PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE, OR -INCURRED BY ANYONE DUE TO A DERIVATIVE WORK THEY CREATE USING ANY PART OF THE -SOFTWARE. - -Derivative works require also that (1) the source code for the derivative work -includes prominent notice that the work is derivative, and (2) the source code -includes prominent notice of these three paragraphs for those parts of this -code that are retained. - -=============================================================================*/ - -/*---------------------------------------------------------------------------- -| Underflow tininess-detection mode, statically initialized to default value. -| (The declaration in `softfloat.h' must match the `int8' type here.) -*----------------------------------------------------------------------------*/ -int8 float_detect_tininess = float_tininess_after_rounding; - -/*---------------------------------------------------------------------------- -| Raises the exceptions specified by `flags'. Floating-point traps can be -| defined here if desired. It is currently not possible for such a trap -| to substitute a result value. If traps are not implemented, this routine -| should be simply `float_exception_flags |= flags;'. -*----------------------------------------------------------------------------*/ - -void float_raise( int8 flags ) -{ - - float_exception_flags |= flags; - -} - -/*---------------------------------------------------------------------------- -| Internal canonical NaN format. -*----------------------------------------------------------------------------*/ -typedef struct { - flag sign; - bits64 high, low; -} commonNaNT; - -/*---------------------------------------------------------------------------- -| The pattern for a default generated single-precision NaN. -*----------------------------------------------------------------------------*/ -#define float32_default_nan 0xFFC00000 - -/*---------------------------------------------------------------------------- -| Returns 1 if the single-precision floating-point value `a' is a NaN; -| otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag float32_is_nan( float32 a ) -{ - - return ( 0xFF000000 < (bits32) ( a<<1 ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the single-precision floating-point value `a' is a signaling -| NaN; otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag float32_is_signaling_nan( float32 a ) -{ - - return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the single-precision floating-point NaN -| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid -| exception is raised. -*----------------------------------------------------------------------------*/ - -static commonNaNT float32ToCommonNaN( float32 a ) -{ - commonNaNT z; - - if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); - z.sign = a>>31; - z.low = 0; - z.high = ( (bits64) a )<<41; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the canonical NaN `a' to the single- -| precision floating-point format. -*----------------------------------------------------------------------------*/ - -static float32 commonNaNToFloat32( commonNaNT a ) -{ - - return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 ); - -} - -/*---------------------------------------------------------------------------- -| Takes two single-precision floating-point values `a' and `b', one of which -| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a -| signaling NaN, the invalid exception is raised. -*----------------------------------------------------------------------------*/ - -static float32 propagateFloat32NaN( float32 a, float32 b ) -{ - flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; - - aIsNaN = float32_is_nan( a ); - aIsSignalingNaN = float32_is_signaling_nan( a ); - bIsNaN = float32_is_nan( b ); - bIsSignalingNaN = float32_is_signaling_nan( b ); - a |= 0x00400000; - b |= 0x00400000; - if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); - if ( aIsSignalingNaN ) { - if ( bIsSignalingNaN ) goto returnLargerSignificand; - return bIsNaN ? b : a; - } - else if ( aIsNaN ) { - if ( bIsSignalingNaN | ! bIsNaN ) return a; - returnLargerSignificand: - if ( (bits32) ( a<<1 ) < (bits32) ( b<<1 ) ) return b; - if ( (bits32) ( b<<1 ) < (bits32) ( a<<1 ) ) return a; - return ( a < b ) ? a : b; - } - else { - return b; - } - -} - -/*---------------------------------------------------------------------------- -| The pattern for a default generated double-precision NaN. -*----------------------------------------------------------------------------*/ -#define float64_default_nan LIT64( 0xFFF8000000000000 ) - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-precision floating-point value `a' is a NaN; -| otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag float64_is_nan( float64 a ) -{ - - return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-precision floating-point value `a' is a signaling -| NaN; otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag float64_is_signaling_nan( float64 a ) -{ - - return - ( ( ( a>>51 ) & 0xFFF ) == 0xFFE ) - && ( a & LIT64( 0x0007FFFFFFFFFFFF ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the double-precision floating-point NaN -| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid -| exception is raised. -*----------------------------------------------------------------------------*/ - -static commonNaNT float64ToCommonNaN( float64 a ) -{ - commonNaNT z; - - if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); - z.sign = a>>63; - z.low = 0; - z.high = a<<12; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the canonical NaN `a' to the double- -| precision floating-point format. -*----------------------------------------------------------------------------*/ - -static float64 commonNaNToFloat64( commonNaNT a ) -{ - - return - ( ( (bits64) a.sign )<<63 ) - | LIT64( 0x7FF8000000000000 ) - | ( a.high>>12 ); - -} - -/*---------------------------------------------------------------------------- -| Takes two double-precision floating-point values `a' and `b', one of which -| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a -| signaling NaN, the invalid exception is raised. -*----------------------------------------------------------------------------*/ - -static float64 propagateFloat64NaN( float64 a, float64 b ) -{ - flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; - - aIsNaN = float64_is_nan( a ); - aIsSignalingNaN = float64_is_signaling_nan( a ); - bIsNaN = float64_is_nan( b ); - bIsSignalingNaN = float64_is_signaling_nan( b ); - a |= LIT64( 0x0008000000000000 ); - b |= LIT64( 0x0008000000000000 ); - if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); - if ( aIsSignalingNaN ) { - if ( bIsSignalingNaN ) goto returnLargerSignificand; - return bIsNaN ? b : a; - } - else if ( aIsNaN ) { - if ( bIsSignalingNaN | ! bIsNaN ) return a; - returnLargerSignificand: - if ( (bits64) ( a<<1 ) < (bits64) ( b<<1 ) ) return b; - if ( (bits64) ( b<<1 ) < (bits64) ( a<<1 ) ) return a; - return ( a < b ) ? a : b; - } - else { - return b; - } - -} - -#ifdef FLOATX80 - -/*---------------------------------------------------------------------------- -| The pattern for a default generated double-extended-precision NaN. -| The `high' and `low' values hold the most- and least-significant bits, -| respectively. -*----------------------------------------------------------------------------*/ -#define floatx80_default_nan_high 0xFFFF -#define floatx80_default_nan_low LIT64( 0xC000000000000000 ) - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-extended-precision floating-point value `a' is a -| NaN; otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag floatx80_is_nan( floatx80 a ) -{ - - return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-extended-precision floating-point value `a' is a -| signaling NaN; otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag floatx80_is_signaling_nan( floatx80 a ) -{ - bits64 aLow; - - aLow = a.low & ~ LIT64( 0x4000000000000000 ); - return - ( ( a.high & 0x7FFF ) == 0x7FFF ) - && (bits64) ( aLow<<1 ) - && ( a.low == aLow ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the double-extended-precision floating- -| point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the -| invalid exception is raised. -*----------------------------------------------------------------------------*/ - -static commonNaNT floatx80ToCommonNaN( floatx80 a ) -{ - commonNaNT z; - - if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); - z.sign = a.high>>15; - z.low = 0; - z.high = a.low<<1; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the canonical NaN `a' to the double- -| extended-precision floating-point format. -*----------------------------------------------------------------------------*/ - -static floatx80 commonNaNToFloatx80( commonNaNT a ) -{ - floatx80 z; - - z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 ); - z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF; - return z; - -} - -/*---------------------------------------------------------------------------- -| Takes two double-extended-precision floating-point values `a' and `b', one -| of which is a NaN, and returns the appropriate NaN result. If either `a' or -| `b' is a signaling NaN, the invalid exception is raised. -*----------------------------------------------------------------------------*/ - -static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b ) -{ - flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; - - aIsNaN = floatx80_is_nan( a ); - aIsSignalingNaN = floatx80_is_signaling_nan( a ); - bIsNaN = floatx80_is_nan( b ); - bIsSignalingNaN = floatx80_is_signaling_nan( b ); - a.low |= LIT64( 0xC000000000000000 ); - b.low |= LIT64( 0xC000000000000000 ); - if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); - if ( aIsSignalingNaN ) { - if ( bIsSignalingNaN ) goto returnLargerSignificand; - return bIsNaN ? b : a; - } - else if ( aIsNaN ) { - if ( bIsSignalingNaN | ! bIsNaN ) return a; - returnLargerSignificand: - if ( a.low < b.low ) return b; - if ( b.low < a.low ) return a; - return ( a.high < b.high ) ? a : b; - } - else { - return b; - } - -} - -#endif - -#ifdef FLOAT128 - -/*---------------------------------------------------------------------------- -| The pattern for a default generated quadruple-precision NaN. The `high' and -| `low' values hold the most- and least-significant bits, respectively. -*----------------------------------------------------------------------------*/ -#define float128_default_nan_high LIT64( 0xFFFF800000000000 ) -#define float128_default_nan_low LIT64( 0x0000000000000000 ) - -/*---------------------------------------------------------------------------- -| Returns 1 if the quadruple-precision floating-point value `a' is a NaN; -| otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag float128_is_nan( float128 a ) -{ - - return - ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) ) - && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the quadruple-precision floating-point value `a' is a -| signaling NaN; otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag float128_is_signaling_nan( float128 a ) -{ - - return - ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE ) - && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the quadruple-precision floating-point NaN -| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid -| exception is raised. -*----------------------------------------------------------------------------*/ - -static commonNaNT float128ToCommonNaN( float128 a ) -{ - commonNaNT z; - - if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); - z.sign = a.high>>63; - shortShift128Left( a.high, a.low, 16, &z.high, &z.low ); - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the canonical NaN `a' to the quadruple- -| precision floating-point format. -*----------------------------------------------------------------------------*/ - -static float128 commonNaNToFloat128( commonNaNT a ) -{ - float128 z; - - shift128Right( a.high, a.low, 16, &z.high, &z.low ); - z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 ); - return z; - -} - -/*---------------------------------------------------------------------------- -| Takes two quadruple-precision floating-point values `a' and `b', one of -| which is a NaN, and returns the appropriate NaN result. If either `a' or -| `b' is a signaling NaN, the invalid exception is raised. -*----------------------------------------------------------------------------*/ - -static float128 propagateFloat128NaN( float128 a, float128 b ) -{ - flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; - - aIsNaN = float128_is_nan( a ); - aIsSignalingNaN = float128_is_signaling_nan( a ); - bIsNaN = float128_is_nan( b ); - bIsSignalingNaN = float128_is_signaling_nan( b ); - a.high |= LIT64( 0x0000800000000000 ); - b.high |= LIT64( 0x0000800000000000 ); - if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); - if ( aIsSignalingNaN ) { - if ( bIsSignalingNaN ) goto returnLargerSignificand; - return bIsNaN ? b : a; - } - else if ( aIsNaN ) { - if ( bIsSignalingNaN | ! bIsNaN ) return a; - returnLargerSignificand: - if ( lt128( a.high<<1, a.low, b.high<<1, b.low ) ) return b; - if ( lt128( b.high<<1, b.low, a.high<<1, a.low ) ) return a; - return ( a.high < b.high ) ? a : b; - } - else { - return b; - } - -} - -#endif - diff --git a/test/float/softfloat/softfloat/bits64/386-Win32-GCC/softfloat.h b/test/float/softfloat/softfloat/bits64/386-Win32-GCC/softfloat.h deleted file mode 100644 index e1b84d2eb..000000000 --- a/test/float/softfloat/softfloat/bits64/386-Win32-GCC/softfloat.h +++ /dev/null @@ -1,252 +0,0 @@ - -/*============================================================================ - -This C header file is part of the Berkeley SoftFloat IEEE Floating-Point -Arithmetic Package, Release 2c, by John R. Hauser. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has -been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES -RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS -AND ORGANIZATIONS WHO CAN AND WILL TOLERATE ALL LOSSES, COSTS, OR OTHER -PROBLEMS THEY INCUR DUE TO THE SOFTWARE WITHOUT RECOMPENSE FROM JOHN HAUSER OR -THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE, AND WHO FURTHERMORE EFFECTIVELY -INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE -(possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR OTHER -PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE, OR -INCURRED BY ANYONE DUE TO A DERIVATIVE WORK THEY CREATE USING ANY PART OF THE -SOFTWARE. - -Derivative works require also that (1) the source code for the derivative work -includes prominent notice that the work is derivative, and (2) the source code -includes prominent notice of these three paragraphs for those parts of this -code that are retained. - -=============================================================================*/ - -/*---------------------------------------------------------------------------- -| The macro `FLOATX80' must be defined to enable the double-extended-precision -| floating-point format `floatx80'. If this macro is not defined, the -| `floatx80' type will not be defined, and none of the functions that either -| input or output the `floatx80' type will be defined. The same applies to -| the `FLOAT128' macro and the quadruple-precision format `float128'. -*----------------------------------------------------------------------------*/ -#define FLOATX80 -#define FLOAT128 - -/*---------------------------------------------------------------------------- -| Software IEEE floating-point types. -*----------------------------------------------------------------------------*/ -typedef unsigned int float32; -typedef unsigned long long float64; -#ifdef FLOATX80 -typedef struct { - unsigned long long low; - unsigned short high; -} floatx80; -#endif -#ifdef FLOAT128 -typedef struct { - unsigned long long low, high; -} float128; -#endif - -/*---------------------------------------------------------------------------- -| Software IEEE floating-point underflow tininess-detection mode. -*----------------------------------------------------------------------------*/ -extern signed char float_detect_tininess; -enum { - float_tininess_after_rounding = 0, - float_tininess_before_rounding = 1 -}; - -/*---------------------------------------------------------------------------- -| Software IEEE floating-point rounding mode. -*----------------------------------------------------------------------------*/ -extern signed char float_rounding_mode; -enum { - float_round_nearest_even = 0, - float_round_down = 1, - float_round_up = 2, - float_round_to_zero = 3 -}; - -/*---------------------------------------------------------------------------- -| Software IEEE floating-point exception flags. -*----------------------------------------------------------------------------*/ -extern signed char float_exception_flags; -enum { - float_flag_invalid = 1, - float_flag_divbyzero = 4, - float_flag_overflow = 8, - float_flag_underflow = 16, - float_flag_inexact = 32 -}; - -/*---------------------------------------------------------------------------- -| Routine to raise any or all of the software IEEE floating-point exception -| flags. -*----------------------------------------------------------------------------*/ -void float_raise( signed char ); - -/*---------------------------------------------------------------------------- -| Software IEEE integer-to-floating-point conversion routines. -*----------------------------------------------------------------------------*/ -float32 int32_to_float32( int ); -float64 int32_to_float64( int ); -#ifdef FLOATX80 -floatx80 int32_to_floatx80( int ); -#endif -#ifdef FLOAT128 -float128 int32_to_float128( int ); -#endif -float32 int64_to_float32( long long ); -float64 int64_to_float64( long long ); -#ifdef FLOATX80 -floatx80 int64_to_floatx80( long long ); -#endif -#ifdef FLOAT128 -float128 int64_to_float128( long long ); -#endif - -/*---------------------------------------------------------------------------- -| Software IEEE single-precision conversion routines. -*----------------------------------------------------------------------------*/ -int float32_to_int32( float32 ); -int float32_to_int32_round_to_zero( float32 ); -long long float32_to_int64( float32 ); -long long float32_to_int64_round_to_zero( float32 ); -float64 float32_to_float64( float32 ); -#ifdef FLOATX80 -floatx80 float32_to_floatx80( float32 ); -#endif -#ifdef FLOAT128 -float128 float32_to_float128( float32 ); -#endif - -/*---------------------------------------------------------------------------- -| Software IEEE single-precision operations. -*----------------------------------------------------------------------------*/ -float32 float32_round_to_int( float32 ); -float32 float32_add( float32, float32 ); -float32 float32_sub( float32, float32 ); -float32 float32_mul( float32, float32 ); -float32 float32_div( float32, float32 ); -float32 float32_rem( float32, float32 ); -float32 float32_sqrt( float32 ); -char float32_eq( float32, float32 ); -char float32_le( float32, float32 ); -char float32_lt( float32, float32 ); -char float32_eq_signaling( float32, float32 ); -char float32_le_quiet( float32, float32 ); -char float32_lt_quiet( float32, float32 ); -char float32_is_signaling_nan( float32 ); - -/*---------------------------------------------------------------------------- -| Software IEEE double-precision conversion routines. -*----------------------------------------------------------------------------*/ -int float64_to_int32( float64 ); -int float64_to_int32_round_to_zero( float64 ); -long long float64_to_int64( float64 ); -long long float64_to_int64_round_to_zero( float64 ); -float32 float64_to_float32( float64 ); -#ifdef FLOATX80 -floatx80 float64_to_floatx80( float64 ); -#endif -#ifdef FLOAT128 -float128 float64_to_float128( float64 ); -#endif - -/*---------------------------------------------------------------------------- -| Software IEEE double-precision operations. -*----------------------------------------------------------------------------*/ -float64 float64_round_to_int( float64 ); -float64 float64_add( float64, float64 ); -float64 float64_sub( float64, float64 ); -float64 float64_mul( float64, float64 ); -float64 float64_div( float64, float64 ); -float64 float64_rem( float64, float64 ); -float64 float64_sqrt( float64 ); -char float64_eq( float64, float64 ); -char float64_le( float64, float64 ); -char float64_lt( float64, float64 ); -char float64_eq_signaling( float64, float64 ); -char float64_le_quiet( float64, float64 ); -char float64_lt_quiet( float64, float64 ); -char float64_is_signaling_nan( float64 ); - -#ifdef FLOATX80 - -/*---------------------------------------------------------------------------- -| Software IEEE double-extended-precision conversion routines. -*----------------------------------------------------------------------------*/ -int floatx80_to_int32( floatx80 ); -int floatx80_to_int32_round_to_zero( floatx80 ); -long long floatx80_to_int64( floatx80 ); -long long floatx80_to_int64_round_to_zero( floatx80 ); -float32 floatx80_to_float32( floatx80 ); -float64 floatx80_to_float64( floatx80 ); -#ifdef FLOAT128 -float128 floatx80_to_float128( floatx80 ); -#endif - -/*---------------------------------------------------------------------------- -| Software IEEE double-extended-precision rounding precision. Valid values -| are 32, 64, and 80. -*----------------------------------------------------------------------------*/ -extern signed char floatx80_rounding_precision; - -/*---------------------------------------------------------------------------- -| Software IEEE double-extended-precision operations. -*----------------------------------------------------------------------------*/ -floatx80 floatx80_round_to_int( floatx80 ); -floatx80 floatx80_add( floatx80, floatx80 ); -floatx80 floatx80_sub( floatx80, floatx80 ); -floatx80 floatx80_mul( floatx80, floatx80 ); -floatx80 floatx80_div( floatx80, floatx80 ); -floatx80 floatx80_rem( floatx80, floatx80 ); -floatx80 floatx80_sqrt( floatx80 ); -char floatx80_eq( floatx80, floatx80 ); -char floatx80_le( floatx80, floatx80 ); -char floatx80_lt( floatx80, floatx80 ); -char floatx80_eq_signaling( floatx80, floatx80 ); -char floatx80_le_quiet( floatx80, floatx80 ); -char floatx80_lt_quiet( floatx80, floatx80 ); -char floatx80_is_signaling_nan( floatx80 ); - -#endif - -#ifdef FLOAT128 - -/*---------------------------------------------------------------------------- -| Software IEEE quadruple-precision conversion routines. -*----------------------------------------------------------------------------*/ -int float128_to_int32( float128 ); -int float128_to_int32_round_to_zero( float128 ); -long long float128_to_int64( float128 ); -long long float128_to_int64_round_to_zero( float128 ); -float32 float128_to_float32( float128 ); -float64 float128_to_float64( float128 ); -#ifdef FLOATX80 -floatx80 float128_to_floatx80( float128 ); -#endif - -/*---------------------------------------------------------------------------- -| Software IEEE quadruple-precision operations. -*----------------------------------------------------------------------------*/ -float128 float128_round_to_int( float128 ); -float128 float128_add( float128, float128 ); -float128 float128_sub( float128, float128 ); -float128 float128_mul( float128, float128 ); -float128 float128_div( float128, float128 ); -float128 float128_rem( float128, float128 ); -float128 float128_sqrt( float128 ); -char float128_eq( float128, float128 ); -char float128_le( float128, float128 ); -char float128_lt( float128, float128 ); -char float128_eq_signaling( float128, float128 ); -char float128_le_quiet( float128, float128 ); -char float128_lt_quiet( float128, float128 ); -char float128_is_signaling_nan( float128 ); - -#endif - diff --git a/test/float/softfloat/softfloat/bits64/SPARC-Solaris-GCC/Makefile b/test/float/softfloat/softfloat/bits64/SPARC-Solaris-GCC/Makefile deleted file mode 100644 index bf71c756b..000000000 --- a/test/float/softfloat/softfloat/bits64/SPARC-Solaris-GCC/Makefile +++ /dev/null @@ -1,24 +0,0 @@ - -PROCESSOR_H = ../../../processors/SPARC-GCC.h -SOFTFLOAT_MACROS = ../softfloat-macros - -OBJ = .o -EXE = -INCLUDES = -I. -I.. -COMPILE_C = gcc -c -o $@ $(INCLUDES) -I- -O2 -LINK = gcc -o $@ - -ALL: softfloat$(OBJ) timesoftfloat$(EXE) - -milieu.h: $(PROCESSOR_H) - touch milieu.h - -softfloat$(OBJ): milieu.h softfloat.h softfloat-specialize $(SOFTFLOAT_MACROS) ../softfloat.c - $(COMPILE_C) ../softfloat.c - -timesoftfloat$(OBJ): milieu.h softfloat.h ../timesoftfloat.c - $(COMPILE_C) ../timesoftfloat.c - -timesoftfloat$(EXE): softfloat$(OBJ) timesoftfloat$(OBJ) - $(LINK) softfloat$(OBJ) timesoftfloat$(OBJ) - diff --git a/test/float/softfloat/softfloat/bits64/SPARC-Solaris-GCC/milieu.h b/test/float/softfloat/softfloat/bits64/SPARC-Solaris-GCC/milieu.h deleted file mode 100644 index 3bab0f481..000000000 --- a/test/float/softfloat/softfloat/bits64/SPARC-Solaris-GCC/milieu.h +++ /dev/null @@ -1,38 +0,0 @@ - -/*============================================================================ - -This C header file is part of the Berkeley SoftFloat IEEE Floating-Point -Arithmetic Package, Release 2c, by John R. Hauser. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has -been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES -RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS -AND ORGANIZATIONS WHO CAN AND WILL TOLERATE ALL LOSSES, COSTS, OR OTHER -PROBLEMS THEY INCUR DUE TO THE SOFTWARE WITHOUT RECOMPENSE FROM JOHN HAUSER OR -THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE, AND WHO FURTHERMORE EFFECTIVELY -INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE -(possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR OTHER -PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE, OR -INCURRED BY ANYONE DUE TO A DERIVATIVE WORK THEY CREATE USING ANY PART OF THE -SOFTWARE. - -Derivative works require also that (1) the source code for the derivative work -includes prominent notice that the work is derivative, and (2) the source code -includes prominent notice of these three paragraphs for those parts of this -code that are retained. - -=============================================================================*/ - -/*---------------------------------------------------------------------------- -| Include common integer types and flags. -*----------------------------------------------------------------------------*/ -#include "../../../processors/SPARC-GCC.h" - -/*---------------------------------------------------------------------------- -| Symbolic Boolean literals. -*----------------------------------------------------------------------------*/ -enum { - FALSE = 0, - TRUE = 1 -}; - diff --git a/test/float/softfloat/softfloat/bits64/SPARC-Solaris-GCC/softfloat-specialize b/test/float/softfloat/softfloat/bits64/SPARC-Solaris-GCC/softfloat-specialize deleted file mode 100644 index f5a47d27c..000000000 --- a/test/float/softfloat/softfloat/bits64/SPARC-Solaris-GCC/softfloat-specialize +++ /dev/null @@ -1,405 +0,0 @@ - -/*============================================================================ - -This C source fragment is part of the Berkeley SoftFloat IEEE Floating-Point -Arithmetic Package, Release 2c, by John R. Hauser. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has -been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES -RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS -AND ORGANIZATIONS WHO CAN AND WILL TOLERATE ALL LOSSES, COSTS, OR OTHER -PROBLEMS THEY INCUR DUE TO THE SOFTWARE WITHOUT RECOMPENSE FROM JOHN HAUSER OR -THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE, AND WHO FURTHERMORE EFFECTIVELY -INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE -(possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR OTHER -PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE, OR -INCURRED BY ANYONE DUE TO A DERIVATIVE WORK THEY CREATE USING ANY PART OF THE -SOFTWARE. - -Derivative works require also that (1) the source code for the derivative work -includes prominent notice that the work is derivative, and (2) the source code -includes prominent notice of these three paragraphs for those parts of this -code that are retained. - -=============================================================================*/ - -/*---------------------------------------------------------------------------- -| Underflow tininess-detection mode, statically initialized to default value. -| (The declaration in `softfloat.h' must match the `int8' type here.) -*----------------------------------------------------------------------------*/ -int8 float_detect_tininess = float_tininess_before_rounding; - -/*---------------------------------------------------------------------------- -| Raises the exceptions specified by `flags'. Floating-point traps can be -| defined here if desired. It is currently not possible for such a trap -| to substitute a result value. If traps are not implemented, this routine -| should be simply `float_exception_flags |= flags;'. -*----------------------------------------------------------------------------*/ - -void float_raise( int8 flags ) -{ - - float_exception_flags |= flags; - -} - -/*---------------------------------------------------------------------------- -| Internal canonical NaN format. -*----------------------------------------------------------------------------*/ -typedef struct { - flag sign; - bits64 high, low; -} commonNaNT; - -/*---------------------------------------------------------------------------- -| The pattern for a default generated single-precision NaN. -*----------------------------------------------------------------------------*/ -#define float32_default_nan 0x7FFFFFFF - -/*---------------------------------------------------------------------------- -| Returns 1 if the single-precision floating-point value `a' is a NaN; -| otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag float32_is_nan( float32 a ) -{ - - return ( 0xFF000000 < (bits32) ( a<<1 ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the single-precision floating-point value `a' is a signaling -| NaN; otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag float32_is_signaling_nan( float32 a ) -{ - - return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the single-precision floating-point NaN -| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid -| exception is raised. -*----------------------------------------------------------------------------*/ - -static commonNaNT float32ToCommonNaN( float32 a ) -{ - commonNaNT z; - - if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); - z.sign = a>>31; - z.low = 0; - z.high = ( (bits64) a )<<41; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the canonical NaN `a' to the single- -| precision floating-point format. -*----------------------------------------------------------------------------*/ - -static float32 commonNaNToFloat32( commonNaNT a ) -{ - - return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 ); - -} - -/*---------------------------------------------------------------------------- -| Takes two single-precision floating-point values `a' and `b', one of which -| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a -| signaling NaN, the invalid exception is raised. -*----------------------------------------------------------------------------*/ - -static float32 propagateFloat32NaN( float32 a, float32 b ) -{ - flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; - - aIsNaN = float32_is_nan( a ); - aIsSignalingNaN = float32_is_signaling_nan( a ); - bIsNaN = float32_is_nan( b ); - bIsSignalingNaN = float32_is_signaling_nan( b ); - a |= 0x00400000; - b |= 0x00400000; - if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); - return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a; - -} - -/*---------------------------------------------------------------------------- -| The pattern for a default generated double-precision NaN. -*----------------------------------------------------------------------------*/ -#define float64_default_nan LIT64( 0x7FFFFFFFFFFFFFFF ) - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-precision floating-point value `a' is a NaN; -| otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag float64_is_nan( float64 a ) -{ - - return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-precision floating-point value `a' is a signaling -| NaN; otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag float64_is_signaling_nan( float64 a ) -{ - - return - ( ( ( a>>51 ) & 0xFFF ) == 0xFFE ) - && ( a & LIT64( 0x0007FFFFFFFFFFFF ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the double-precision floating-point NaN -| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid -| exception is raised. -*----------------------------------------------------------------------------*/ - -static commonNaNT float64ToCommonNaN( float64 a ) -{ - commonNaNT z; - - if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); - z.sign = a>>63; - z.low = 0; - z.high = a<<12; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the canonical NaN `a' to the double- -| precision floating-point format. -*----------------------------------------------------------------------------*/ - -static float64 commonNaNToFloat64( commonNaNT a ) -{ - - return - ( ( (bits64) a.sign )<<63 ) - | LIT64( 0x7FF8000000000000 ) - | ( a.high>>12 ); - -} - -/*---------------------------------------------------------------------------- -| Takes two double-precision floating-point values `a' and `b', one of which -| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a -| signaling NaN, the invalid exception is raised. -*----------------------------------------------------------------------------*/ - -static float64 propagateFloat64NaN( float64 a, float64 b ) -{ - flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; - - aIsNaN = float64_is_nan( a ); - aIsSignalingNaN = float64_is_signaling_nan( a ); - bIsNaN = float64_is_nan( b ); - bIsSignalingNaN = float64_is_signaling_nan( b ); - a |= LIT64( 0x0008000000000000 ); - b |= LIT64( 0x0008000000000000 ); - if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); - return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a; - -} - -#ifdef FLOATX80 - -/*---------------------------------------------------------------------------- -| The pattern for a default generated double-extended-precision NaN. -| The `high' and `low' values hold the most- and least-significant bits, -| respectively. -*----------------------------------------------------------------------------*/ -#define floatx80_default_nan_high 0x7FFF -#define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF ) - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-extended-precision floating-point value `a' is a -| NaN; otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag floatx80_is_nan( floatx80 a ) -{ - - return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-extended-precision floating-point value `a' is a -| signaling NaN; otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag floatx80_is_signaling_nan( floatx80 a ) -{ - bits64 aLow; - - aLow = a.low & ~ LIT64( 0x4000000000000000 ); - return - ( ( a.high & 0x7FFF ) == 0x7FFF ) - && (bits64) ( aLow<<1 ) - && ( a.low == aLow ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the double-extended-precision floating- -| point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the -| invalid exception is raised. -*----------------------------------------------------------------------------*/ - -static commonNaNT floatx80ToCommonNaN( floatx80 a ) -{ - commonNaNT z; - - if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); - z.sign = a.high>>15; - z.low = 0; - z.high = a.low<<1; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the canonical NaN `a' to the double- -| extended-precision floating-point format. -*----------------------------------------------------------------------------*/ - -static floatx80 commonNaNToFloatx80( commonNaNT a ) -{ - floatx80 z; - - z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 ); - z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF; - return z; - -} - -/*---------------------------------------------------------------------------- -| Takes two double-extended-precision floating-point values `a' and `b', one -| of which is a NaN, and returns the appropriate NaN result. If either `a' or -| `b' is a signaling NaN, the invalid exception is raised. -*----------------------------------------------------------------------------*/ - -static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b ) -{ - flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; - - aIsNaN = floatx80_is_nan( a ); - aIsSignalingNaN = floatx80_is_signaling_nan( a ); - bIsNaN = floatx80_is_nan( b ); - bIsSignalingNaN = floatx80_is_signaling_nan( b ); - a.low |= LIT64( 0xC000000000000000 ); - b.low |= LIT64( 0xC000000000000000 ); - if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); - return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a; - -} - -#endif - -#ifdef FLOAT128 - -/*---------------------------------------------------------------------------- -| The pattern for a default generated quadruple-precision NaN. The `high' and -| `low' values hold the most- and least-significant bits, respectively. -*----------------------------------------------------------------------------*/ -#define float128_default_nan_high LIT64( 0x7FFFFFFFFFFFFFFF ) -#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF ) - -/*---------------------------------------------------------------------------- -| Returns 1 if the quadruple-precision floating-point value `a' is a NaN; -| otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag float128_is_nan( float128 a ) -{ - - return - ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) ) - && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the quadruple-precision floating-point value `a' is a -| signaling NaN; otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag float128_is_signaling_nan( float128 a ) -{ - - return - ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE ) - && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the quadruple-precision floating-point NaN -| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid -| exception is raised. -*----------------------------------------------------------------------------*/ - -static commonNaNT float128ToCommonNaN( float128 a ) -{ - commonNaNT z; - - if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); - z.sign = a.high>>63; - shortShift128Left( a.high, a.low, 16, &z.high, &z.low ); - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the canonical NaN `a' to the quadruple- -| precision floating-point format. -*----------------------------------------------------------------------------*/ - -static float128 commonNaNToFloat128( commonNaNT a ) -{ - float128 z; - - shift128Right( a.high, a.low, 16, &z.high, &z.low ); - z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 ); - return z; - -} - -/*---------------------------------------------------------------------------- -| Takes two quadruple-precision floating-point values `a' and `b', one of -| which is a NaN, and returns the appropriate NaN result. If either `a' or -| `b' is a signaling NaN, the invalid exception is raised. -*----------------------------------------------------------------------------*/ - -static float128 propagateFloat128NaN( float128 a, float128 b ) -{ - flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; - - aIsNaN = float128_is_nan( a ); - aIsSignalingNaN = float128_is_signaling_nan( a ); - bIsNaN = float128_is_nan( b ); - bIsSignalingNaN = float128_is_signaling_nan( b ); - a.high |= LIT64( 0x0000800000000000 ); - b.high |= LIT64( 0x0000800000000000 ); - if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); - return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a; - -} - -#endif - diff --git a/test/float/softfloat/softfloat/bits64/SPARC-Solaris-GCC/softfloat.h b/test/float/softfloat/softfloat/bits64/SPARC-Solaris-GCC/softfloat.h deleted file mode 100644 index 52205f538..000000000 --- a/test/float/softfloat/softfloat/bits64/SPARC-Solaris-GCC/softfloat.h +++ /dev/null @@ -1,252 +0,0 @@ - -/*============================================================================ - -This C header file is part of the Berkeley SoftFloat IEEE Floating-Point -Arithmetic Package, Release 2c, by John R. Hauser. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has -been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES -RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS -AND ORGANIZATIONS WHO CAN AND WILL TOLERATE ALL LOSSES, COSTS, OR OTHER -PROBLEMS THEY INCUR DUE TO THE SOFTWARE WITHOUT RECOMPENSE FROM JOHN HAUSER OR -THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE, AND WHO FURTHERMORE EFFECTIVELY -INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE -(possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR OTHER -PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE, OR -INCURRED BY ANYONE DUE TO A DERIVATIVE WORK THEY CREATE USING ANY PART OF THE -SOFTWARE. - -Derivative works require also that (1) the source code for the derivative work -includes prominent notice that the work is derivative, and (2) the source code -includes prominent notice of these three paragraphs for those parts of this -code that are retained. - -=============================================================================*/ - -/*---------------------------------------------------------------------------- -| The macro `FLOATX80' must be defined to enable the double-extended-precision -| floating-point format `floatx80'. If this macro is not defined, the -| `floatx80' type will not be defined, and none of the functions that either -| input or output the `floatx80' type will be defined. The same applies to -| the `FLOAT128' macro and the quadruple-precision format `float128'. -*----------------------------------------------------------------------------*/ -#define FLOATX80 -#define FLOAT128 - -/*---------------------------------------------------------------------------- -| Software IEEE floating-point types. -*----------------------------------------------------------------------------*/ -typedef unsigned int float32; -typedef unsigned long long float64; -#ifdef FLOATX80 -typedef struct { - unsigned short high; - unsigned long long low; -} floatx80; -#endif -#ifdef FLOAT128 -typedef struct { - unsigned long long high, low; -} float128; -#endif - -/*---------------------------------------------------------------------------- -| Software IEEE floating-point underflow tininess-detection mode. -*----------------------------------------------------------------------------*/ -extern int float_detect_tininess; -enum { - float_tininess_after_rounding = 0, - float_tininess_before_rounding = 1 -}; - -/*---------------------------------------------------------------------------- -| Software IEEE floating-point rounding mode. -*----------------------------------------------------------------------------*/ -extern int float_rounding_mode; -enum { - float_round_nearest_even = 0, - float_round_to_zero = 1, - float_round_up = 2, - float_round_down = 3 -}; - -/*---------------------------------------------------------------------------- -| Software IEEE floating-point exception flags. -*----------------------------------------------------------------------------*/ -extern int float_exception_flags; -enum { - float_flag_inexact = 1, - float_flag_divbyzero = 2, - float_flag_underflow = 4, - float_flag_overflow = 8, - float_flag_invalid = 16 -}; - -/*---------------------------------------------------------------------------- -| Routine to raise any or all of the software IEEE floating-point exception -| flags. -*----------------------------------------------------------------------------*/ -void float_raise( int ); - -/*---------------------------------------------------------------------------- -| Software IEEE integer-to-floating-point conversion routines. -*----------------------------------------------------------------------------*/ -float32 int32_to_float32( int ); -float64 int32_to_float64( int ); -#ifdef FLOATX80 -floatx80 int32_to_floatx80( int ); -#endif -#ifdef FLOAT128 -float128 int32_to_float128( int ); -#endif -float32 int64_to_float32( long long ); -float64 int64_to_float64( long long ); -#ifdef FLOATX80 -floatx80 int64_to_floatx80( long long ); -#endif -#ifdef FLOAT128 -float128 int64_to_float128( long long ); -#endif - -/*---------------------------------------------------------------------------- -| Software IEEE single-precision conversion routines. -*----------------------------------------------------------------------------*/ -int float32_to_int32( float32 ); -int float32_to_int32_round_to_zero( float32 ); -long long float32_to_int64( float32 ); -long long float32_to_int64_round_to_zero( float32 ); -float64 float32_to_float64( float32 ); -#ifdef FLOATX80 -floatx80 float32_to_floatx80( float32 ); -#endif -#ifdef FLOAT128 -float128 float32_to_float128( float32 ); -#endif - -/*---------------------------------------------------------------------------- -| Software IEEE single-precision operations. -*----------------------------------------------------------------------------*/ -float32 float32_round_to_int( float32 ); -float32 float32_add( float32, float32 ); -float32 float32_sub( float32, float32 ); -float32 float32_mul( float32, float32 ); -float32 float32_div( float32, float32 ); -float32 float32_rem( float32, float32 ); -float32 float32_sqrt( float32 ); -int float32_eq( float32, float32 ); -int float32_le( float32, float32 ); -int float32_lt( float32, float32 ); -int float32_eq_signaling( float32, float32 ); -int float32_le_quiet( float32, float32 ); -int float32_lt_quiet( float32, float32 ); -int float32_is_signaling_nan( float32 ); - -/*---------------------------------------------------------------------------- -| Software IEEE double-precision conversion routines. -*----------------------------------------------------------------------------*/ -int float64_to_int32( float64 ); -int float64_to_int32_round_to_zero( float64 ); -long long float64_to_int64( float64 ); -long long float64_to_int64_round_to_zero( float64 ); -float32 float64_to_float32( float64 ); -#ifdef FLOATX80 -floatx80 float64_to_floatx80( float64 ); -#endif -#ifdef FLOAT128 -float128 float64_to_float128( float64 ); -#endif - -/*---------------------------------------------------------------------------- -| Software IEEE double-precision operations. -*----------------------------------------------------------------------------*/ -float64 float64_round_to_int( float64 ); -float64 float64_add( float64, float64 ); -float64 float64_sub( float64, float64 ); -float64 float64_mul( float64, float64 ); -float64 float64_div( float64, float64 ); -float64 float64_rem( float64, float64 ); -float64 float64_sqrt( float64 ); -int float64_eq( float64, float64 ); -int float64_le( float64, float64 ); -int float64_lt( float64, float64 ); -int float64_eq_signaling( float64, float64 ); -int float64_le_quiet( float64, float64 ); -int float64_lt_quiet( float64, float64 ); -int float64_is_signaling_nan( float64 ); - -#ifdef FLOATX80 - -/*---------------------------------------------------------------------------- -| Software IEEE double-extended-precision conversion routines. -*----------------------------------------------------------------------------*/ -int floatx80_to_int32( floatx80 ); -int floatx80_to_int32_round_to_zero( floatx80 ); -long long floatx80_to_int64( floatx80 ); -long long floatx80_to_int64_round_to_zero( floatx80 ); -float32 floatx80_to_float32( floatx80 ); -float64 floatx80_to_float64( floatx80 ); -#ifdef FLOAT128 -float128 floatx80_to_float128( floatx80 ); -#endif - -/*---------------------------------------------------------------------------- -| Software IEEE double-extended-precision rounding precision. Valid values -| are 32, 64, and 80. -*----------------------------------------------------------------------------*/ -extern int floatx80_rounding_precision; - -/*---------------------------------------------------------------------------- -| Software IEEE double-extended-precision operations. -*----------------------------------------------------------------------------*/ -floatx80 floatx80_round_to_int( floatx80 ); -floatx80 floatx80_add( floatx80, floatx80 ); -floatx80 floatx80_sub( floatx80, floatx80 ); -floatx80 floatx80_mul( floatx80, floatx80 ); -floatx80 floatx80_div( floatx80, floatx80 ); -floatx80 floatx80_rem( floatx80, floatx80 ); -floatx80 floatx80_sqrt( floatx80 ); -int floatx80_eq( floatx80, floatx80 ); -int floatx80_le( floatx80, floatx80 ); -int floatx80_lt( floatx80, floatx80 ); -int floatx80_eq_signaling( floatx80, floatx80 ); -int floatx80_le_quiet( floatx80, floatx80 ); -int floatx80_lt_quiet( floatx80, floatx80 ); -int floatx80_is_signaling_nan( floatx80 ); - -#endif - -#ifdef FLOAT128 - -/*---------------------------------------------------------------------------- -| Software IEEE quadruple-precision conversion routines. -*----------------------------------------------------------------------------*/ -int float128_to_int32( float128 ); -int float128_to_int32_round_to_zero( float128 ); -long long float128_to_int64( float128 ); -long long float128_to_int64_round_to_zero( float128 ); -float32 float128_to_float32( float128 ); -float64 float128_to_float64( float128 ); -#ifdef FLOATX80 -floatx80 float128_to_floatx80( float128 ); -#endif - -/*---------------------------------------------------------------------------- -| Software IEEE quadruple-precision operations. -*----------------------------------------------------------------------------*/ -float128 float128_round_to_int( float128 ); -float128 float128_add( float128, float128 ); -float128 float128_sub( float128, float128 ); -float128 float128_mul( float128, float128 ); -float128 float128_div( float128, float128 ); -float128 float128_rem( float128, float128 ); -float128 float128_sqrt( float128 ); -int float128_eq( float128, float128 ); -int float128_le( float128, float128 ); -int float128_lt( float128, float128 ); -int float128_eq_signaling( float128, float128 ); -int float128_le_quiet( float128, float128 ); -int float128_lt_quiet( float128, float128 ); -int float128_is_signaling_nan( float128 ); - -#endif - diff --git a/test/float/softfloat/softfloat/bits64/softfloat-macros b/test/float/softfloat/softfloat/bits64/softfloat-macros deleted file mode 100644 index dc52a240c..000000000 --- a/test/float/softfloat/softfloat/bits64/softfloat-macros +++ /dev/null @@ -1,713 +0,0 @@ - -/*============================================================================ - -This C source fragment is part of the Berkeley SoftFloat IEEE Floating-Point -Arithmetic Package, Release 2c, by John R. Hauser. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has -been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES -RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS -AND ORGANIZATIONS WHO CAN AND WILL TOLERATE ALL LOSSES, COSTS, OR OTHER -PROBLEMS THEY INCUR DUE TO THE SOFTWARE WITHOUT RECOMPENSE FROM JOHN HAUSER OR -THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE, AND WHO FURTHERMORE EFFECTIVELY -INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE -(possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR OTHER -PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE, OR -INCURRED BY ANYONE DUE TO A DERIVATIVE WORK THEY CREATE USING ANY PART OF THE -SOFTWARE. - -Derivative works require also that (1) the source code for the derivative work -includes prominent notice that the work is derivative, and (2) the source code -includes prominent notice of these three paragraphs for those parts of this -code that are retained. - -=============================================================================*/ - -/*---------------------------------------------------------------------------- -| Shifts `a' right by the number of bits given in `count'. If any nonzero -| bits are shifted off, they are "jammed" into the least significant bit of -| the result by setting the least significant bit to 1. The value of `count' -| can be arbitrarily large; in particular, if `count' is greater than 32, the -| result will be either 0 or 1, depending on whether `a' is zero or nonzero. -| The result is stored in the location pointed to by `zPtr'. -*----------------------------------------------------------------------------*/ - -INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr ) -{ - bits32 z; - - if ( count == 0 ) { - z = a; - } - else if ( count < 32 ) { - z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 ); - } - else { - z = ( a != 0 ); - } - *zPtr = z; - -} - -/*---------------------------------------------------------------------------- -| Shifts `a' right by the number of bits given in `count'. If any nonzero -| bits are shifted off, they are "jammed" into the least significant bit of -| the result by setting the least significant bit to 1. The value of `count' -| can be arbitrarily large; in particular, if `count' is greater than 64, the -| result will be either 0 or 1, depending on whether `a' is zero or nonzero. -| The result is stored in the location pointed to by `zPtr'. -*----------------------------------------------------------------------------*/ - -INLINE void shift64RightJamming( bits64 a, int16 count, bits64 *zPtr ) -{ - bits64 z; - - if ( count == 0 ) { - z = a; - } - else if ( count < 64 ) { - z = ( a>>count ) | ( ( a<<( ( - count ) & 63 ) ) != 0 ); - } - else { - z = ( a != 0 ); - } - *zPtr = z; - -} - -/*---------------------------------------------------------------------------- -| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by 64 -| _plus_ the number of bits given in `count'. The shifted result is at most -| 64 nonzero bits; this is stored at the location pointed to by `z0Ptr'. The -| bits shifted off form a second 64-bit result as follows: The _last_ bit -| shifted off is the most-significant bit of the extra result, and the other -| 63 bits of the extra result are all zero if and only if _all_but_the_last_ -| bits shifted off were all zero. This extra result is stored in the location -| pointed to by `z1Ptr'. The value of `count' can be arbitrarily large. -| (This routine makes more sense if `a0' and `a1' are considered to form -| a fixed-point value with binary point between `a0' and `a1'. This fixed- -| point value is shifted right by the number of bits given in `count', and -| the integer part of the result is returned at the location pointed to by -| `z0Ptr'. The fractional part of the result may be slightly corrupted as -| described above, and is returned at the location pointed to by `z1Ptr'.) -*----------------------------------------------------------------------------*/ - -INLINE void - shift64ExtraRightJamming( - bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) -{ - bits64 z0, z1; - int8 negCount = ( - count ) & 63; - - if ( count == 0 ) { - z1 = a1; - z0 = a0; - } - else if ( count < 64 ) { - z1 = ( a0<>count; - } - else { - if ( count == 64 ) { - z1 = a0 | ( a1 != 0 ); - } - else { - z1 = ( ( a0 | a1 ) != 0 ); - } - z0 = 0; - } - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/*---------------------------------------------------------------------------- -| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the -| number of bits given in `count'. Any bits shifted off are lost. The value -| of `count' can be arbitrarily large; in particular, if `count' is greater -| than 128, the result will be 0. The result is broken into two 64-bit pieces -| which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. -*----------------------------------------------------------------------------*/ - -INLINE void - shift128Right( - bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) -{ - bits64 z0, z1; - int8 negCount = ( - count ) & 63; - - if ( count == 0 ) { - z1 = a1; - z0 = a0; - } - else if ( count < 64 ) { - z1 = ( a0<>count ); - z0 = a0>>count; - } - else { - z1 = ( count < 128 ) ? ( a0>>( count & 63 ) ) : 0; - z0 = 0; - } - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/*---------------------------------------------------------------------------- -| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the -| number of bits given in `count'. If any nonzero bits are shifted off, they -| are "jammed" into the least significant bit of the result by setting the -| least significant bit to 1. The value of `count' can be arbitrarily large; -| in particular, if `count' is greater than 128, the result will be either -| 0 or 1, depending on whether the concatenation of `a0' and `a1' is zero or -| nonzero. The result is broken into two 64-bit pieces which are stored at -| the locations pointed to by `z0Ptr' and `z1Ptr'. -*----------------------------------------------------------------------------*/ - -INLINE void - shift128RightJamming( - bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) -{ - bits64 z0, z1; - int8 negCount = ( - count ) & 63; - - if ( count == 0 ) { - z1 = a1; - z0 = a0; - } - else if ( count < 64 ) { - z1 = ( a0<>count ) | ( ( a1<>count; - } - else { - if ( count == 64 ) { - z1 = a0 | ( a1 != 0 ); - } - else if ( count < 128 ) { - z1 = ( a0>>( count & 63 ) ) | ( ( ( a0<>count ); - z0 = a0>>count; - } - else { - if ( count == 64 ) { - z2 = a1; - z1 = a0; - } - else { - a2 |= a1; - if ( count < 128 ) { - z2 = a0<>( count & 63 ); - } - else { - z2 = ( count == 128 ) ? a0 : ( a0 != 0 ); - z1 = 0; - } - } - z0 = 0; - } - z2 |= ( a2 != 0 ); - } - *z2Ptr = z2; - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/*---------------------------------------------------------------------------- -| Shifts the 128-bit value formed by concatenating `a0' and `a1' left by the -| number of bits given in `count'. Any bits shifted off are lost. The value -| of `count' must be less than 64. The result is broken into two 64-bit -| pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. -*----------------------------------------------------------------------------*/ - -INLINE void - shortShift128Left( - bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) -{ - - *z1Ptr = a1<>( ( - count ) & 63 ) ); - -} - -/*---------------------------------------------------------------------------- -| Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' left -| by the number of bits given in `count'. Any bits shifted off are lost. -| The value of `count' must be less than 64. The result is broken into three -| 64-bit pieces which are stored at the locations pointed to by `z0Ptr', -| `z1Ptr', and `z2Ptr'. -*----------------------------------------------------------------------------*/ - -INLINE void - shortShift192Left( - bits64 a0, - bits64 a1, - bits64 a2, - int16 count, - bits64 *z0Ptr, - bits64 *z1Ptr, - bits64 *z2Ptr - ) -{ - bits64 z0, z1, z2; - int8 negCount; - - z2 = a2<>negCount; - z0 |= a1>>negCount; - } - *z2Ptr = z2; - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/*---------------------------------------------------------------------------- -| Adds the 128-bit value formed by concatenating `a0' and `a1' to the 128-bit -| value formed by concatenating `b0' and `b1'. Addition is modulo 2^128, so -| any carry out is lost. The result is broken into two 64-bit pieces which -| are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. -*----------------------------------------------------------------------------*/ - -INLINE void - add128( - bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr ) -{ - bits64 z1; - - z1 = a1 + b1; - *z1Ptr = z1; - *z0Ptr = a0 + b0 + ( z1 < a1 ); - -} - -/*---------------------------------------------------------------------------- -| Adds the 192-bit value formed by concatenating `a0', `a1', and `a2' to the -| 192-bit value formed by concatenating `b0', `b1', and `b2'. Addition is -| modulo 2^192, so any carry out is lost. The result is broken into three -| 64-bit pieces which are stored at the locations pointed to by `z0Ptr', -| `z1Ptr', and `z2Ptr'. -*----------------------------------------------------------------------------*/ - -INLINE void - add192( - bits64 a0, - bits64 a1, - bits64 a2, - bits64 b0, - bits64 b1, - bits64 b2, - bits64 *z0Ptr, - bits64 *z1Ptr, - bits64 *z2Ptr - ) -{ - bits64 z0, z1, z2; - int8 carry0, carry1; - - z2 = a2 + b2; - carry1 = ( z2 < a2 ); - z1 = a1 + b1; - carry0 = ( z1 < a1 ); - z0 = a0 + b0; - z1 += carry1; - z0 += ( z1 < carry1 ); - z0 += carry0; - *z2Ptr = z2; - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/*---------------------------------------------------------------------------- -| Subtracts the 128-bit value formed by concatenating `b0' and `b1' from the -| 128-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo -| 2^128, so any borrow out (carry out) is lost. The result is broken into two -| 64-bit pieces which are stored at the locations pointed to by `z0Ptr' and -| `z1Ptr'. -*----------------------------------------------------------------------------*/ - -INLINE void - sub128( - bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr ) -{ - - *z1Ptr = a1 - b1; - *z0Ptr = a0 - b0 - ( a1 < b1 ); - -} - -/*---------------------------------------------------------------------------- -| Subtracts the 192-bit value formed by concatenating `b0', `b1', and `b2' -| from the 192-bit value formed by concatenating `a0', `a1', and `a2'. -| Subtraction is modulo 2^192, so any borrow out (carry out) is lost. The -| result is broken into three 64-bit pieces which are stored at the locations -| pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'. -*----------------------------------------------------------------------------*/ - -INLINE void - sub192( - bits64 a0, - bits64 a1, - bits64 a2, - bits64 b0, - bits64 b1, - bits64 b2, - bits64 *z0Ptr, - bits64 *z1Ptr, - bits64 *z2Ptr - ) -{ - bits64 z0, z1, z2; - int8 borrow0, borrow1; - - z2 = a2 - b2; - borrow1 = ( a2 < b2 ); - z1 = a1 - b1; - borrow0 = ( a1 < b1 ); - z0 = a0 - b0; - z0 -= ( z1 < borrow1 ); - z1 -= borrow1; - z0 -= borrow0; - *z2Ptr = z2; - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/*---------------------------------------------------------------------------- -| Multiplies `a' by `b' to obtain a 128-bit product. The product is broken -| into two 64-bit pieces which are stored at the locations pointed to by -| `z0Ptr' and `z1Ptr'. -*----------------------------------------------------------------------------*/ - -INLINE void mul64To128( bits64 a, bits64 b, bits64 *z0Ptr, bits64 *z1Ptr ) -{ - bits32 aHigh, aLow, bHigh, bLow; - bits64 z0, zMiddleA, zMiddleB, z1; - - aLow = a; - aHigh = a>>32; - bLow = b; - bHigh = b>>32; - z1 = ( (bits64) aLow ) * bLow; - zMiddleA = ( (bits64) aLow ) * bHigh; - zMiddleB = ( (bits64) aHigh ) * bLow; - z0 = ( (bits64) aHigh ) * bHigh; - zMiddleA += zMiddleB; - z0 += ( ( (bits64) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 ); - zMiddleA <<= 32; - z1 += zMiddleA; - z0 += ( z1 < zMiddleA ); - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/*---------------------------------------------------------------------------- -| Multiplies the 128-bit value formed by concatenating `a0' and `a1' by -| `b' to obtain a 192-bit product. The product is broken into three 64-bit -| pieces which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and -| `z2Ptr'. -*----------------------------------------------------------------------------*/ - -INLINE void - mul128By64To192( - bits64 a0, - bits64 a1, - bits64 b, - bits64 *z0Ptr, - bits64 *z1Ptr, - bits64 *z2Ptr - ) -{ - bits64 z0, z1, z2, more1; - - mul64To128( a1, b, &z1, &z2 ); - mul64To128( a0, b, &z0, &more1 ); - add128( z0, more1, 0, z1, &z0, &z1 ); - *z2Ptr = z2; - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/*---------------------------------------------------------------------------- -| Multiplies the 128-bit value formed by concatenating `a0' and `a1' to the -| 128-bit value formed by concatenating `b0' and `b1' to obtain a 256-bit -| product. The product is broken into four 64-bit pieces which are stored at -| the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'. -*----------------------------------------------------------------------------*/ - -INLINE void - mul128To256( - bits64 a0, - bits64 a1, - bits64 b0, - bits64 b1, - bits64 *z0Ptr, - bits64 *z1Ptr, - bits64 *z2Ptr, - bits64 *z3Ptr - ) -{ - bits64 z0, z1, z2, z3; - bits64 more1, more2; - - mul64To128( a1, b1, &z2, &z3 ); - mul64To128( a1, b0, &z1, &more2 ); - add128( z1, more2, 0, z2, &z1, &z2 ); - mul64To128( a0, b0, &z0, &more1 ); - add128( z0, more1, 0, z1, &z0, &z1 ); - mul64To128( a0, b1, &more1, &more2 ); - add128( more1, more2, 0, z2, &more1, &z2 ); - add128( z0, z1, 0, more1, &z0, &z1 ); - *z3Ptr = z3; - *z2Ptr = z2; - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/*---------------------------------------------------------------------------- -| Returns an approximation to the 64-bit integer quotient obtained by dividing -| `b' into the 128-bit value formed by concatenating `a0' and `a1'. The -| divisor `b' must be at least 2^63. If q is the exact quotient truncated -| toward zero, the approximation returned lies between q and q + 2 inclusive. -| If the exact quotient q is larger than 64 bits, the maximum positive 64-bit -| unsigned integer is returned. -*----------------------------------------------------------------------------*/ - -static bits64 estimateDiv128To64( bits64 a0, bits64 a1, bits64 b ) -{ - bits64 b0, b1; - bits64 rem0, rem1, term0, term1; - bits64 z; - - if ( b <= a0 ) return LIT64( 0xFFFFFFFFFFFFFFFF ); - b0 = b>>32; - z = ( b0<<32 <= a0 ) ? LIT64( 0xFFFFFFFF00000000 ) : ( a0 / b0 )<<32; - mul64To128( b, z, &term0, &term1 ); - sub128( a0, a1, term0, term1, &rem0, &rem1 ); - while ( ( (sbits64) rem0 ) < 0 ) { - z -= LIT64( 0x100000000 ); - b1 = b<<32; - add128( rem0, rem1, b0, b1, &rem0, &rem1 ); - } - rem0 = ( rem0<<32 ) | ( rem1>>32 ); - z |= ( b0<<32 <= rem0 ) ? 0xFFFFFFFF : rem0 / b0; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns an approximation to the square root of the 32-bit significand given -| by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of -| `aExp' (the least significant bit) is 1, the integer returned approximates -| 2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp' -| is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either -| case, the approximation returned lies strictly within +/-2 of the exact -| value. -*----------------------------------------------------------------------------*/ - -static bits32 estimateSqrt32( int16 aExp, bits32 a ) -{ - static const bits16 sqrtOddAdjustments[] = { - 0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0, - 0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67 - }; - static const bits16 sqrtEvenAdjustments[] = { - 0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E, - 0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002 - }; - int8 index; - bits32 z; - - index = ( a>>27 ) & 15; - if ( aExp & 1 ) { - z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ]; - z = ( ( a / z )<<14 ) + ( z<<15 ); - a >>= 1; - } - else { - z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ]; - z = a / z + z; - z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 ); - if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 ); - } - return ( (bits32) ( ( ( (bits64) a )<<31 ) / z ) ) + ( z>>1 ); - -} - -/*---------------------------------------------------------------------------- -| Returns the number of leading 0 bits before the most-significant 1 bit of -| `a'. If `a' is zero, 32 is returned. -*----------------------------------------------------------------------------*/ - -static int8 countLeadingZeros32( bits32 a ) -{ - static const int8 countLeadingZerosHigh[] = { - 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, - 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, - 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, - 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 - }; - int8 shiftCount; - - shiftCount = 0; - if ( a < 0x10000 ) { - shiftCount += 16; - a <<= 16; - } - if ( a < 0x1000000 ) { - shiftCount += 8; - a <<= 8; - } - shiftCount += countLeadingZerosHigh[ a>>24 ]; - return shiftCount; - -} - -/*---------------------------------------------------------------------------- -| Returns the number of leading 0 bits before the most-significant 1 bit of -| `a'. If `a' is zero, 64 is returned. -*----------------------------------------------------------------------------*/ - -static int8 countLeadingZeros64( bits64 a ) -{ - int8 shiftCount; - - shiftCount = 0; - if ( a < ( (bits64) 1 )<<32 ) { - shiftCount += 32; - } - else { - a >>= 32; - } - shiftCount += countLeadingZeros32( a ); - return shiftCount; - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' -| is equal to the 128-bit value formed by concatenating `b0' and `b1'. -| Otherwise, returns 0. -*----------------------------------------------------------------------------*/ - -INLINE flag eq128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) -{ - - return ( a0 == b0 ) && ( a1 == b1 ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less -| than or equal to the 128-bit value formed by concatenating `b0' and `b1'. -| Otherwise, returns 0. -*----------------------------------------------------------------------------*/ - -INLINE flag le128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) -{ - - return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less -| than the 128-bit value formed by concatenating `b0' and `b1'. Otherwise, -| returns 0. -*----------------------------------------------------------------------------*/ - -INLINE flag lt128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) -{ - - return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is -| not equal to the 128-bit value formed by concatenating `b0' and `b1'. -| Otherwise, returns 0. -*----------------------------------------------------------------------------*/ - -INLINE flag ne128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) -{ - - return ( a0 != b0 ) || ( a1 != b1 ); - -} - diff --git a/test/float/softfloat/softfloat/bits64/softfloat.c b/test/float/softfloat/softfloat/bits64/softfloat.c deleted file mode 100644 index 987443caa..000000000 --- a/test/float/softfloat/softfloat/bits64/softfloat.c +++ /dev/null @@ -1,5165 +0,0 @@ - -/*============================================================================ - -This C source file is part of the Berkeley SoftFloat IEEE Floating-Point -Arithmetic Package, Release 2c, by John R. Hauser. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has -been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES -RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS -AND ORGANIZATIONS WHO CAN AND WILL TOLERATE ALL LOSSES, COSTS, OR OTHER -PROBLEMS THEY INCUR DUE TO THE SOFTWARE WITHOUT RECOMPENSE FROM JOHN HAUSER OR -THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE, AND WHO FURTHERMORE EFFECTIVELY -INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE -(possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR OTHER -PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE, OR -INCURRED BY ANYONE DUE TO A DERIVATIVE WORK THEY CREATE USING ANY PART OF THE -SOFTWARE. - -Derivative works require also that (1) the source code for the derivative work -includes prominent notice that the work is derivative, and (2) the source code -includes prominent notice of these three paragraphs for those parts of this -code that are retained. - -=============================================================================*/ - -#include "milieu.h" -#include "softfloat.h" - -/*---------------------------------------------------------------------------- -| Floating-point rounding mode, double-extended-precision rounding precision, -| and exception flags. -*----------------------------------------------------------------------------*/ -int8 float_rounding_mode = float_round_nearest_even; -int8 float_exception_flags = 0; -#ifdef FLOATX80 -int8 floatx80_rounding_precision = 80; -#endif - -/*---------------------------------------------------------------------------- -| Primitive arithmetic functions, including multi-word arithmetic, and -| division and square root approximations. (Can be specialized to target if -| desired.) -*----------------------------------------------------------------------------*/ -#include "softfloat-macros" - -/*---------------------------------------------------------------------------- -| Functions and definitions to determine: (1) whether tininess for underflow -| is detected before or after rounding by default, (2) what (if anything) -| happens when exceptions are raised, (3) how signaling NaNs are distinguished -| from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs -| are propagated from function inputs to output. These details are target- -| specific. -*----------------------------------------------------------------------------*/ -#include "softfloat-specialize" - -/*---------------------------------------------------------------------------- -| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 -| and 7, and returns the properly rounded 32-bit integer corresponding to the -| input. If `zSign' is 1, the input is negated before being converted to an -| integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input -| is simply rounded to an integer, with the inexact exception raised if the -| input cannot be represented exactly as an integer. However, if the fixed- -| point input is too large, the invalid exception is raised and the largest -| positive or negative integer is returned. -*----------------------------------------------------------------------------*/ - -static int32 roundAndPackInt32( flag zSign, bits64 absZ ) -{ - int8 roundingMode; - flag roundNearestEven; - int8 roundIncrement, roundBits; - int32 z; - - roundingMode = float_rounding_mode; - roundNearestEven = ( roundingMode == float_round_nearest_even ); - roundIncrement = 0x40; - if ( ! roundNearestEven ) { - if ( roundingMode == float_round_to_zero ) { - roundIncrement = 0; - } - else { - roundIncrement = 0x7F; - if ( zSign ) { - if ( roundingMode == float_round_up ) roundIncrement = 0; - } - else { - if ( roundingMode == float_round_down ) roundIncrement = 0; - } - } - } - roundBits = absZ & 0x7F; - absZ = ( absZ + roundIncrement )>>7; - absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); - z = absZ; - if ( zSign ) z = - z; - z = (sbits32) z; - if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) { - float_raise( float_flag_invalid ); - return zSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; - } - if ( roundBits ) float_exception_flags |= float_flag_inexact; - return z; - -} - -/*---------------------------------------------------------------------------- -| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and -| `absZ1', with binary point between bits 63 and 64 (between the input words), -| and returns the properly rounded 64-bit integer corresponding to the input. -| If `zSign' is 1, the input is negated before being converted to an integer. -| Ordinarily, the fixed-point input is simply rounded to an integer, with -| the inexact exception raised if the input cannot be represented exactly as -| an integer. However, if the fixed-point input is too large, the invalid -| exception is raised and the largest positive or negative integer is -| returned. -*----------------------------------------------------------------------------*/ - -static int64 roundAndPackInt64( flag zSign, bits64 absZ0, bits64 absZ1 ) -{ - int8 roundingMode; - flag roundNearestEven, increment; - int64 z; - - roundingMode = float_rounding_mode; - roundNearestEven = ( roundingMode == float_round_nearest_even ); - increment = ( (sbits64) absZ1 < 0 ); - if ( ! roundNearestEven ) { - if ( roundingMode == float_round_to_zero ) { - increment = 0; - } - else { - if ( zSign ) { - increment = ( roundingMode == float_round_down ) && absZ1; - } - else { - increment = ( roundingMode == float_round_up ) && absZ1; - } - } - } - if ( increment ) { - ++absZ0; - if ( absZ0 == 0 ) goto overflow; - absZ0 &= ~ ( ( (bits64) ( absZ1<<1 ) == 0 ) & roundNearestEven ); - } - z = absZ0; - if ( zSign ) z = - z; - z = (sbits64) z; - if ( z && ( ( z < 0 ) ^ zSign ) ) { - overflow: - float_raise( float_flag_invalid ); - return - zSign ? (sbits64) LIT64( 0x8000000000000000 ) - : LIT64( 0x7FFFFFFFFFFFFFFF ); - } - if ( absZ1 ) float_exception_flags |= float_flag_inexact; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the fraction bits of the single-precision floating-point value `a'. -*----------------------------------------------------------------------------*/ - -INLINE bits32 extractFloat32Frac( float32 a ) -{ - - return a & 0x007FFFFF; - -} - -/*---------------------------------------------------------------------------- -| Returns the exponent bits of the single-precision floating-point value `a'. -*----------------------------------------------------------------------------*/ - -INLINE int16 extractFloat32Exp( float32 a ) -{ - - return ( a>>23 ) & 0xFF; - -} - -/*---------------------------------------------------------------------------- -| Returns the sign bit of the single-precision floating-point value `a'. -*----------------------------------------------------------------------------*/ - -INLINE flag extractFloat32Sign( float32 a ) -{ - - return a>>31; - -} - -/*---------------------------------------------------------------------------- -| Normalizes the subnormal single-precision floating-point value represented -| by the denormalized significand `aSig'. The normalized exponent and -| significand are stored at the locations pointed to by `zExpPtr' and -| `zSigPtr', respectively. -*----------------------------------------------------------------------------*/ - -static void - normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr ) -{ - int8 shiftCount; - - shiftCount = countLeadingZeros32( aSig ) - 8; - *zSigPtr = aSig<>7; - zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); - if ( zSig == 0 ) zExp = 0; - return packFloat32( zSign, zExp, zSig ); - -} - -/*---------------------------------------------------------------------------- -| Takes an abstract floating-point value having sign `zSign', exponent `zExp', -| and significand `zSig', and returns the proper single-precision floating- -| point value corresponding to the abstract input. This routine is just like -| `roundAndPackFloat32' except that `zSig' does not have to be normalized. -| Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the "true" -| floating-point exponent. -*----------------------------------------------------------------------------*/ - -static float32 - normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig ) -{ - int8 shiftCount; - - shiftCount = countLeadingZeros32( zSig ) - 1; - return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<>52 ) & 0x7FF; - -} - -/*---------------------------------------------------------------------------- -| Returns the sign bit of the double-precision floating-point value `a'. -*----------------------------------------------------------------------------*/ - -INLINE flag extractFloat64Sign( float64 a ) -{ - - return a>>63; - -} - -/*---------------------------------------------------------------------------- -| Normalizes the subnormal double-precision floating-point value represented -| by the denormalized significand `aSig'. The normalized exponent and -| significand are stored at the locations pointed to by `zExpPtr' and -| `zSigPtr', respectively. -*----------------------------------------------------------------------------*/ - -static void - normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr ) -{ - int8 shiftCount; - - shiftCount = countLeadingZeros64( aSig ) - 11; - *zSigPtr = aSig<>10; - zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven ); - if ( zSig == 0 ) zExp = 0; - return packFloat64( zSign, zExp, zSig ); - -} - -/*---------------------------------------------------------------------------- -| Takes an abstract floating-point value having sign `zSign', exponent `zExp', -| and significand `zSig', and returns the proper double-precision floating- -| point value corresponding to the abstract input. This routine is just like -| `roundAndPackFloat64' except that `zSig' does not have to be normalized. -| Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the "true" -| floating-point exponent. -*----------------------------------------------------------------------------*/ - -static float64 - normalizeRoundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig ) -{ - int8 shiftCount; - - shiftCount = countLeadingZeros64( zSig ) - 1; - return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<>15; - -} - -/*---------------------------------------------------------------------------- -| Normalizes the subnormal double-extended-precision floating-point value -| represented by the denormalized significand `aSig'. The normalized exponent -| and significand are stored at the locations pointed to by `zExpPtr' and -| `zSigPtr', respectively. -*----------------------------------------------------------------------------*/ - -static void - normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr ) -{ - int8 shiftCount; - - shiftCount = countLeadingZeros64( aSig ); - *zSigPtr = aSig<>48 ) & 0x7FFF; - -} - -/*---------------------------------------------------------------------------- -| Returns the sign bit of the quadruple-precision floating-point value `a'. -*----------------------------------------------------------------------------*/ - -INLINE flag extractFloat128Sign( float128 a ) -{ - - return a.high>>63; - -} - -/*---------------------------------------------------------------------------- -| Normalizes the subnormal quadruple-precision floating-point value -| represented by the denormalized significand formed by the concatenation of -| `aSig0' and `aSig1'. The normalized exponent is stored at the location -| pointed to by `zExpPtr'. The most significant 49 bits of the normalized -| significand are stored at the location pointed to by `zSig0Ptr', and the -| least significant 64 bits of the normalized significand are stored at the -| location pointed to by `zSig1Ptr'. -*----------------------------------------------------------------------------*/ - -static void - normalizeFloat128Subnormal( - bits64 aSig0, - bits64 aSig1, - int32 *zExpPtr, - bits64 *zSig0Ptr, - bits64 *zSig1Ptr - ) -{ - int8 shiftCount; - - if ( aSig0 == 0 ) { - shiftCount = countLeadingZeros64( aSig1 ) - 15; - if ( shiftCount < 0 ) { - *zSig0Ptr = aSig1>>( - shiftCount ); - *zSig1Ptr = aSig1<<( shiftCount & 63 ); - } - else { - *zSig0Ptr = aSig1<>( - shiftCount ); - if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) { - float_exception_flags |= float_flag_inexact; - } - if ( aSign ) z = - z; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the single-precision floating-point value -| `a' to the 64-bit two's complement integer format. The conversion is -| performed according to the IEEE Standard for Floating-Point Arithmetic--- -| which means in particular that the conversion is rounded according to the -| current rounding mode. If `a' is a NaN, the largest positive integer is -| returned. Otherwise, if the conversion overflows, the largest integer with -| the same sign as `a' is returned. -*----------------------------------------------------------------------------*/ - -int64 float32_to_int64( float32 a ) -{ - flag aSign; - int16 aExp, shiftCount; - bits32 aSig; - bits64 aSig64, aSigExtra; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - shiftCount = 0xBE - aExp; - if ( shiftCount < 0 ) { - float_raise( float_flag_invalid ); - if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { - return LIT64( 0x7FFFFFFFFFFFFFFF ); - } - return (sbits64) LIT64( 0x8000000000000000 ); - } - if ( aExp ) aSig |= 0x00800000; - aSig64 = aSig; - aSig64 <<= 40; - shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra ); - return roundAndPackInt64( aSign, aSig64, aSigExtra ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the single-precision floating-point value -| `a' to the 64-bit two's complement integer format. The conversion is -| performed according to the IEEE Standard for Floating-Point Arithmetic, -| except that the conversion is always rounded toward zero. If `a' is a NaN, -| the largest positive integer is returned. Otherwise, if the conversion -| overflows, the largest integer with the same sign as `a' is returned. -*----------------------------------------------------------------------------*/ - -int64 float32_to_int64_round_to_zero( float32 a ) -{ - flag aSign; - int16 aExp, shiftCount; - bits32 aSig; - bits64 aSig64; - int64 z; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - shiftCount = aExp - 0xBE; - if ( 0 <= shiftCount ) { - if ( a != 0xDF000000 ) { - float_raise( float_flag_invalid ); - if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { - return LIT64( 0x7FFFFFFFFFFFFFFF ); - } - } - return (sbits64) LIT64( 0x8000000000000000 ); - } - else if ( aExp <= 0x7E ) { - if ( aExp | aSig ) float_exception_flags |= float_flag_inexact; - return 0; - } - aSig64 = aSig | 0x00800000; - aSig64 <<= 40; - z = aSig64>>( - shiftCount ); - if ( (bits64) ( aSig64<<( shiftCount & 63 ) ) ) { - float_exception_flags |= float_flag_inexact; - } - if ( aSign ) z = - z; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the single-precision floating-point value -| `a' to the double-precision floating-point format. The conversion is -| performed according to the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float64 float32_to_float64( float32 a ) -{ - flag aSign; - int16 aExp; - bits32 aSig; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - if ( aExp == 0xFF ) { - if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) ); - return packFloat64( aSign, 0x7FF, 0 ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat64( aSign, 0, 0 ); - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - --aExp; - } - return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 ); - -} - -#ifdef FLOATX80 - -/*---------------------------------------------------------------------------- -| Returns the result of converting the single-precision floating-point value -| `a' to the double-extended-precision floating-point format. The conversion -| is performed according to the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 float32_to_floatx80( float32 a ) -{ - flag aSign; - int16 aExp; - bits32 aSig; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - if ( aExp == 0xFF ) { - if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a ) ); - return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - } - aSig |= 0x00800000; - return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 ); - -} - -#endif - -#ifdef FLOAT128 - -/*---------------------------------------------------------------------------- -| Returns the result of converting the single-precision floating-point value -| `a' to the double-precision floating-point format. The conversion is -| performed according to the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 float32_to_float128( float32 a ) -{ - flag aSign; - int16 aExp; - bits32 aSig; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - if ( aExp == 0xFF ) { - if ( aSig ) return commonNaNToFloat128( float32ToCommonNaN( a ) ); - return packFloat128( aSign, 0x7FFF, 0, 0 ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - --aExp; - } - return packFloat128( aSign, aExp + 0x3F80, ( (bits64) aSig )<<25, 0 ); - -} - -#endif - -/*---------------------------------------------------------------------------- -| Rounds the single-precision floating-point value `a' to an integer, -| and returns the result as a single-precision floating-point value. The -| operation is performed according to the IEEE Standard for Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -float32 float32_round_to_int( float32 a ) -{ - flag aSign; - int16 aExp; - bits32 lastBitMask, roundBitsMask; - int8 roundingMode; - float32 z; - - aExp = extractFloat32Exp( a ); - if ( 0x96 <= aExp ) { - if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) { - return propagateFloat32NaN( a, a ); - } - return a; - } - if ( aExp <= 0x7E ) { - if ( (bits32) ( a<<1 ) == 0 ) return a; - float_exception_flags |= float_flag_inexact; - aSign = extractFloat32Sign( a ); - switch ( float_rounding_mode ) { - case float_round_nearest_even: - if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) { - return packFloat32( aSign, 0x7F, 0 ); - } - break; - case float_round_down: - return aSign ? 0xBF800000 : 0; - case float_round_up: - return aSign ? 0x80000000 : 0x3F800000; - } - return packFloat32( aSign, 0, 0 ); - } - lastBitMask = 1; - lastBitMask <<= 0x96 - aExp; - roundBitsMask = lastBitMask - 1; - z = a; - roundingMode = float_rounding_mode; - if ( roundingMode == float_round_nearest_even ) { - z += lastBitMask>>1; - if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; - } - else if ( roundingMode != float_round_to_zero ) { - if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) { - z += roundBitsMask; - } - } - z &= ~ roundBitsMask; - if ( z != a ) float_exception_flags |= float_flag_inexact; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of adding the absolute values of the single-precision -| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated -| before being returned. `zSign' is ignored if the result is a NaN. The -| addition is performed according to the IEEE Standard for Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -static float32 addFloat32Sigs( float32 a, float32 b, flag zSign ) -{ - int16 aExp, bExp, zExp; - bits32 aSig, bSig, zSig; - int16 expDiff; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - bSig = extractFloat32Frac( b ); - bExp = extractFloat32Exp( b ); - expDiff = aExp - bExp; - aSig <<= 6; - bSig <<= 6; - if ( 0 < expDiff ) { - if ( aExp == 0xFF ) { - if ( aSig ) return propagateFloat32NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig |= 0x20000000; - } - shift32RightJamming( bSig, expDiff, &bSig ); - zExp = aExp; - } - else if ( expDiff < 0 ) { - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b ); - return packFloat32( zSign, 0xFF, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig |= 0x20000000; - } - shift32RightJamming( aSig, - expDiff, &aSig ); - zExp = bExp; - } - else { - if ( aExp == 0xFF ) { - if ( aSig | bSig ) return propagateFloat32NaN( a, b ); - return a; - } - if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 ); - zSig = 0x40000000 + aSig + bSig; - zExp = aExp; - goto roundAndPack; - } - aSig |= 0x20000000; - zSig = ( aSig + bSig )<<1; - --zExp; - if ( (sbits32) zSig < 0 ) { - zSig = aSig + bSig; - ++zExp; - } - roundAndPack: - return roundAndPackFloat32( zSign, zExp, zSig ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of subtracting the absolute values of the single- -| precision floating-point values `a' and `b'. If `zSign' is 1, the -| difference is negated before being returned. `zSign' is ignored if the -| result is a NaN. The subtraction is performed according to the IEEE -| Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -static float32 subFloat32Sigs( float32 a, float32 b, flag zSign ) -{ - int16 aExp, bExp, zExp; - bits32 aSig, bSig, zSig; - int16 expDiff; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - bSig = extractFloat32Frac( b ); - bExp = extractFloat32Exp( b ); - expDiff = aExp - bExp; - aSig <<= 7; - bSig <<= 7; - if ( 0 < expDiff ) goto aExpBigger; - if ( expDiff < 0 ) goto bExpBigger; - if ( aExp == 0xFF ) { - if ( aSig | bSig ) return propagateFloat32NaN( a, b ); - float_raise( float_flag_invalid ); - return float32_default_nan; - } - if ( aExp == 0 ) { - aExp = 1; - bExp = 1; - } - if ( bSig < aSig ) goto aBigger; - if ( aSig < bSig ) goto bBigger; - return packFloat32( float_rounding_mode == float_round_down, 0, 0 ); - bExpBigger: - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b ); - return packFloat32( zSign ^ 1, 0xFF, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig |= 0x40000000; - } - shift32RightJamming( aSig, - expDiff, &aSig ); - bSig |= 0x40000000; - bBigger: - zSig = bSig - aSig; - zExp = bExp; - zSign ^= 1; - goto normalizeRoundAndPack; - aExpBigger: - if ( aExp == 0xFF ) { - if ( aSig ) return propagateFloat32NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig |= 0x40000000; - } - shift32RightJamming( bSig, expDiff, &bSig ); - aSig |= 0x40000000; - aBigger: - zSig = aSig - bSig; - zExp = aExp; - normalizeRoundAndPack: - --zExp; - return normalizeRoundAndPackFloat32( zSign, zExp, zSig ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of adding the single-precision floating-point values -| `a' and `b'. The operation is performed according to the IEEE Standard for -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float32 float32_add( float32 a, float32 b ) -{ - flag aSign, bSign; - - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - if ( aSign == bSign ) { - return addFloat32Sigs( a, b, aSign ); - } - else { - return subFloat32Sigs( a, b, aSign ); - } - -} - -/*---------------------------------------------------------------------------- -| Returns the result of subtracting the single-precision floating-point values -| `a' and `b'. The operation is performed according to the IEEE Standard for -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float32 float32_sub( float32 a, float32 b ) -{ - flag aSign, bSign; - - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - if ( aSign == bSign ) { - return subFloat32Sigs( a, b, aSign ); - } - else { - return addFloat32Sigs( a, b, aSign ); - } - -} - -/*---------------------------------------------------------------------------- -| Returns the result of multiplying the single-precision floating-point values -| `a' and `b'. The operation is performed according to the IEEE Standard for -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float32 float32_mul( float32 a, float32 b ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, zExp; - bits32 aSig, bSig; - bits64 zSig64; - bits32 zSig; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - bSig = extractFloat32Frac( b ); - bExp = extractFloat32Exp( b ); - bSign = extractFloat32Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0xFF ) { - if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { - return propagateFloat32NaN( a, b ); - } - if ( ( bExp | bSig ) == 0 ) { - float_raise( float_flag_invalid ); - return float32_default_nan; - } - return packFloat32( zSign, 0xFF, 0 ); - } - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b ); - if ( ( aExp | aSig ) == 0 ) { - float_raise( float_flag_invalid ); - return float32_default_nan; - } - return packFloat32( zSign, 0xFF, 0 ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - } - if ( bExp == 0 ) { - if ( bSig == 0 ) return packFloat32( zSign, 0, 0 ); - normalizeFloat32Subnormal( bSig, &bExp, &bSig ); - } - zExp = aExp + bExp - 0x7F; - aSig = ( aSig | 0x00800000 )<<7; - bSig = ( bSig | 0x00800000 )<<8; - shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 ); - zSig = zSig64; - if ( 0 <= (sbits32) ( zSig<<1 ) ) { - zSig <<= 1; - --zExp; - } - return roundAndPackFloat32( zSign, zExp, zSig ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of dividing the single-precision floating-point value `a' -| by the corresponding value `b'. The operation is performed according to the -| IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float32 float32_div( float32 a, float32 b ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, zExp; - bits32 aSig, bSig, zSig; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - bSig = extractFloat32Frac( b ); - bExp = extractFloat32Exp( b ); - bSign = extractFloat32Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0xFF ) { - if ( aSig ) return propagateFloat32NaN( a, b ); - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b ); - float_raise( float_flag_invalid ); - return float32_default_nan; - } - return packFloat32( zSign, 0xFF, 0 ); - } - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b ); - return packFloat32( zSign, 0, 0 ); - } - if ( bExp == 0 ) { - if ( bSig == 0 ) { - if ( ( aExp | aSig ) == 0 ) { - float_raise( float_flag_invalid ); - return float32_default_nan; - } - float_raise( float_flag_divbyzero ); - return packFloat32( zSign, 0xFF, 0 ); - } - normalizeFloat32Subnormal( bSig, &bExp, &bSig ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - } - zExp = aExp - bExp + 0x7D; - aSig = ( aSig | 0x00800000 )<<7; - bSig = ( bSig | 0x00800000 )<<8; - if ( bSig <= ( aSig + aSig ) ) { - aSig >>= 1; - ++zExp; - } - zSig = ( ( (bits64) aSig )<<32 ) / bSig; - if ( ( zSig & 0x3F ) == 0 ) { - zSig |= ( (bits64) bSig * zSig != ( (bits64) aSig )<<32 ); - } - return roundAndPackFloat32( zSign, zExp, zSig ); - -} - -/*---------------------------------------------------------------------------- -| Returns the remainder of the single-precision floating-point value `a' -| with respect to the corresponding value `b'. The operation is performed -| according to the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float32 float32_rem( float32 a, float32 b ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, expDiff; - bits32 aSig, bSig; - bits32 q; - bits64 aSig64, bSig64, q64; - bits32 alternateASig; - sbits32 sigMean; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - bSig = extractFloat32Frac( b ); - bExp = extractFloat32Exp( b ); - bSign = extractFloat32Sign( b ); - if ( aExp == 0xFF ) { - if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { - return propagateFloat32NaN( a, b ); - } - float_raise( float_flag_invalid ); - return float32_default_nan; - } - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - if ( bSig == 0 ) { - float_raise( float_flag_invalid ); - return float32_default_nan; - } - normalizeFloat32Subnormal( bSig, &bExp, &bSig ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return a; - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - } - expDiff = aExp - bExp; - aSig |= 0x00800000; - bSig |= 0x00800000; - if ( expDiff < 32 ) { - aSig <<= 8; - bSig <<= 8; - if ( expDiff < 0 ) { - if ( expDiff < -1 ) return a; - aSig >>= 1; - } - q = ( bSig <= aSig ); - if ( q ) aSig -= bSig; - if ( 0 < expDiff ) { - q = ( ( (bits64) aSig )<<32 ) / bSig; - q >>= 32 - expDiff; - bSig >>= 2; - aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; - } - else { - aSig >>= 2; - bSig >>= 2; - } - } - else { - if ( bSig <= aSig ) aSig -= bSig; - aSig64 = ( (bits64) aSig )<<40; - bSig64 = ( (bits64) bSig )<<40; - expDiff -= 64; - while ( 0 < expDiff ) { - q64 = estimateDiv128To64( aSig64, 0, bSig64 ); - q64 = ( 2 < q64 ) ? q64 - 2 : 0; - aSig64 = - ( ( bSig * q64 )<<38 ); - expDiff -= 62; - } - expDiff += 64; - q64 = estimateDiv128To64( aSig64, 0, bSig64 ); - q64 = ( 2 < q64 ) ? q64 - 2 : 0; - q = q64>>( 64 - expDiff ); - bSig <<= 6; - aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q; - } - do { - alternateASig = aSig; - ++q; - aSig -= bSig; - } while ( 0 <= (sbits32) aSig ); - sigMean = aSig + alternateASig; - if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { - aSig = alternateASig; - } - zSign = ( (sbits32) aSig < 0 ); - if ( zSign ) aSig = - aSig; - return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig ); - -} - -/*---------------------------------------------------------------------------- -| Returns the square root of the single-precision floating-point value `a'. -| The operation is performed according to the IEEE Standard for Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -float32 float32_sqrt( float32 a ) -{ - flag aSign; - int16 aExp, zExp; - bits32 aSig, zSig; - bits64 rem, term; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - if ( aExp == 0xFF ) { - if ( aSig ) return propagateFloat32NaN( a, 0 ); - if ( ! aSign ) return a; - float_raise( float_flag_invalid ); - return float32_default_nan; - } - if ( aSign ) { - if ( ( aExp | aSig ) == 0 ) return a; - float_raise( float_flag_invalid ); - return float32_default_nan; - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return 0; - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - } - zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E; - aSig = ( aSig | 0x00800000 )<<8; - zSig = estimateSqrt32( aExp, aSig ) + 2; - if ( ( zSig & 0x7F ) <= 5 ) { - if ( zSig < 2 ) { - zSig = 0x7FFFFFFF; - goto roundAndPack; - } - aSig >>= aExp & 1; - term = ( (bits64) zSig ) * zSig; - rem = ( ( (bits64) aSig )<<32 ) - term; - while ( (sbits64) rem < 0 ) { - --zSig; - rem += ( ( (bits64) zSig )<<1 ) | 1; - } - zSig |= ( rem != 0 ); - } - shift32RightJamming( zSig, 1, &zSig ); - roundAndPack: - return roundAndPackFloat32( 0, zExp, zSig ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the single-precision floating-point value `a' is equal to -| the corresponding value `b', and 0 otherwise. The comparison is performed -| according to the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -flag float32_eq( float32 a, float32 b ) -{ - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the single-precision floating-point value `a' is less than -| or equal to the corresponding value `b', and 0 otherwise. The comparison -| is performed according to the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -flag float32_le( float32 a, float32 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); - return ( a == b ) || ( aSign ^ ( a < b ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the single-precision floating-point value `a' is less than -| the corresponding value `b', and 0 otherwise. The comparison is performed -| according to the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -flag float32_lt( float32 a, float32 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); - return ( a != b ) && ( aSign ^ ( a < b ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the single-precision floating-point value `a' is equal to -| the corresponding value `b', and 0 otherwise. The invalid exception is -| raised if either operand is a NaN. Otherwise, the comparison is performed -| according to the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -flag float32_eq_signaling( float32 a, float32 b ) -{ - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the single-precision floating-point value `a' is less than or -| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not -| cause an exception. Otherwise, the comparison is performed according to the -| IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -flag float32_le_quiet( float32 a, float32 b ) -{ - flag aSign, bSign; - int16 aExp, bExp; - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); - return ( a == b ) || ( aSign ^ ( a < b ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the single-precision floating-point value `a' is less than -| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an -| exception. Otherwise, the comparison is performed according to the IEEE -| Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -flag float32_lt_quiet( float32 a, float32 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); - return ( a != b ) && ( aSign ^ ( a < b ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the double-precision floating-point value -| `a' to the 32-bit two's complement integer format. The conversion is -| performed according to the IEEE Standard for Floating-Point Arithmetic--- -| which means in particular that the conversion is rounded according to the -| current rounding mode. If `a' is a NaN, the largest positive integer is -| returned. Otherwise, if the conversion overflows, the largest integer with -| the same sign as `a' is returned. -*----------------------------------------------------------------------------*/ - -int32 float64_to_int32( float64 a ) -{ - flag aSign; - int16 aExp, shiftCount; - bits64 aSig; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; - if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); - shiftCount = 0x42C - aExp; - if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig ); - return roundAndPackInt32( aSign, aSig ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the double-precision floating-point value -| `a' to the 32-bit two's complement integer format. The conversion is -| performed according to the IEEE Standard for Floating-Point Arithmetic, -| except that the conversion is always rounded toward zero. If `a' is a NaN, -| the largest positive integer is returned. Otherwise, if the conversion -| overflows, the largest integer with the same sign as `a' is returned. -*----------------------------------------------------------------------------*/ - -int32 float64_to_int32_round_to_zero( float64 a ) -{ - flag aSign; - int16 aExp, shiftCount; - bits64 aSig, savedASig; - int32 z; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - if ( 0x41E < aExp ) { - if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; - goto invalid; - } - else if ( aExp < 0x3FF ) { - if ( aExp || aSig ) float_exception_flags |= float_flag_inexact; - return 0; - } - aSig |= LIT64( 0x0010000000000000 ); - shiftCount = 0x433 - aExp; - savedASig = aSig; - aSig >>= shiftCount; - z = aSig; - if ( aSign ) z = - z; - z = (sbits32) z; - if ( ( z < 0 ) ^ aSign ) { - invalid: - float_raise( float_flag_invalid ); - return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; - } - if ( ( aSig<>( - shiftCount ); - if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) { - float_exception_flags |= float_flag_inexact; - } - } - if ( aSign ) z = - z; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the double-precision floating-point value -| `a' to the single-precision floating-point format. The conversion is -| performed according to the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float32 float64_to_float32( float64 a ) -{ - flag aSign; - int16 aExp; - bits64 aSig; - bits32 zSig; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - if ( aExp == 0x7FF ) { - if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a ) ); - return packFloat32( aSign, 0xFF, 0 ); - } - shift64RightJamming( aSig, 22, &aSig ); - zSig = aSig; - if ( aExp || zSig ) { - zSig |= 0x40000000; - aExp -= 0x381; - } - return roundAndPackFloat32( aSign, aExp, zSig ); - -} - -#ifdef FLOATX80 - -/*---------------------------------------------------------------------------- -| Returns the result of converting the double-precision floating-point value -| `a' to the double-extended-precision floating-point format. The conversion -| is performed according to the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 float64_to_floatx80( float64 a ) -{ - flag aSign; - int16 aExp; - bits64 aSig; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - if ( aExp == 0x7FF ) { - if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a ) ); - return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); - normalizeFloat64Subnormal( aSig, &aExp, &aSig ); - } - return - packFloatx80( - aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 ); - -} - -#endif - -#ifdef FLOAT128 - -/*---------------------------------------------------------------------------- -| Returns the result of converting the double-precision floating-point value -| `a' to the quadruple-precision floating-point format. The conversion is -| performed according to the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 float64_to_float128( float64 a ) -{ - flag aSign; - int16 aExp; - bits64 aSig, zSig0, zSig1; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - if ( aExp == 0x7FF ) { - if ( aSig ) return commonNaNToFloat128( float64ToCommonNaN( a ) ); - return packFloat128( aSign, 0x7FFF, 0, 0 ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); - normalizeFloat64Subnormal( aSig, &aExp, &aSig ); - --aExp; - } - shift128Right( aSig, 0, 4, &zSig0, &zSig1 ); - return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 ); - -} - -#endif - -/*---------------------------------------------------------------------------- -| Rounds the double-precision floating-point value `a' to an integer, -| and returns the result as a double-precision floating-point value. The -| operation is performed according to the IEEE Standard for Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -float64 float64_round_to_int( float64 a ) -{ - flag aSign; - int16 aExp; - bits64 lastBitMask, roundBitsMask; - int8 roundingMode; - float64 z; - - aExp = extractFloat64Exp( a ); - if ( 0x433 <= aExp ) { - if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) { - return propagateFloat64NaN( a, a ); - } - return a; - } - if ( aExp < 0x3FF ) { - if ( (bits64) ( a<<1 ) == 0 ) return a; - float_exception_flags |= float_flag_inexact; - aSign = extractFloat64Sign( a ); - switch ( float_rounding_mode ) { - case float_round_nearest_even: - if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) { - return packFloat64( aSign, 0x3FF, 0 ); - } - break; - case float_round_down: - return aSign ? LIT64( 0xBFF0000000000000 ) : 0; - case float_round_up: - return - aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 ); - } - return packFloat64( aSign, 0, 0 ); - } - lastBitMask = 1; - lastBitMask <<= 0x433 - aExp; - roundBitsMask = lastBitMask - 1; - z = a; - roundingMode = float_rounding_mode; - if ( roundingMode == float_round_nearest_even ) { - z += lastBitMask>>1; - if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; - } - else if ( roundingMode != float_round_to_zero ) { - if ( extractFloat64Sign( z ) ^ ( roundingMode == float_round_up ) ) { - z += roundBitsMask; - } - } - z &= ~ roundBitsMask; - if ( z != a ) float_exception_flags |= float_flag_inexact; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of adding the absolute values of the double-precision -| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated -| before being returned. `zSign' is ignored if the result is a NaN. The -| addition is performed according to the IEEE Standard for Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -static float64 addFloat64Sigs( float64 a, float64 b, flag zSign ) -{ - int16 aExp, bExp, zExp; - bits64 aSig, bSig, zSig; - int16 expDiff; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - bSig = extractFloat64Frac( b ); - bExp = extractFloat64Exp( b ); - expDiff = aExp - bExp; - aSig <<= 9; - bSig <<= 9; - if ( 0 < expDiff ) { - if ( aExp == 0x7FF ) { - if ( aSig ) return propagateFloat64NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig |= LIT64( 0x2000000000000000 ); - } - shift64RightJamming( bSig, expDiff, &bSig ); - zExp = aExp; - } - else if ( expDiff < 0 ) { - if ( bExp == 0x7FF ) { - if ( bSig ) return propagateFloat64NaN( a, b ); - return packFloat64( zSign, 0x7FF, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig |= LIT64( 0x2000000000000000 ); - } - shift64RightJamming( aSig, - expDiff, &aSig ); - zExp = bExp; - } - else { - if ( aExp == 0x7FF ) { - if ( aSig | bSig ) return propagateFloat64NaN( a, b ); - return a; - } - if ( aExp == 0 ) return packFloat64( zSign, 0, ( aSig + bSig )>>9 ); - zSig = LIT64( 0x4000000000000000 ) + aSig + bSig; - zExp = aExp; - goto roundAndPack; - } - aSig |= LIT64( 0x2000000000000000 ); - zSig = ( aSig + bSig )<<1; - --zExp; - if ( (sbits64) zSig < 0 ) { - zSig = aSig + bSig; - ++zExp; - } - roundAndPack: - return roundAndPackFloat64( zSign, zExp, zSig ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of subtracting the absolute values of the double- -| precision floating-point values `a' and `b'. If `zSign' is 1, the -| difference is negated before being returned. `zSign' is ignored if the -| result is a NaN. The subtraction is performed according to the IEEE -| Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -static float64 subFloat64Sigs( float64 a, float64 b, flag zSign ) -{ - int16 aExp, bExp, zExp; - bits64 aSig, bSig, zSig; - int16 expDiff; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - bSig = extractFloat64Frac( b ); - bExp = extractFloat64Exp( b ); - expDiff = aExp - bExp; - aSig <<= 10; - bSig <<= 10; - if ( 0 < expDiff ) goto aExpBigger; - if ( expDiff < 0 ) goto bExpBigger; - if ( aExp == 0x7FF ) { - if ( aSig | bSig ) return propagateFloat64NaN( a, b ); - float_raise( float_flag_invalid ); - return float64_default_nan; - } - if ( aExp == 0 ) { - aExp = 1; - bExp = 1; - } - if ( bSig < aSig ) goto aBigger; - if ( aSig < bSig ) goto bBigger; - return packFloat64( float_rounding_mode == float_round_down, 0, 0 ); - bExpBigger: - if ( bExp == 0x7FF ) { - if ( bSig ) return propagateFloat64NaN( a, b ); - return packFloat64( zSign ^ 1, 0x7FF, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig |= LIT64( 0x4000000000000000 ); - } - shift64RightJamming( aSig, - expDiff, &aSig ); - bSig |= LIT64( 0x4000000000000000 ); - bBigger: - zSig = bSig - aSig; - zExp = bExp; - zSign ^= 1; - goto normalizeRoundAndPack; - aExpBigger: - if ( aExp == 0x7FF ) { - if ( aSig ) return propagateFloat64NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig |= LIT64( 0x4000000000000000 ); - } - shift64RightJamming( bSig, expDiff, &bSig ); - aSig |= LIT64( 0x4000000000000000 ); - aBigger: - zSig = aSig - bSig; - zExp = aExp; - normalizeRoundAndPack: - --zExp; - return normalizeRoundAndPackFloat64( zSign, zExp, zSig ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of adding the double-precision floating-point values -| `a' and `b'. The operation is performed according to the IEEE Standard for -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float64 float64_add( float64 a, float64 b ) -{ - flag aSign, bSign; - - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - if ( aSign == bSign ) { - return addFloat64Sigs( a, b, aSign ); - } - else { - return subFloat64Sigs( a, b, aSign ); - } - -} - -/*---------------------------------------------------------------------------- -| Returns the result of subtracting the double-precision floating-point values -| `a' and `b'. The operation is performed according to the IEEE Standard for -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float64 float64_sub( float64 a, float64 b ) -{ - flag aSign, bSign; - - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - if ( aSign == bSign ) { - return subFloat64Sigs( a, b, aSign ); - } - else { - return addFloat64Sigs( a, b, aSign ); - } - -} - -/*---------------------------------------------------------------------------- -| Returns the result of multiplying the double-precision floating-point values -| `a' and `b'. The operation is performed according to the IEEE Standard for -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float64 float64_mul( float64 a, float64 b ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, zExp; - bits64 aSig, bSig, zSig0, zSig1; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - bSig = extractFloat64Frac( b ); - bExp = extractFloat64Exp( b ); - bSign = extractFloat64Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0x7FF ) { - if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { - return propagateFloat64NaN( a, b ); - } - if ( ( bExp | bSig ) == 0 ) { - float_raise( float_flag_invalid ); - return float64_default_nan; - } - return packFloat64( zSign, 0x7FF, 0 ); - } - if ( bExp == 0x7FF ) { - if ( bSig ) return propagateFloat64NaN( a, b ); - if ( ( aExp | aSig ) == 0 ) { - float_raise( float_flag_invalid ); - return float64_default_nan; - } - return packFloat64( zSign, 0x7FF, 0 ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); - normalizeFloat64Subnormal( aSig, &aExp, &aSig ); - } - if ( bExp == 0 ) { - if ( bSig == 0 ) return packFloat64( zSign, 0, 0 ); - normalizeFloat64Subnormal( bSig, &bExp, &bSig ); - } - zExp = aExp + bExp - 0x3FF; - aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; - bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; - mul64To128( aSig, bSig, &zSig0, &zSig1 ); - zSig0 |= ( zSig1 != 0 ); - if ( 0 <= (sbits64) ( zSig0<<1 ) ) { - zSig0 <<= 1; - --zExp; - } - return roundAndPackFloat64( zSign, zExp, zSig0 ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of dividing the double-precision floating-point value `a' -| by the corresponding value `b'. The operation is performed according to the -| IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float64 float64_div( float64 a, float64 b ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, zExp; - bits64 aSig, bSig, zSig; - bits64 rem0, rem1; - bits64 term0, term1; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - bSig = extractFloat64Frac( b ); - bExp = extractFloat64Exp( b ); - bSign = extractFloat64Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0x7FF ) { - if ( aSig ) return propagateFloat64NaN( a, b ); - if ( bExp == 0x7FF ) { - if ( bSig ) return propagateFloat64NaN( a, b ); - float_raise( float_flag_invalid ); - return float64_default_nan; - } - return packFloat64( zSign, 0x7FF, 0 ); - } - if ( bExp == 0x7FF ) { - if ( bSig ) return propagateFloat64NaN( a, b ); - return packFloat64( zSign, 0, 0 ); - } - if ( bExp == 0 ) { - if ( bSig == 0 ) { - if ( ( aExp | aSig ) == 0 ) { - float_raise( float_flag_invalid ); - return float64_default_nan; - } - float_raise( float_flag_divbyzero ); - return packFloat64( zSign, 0x7FF, 0 ); - } - normalizeFloat64Subnormal( bSig, &bExp, &bSig ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); - normalizeFloat64Subnormal( aSig, &aExp, &aSig ); - } - zExp = aExp - bExp + 0x3FD; - aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; - bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; - if ( bSig <= ( aSig + aSig ) ) { - aSig >>= 1; - ++zExp; - } - zSig = estimateDiv128To64( aSig, 0, bSig ); - if ( ( zSig & 0x1FF ) <= 2 ) { - mul64To128( bSig, zSig, &term0, &term1 ); - sub128( aSig, 0, term0, term1, &rem0, &rem1 ); - while ( (sbits64) rem0 < 0 ) { - --zSig; - add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); - } - zSig |= ( rem1 != 0 ); - } - return roundAndPackFloat64( zSign, zExp, zSig ); - -} - -/*---------------------------------------------------------------------------- -| Returns the remainder of the double-precision floating-point value `a' -| with respect to the corresponding value `b'. The operation is performed -| according to the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float64 float64_rem( float64 a, float64 b ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, expDiff; - bits64 aSig, bSig; - bits64 q, alternateASig; - sbits64 sigMean; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - bSig = extractFloat64Frac( b ); - bExp = extractFloat64Exp( b ); - bSign = extractFloat64Sign( b ); - if ( aExp == 0x7FF ) { - if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { - return propagateFloat64NaN( a, b ); - } - float_raise( float_flag_invalid ); - return float64_default_nan; - } - if ( bExp == 0x7FF ) { - if ( bSig ) return propagateFloat64NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - if ( bSig == 0 ) { - float_raise( float_flag_invalid ); - return float64_default_nan; - } - normalizeFloat64Subnormal( bSig, &bExp, &bSig ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return a; - normalizeFloat64Subnormal( aSig, &aExp, &aSig ); - } - expDiff = aExp - bExp; - aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11; - bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; - if ( expDiff < 0 ) { - if ( expDiff < -1 ) return a; - aSig >>= 1; - } - q = ( bSig <= aSig ); - if ( q ) aSig -= bSig; - expDiff -= 64; - while ( 0 < expDiff ) { - q = estimateDiv128To64( aSig, 0, bSig ); - q = ( 2 < q ) ? q - 2 : 0; - aSig = - ( ( bSig>>2 ) * q ); - expDiff -= 62; - } - expDiff += 64; - if ( 0 < expDiff ) { - q = estimateDiv128To64( aSig, 0, bSig ); - q = ( 2 < q ) ? q - 2 : 0; - q >>= 64 - expDiff; - bSig >>= 2; - aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; - } - else { - aSig >>= 2; - bSig >>= 2; - } - do { - alternateASig = aSig; - ++q; - aSig -= bSig; - } while ( 0 <= (sbits64) aSig ); - sigMean = aSig + alternateASig; - if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { - aSig = alternateASig; - } - zSign = ( (sbits64) aSig < 0 ); - if ( zSign ) aSig = - aSig; - return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig ); - -} - -/*---------------------------------------------------------------------------- -| Returns the square root of the double-precision floating-point value `a'. -| The operation is performed according to the IEEE Standard for Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -float64 float64_sqrt( float64 a ) -{ - flag aSign; - int16 aExp, zExp; - bits64 aSig, zSig, doubleZSig; - bits64 rem0, rem1, term0, term1; - float64 z; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - if ( aExp == 0x7FF ) { - if ( aSig ) return propagateFloat64NaN( a, a ); - if ( ! aSign ) return a; - float_raise( float_flag_invalid ); - return float64_default_nan; - } - if ( aSign ) { - if ( ( aExp | aSig ) == 0 ) return a; - float_raise( float_flag_invalid ); - return float64_default_nan; - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return 0; - normalizeFloat64Subnormal( aSig, &aExp, &aSig ); - } - zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE; - aSig |= LIT64( 0x0010000000000000 ); - zSig = estimateSqrt32( aExp, aSig>>21 ); - aSig <<= 9 - ( aExp & 1 ); - zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 ); - if ( ( zSig & 0x1FF ) <= 5 ) { - doubleZSig = zSig<<1; - mul64To128( zSig, zSig, &term0, &term1 ); - sub128( aSig, 0, term0, term1, &rem0, &rem1 ); - while ( (sbits64) rem0 < 0 ) { - --zSig; - doubleZSig -= 2; - add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 ); - } - zSig |= ( ( rem0 | rem1 ) != 0 ); - } - return roundAndPackFloat64( 0, zExp, zSig ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-precision floating-point value `a' is equal to the -| corresponding value `b', and 0 otherwise. The comparison is performed -| according to the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -flag float64_eq( float64 a, float64 b ) -{ - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) - ) { - if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-precision floating-point value `a' is less than or -| equal to the corresponding value `b', and 0 otherwise. The comparison is -| performed according to the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -flag float64_le( float64 a, float64 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 ); - return ( a == b ) || ( aSign ^ ( a < b ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-precision floating-point value `a' is less than -| the corresponding value `b', and 0 otherwise. The comparison is performed -| according to the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -flag float64_lt( float64 a, float64 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 ); - return ( a != b ) && ( aSign ^ ( a < b ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-precision floating-point value `a' is equal to -| the corresponding value `b', and 0 otherwise. The invalid exception is -| raised if either operand is a NaN. Otherwise, the comparison is performed -| according to the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -flag float64_eq_signaling( float64 a, float64 b ) -{ - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-precision floating-point value `a' is less than or -| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not -| cause an exception. Otherwise, the comparison is performed according to the -| IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -flag float64_le_quiet( float64 a, float64 b ) -{ - flag aSign, bSign; - int16 aExp, bExp; - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) - ) { - if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 ); - return ( a == b ) || ( aSign ^ ( a < b ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-precision floating-point value `a' is less than -| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an -| exception. Otherwise, the comparison is performed according to the IEEE -| Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -flag float64_lt_quiet( float64 a, float64 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) - ) { - if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 ); - return ( a != b ) && ( aSign ^ ( a < b ) ); - -} - -#ifdef FLOATX80 - -/*---------------------------------------------------------------------------- -| Returns the result of converting the double-extended-precision floating- -| point value `a' to the 32-bit two's complement integer format. The -| conversion is performed according to the IEEE Standard for Floating-Point -| Arithmetic---which means in particular that the conversion is rounded -| according to the current rounding mode. If `a' is a NaN, the largest -| positive integer is returned. Otherwise, if the conversion overflows, the -| largest integer with the same sign as `a' is returned. -*----------------------------------------------------------------------------*/ - -int32 floatx80_to_int32( floatx80 a ) -{ - flag aSign; - int32 aExp, shiftCount; - bits64 aSig; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0; - shiftCount = 0x4037 - aExp; - if ( shiftCount <= 0 ) shiftCount = 1; - shift64RightJamming( aSig, shiftCount, &aSig ); - return roundAndPackInt32( aSign, aSig ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the double-extended-precision floating- -| point value `a' to the 32-bit two's complement integer format. The -| conversion is performed according to the IEEE Standard for Floating-Point -| Arithmetic, except that the conversion is always rounded toward zero. -| If `a' is a NaN, the largest positive integer is returned. Otherwise, if -| the conversion overflows, the largest integer with the same sign as `a' is -| returned. -*----------------------------------------------------------------------------*/ - -int32 floatx80_to_int32_round_to_zero( floatx80 a ) -{ - flag aSign; - int32 aExp, shiftCount; - bits64 aSig, savedASig; - int32 z; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - if ( 0x401E < aExp ) { - if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0; - goto invalid; - } - else if ( aExp < 0x3FFF ) { - if ( aExp || aSig ) float_exception_flags |= float_flag_inexact; - return 0; - } - shiftCount = 0x403E - aExp; - savedASig = aSig; - aSig >>= shiftCount; - z = aSig; - if ( aSign ) z = - z; - z = (sbits32) z; - if ( ( z < 0 ) ^ aSign ) { - invalid: - float_raise( float_flag_invalid ); - return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; - } - if ( ( aSig<>( - shiftCount ); - if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) { - float_exception_flags |= float_flag_inexact; - } - if ( aSign ) z = - z; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the double-extended-precision floating- -| point value `a' to the single-precision floating-point format. The -| conversion is performed according to the IEEE Standard for Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -float32 floatx80_to_float32( floatx80 a ) -{ - flag aSign; - int32 aExp; - bits64 aSig; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - if ( aExp == 0x7FFF ) { - if ( (bits64) ( aSig<<1 ) ) { - return commonNaNToFloat32( floatx80ToCommonNaN( a ) ); - } - return packFloat32( aSign, 0xFF, 0 ); - } - shift64RightJamming( aSig, 33, &aSig ); - if ( aExp || aSig ) aExp -= 0x3F81; - return roundAndPackFloat32( aSign, aExp, aSig ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the double-extended-precision floating- -| point value `a' to the double-precision floating-point format. The -| conversion is performed according to the IEEE Standard for Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -float64 floatx80_to_float64( floatx80 a ) -{ - flag aSign; - int32 aExp; - bits64 aSig, zSig; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - if ( aExp == 0x7FFF ) { - if ( (bits64) ( aSig<<1 ) ) { - return commonNaNToFloat64( floatx80ToCommonNaN( a ) ); - } - return packFloat64( aSign, 0x7FF, 0 ); - } - shift64RightJamming( aSig, 1, &zSig ); - if ( aExp || aSig ) aExp -= 0x3C01; - return roundAndPackFloat64( aSign, aExp, zSig ); - -} - -#ifdef FLOAT128 - -/*---------------------------------------------------------------------------- -| Returns the result of converting the double-extended-precision floating- -| point value `a' to the quadruple-precision floating-point format. The -| conversion is performed according to the IEEE Standard for Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 floatx80_to_float128( floatx80 a ) -{ - flag aSign; - int16 aExp; - bits64 aSig, zSig0, zSig1; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) { - return commonNaNToFloat128( floatx80ToCommonNaN( a ) ); - } - shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 ); - return packFloat128( aSign, aExp, zSig0, zSig1 ); - -} - -#endif - -/*---------------------------------------------------------------------------- -| Rounds the double-extended-precision floating-point value `a' to an integer, -| and returns the result as an double-extended-precision floating-point value. -| The operation is performed according to the IEEE Standard for Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 floatx80_round_to_int( floatx80 a ) -{ - flag aSign; - int32 aExp; - bits64 lastBitMask, roundBitsMask; - int8 roundingMode; - floatx80 z; - - aExp = extractFloatx80Exp( a ); - if ( 0x403E <= aExp ) { - if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) { - return propagateFloatx80NaN( a, a ); - } - return a; - } - if ( aExp < 0x3FFF ) { - if ( ( aExp == 0 ) - && ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) { - return a; - } - float_exception_flags |= float_flag_inexact; - aSign = extractFloatx80Sign( a ); - switch ( float_rounding_mode ) { - case float_round_nearest_even: - if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 ) - ) { - return - packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) ); - } - break; - case float_round_down: - return - aSign ? - packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) ) - : packFloatx80( 0, 0, 0 ); - case float_round_up: - return - aSign ? packFloatx80( 1, 0, 0 ) - : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) ); - } - return packFloatx80( aSign, 0, 0 ); - } - lastBitMask = 1; - lastBitMask <<= 0x403E - aExp; - roundBitsMask = lastBitMask - 1; - z = a; - roundingMode = float_rounding_mode; - if ( roundingMode == float_round_nearest_even ) { - z.low += lastBitMask>>1; - if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; - } - else if ( roundingMode != float_round_to_zero ) { - if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) { - z.low += roundBitsMask; - } - } - z.low &= ~ roundBitsMask; - if ( z.low == 0 ) { - ++z.high; - z.low = LIT64( 0x8000000000000000 ); - } - if ( z.low != a.low ) float_exception_flags |= float_flag_inexact; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of adding the absolute values of the double-extended- -| precision floating-point values `a' and `b'. If `zSign' is 1, the sum is -| negated before being returned. `zSign' is ignored if the result is a NaN. -| The addition is performed according to the IEEE Standard for Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign ) -{ - int32 aExp, bExp, zExp; - bits64 aSig, bSig, zSig0, zSig1; - int32 expDiff; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - bSig = extractFloatx80Frac( b ); - bExp = extractFloatx80Exp( b ); - expDiff = aExp - bExp; - if ( 0 < expDiff ) { - if ( aExp == 0x7FFF ) { - if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); - return a; - } - if ( bExp == 0 ) --expDiff; - shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); - zExp = aExp; - } - else if ( expDiff < 0 ) { - if ( bExp == 0x7FFF ) { - if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); - return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); - } - if ( aExp == 0 ) ++expDiff; - shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); - zExp = bExp; - } - else { - if ( aExp == 0x7FFF ) { - if ( (bits64) ( ( aSig | bSig )<<1 ) ) { - return propagateFloatx80NaN( a, b ); - } - return a; - } - zSig1 = 0; - zSig0 = aSig + bSig; - if ( aExp == 0 ) { - normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 ); - goto roundAndPack; - } - zExp = aExp; - goto shiftRight1; - } - zSig0 = aSig + bSig; - if ( (sbits64) zSig0 < 0 ) goto roundAndPack; - shiftRight1: - shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 ); - zSig0 |= LIT64( 0x8000000000000000 ); - ++zExp; - roundAndPack: - return - roundAndPackFloatx80( - floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of subtracting the absolute values of the double- -| extended-precision floating-point values `a' and `b'. If `zSign' is 1, -| the difference is negated before being returned. `zSign' is ignored if -| the result is a NaN. The subtraction is performed according to the IEEE -| Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign ) -{ - int32 aExp, bExp, zExp; - bits64 aSig, bSig, zSig0, zSig1; - int32 expDiff; - floatx80 z; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - bSig = extractFloatx80Frac( b ); - bExp = extractFloatx80Exp( b ); - expDiff = aExp - bExp; - if ( 0 < expDiff ) goto aExpBigger; - if ( expDiff < 0 ) goto bExpBigger; - if ( aExp == 0x7FFF ) { - if ( (bits64) ( ( aSig | bSig )<<1 ) ) { - return propagateFloatx80NaN( a, b ); - } - float_raise( float_flag_invalid ); - z.low = floatx80_default_nan_low; - z.high = floatx80_default_nan_high; - return z; - } - if ( aExp == 0 ) { - aExp = 1; - bExp = 1; - } - zSig1 = 0; - if ( bSig < aSig ) goto aBigger; - if ( aSig < bSig ) goto bBigger; - return packFloatx80( float_rounding_mode == float_round_down, 0, 0 ); - bExpBigger: - if ( bExp == 0x7FFF ) { - if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); - return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) ); - } - if ( aExp == 0 ) ++expDiff; - shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); - bBigger: - sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 ); - zExp = bExp; - zSign ^= 1; - goto normalizeRoundAndPack; - aExpBigger: - if ( aExp == 0x7FFF ) { - if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); - return a; - } - if ( bExp == 0 ) --expDiff; - shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); - aBigger: - sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 ); - zExp = aExp; - normalizeRoundAndPack: - return - normalizeRoundAndPackFloatx80( - floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of adding the double-extended-precision floating-point -| values `a' and `b'. The operation is performed according to the IEEE -| Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 floatx80_add( floatx80 a, floatx80 b ) -{ - flag aSign, bSign; - - aSign = extractFloatx80Sign( a ); - bSign = extractFloatx80Sign( b ); - if ( aSign == bSign ) { - return addFloatx80Sigs( a, b, aSign ); - } - else { - return subFloatx80Sigs( a, b, aSign ); - } - -} - -/*---------------------------------------------------------------------------- -| Returns the result of subtracting the double-extended-precision floating- -| point values `a' and `b'. The operation is performed according to the IEEE -| Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 floatx80_sub( floatx80 a, floatx80 b ) -{ - flag aSign, bSign; - - aSign = extractFloatx80Sign( a ); - bSign = extractFloatx80Sign( b ); - if ( aSign == bSign ) { - return subFloatx80Sigs( a, b, aSign ); - } - else { - return addFloatx80Sigs( a, b, aSign ); - } - -} - -/*---------------------------------------------------------------------------- -| Returns the result of multiplying the double-extended-precision floating- -| point values `a' and `b'. The operation is performed according to the IEEE -| Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 floatx80_mul( floatx80 a, floatx80 b ) -{ - flag aSign, bSign, zSign; - int32 aExp, bExp, zExp; - bits64 aSig, bSig, zSig0, zSig1; - floatx80 z; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - bSig = extractFloatx80Frac( b ); - bExp = extractFloatx80Exp( b ); - bSign = extractFloatx80Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0x7FFF ) { - if ( (bits64) ( aSig<<1 ) - || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) { - return propagateFloatx80NaN( a, b ); - } - if ( ( bExp | bSig ) == 0 ) goto invalid; - return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); - } - if ( bExp == 0x7FFF ) { - if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); - if ( ( aExp | aSig ) == 0 ) { - invalid: - float_raise( float_flag_invalid ); - z.low = floatx80_default_nan_low; - z.high = floatx80_default_nan_high; - return z; - } - return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); - normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); - } - if ( bExp == 0 ) { - if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 ); - normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); - } - zExp = aExp + bExp - 0x3FFE; - mul64To128( aSig, bSig, &zSig0, &zSig1 ); - if ( 0 < (sbits64) zSig0 ) { - shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 ); - --zExp; - } - return - roundAndPackFloatx80( - floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of dividing the double-extended-precision floating-point -| value `a' by the corresponding value `b'. The operation is performed -| according to the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 floatx80_div( floatx80 a, floatx80 b ) -{ - flag aSign, bSign, zSign; - int32 aExp, bExp, zExp; - bits64 aSig, bSig, zSig0, zSig1; - bits64 rem0, rem1, rem2, term0, term1, term2; - floatx80 z; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - bSig = extractFloatx80Frac( b ); - bExp = extractFloatx80Exp( b ); - bSign = extractFloatx80Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0x7FFF ) { - if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); - if ( bExp == 0x7FFF ) { - if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); - goto invalid; - } - return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); - } - if ( bExp == 0x7FFF ) { - if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); - return packFloatx80( zSign, 0, 0 ); - } - if ( bExp == 0 ) { - if ( bSig == 0 ) { - if ( ( aExp | aSig ) == 0 ) { - invalid: - float_raise( float_flag_invalid ); - z.low = floatx80_default_nan_low; - z.high = floatx80_default_nan_high; - return z; - } - float_raise( float_flag_divbyzero ); - return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); - } - normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); - normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); - } - zExp = aExp - bExp + 0x3FFE; - rem1 = 0; - if ( bSig <= aSig ) { - shift128Right( aSig, 0, 1, &aSig, &rem1 ); - ++zExp; - } - zSig0 = estimateDiv128To64( aSig, rem1, bSig ); - mul64To128( bSig, zSig0, &term0, &term1 ); - sub128( aSig, rem1, term0, term1, &rem0, &rem1 ); - while ( (sbits64) rem0 < 0 ) { - --zSig0; - add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); - } - zSig1 = estimateDiv128To64( rem1, 0, bSig ); - if ( (bits64) ( zSig1<<1 ) <= 8 ) { - mul64To128( bSig, zSig1, &term1, &term2 ); - sub128( rem1, 0, term1, term2, &rem1, &rem2 ); - while ( (sbits64) rem1 < 0 ) { - --zSig1; - add128( rem1, rem2, 0, bSig, &rem1, &rem2 ); - } - zSig1 |= ( ( rem1 | rem2 ) != 0 ); - } - return - roundAndPackFloatx80( - floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); - -} - -/*---------------------------------------------------------------------------- -| Returns the remainder of the double-extended-precision floating-point value -| `a' with respect to the corresponding value `b'. The operation is performed -| according to the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 floatx80_rem( floatx80 a, floatx80 b ) -{ - flag aSign, bSign, zSign; - int32 aExp, bExp, expDiff; - bits64 aSig0, aSig1, bSig; - bits64 q, term0, term1, alternateASig0, alternateASig1; - floatx80 z; - - aSig0 = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - bSig = extractFloatx80Frac( b ); - bExp = extractFloatx80Exp( b ); - bSign = extractFloatx80Sign( b ); - if ( aExp == 0x7FFF ) { - if ( (bits64) ( aSig0<<1 ) - || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) { - return propagateFloatx80NaN( a, b ); - } - goto invalid; - } - if ( bExp == 0x7FFF ) { - if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - if ( bSig == 0 ) { - invalid: - float_raise( float_flag_invalid ); - z.low = floatx80_default_nan_low; - z.high = floatx80_default_nan_high; - return z; - } - normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); - } - if ( aExp == 0 ) { - if ( (bits64) ( aSig0<<1 ) == 0 ) return a; - normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); - } - bSig |= LIT64( 0x8000000000000000 ); - zSign = aSign; - expDiff = aExp - bExp; - aSig1 = 0; - if ( expDiff < 0 ) { - if ( expDiff < -1 ) return a; - shift128Right( aSig0, 0, 1, &aSig0, &aSig1 ); - expDiff = 0; - } - q = ( bSig <= aSig0 ); - if ( q ) aSig0 -= bSig; - expDiff -= 64; - while ( 0 < expDiff ) { - q = estimateDiv128To64( aSig0, aSig1, bSig ); - q = ( 2 < q ) ? q - 2 : 0; - mul64To128( bSig, q, &term0, &term1 ); - sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); - shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 ); - expDiff -= 62; - } - expDiff += 64; - if ( 0 < expDiff ) { - q = estimateDiv128To64( aSig0, aSig1, bSig ); - q = ( 2 < q ) ? q - 2 : 0; - q >>= 64 - expDiff; - mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 ); - sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); - shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 ); - while ( le128( term0, term1, aSig0, aSig1 ) ) { - ++q; - sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); - } - } - else { - term1 = 0; - term0 = bSig; - } - sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 ); - if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 ) - || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 ) - && ( q & 1 ) ) - ) { - aSig0 = alternateASig0; - aSig1 = alternateASig1; - zSign = ! zSign; - } - return - normalizeRoundAndPackFloatx80( - 80, zSign, bExp + expDiff, aSig0, aSig1 ); - -} - -/*---------------------------------------------------------------------------- -| Returns the square root of the double-extended-precision floating-point -| value `a'. The operation is performed according to the IEEE Standard for -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 floatx80_sqrt( floatx80 a ) -{ - flag aSign; - int32 aExp, zExp; - bits64 aSig0, aSig1, zSig0, zSig1, doubleZSig0; - bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3; - floatx80 z; - - aSig0 = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - if ( aExp == 0x7FFF ) { - if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a ); - if ( ! aSign ) return a; - goto invalid; - } - if ( aSign ) { - if ( ( aExp | aSig0 ) == 0 ) return a; - invalid: - float_raise( float_flag_invalid ); - z.low = floatx80_default_nan_low; - z.high = floatx80_default_nan_high; - return z; - } - if ( aExp == 0 ) { - if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 ); - normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); - } - zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF; - zSig0 = estimateSqrt32( aExp, aSig0>>32 ); - shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 ); - zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); - doubleZSig0 = zSig0<<1; - mul64To128( zSig0, zSig0, &term0, &term1 ); - sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); - while ( (sbits64) rem0 < 0 ) { - --zSig0; - doubleZSig0 -= 2; - add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); - } - zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); - if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) { - if ( zSig1 == 0 ) zSig1 = 1; - mul64To128( doubleZSig0, zSig1, &term1, &term2 ); - sub128( rem1, 0, term1, term2, &rem1, &rem2 ); - mul64To128( zSig1, zSig1, &term2, &term3 ); - sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); - while ( (sbits64) rem1 < 0 ) { - --zSig1; - shortShift128Left( 0, zSig1, 1, &term2, &term3 ); - term3 |= 1; - term2 |= doubleZSig0; - add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); - } - zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); - } - shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 ); - zSig0 |= doubleZSig0; - return - roundAndPackFloatx80( - floatx80_rounding_precision, 0, zExp, zSig0, zSig1 ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-extended-precision floating-point value `a' is -| equal to the corresponding value `b', and 0 otherwise. The comparison is -| performed according to the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -flag floatx80_eq( floatx80 a, floatx80 b ) -{ - - if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( a )<<1 ) ) - || ( ( extractFloatx80Exp( b ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( b )<<1 ) ) - ) { - if ( floatx80_is_signaling_nan( a ) - || floatx80_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - return - ( a.low == b.low ) - && ( ( a.high == b.high ) - || ( ( a.low == 0 ) - && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) ) - ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-extended-precision floating-point value `a' is -| less than or equal to the corresponding value `b', and 0 otherwise. The -| comparison is performed according to the IEEE Standard for Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -flag floatx80_le( floatx80 a, floatx80 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( a )<<1 ) ) - || ( ( extractFloatx80Exp( b ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( b )<<1 ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - aSign = extractFloatx80Sign( a ); - bSign = extractFloatx80Sign( b ); - if ( aSign != bSign ) { - return - aSign - || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) - == 0 ); - } - return - aSign ? le128( b.high, b.low, a.high, a.low ) - : le128( a.high, a.low, b.high, b.low ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-extended-precision floating-point value `a' is -| less than the corresponding value `b', and 0 otherwise. The comparison is -| performed according to the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -flag floatx80_lt( floatx80 a, floatx80 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( a )<<1 ) ) - || ( ( extractFloatx80Exp( b ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( b )<<1 ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - aSign = extractFloatx80Sign( a ); - bSign = extractFloatx80Sign( b ); - if ( aSign != bSign ) { - return - aSign - && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) - != 0 ); - } - return - aSign ? lt128( b.high, b.low, a.high, a.low ) - : lt128( a.high, a.low, b.high, b.low ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-extended-precision floating-point value `a' is equal -| to the corresponding value `b', and 0 otherwise. The invalid exception is -| raised if either operand is a NaN. Otherwise, the comparison is performed -| according to the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -flag floatx80_eq_signaling( floatx80 a, floatx80 b ) -{ - - if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( a )<<1 ) ) - || ( ( extractFloatx80Exp( b ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( b )<<1 ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - return - ( a.low == b.low ) - && ( ( a.high == b.high ) - || ( ( a.low == 0 ) - && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) ) - ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-extended-precision floating-point value `a' is less -| than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs -| do not cause an exception. Otherwise, the comparison is performed according -| to the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -flag floatx80_le_quiet( floatx80 a, floatx80 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( a )<<1 ) ) - || ( ( extractFloatx80Exp( b ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( b )<<1 ) ) - ) { - if ( floatx80_is_signaling_nan( a ) - || floatx80_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - aSign = extractFloatx80Sign( a ); - bSign = extractFloatx80Sign( b ); - if ( aSign != bSign ) { - return - aSign - || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) - == 0 ); - } - return - aSign ? le128( b.high, b.low, a.high, a.low ) - : le128( a.high, a.low, b.high, b.low ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-extended-precision floating-point value `a' is less -| than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause -| an exception. Otherwise, the comparison is performed according to the IEEE -| Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -flag floatx80_lt_quiet( floatx80 a, floatx80 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( a )<<1 ) ) - || ( ( extractFloatx80Exp( b ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( b )<<1 ) ) - ) { - if ( floatx80_is_signaling_nan( a ) - || floatx80_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - aSign = extractFloatx80Sign( a ); - bSign = extractFloatx80Sign( b ); - if ( aSign != bSign ) { - return - aSign - && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) - != 0 ); - } - return - aSign ? lt128( b.high, b.low, a.high, a.low ) - : lt128( a.high, a.low, b.high, b.low ); - -} - -#endif - -#ifdef FLOAT128 - -/*---------------------------------------------------------------------------- -| Returns the result of converting the quadruple-precision floating-point -| value `a' to the 32-bit two's complement integer format. The conversion is -| performed according to the IEEE Standard for Floating-Point Arithmetic--- -| which means in particular that the conversion is rounded according to the -| current rounding mode. If `a' is a NaN, the largest positive integer is -| returned. Otherwise, if the conversion overflows, the largest integer with -| the same sign as `a' is returned. -*----------------------------------------------------------------------------*/ - -int32 float128_to_int32( float128 a ) -{ - flag aSign; - int32 aExp, shiftCount; - bits64 aSig0, aSig1; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0; - if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); - aSig0 |= ( aSig1 != 0 ); - shiftCount = 0x4028 - aExp; - if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 ); - return roundAndPackInt32( aSign, aSig0 ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the quadruple-precision floating-point -| value `a' to the 32-bit two's complement integer format. The conversion -| is performed according to the IEEE Standard for Floating-Point Arithmetic, -| except that the conversion is always rounded toward zero. If `a' is a NaN, -| the largest positive integer is returned. Otherwise, if the conversion -| overflows, the largest integer with the same sign as `a' is returned. -*----------------------------------------------------------------------------*/ - -int32 float128_to_int32_round_to_zero( float128 a ) -{ - flag aSign; - int32 aExp, shiftCount; - bits64 aSig0, aSig1, savedASig; - int32 z; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - aSig0 |= ( aSig1 != 0 ); - if ( 0x401E < aExp ) { - if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0; - goto invalid; - } - else if ( aExp < 0x3FFF ) { - if ( aExp || aSig0 ) float_exception_flags |= float_flag_inexact; - return 0; - } - aSig0 |= LIT64( 0x0001000000000000 ); - shiftCount = 0x402F - aExp; - savedASig = aSig0; - aSig0 >>= shiftCount; - z = aSig0; - if ( aSign ) z = - z; - z = (sbits32) z; - if ( ( z < 0 ) ^ aSign ) { - invalid: - float_raise( float_flag_invalid ); - return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; - } - if ( ( aSig0<>( ( - shiftCount ) & 63 ) ); - if ( (bits64) ( aSig1<>( - shiftCount ); - if ( aSig1 - || ( shiftCount && (bits64) ( aSig0<<( shiftCount & 63 ) ) ) ) { - float_exception_flags |= float_flag_inexact; - } - } - if ( aSign ) z = - z; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the quadruple-precision floating-point -| value `a' to the single-precision floating-point format. The conversion is -| performed according to the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float32 float128_to_float32( float128 a ) -{ - flag aSign; - int32 aExp; - bits64 aSig0, aSig1; - bits32 zSig; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - if ( aExp == 0x7FFF ) { - if ( aSig0 | aSig1 ) { - return commonNaNToFloat32( float128ToCommonNaN( a ) ); - } - return packFloat32( aSign, 0xFF, 0 ); - } - aSig0 |= ( aSig1 != 0 ); - shift64RightJamming( aSig0, 18, &aSig0 ); - zSig = aSig0; - if ( aExp || zSig ) { - zSig |= 0x40000000; - aExp -= 0x3F81; - } - return roundAndPackFloat32( aSign, aExp, zSig ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the quadruple-precision floating-point -| value `a' to the double-precision floating-point format. The conversion is -| performed according to the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float64 float128_to_float64( float128 a ) -{ - flag aSign; - int32 aExp; - bits64 aSig0, aSig1; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - if ( aExp == 0x7FFF ) { - if ( aSig0 | aSig1 ) { - return commonNaNToFloat64( float128ToCommonNaN( a ) ); - } - return packFloat64( aSign, 0x7FF, 0 ); - } - shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); - aSig0 |= ( aSig1 != 0 ); - if ( aExp || aSig0 ) { - aSig0 |= LIT64( 0x4000000000000000 ); - aExp -= 0x3C01; - } - return roundAndPackFloat64( aSign, aExp, aSig0 ); - -} - -#ifdef FLOATX80 - -/*---------------------------------------------------------------------------- -| Returns the result of converting the quadruple-precision floating-point -| value `a' to the double-extended-precision floating-point format. The -| conversion is performed according to the IEEE Standard for Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 float128_to_floatx80( float128 a ) -{ - flag aSign; - int32 aExp; - bits64 aSig0, aSig1; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - if ( aExp == 0x7FFF ) { - if ( aSig0 | aSig1 ) { - return commonNaNToFloatx80( float128ToCommonNaN( a ) ); - } - return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); - } - if ( aExp == 0 ) { - if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 ); - normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); - } - else { - aSig0 |= LIT64( 0x0001000000000000 ); - } - shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 ); - return roundAndPackFloatx80( 80, aSign, aExp, aSig0, aSig1 ); - -} - -#endif - -/*---------------------------------------------------------------------------- -| Rounds the quadruple-precision floating-point value `a' to an integer, -| and returns the result as a quadruple-precision floating-point value. The -| operation is performed according to the IEEE Standard for Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 float128_round_to_int( float128 a ) -{ - flag aSign; - int32 aExp; - bits64 lastBitMask, roundBitsMask; - int8 roundingMode; - float128 z; - - aExp = extractFloat128Exp( a ); - if ( 0x402F <= aExp ) { - if ( 0x406F <= aExp ) { - if ( ( aExp == 0x7FFF ) - && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) - ) { - return propagateFloat128NaN( a, a ); - } - return a; - } - lastBitMask = 1; - lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1; - roundBitsMask = lastBitMask - 1; - z = a; - roundingMode = float_rounding_mode; - if ( roundingMode == float_round_nearest_even ) { - if ( lastBitMask ) { - add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low ); - if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; - } - else { - if ( (sbits64) z.low < 0 ) { - ++z.high; - if ( (bits64) ( z.low<<1 ) == 0 ) z.high &= ~1; - } - } - } - else if ( roundingMode != float_round_to_zero ) { - if ( extractFloat128Sign( z ) - ^ ( roundingMode == float_round_up ) ) { - add128( z.high, z.low, 0, roundBitsMask, &z.high, &z.low ); - } - } - z.low &= ~ roundBitsMask; - } - else { - if ( aExp < 0x3FFF ) { - if ( ( ( (bits64) ( a.high<<1 ) ) | a.low ) == 0 ) return a; - float_exception_flags |= float_flag_inexact; - aSign = extractFloat128Sign( a ); - switch ( float_rounding_mode ) { - case float_round_nearest_even: - if ( ( aExp == 0x3FFE ) - && ( extractFloat128Frac0( a ) - | extractFloat128Frac1( a ) ) - ) { - return packFloat128( aSign, 0x3FFF, 0, 0 ); - } - break; - case float_round_down: - return - aSign ? packFloat128( 1, 0x3FFF, 0, 0 ) - : packFloat128( 0, 0, 0, 0 ); - case float_round_up: - return - aSign ? packFloat128( 1, 0, 0, 0 ) - : packFloat128( 0, 0x3FFF, 0, 0 ); - } - return packFloat128( aSign, 0, 0, 0 ); - } - lastBitMask = 1; - lastBitMask <<= 0x402F - aExp; - roundBitsMask = lastBitMask - 1; - z.low = 0; - z.high = a.high; - roundingMode = float_rounding_mode; - if ( roundingMode == float_round_nearest_even ) { - z.high += lastBitMask>>1; - if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) { - z.high &= ~ lastBitMask; - } - } - else if ( roundingMode != float_round_to_zero ) { - if ( extractFloat128Sign( z ) - ^ ( roundingMode == float_round_up ) ) { - z.high |= ( a.low != 0 ); - z.high += roundBitsMask; - } - } - z.high &= ~ roundBitsMask; - } - if ( ( z.low != a.low ) || ( z.high != a.high ) ) { - float_exception_flags |= float_flag_inexact; - } - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of adding the absolute values of the quadruple-precision -| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated -| before being returned. `zSign' is ignored if the result is a NaN. The -| addition is performed according to the IEEE Standard for Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -static float128 addFloat128Sigs( float128 a, float128 b, flag zSign ) -{ - int32 aExp, bExp, zExp; - bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; - int32 expDiff; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - bSig1 = extractFloat128Frac1( b ); - bSig0 = extractFloat128Frac0( b ); - bExp = extractFloat128Exp( b ); - expDiff = aExp - bExp; - if ( 0 < expDiff ) { - if ( aExp == 0x7FFF ) { - if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig0 |= LIT64( 0x0001000000000000 ); - } - shift128ExtraRightJamming( - bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 ); - zExp = aExp; - } - else if ( expDiff < 0 ) { - if ( bExp == 0x7FFF ) { - if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b ); - return packFloat128( zSign, 0x7FFF, 0, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig0 |= LIT64( 0x0001000000000000 ); - } - shift128ExtraRightJamming( - aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 ); - zExp = bExp; - } - else { - if ( aExp == 0x7FFF ) { - if ( aSig0 | aSig1 | bSig0 | bSig1 ) { - return propagateFloat128NaN( a, b ); - } - return a; - } - add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); - if ( aExp == 0 ) return packFloat128( zSign, 0, zSig0, zSig1 ); - zSig2 = 0; - zSig0 |= LIT64( 0x0002000000000000 ); - zExp = aExp; - goto shiftRight1; - } - aSig0 |= LIT64( 0x0001000000000000 ); - add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); - --zExp; - if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack; - ++zExp; - shiftRight1: - shift128ExtraRightJamming( - zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); - roundAndPack: - return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of subtracting the absolute values of the quadruple- -| precision floating-point values `a' and `b'. If `zSign' is 1, the -| difference is negated before being returned. `zSign' is ignored if the -| result is a NaN. The subtraction is performed according to the IEEE -| Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -static float128 subFloat128Sigs( float128 a, float128 b, flag zSign ) -{ - int32 aExp, bExp, zExp; - bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1; - int32 expDiff; - float128 z; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - bSig1 = extractFloat128Frac1( b ); - bSig0 = extractFloat128Frac0( b ); - bExp = extractFloat128Exp( b ); - expDiff = aExp - bExp; - shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); - shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 ); - if ( 0 < expDiff ) goto aExpBigger; - if ( expDiff < 0 ) goto bExpBigger; - if ( aExp == 0x7FFF ) { - if ( aSig0 | aSig1 | bSig0 | bSig1 ) { - return propagateFloat128NaN( a, b ); - } - float_raise( float_flag_invalid ); - z.low = float128_default_nan_low; - z.high = float128_default_nan_high; - return z; - } - if ( aExp == 0 ) { - aExp = 1; - bExp = 1; - } - if ( bSig0 < aSig0 ) goto aBigger; - if ( aSig0 < bSig0 ) goto bBigger; - if ( bSig1 < aSig1 ) goto aBigger; - if ( aSig1 < bSig1 ) goto bBigger; - return packFloat128( float_rounding_mode == float_round_down, 0, 0, 0 ); - bExpBigger: - if ( bExp == 0x7FFF ) { - if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b ); - return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig0 |= LIT64( 0x4000000000000000 ); - } - shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); - bSig0 |= LIT64( 0x4000000000000000 ); - bBigger: - sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 ); - zExp = bExp; - zSign ^= 1; - goto normalizeRoundAndPack; - aExpBigger: - if ( aExp == 0x7FFF ) { - if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig0 |= LIT64( 0x4000000000000000 ); - } - shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 ); - aSig0 |= LIT64( 0x4000000000000000 ); - aBigger: - sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); - zExp = aExp; - normalizeRoundAndPack: - --zExp; - return normalizeRoundAndPackFloat128( zSign, zExp - 14, zSig0, zSig1 ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of adding the quadruple-precision floating-point values -| `a' and `b'. The operation is performed according to the IEEE Standard for -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 float128_add( float128 a, float128 b ) -{ - flag aSign, bSign; - - aSign = extractFloat128Sign( a ); - bSign = extractFloat128Sign( b ); - if ( aSign == bSign ) { - return addFloat128Sigs( a, b, aSign ); - } - else { - return subFloat128Sigs( a, b, aSign ); - } - -} - -/*---------------------------------------------------------------------------- -| Returns the result of subtracting the quadruple-precision floating-point -| values `a' and `b'. The operation is performed according to the IEEE -| Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 float128_sub( float128 a, float128 b ) -{ - flag aSign, bSign; - - aSign = extractFloat128Sign( a ); - bSign = extractFloat128Sign( b ); - if ( aSign == bSign ) { - return subFloat128Sigs( a, b, aSign ); - } - else { - return addFloat128Sigs( a, b, aSign ); - } - -} - -/*---------------------------------------------------------------------------- -| Returns the result of multiplying the quadruple-precision floating-point -| values `a' and `b'. The operation is performed according to the IEEE -| Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 float128_mul( float128 a, float128 b ) -{ - flag aSign, bSign, zSign; - int32 aExp, bExp, zExp; - bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3; - float128 z; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - bSig1 = extractFloat128Frac1( b ); - bSig0 = extractFloat128Frac0( b ); - bExp = extractFloat128Exp( b ); - bSign = extractFloat128Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0x7FFF ) { - if ( ( aSig0 | aSig1 ) - || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { - return propagateFloat128NaN( a, b ); - } - if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid; - return packFloat128( zSign, 0x7FFF, 0, 0 ); - } - if ( bExp == 0x7FFF ) { - if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b ); - if ( ( aExp | aSig0 | aSig1 ) == 0 ) { - invalid: - float_raise( float_flag_invalid ); - z.low = float128_default_nan_low; - z.high = float128_default_nan_high; - return z; - } - return packFloat128( zSign, 0x7FFF, 0, 0 ); - } - if ( aExp == 0 ) { - if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); - normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); - } - if ( bExp == 0 ) { - if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); - normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); - } - zExp = aExp + bExp - 0x4000; - aSig0 |= LIT64( 0x0001000000000000 ); - shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 ); - mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 ); - add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 ); - zSig2 |= ( zSig3 != 0 ); - if ( LIT64( 0x0002000000000000 ) <= zSig0 ) { - shift128ExtraRightJamming( - zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); - ++zExp; - } - return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of dividing the quadruple-precision floating-point value -| `a' by the corresponding value `b'. The operation is performed according to -| the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 float128_div( float128 a, float128 b ) -{ - flag aSign, bSign, zSign; - int32 aExp, bExp, zExp; - bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; - bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3; - float128 z; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - bSig1 = extractFloat128Frac1( b ); - bSig0 = extractFloat128Frac0( b ); - bExp = extractFloat128Exp( b ); - bSign = extractFloat128Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0x7FFF ) { - if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b ); - if ( bExp == 0x7FFF ) { - if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b ); - goto invalid; - } - return packFloat128( zSign, 0x7FFF, 0, 0 ); - } - if ( bExp == 0x7FFF ) { - if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b ); - return packFloat128( zSign, 0, 0, 0 ); - } - if ( bExp == 0 ) { - if ( ( bSig0 | bSig1 ) == 0 ) { - if ( ( aExp | aSig0 | aSig1 ) == 0 ) { - invalid: - float_raise( float_flag_invalid ); - z.low = float128_default_nan_low; - z.high = float128_default_nan_high; - return z; - } - float_raise( float_flag_divbyzero ); - return packFloat128( zSign, 0x7FFF, 0, 0 ); - } - normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); - } - if ( aExp == 0 ) { - if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); - normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); - } - zExp = aExp - bExp + 0x3FFD; - shortShift128Left( - aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 ); - shortShift128Left( - bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); - if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) { - shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 ); - ++zExp; - } - zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 ); - mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 ); - sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 ); - while ( (sbits64) rem0 < 0 ) { - --zSig0; - add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 ); - } - zSig1 = estimateDiv128To64( rem1, rem2, bSig0 ); - if ( ( zSig1 & 0x3FFF ) <= 4 ) { - mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 ); - sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 ); - while ( (sbits64) rem1 < 0 ) { - --zSig1; - add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 ); - } - zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); - } - shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 ); - return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 ); - -} - -/*---------------------------------------------------------------------------- -| Returns the remainder of the quadruple-precision floating-point value `a' -| with respect to the corresponding value `b'. The operation is performed -| according to the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 float128_rem( float128 a, float128 b ) -{ - flag aSign, bSign, zSign; - int32 aExp, bExp, expDiff; - bits64 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2; - bits64 allZero, alternateASig0, alternateASig1, sigMean1; - sbits64 sigMean0; - float128 z; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - bSig1 = extractFloat128Frac1( b ); - bSig0 = extractFloat128Frac0( b ); - bExp = extractFloat128Exp( b ); - bSign = extractFloat128Sign( b ); - if ( aExp == 0x7FFF ) { - if ( ( aSig0 | aSig1 ) - || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { - return propagateFloat128NaN( a, b ); - } - goto invalid; - } - if ( bExp == 0x7FFF ) { - if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - if ( ( bSig0 | bSig1 ) == 0 ) { - invalid: - float_raise( float_flag_invalid ); - z.low = float128_default_nan_low; - z.high = float128_default_nan_high; - return z; - } - normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); - } - if ( aExp == 0 ) { - if ( ( aSig0 | aSig1 ) == 0 ) return a; - normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); - } - expDiff = aExp - bExp; - if ( expDiff < -1 ) return a; - shortShift128Left( - aSig0 | LIT64( 0x0001000000000000 ), - aSig1, - 15 - ( expDiff < 0 ), - &aSig0, - &aSig1 - ); - shortShift128Left( - bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); - q = le128( bSig0, bSig1, aSig0, aSig1 ); - if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); - expDiff -= 64; - while ( 0 < expDiff ) { - q = estimateDiv128To64( aSig0, aSig1, bSig0 ); - q = ( 4 < q ) ? q - 4 : 0; - mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); - shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero ); - shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero ); - sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 ); - expDiff -= 61; - } - if ( -64 < expDiff ) { - q = estimateDiv128To64( aSig0, aSig1, bSig0 ); - q = ( 4 < q ) ? q - 4 : 0; - q >>= - expDiff; - shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); - expDiff += 52; - if ( expDiff < 0 ) { - shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); - } - else { - shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 ); - } - mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); - sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 ); - } - else { - shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 ); - shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); - } - do { - alternateASig0 = aSig0; - alternateASig1 = aSig1; - ++q; - sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); - } while ( 0 <= (sbits64) aSig0 ); - add128( - aSig0, aSig1, alternateASig0, alternateASig1, &sigMean0, &sigMean1 ); - if ( ( sigMean0 < 0 ) - || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) { - aSig0 = alternateASig0; - aSig1 = alternateASig1; - } - zSign = ( (sbits64) aSig0 < 0 ); - if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 ); - return - normalizeRoundAndPackFloat128( aSign ^ zSign, bExp - 4, aSig0, aSig1 ); - -} - -/*---------------------------------------------------------------------------- -| Returns the square root of the quadruple-precision floating-point value `a'. -| The operation is performed according to the IEEE Standard for Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 float128_sqrt( float128 a ) -{ - flag aSign; - int32 aExp, zExp; - bits64 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0; - bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3; - float128 z; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - if ( aExp == 0x7FFF ) { - if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, a ); - if ( ! aSign ) return a; - goto invalid; - } - if ( aSign ) { - if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a; - invalid: - float_raise( float_flag_invalid ); - z.low = float128_default_nan_low; - z.high = float128_default_nan_high; - return z; - } - if ( aExp == 0 ) { - if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 ); - normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); - } - zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE; - aSig0 |= LIT64( 0x0001000000000000 ); - zSig0 = estimateSqrt32( aExp, aSig0>>17 ); - shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 ); - zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); - doubleZSig0 = zSig0<<1; - mul64To128( zSig0, zSig0, &term0, &term1 ); - sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); - while ( (sbits64) rem0 < 0 ) { - --zSig0; - doubleZSig0 -= 2; - add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); - } - zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); - if ( ( zSig1 & 0x1FFF ) <= 5 ) { - if ( zSig1 == 0 ) zSig1 = 1; - mul64To128( doubleZSig0, zSig1, &term1, &term2 ); - sub128( rem1, 0, term1, term2, &rem1, &rem2 ); - mul64To128( zSig1, zSig1, &term2, &term3 ); - sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); - while ( (sbits64) rem1 < 0 ) { - --zSig1; - shortShift128Left( 0, zSig1, 1, &term2, &term3 ); - term3 |= 1; - term2 |= doubleZSig0; - add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); - } - zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); - } - shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 ); - return roundAndPackFloat128( 0, zExp, zSig0, zSig1, zSig2 ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the quadruple-precision floating-point value `a' is equal to -| the corresponding value `b', and 0 otherwise. The comparison is performed -| according to the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -flag float128_eq( float128 a, float128 b ) -{ - - if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) - && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) - || ( ( extractFloat128Exp( b ) == 0x7FFF ) - && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) - ) { - if ( float128_is_signaling_nan( a ) - || float128_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - return - ( a.low == b.low ) - && ( ( a.high == b.high ) - || ( ( a.low == 0 ) - && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) ) - ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the quadruple-precision floating-point value `a' is less than -| or equal to the corresponding value `b', and 0 otherwise. The comparison is -| performed according to the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -flag float128_le( float128 a, float128 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) - && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) - || ( ( extractFloat128Exp( b ) == 0x7FFF ) - && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - aSign = extractFloat128Sign( a ); - bSign = extractFloat128Sign( b ); - if ( aSign != bSign ) { - return - aSign - || ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) - == 0 ); - } - return - aSign ? le128( b.high, b.low, a.high, a.low ) - : le128( a.high, a.low, b.high, b.low ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the quadruple-precision floating-point value `a' is less than -| the corresponding value `b', and 0 otherwise. The comparison is performed -| according to the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -flag float128_lt( float128 a, float128 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) - && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) - || ( ( extractFloat128Exp( b ) == 0x7FFF ) - && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - aSign = extractFloat128Sign( a ); - bSign = extractFloat128Sign( b ); - if ( aSign != bSign ) { - return - aSign - && ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) - != 0 ); - } - return - aSign ? lt128( b.high, b.low, a.high, a.low ) - : lt128( a.high, a.low, b.high, b.low ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the quadruple-precision floating-point value `a' is equal to -| the corresponding value `b', and 0 otherwise. The invalid exception is -| raised if either operand is a NaN. Otherwise, the comparison is performed -| according to the IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -flag float128_eq_signaling( float128 a, float128 b ) -{ - - if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) - && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) - || ( ( extractFloat128Exp( b ) == 0x7FFF ) - && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - return - ( a.low == b.low ) - && ( ( a.high == b.high ) - || ( ( a.low == 0 ) - && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) ) - ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the quadruple-precision floating-point value `a' is less than -| or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not -| cause an exception. Otherwise, the comparison is performed according to the -| IEEE Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -flag float128_le_quiet( float128 a, float128 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) - && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) - || ( ( extractFloat128Exp( b ) == 0x7FFF ) - && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) - ) { - if ( float128_is_signaling_nan( a ) - || float128_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - aSign = extractFloat128Sign( a ); - bSign = extractFloat128Sign( b ); - if ( aSign != bSign ) { - return - aSign - || ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) - == 0 ); - } - return - aSign ? le128( b.high, b.low, a.high, a.low ) - : le128( a.high, a.low, b.high, b.low ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the quadruple-precision floating-point value `a' is less than -| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an -| exception. Otherwise, the comparison is performed according to the IEEE -| Standard for Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -flag float128_lt_quiet( float128 a, float128 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) - && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) - || ( ( extractFloat128Exp( b ) == 0x7FFF ) - && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) - ) { - if ( float128_is_signaling_nan( a ) - || float128_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - aSign = extractFloat128Sign( a ); - bSign = extractFloat128Sign( b ); - if ( aSign != bSign ) { - return - aSign - && ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) - != 0 ); - } - return - aSign ? lt128( b.high, b.low, a.high, a.low ) - : lt128( a.high, a.low, b.high, b.low ); - -} - -#endif - diff --git a/test/float/softfloat/softfloat/bits64/templates/Makefile b/test/float/softfloat/softfloat/bits64/templates/Makefile deleted file mode 100644 index 6c0a88285..000000000 --- a/test/float/softfloat/softfloat/bits64/templates/Makefile +++ /dev/null @@ -1,28 +0,0 @@ - -PROCESSOR_H = ../../../processors/!!!processor.h -SOFTFLOAT_MACROS = ../softfloat-macros - -OBJ = .o -EXE = -INCLUDES = -I. -I.. -COMPILE_C = gcc -c -o $@ $(INCLUDES) -I- -O2 -LINK = gcc -o $@ - -#----------------------------------------------------------------------------- -# Probably okay below here. -#----------------------------------------------------------------------------- - -ALL: softfloat$(OBJ) timesoftfloat$(EXE) - -milieu.h: $(PROCESSOR_H) - touch milieu.h - -softfloat$(OBJ): milieu.h softfloat.h softfloat-specialize $(SOFTFLOAT_MACROS) ../softfloat.c - $(COMPILE_C) ../softfloat.c - -timesoftfloat$(OBJ): milieu.h softfloat.h ../timesoftfloat.c - $(COMPILE_C) ../timesoftfloat.c - -timesoftfloat$(EXE): softfloat$(OBJ) timesoftfloat$(OBJ) - $(LINK) softfloat$(OBJ) timesoftfloat$(OBJ) - diff --git a/test/float/softfloat/softfloat/bits64/templates/milieu.h b/test/float/softfloat/softfloat/bits64/templates/milieu.h deleted file mode 100644 index f9c25de13..000000000 --- a/test/float/softfloat/softfloat/bits64/templates/milieu.h +++ /dev/null @@ -1,38 +0,0 @@ - -/*============================================================================ - -This C header file template is part of the Berkeley SoftFloat IEEE Floating- -Point Arithmetic Package, Release 2c, by John R. Hauser. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has -been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES -RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS -AND ORGANIZATIONS WHO CAN AND WILL TOLERATE ALL LOSSES, COSTS, OR OTHER -PROBLEMS THEY INCUR DUE TO THE SOFTWARE WITHOUT RECOMPENSE FROM JOHN HAUSER OR -THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE, AND WHO FURTHERMORE EFFECTIVELY -INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE -(possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR OTHER -PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE, OR -INCURRED BY ANYONE DUE TO A DERIVATIVE WORK THEY CREATE USING ANY PART OF THE -SOFTWARE. - -Derivative works require also that (1) the source code for the derivative work -includes prominent notice that the work is derivative, and (2) the source code -includes prominent notice of these three paragraphs for those parts of this -code that are retained. - -=============================================================================*/ - -/*---------------------------------------------------------------------------- -| Include common integer types and flags. -*----------------------------------------------------------------------------*/ -#include "../../../processors/!!!processor.h" - -/*---------------------------------------------------------------------------- -| Symbolic Boolean literals. -*----------------------------------------------------------------------------*/ -enum { - FALSE = 0, - TRUE = 1 -}; - diff --git a/test/float/softfloat/softfloat/bits64/templates/softfloat-specialize b/test/float/softfloat/softfloat/bits64/templates/softfloat-specialize deleted file mode 100644 index eae1c7f68..000000000 --- a/test/float/softfloat/softfloat/bits64/templates/softfloat-specialize +++ /dev/null @@ -1,425 +0,0 @@ - -/*============================================================================ - -This C source fragment is part of the Berkeley SoftFloat IEEE Floating-Point -Arithmetic Package, Release 2c, by John R. Hauser. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has -been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES -RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS -AND ORGANIZATIONS WHO CAN AND WILL TOLERATE ALL LOSSES, COSTS, OR OTHER -PROBLEMS THEY INCUR DUE TO THE SOFTWARE WITHOUT RECOMPENSE FROM JOHN HAUSER OR -THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE, AND WHO FURTHERMORE EFFECTIVELY -INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE -(possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR OTHER -PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE, OR -INCURRED BY ANYONE DUE TO A DERIVATIVE WORK THEY CREATE USING ANY PART OF THE -SOFTWARE. - -Derivative works require also that (1) the source code for the derivative work -includes prominent notice that the work is derivative, and (2) the source code -includes prominent notice of these three paragraphs for those parts of this -code that are retained. - -=============================================================================*/ - -/*---------------------------------------------------------------------------- -| Underflow tininess-detection mode, statically initialized to default value. -| (The declaration in `softfloat.h' must match the `int8' type here.) -*----------------------------------------------------------------------------*/ -int8 float_detect_tininess = float_tininess_after_rounding; - -/*---------------------------------------------------------------------------- -| Raises the exceptions specified by `flags'. Floating-point traps can be -| defined here if desired. It is currently not possible for such a trap to -| substitute a result value. If traps are not implemented, this routine -| should be simply `float_exception_flags |= flags;'. -*----------------------------------------------------------------------------*/ - -void float_raise( int8 flags ) -{ - - float_exception_flags |= flags; - -} - -/*---------------------------------------------------------------------------- -| Internal canonical NaN format. -*----------------------------------------------------------------------------*/ -typedef struct { - flag sign; - bits64 high, low; -} commonNaNT; - -/*---------------------------------------------------------------------------- -| The pattern for a default generated single-precision NaN. -*----------------------------------------------------------------------------*/ -#define float32_default_nan 0xFFFFFFFF - -/*---------------------------------------------------------------------------- -| Returns 1 if the single-precision floating-point value `a' is a NaN; -| otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag float32_is_nan( float32 a ) -{ - - return ( 0xFF000000 < (bits32) ( a<<1 ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the single-precision floating-point value `a' is a signaling -| NaN; otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag float32_is_signaling_nan( float32 a ) -{ - - return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the single-precision floating-point NaN -| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid -| exception is raised. -*----------------------------------------------------------------------------*/ - -static commonNaNT float32ToCommonNaN( float32 a ) -{ - commonNaNT z; - - if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); - z.sign = a>>31; - z.low = 0; - z.high = ( (bits64) a )<<41; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the canonical NaN `a' to the single- -| precision floating-point format. -*----------------------------------------------------------------------------*/ - -static float32 commonNaNToFloat32( commonNaNT a ) -{ - - return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 ); - -} - -/*---------------------------------------------------------------------------- -| Takes two single-precision floating-point values `a' and `b', one of which -| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a -| signaling NaN, the invalid exception is raised. -*----------------------------------------------------------------------------*/ - -static float32 propagateFloat32NaN( float32 a, float32 b ) -{ - flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; - - aIsNaN = float32_is_nan( a ); - aIsSignalingNaN = float32_is_signaling_nan( a ); - bIsNaN = float32_is_nan( b ); - bIsSignalingNaN = float32_is_signaling_nan( b ); - a |= 0x00400000; - b |= 0x00400000; - if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); - if ( aIsNaN ) { - return ( aIsSignalingNaN & bIsNaN ) ? b : a; - } - else { - return b; - } - -} - -/*---------------------------------------------------------------------------- -| The pattern for a default generated double-precision NaN. -*----------------------------------------------------------------------------*/ -#define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF ) - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-precision floating-point value `a' is a NaN; -| otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag float64_is_nan( float64 a ) -{ - - return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-precision floating-point value `a' is a signaling -| NaN; otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag float64_is_signaling_nan( float64 a ) -{ - - return - ( ( ( a>>51 ) & 0xFFF ) == 0xFFE ) - && ( a & LIT64( 0x0007FFFFFFFFFFFF ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the double-precision floating-point NaN -| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid -| exception is raised. -*----------------------------------------------------------------------------*/ - -static commonNaNT float64ToCommonNaN( float64 a ) -{ - commonNaNT z; - - if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); - z.sign = a>>63; - z.low = 0; - z.high = a<<12; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the canonical NaN `a' to the double- -| precision floating-point format. -*----------------------------------------------------------------------------*/ - -static float64 commonNaNToFloat64( commonNaNT a ) -{ - - return - ( ( (bits64) a.sign )<<63 ) - | LIT64( 0x7FF8000000000000 ) - | ( a.high>>12 ); - -} - -/*---------------------------------------------------------------------------- -| Takes two double-precision floating-point values `a' and `b', one of which -| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a -| signaling NaN, the invalid exception is raised. -*----------------------------------------------------------------------------*/ - -static float64 propagateFloat64NaN( float64 a, float64 b ) -{ - flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; - - aIsNaN = float64_is_nan( a ); - aIsSignalingNaN = float64_is_signaling_nan( a ); - bIsNaN = float64_is_nan( b ); - bIsSignalingNaN = float64_is_signaling_nan( b ); - a |= LIT64( 0x0008000000000000 ); - b |= LIT64( 0x0008000000000000 ); - if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); - if ( aIsNaN ) { - return ( aIsSignalingNaN & bIsNaN ) ? b : a; - } - else { - return b; - } - -} - -#ifdef FLOATX80 - -/*---------------------------------------------------------------------------- -| The pattern for a default generated double-extended-precision NaN. -| The `high' and `low' values hold the most- and least-significant bits, -| respectively. -*----------------------------------------------------------------------------*/ -#define floatx80_default_nan_high 0xFFFF -#define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF ) - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-extended-precision floating-point value `a' is a -| NaN; otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag floatx80_is_nan( floatx80 a ) -{ - - return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-extended-precision floating-point value `a' is a -| signaling NaN; otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag floatx80_is_signaling_nan( floatx80 a ) -{ - bits64 aLow; - - aLow = a.low & ~ LIT64( 0x4000000000000000 ); - return - ( ( a.high & 0x7FFF ) == 0x7FFF ) - && (bits64) ( aLow<<1 ) - && ( a.low == aLow ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the double-extended-precision floating- -| point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the -| invalid exception is raised. -*----------------------------------------------------------------------------*/ - -static commonNaNT floatx80ToCommonNaN( floatx80 a ) -{ - commonNaNT z; - - if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); - z.sign = a.high>>15; - z.low = 0; - z.high = a.low<<1; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the canonical NaN `a' to the double- -| extended-precision floating-point format. -*----------------------------------------------------------------------------*/ - -static floatx80 commonNaNToFloatx80( commonNaNT a ) -{ - floatx80 z; - - z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 ); - z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF; - return z; - -} - -/*---------------------------------------------------------------------------- -| Takes two double-extended-precision floating-point values `a' and `b', one -| of which is a NaN, and returns the appropriate NaN result. If either `a' or -| `b' is a signaling NaN, the invalid exception is raised. -*----------------------------------------------------------------------------*/ - -static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b ) -{ - flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; - - aIsNaN = floatx80_is_nan( a ); - aIsSignalingNaN = floatx80_is_signaling_nan( a ); - bIsNaN = floatx80_is_nan( b ); - bIsSignalingNaN = floatx80_is_signaling_nan( b ); - a.low |= LIT64( 0xC000000000000000 ); - b.low |= LIT64( 0xC000000000000000 ); - if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); - if ( aIsNaN ) { - return ( aIsSignalingNaN & bIsNaN ) ? b : a; - } - else { - return b; - } - -} - -#endif - -#ifdef FLOAT128 - -/*---------------------------------------------------------------------------- -| The pattern for a default generated quadruple-precision NaN. The `high' and -| `low' values hold the most- and least-significant bits, respectively. -*----------------------------------------------------------------------------*/ -#define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF ) -#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF ) - -/*---------------------------------------------------------------------------- -| Returns 1 if the quadruple-precision floating-point value `a' is a NaN; -| otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag float128_is_nan( float128 a ) -{ - - return - ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) ) - && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the quadruple-precision floating-point value `a' is a -| signaling NaN; otherwise returns 0. -*----------------------------------------------------------------------------*/ - -flag float128_is_signaling_nan( float128 a ) -{ - - return - ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE ) - && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the quadruple-precision floating-point NaN -| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid -| exception is raised. -*----------------------------------------------------------------------------*/ - -static commonNaNT float128ToCommonNaN( float128 a ) -{ - commonNaNT z; - - if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); - z.sign = a.high>>63; - shortShift128Left( a.high, a.low, 16, &z.high, &z.low ); - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the canonical NaN `a' to the quadruple- -| precision floating-point format. -*----------------------------------------------------------------------------*/ - -static float128 commonNaNToFloat128( commonNaNT a ) -{ - float128 z; - - shift128Right( a.high, a.low, 16, &z.high, &z.low ); - z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 ); - return z; - -} - -/*---------------------------------------------------------------------------- -| Takes two quadruple-precision floating-point values `a' and `b', one of -| which is a NaN, and returns the appropriate NaN result. If either `a' or -| `b' is a signaling NaN, the invalid exception is raised. -*----------------------------------------------------------------------------*/ - -static float128 propagateFloat128NaN( float128 a, float128 b ) -{ - flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; - - aIsNaN = float128_is_nan( a ); - aIsSignalingNaN = float128_is_signaling_nan( a ); - bIsNaN = float128_is_nan( b ); - bIsSignalingNaN = float128_is_signaling_nan( b ); - a.high |= LIT64( 0x0000800000000000 ); - b.high |= LIT64( 0x0000800000000000 ); - if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); - if ( aIsNaN ) { - return ( aIsSignalingNaN & bIsNaN ) ? b : a; - } - else { - return b; - } - -} - -#endif - diff --git a/test/float/softfloat/softfloat/bits64/templates/softfloat.h b/test/float/softfloat/softfloat/bits64/templates/softfloat.h deleted file mode 100644 index 5216eeecf..000000000 --- a/test/float/softfloat/softfloat/bits64/templates/softfloat.h +++ /dev/null @@ -1,252 +0,0 @@ - -/*============================================================================ - -This C header file template is part of the Berkeley SoftFloat IEEE Floating- -Point Arithmetic Package, Release 2c, by John R. Hauser. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has -been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES -RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS -AND ORGANIZATIONS WHO CAN AND WILL TOLERATE ALL LOSSES, COSTS, OR OTHER -PROBLEMS THEY INCUR DUE TO THE SOFTWARE WITHOUT RECOMPENSE FROM JOHN HAUSER OR -THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE, AND WHO FURTHERMORE EFFECTIVELY -INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE -(possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR OTHER -PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE, OR -INCURRED BY ANYONE DUE TO A DERIVATIVE WORK THEY CREATE USING ANY PART OF THE -SOFTWARE. - -Derivative works require also that (1) the source code for the derivative work -includes prominent notice that the work is derivative, and (2) the source code -includes prominent notice of these three paragraphs for those parts of this -code that are retained. - -=============================================================================*/ - -/*---------------------------------------------------------------------------- -| The macro `FLOATX80' must be defined to enable the double-extended-precision -| floating-point format `floatx80'. If this macro is not defined, the -| `floatx80' type will not be defined, and none of the functions that either -| input or output the `floatx80' type will be defined. The same applies to -| the `FLOAT128' macro and the quadruple-precision format `float128'. -*----------------------------------------------------------------------------*/ -#define FLOATX80 -#define FLOAT128 - -/*---------------------------------------------------------------------------- -| Software IEEE floating-point types. -*----------------------------------------------------------------------------*/ -typedef !!!bits32 float32; -typedef !!!bits64 float64; -#ifdef FLOATX80 -typedef struct { - !!!bits16 high; - !!!bits64 low; -} floatx80; -#endif -#ifdef FLOAT128 -typedef struct { - !!!bits64 high, low; -} float128; -#endif - -/*---------------------------------------------------------------------------- -| Software IEEE floating-point underflow tininess-detection mode. -*----------------------------------------------------------------------------*/ -extern !!!int8 float_detect_tininess; -enum { - float_tininess_after_rounding = 0, - float_tininess_before_rounding = 1 -}; - -/*---------------------------------------------------------------------------- -| Software IEEE floating-point rounding mode. -*----------------------------------------------------------------------------*/ -extern !!!int8 float_rounding_mode; -enum { - float_round_nearest_even = 0, - float_round_to_zero = 1, - float_round_down = 2, - float_round_up = 3 -}; - -/*---------------------------------------------------------------------------- -| Software IEEE floating-point exception flags. -*----------------------------------------------------------------------------*/ -extern !!!int8 float_exception_flags; -enum { - float_flag_inexact = 1, - float_flag_underflow = 2, - float_flag_overflow = 4, - float_flag_divbyzero = 8, - float_flag_invalid = 16 -}; - -/*---------------------------------------------------------------------------- -| Routine to raise any or all of the software IEEE floating-point exception -| flags. -*----------------------------------------------------------------------------*/ -void float_raise( !!!int8 ); - -/*---------------------------------------------------------------------------- -| Software IEEE integer-to-floating-point conversion routines. -*----------------------------------------------------------------------------*/ -float32 int32_to_float32( !!!int32 ); -float64 int32_to_float64( !!!int32 ); -#ifdef FLOATX80 -floatx80 int32_to_floatx80( !!!int32 ); -#endif -#ifdef FLOAT128 -float128 int32_to_float128( !!!int32 ); -#endif -float32 int64_to_float32( !!!int64 ); -float64 int64_to_float64( !!!int64 ); -#ifdef FLOATX80 -floatx80 int64_to_floatx80( !!!int64 ); -#endif -#ifdef FLOAT128 -float128 int64_to_float128( !!!int64 ); -#endif - -/*---------------------------------------------------------------------------- -| Software IEEE single-precision conversion routines. -*----------------------------------------------------------------------------*/ -!!!int32 float32_to_int32( float32 ); -!!!int32 float32_to_int32_round_to_zero( float32 ); -!!!int64 float32_to_int64( float32 ); -!!!int64 float32_to_int64_round_to_zero( float32 ); -float64 float32_to_float64( float32 ); -#ifdef FLOATX80 -floatx80 float32_to_floatx80( float32 ); -#endif -#ifdef FLOAT128 -float128 float32_to_float128( float32 ); -#endif - -/*---------------------------------------------------------------------------- -| Software IEEE single-precision operations. -*----------------------------------------------------------------------------*/ -float32 float32_round_to_int( float32 ); -float32 float32_add( float32, float32 ); -float32 float32_sub( float32, float32 ); -float32 float32_mul( float32, float32 ); -float32 float32_div( float32, float32 ); -float32 float32_rem( float32, float32 ); -float32 float32_sqrt( float32 ); -!!!flag float32_eq( float32, float32 ); -!!!flag float32_le( float32, float32 ); -!!!flag float32_lt( float32, float32 ); -!!!flag float32_eq_signaling( float32, float32 ); -!!!flag float32_le_quiet( float32, float32 ); -!!!flag float32_lt_quiet( float32, float32 ); -!!!flag float32_is_signaling_nan( float32 ); - -/*---------------------------------------------------------------------------- -| Software IEEE double-precision conversion routines. -*----------------------------------------------------------------------------*/ -!!!int32 float64_to_int32( float64 ); -!!!int32 float64_to_int32_round_to_zero( float64 ); -!!!int64 float64_to_int64( float64 ); -!!!int64 float64_to_int64_round_to_zero( float64 ); -float32 float64_to_float32( float64 ); -#ifdef FLOATX80 -floatx80 float64_to_floatx80( float64 ); -#endif -#ifdef FLOAT128 -float128 float64_to_float128( float64 ); -#endif - -/*---------------------------------------------------------------------------- -| Software IEEE double-precision operations. -*----------------------------------------------------------------------------*/ -float64 float64_round_to_int( float64 ); -float64 float64_add( float64, float64 ); -float64 float64_sub( float64, float64 ); -float64 float64_mul( float64, float64 ); -float64 float64_div( float64, float64 ); -float64 float64_rem( float64, float64 ); -float64 float64_sqrt( float64 ); -!!!flag float64_eq( float64, float64 ); -!!!flag float64_le( float64, float64 ); -!!!flag float64_lt( float64, float64 ); -!!!flag float64_eq_signaling( float64, float64 ); -!!!flag float64_le_quiet( float64, float64 ); -!!!flag float64_lt_quiet( float64, float64 ); -!!!flag float64_is_signaling_nan( float64 ); - -#ifdef FLOATX80 - -/*---------------------------------------------------------------------------- -| Software IEEE double-extended-precision conversion routines. -*----------------------------------------------------------------------------*/ -!!!int32 floatx80_to_int32( floatx80 ); -!!!int32 floatx80_to_int32_round_to_zero( floatx80 ); -!!!int64 floatx80_to_int64( floatx80 ); -!!!int64 floatx80_to_int64_round_to_zero( floatx80 ); -float32 floatx80_to_float32( floatx80 ); -float64 floatx80_to_float64( floatx80 ); -#ifdef FLOAT128 -float128 floatx80_to_float128( floatx80 ); -#endif - -/*---------------------------------------------------------------------------- -| Software IEEE double-extended-precision rounding precision. Valid values -| are 32, 64, and 80. -*----------------------------------------------------------------------------*/ -extern !!!int8 floatx80_rounding_precision; - -/*---------------------------------------------------------------------------- -| Software IEEE double-extended-precision operations. -*----------------------------------------------------------------------------*/ -floatx80 floatx80_round_to_int( floatx80 ); -floatx80 floatx80_add( floatx80, floatx80 ); -floatx80 floatx80_sub( floatx80, floatx80 ); -floatx80 floatx80_mul( floatx80, floatx80 ); -floatx80 floatx80_div( floatx80, floatx80 ); -floatx80 floatx80_rem( floatx80, floatx80 ); -floatx80 floatx80_sqrt( floatx80 ); -!!!flag floatx80_eq( floatx80, floatx80 ); -!!!flag floatx80_le( floatx80, floatx80 ); -!!!flag floatx80_lt( floatx80, floatx80 ); -!!!flag floatx80_eq_signaling( floatx80, floatx80 ); -!!!flag floatx80_le_quiet( floatx80, floatx80 ); -!!!flag floatx80_lt_quiet( floatx80, floatx80 ); -!!!flag floatx80_is_signaling_nan( floatx80 ); - -#endif - -#ifdef FLOAT128 - -/*---------------------------------------------------------------------------- -| Software IEEE quadruple-precision conversion routines. -*----------------------------------------------------------------------------*/ -!!!int32 float128_to_int32( float128 ); -!!!int32 float128_to_int32_round_to_zero( float128 ); -!!!int64 float128_to_int64( float128 ); -!!!int64 float128_to_int64_round_to_zero( float128 ); -float32 float128_to_float32( float128 ); -float64 float128_to_float64( float128 ); -#ifdef FLOATX80 -floatx80 float128_to_floatx80( float128 ); -#endif - -/*---------------------------------------------------------------------------- -| Software IEEE quadruple-precision operations. -*----------------------------------------------------------------------------*/ -float128 float128_round_to_int( float128 ); -float128 float128_add( float128, float128 ); -float128 float128_sub( float128, float128 ); -float128 float128_mul( float128, float128 ); -float128 float128_div( float128, float128 ); -float128 float128_rem( float128, float128 ); -float128 float128_sqrt( float128 ); -!!!flag float128_eq( float128, float128 ); -!!!flag float128_le( float128, float128 ); -!!!flag float128_lt( float128, float128 ); -!!!flag float128_eq_signaling( float128, float128 ); -!!!flag float128_le_quiet( float128, float128 ); -!!!flag float128_lt_quiet( float128, float128 ); -!!!flag float128_is_signaling_nan( float128 ); - -#endif - diff --git a/test/float/softfloat/softfloat/bits64/timesoftfloat.c b/test/float/softfloat/softfloat/bits64/timesoftfloat.c deleted file mode 100644 index 7dca80330..000000000 --- a/test/float/softfloat/softfloat/bits64/timesoftfloat.c +++ /dev/null @@ -1,2629 +0,0 @@ - -/*============================================================================ - -This C source file is part of the Berkeley SoftFloat IEEE Floating-Point -Arithmetic Package, Release 2c, by John R. Hauser. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has -been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES -RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS -AND ORGANIZATIONS WHO CAN AND WILL TOLERATE ALL LOSSES, COSTS, OR OTHER -PROBLEMS THEY INCUR DUE TO THE SOFTWARE WITHOUT RECOMPENSE FROM JOHN HAUSER OR -THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE, AND WHO FURTHERMORE EFFECTIVELY -INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE -(possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR OTHER -PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE, OR -INCURRED BY ANYONE DUE TO A DERIVATIVE WORK THEY CREATE USING ANY PART OF THE -SOFTWARE. - -Derivative works require also that (1) the source code for the derivative work -includes prominent notice that the work is derivative, and (2) the source code -includes prominent notice of these three paragraphs for those parts of this -code that are retained. - -=============================================================================*/ - -#include -#include -#include -#include -#include -#include "milieu.h" -#include "softfloat.h" - -enum { - minIterations = 1000 -}; - -static void fail( const char *message, ... ) -{ - va_list varArgs; - - fputs( "timesoftfloat: ", stderr ); - va_start( varArgs, message ); - vfprintf( stderr, message, varArgs ); - va_end( varArgs ); - fputs( ".\n", stderr ); - exit( EXIT_FAILURE ); - -} - -static char *functionName; -static char *roundingPrecisionName, *roundingModeName, *tininessModeName; - -static void reportTime( int32 count, long clocks ) -{ - - printf( - "%8.1f kops/s: %s", - ( count / ( ( (float) clocks ) / CLOCKS_PER_SEC ) ) / 1000, - functionName - ); - if ( roundingModeName ) { - if ( roundingPrecisionName ) { - fputs( ", precision ", stdout ); - fputs( roundingPrecisionName, stdout ); - } - fputs( ", rounding ", stdout ); - fputs( roundingModeName, stdout ); - if ( tininessModeName ) { - fputs( ", tininess ", stdout ); - fputs( tininessModeName, stdout ); - fputs( " rounding", stdout ); - } - } - fputc( '\n', stdout ); - -} - -enum { - numInputs_int32 = 32 -}; - -static const int32 inputs_int32[ numInputs_int32 ] = { - 0xFFFFBB79, 0x405CF80F, 0x00000000, 0xFFFFFD04, - 0xFFF20002, 0x0C8EF795, 0xF00011FF, 0x000006CA, - 0x00009BFE, 0xFF4862E3, 0x9FFFEFFE, 0xFFFFFFB7, - 0x0BFF7FFF, 0x0000F37A, 0x0011DFFE, 0x00000006, - 0xFFF02006, 0xFFFFF7D1, 0x10200003, 0xDE8DF765, - 0x00003E02, 0x000019E8, 0x0008FFFE, 0xFFFFFB5C, - 0xFFDF7FFE, 0x07C42FBF, 0x0FFFE3FF, 0x040B9F13, - 0xBFFFFFF8, 0x0001BF56, 0x000017F6, 0x000A908A -}; - -static void time_a_int32_z_float32( float32 function( int32 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_int32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_int32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_a_int32_z_float64( float64 function( int32 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_int32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_int32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#ifdef FLOATX80 - -static void time_a_int32_z_floatx80( floatx80 function( int32 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_int32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_int32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#endif - -#ifdef FLOAT128 - -static void time_a_int32_z_float128( float128 function( int32 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_int32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_int32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#endif - -enum { - numInputs_int64 = 32 -}; - -static const int64 inputs_int64[ numInputs_int64 ] = { - LIT64( 0xFBFFC3FFFFFFFFFF ), - LIT64( 0x0000000003C589BC ), - LIT64( 0x00000000400013FE ), - LIT64( 0x0000000000186171 ), - LIT64( 0xFFFFFFFFFFFEFBFA ), - LIT64( 0xFFFFFD79E6DFFC73 ), - LIT64( 0x0000000010001DFF ), - LIT64( 0xDD1A0F0C78513710 ), - LIT64( 0xFFFF83FFFFFEFFFE ), - LIT64( 0x00756EBD1AD0C1C7 ), - LIT64( 0x0003FDFFFFFFFFBE ), - LIT64( 0x0007D0FB2C2CA951 ), - LIT64( 0x0007FC0007FFFFFE ), - LIT64( 0x0000001F942B18BB ), - LIT64( 0x0000080101FFFFFE ), - LIT64( 0xFFFFFFFFFFFF0978 ), - LIT64( 0x000000000008BFFF ), - LIT64( 0x0000000006F5AF08 ), - LIT64( 0xFFDEFF7FFFFFFFFE ), - LIT64( 0x0000000000000003 ), - LIT64( 0x3FFFFFFFFF80007D ), - LIT64( 0x0000000000000078 ), - LIT64( 0xFFF80000007FDFFD ), - LIT64( 0x1BBC775B78016AB0 ), - LIT64( 0xFFF9001FFFFFFFFE ), - LIT64( 0xFFFD4767AB98E43F ), - LIT64( 0xFFFFFEFFFE00001E ), - LIT64( 0xFFFFFFFFFFF04EFD ), - LIT64( 0x07FFFFFFFFFFF7FF ), - LIT64( 0xFFFC9EAA38F89050 ), - LIT64( 0x00000020FBFFFFFE ), - LIT64( 0x0000099AE6455357 ) -}; - -static void time_a_int64_z_float32( float32 function( int64 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_int64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_int64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_a_int64_z_float64( float64 function( int64 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_int64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_int64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#ifdef FLOATX80 - -static void time_a_int64_z_floatx80( floatx80 function( int64 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_int64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_int64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#endif - -#ifdef FLOAT128 - -static void time_a_int64_z_float128( float128 function( int64 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_int64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_int64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#endif - -enum { - numInputs_float32 = 32 -}; - -static const float32 inputs_float32[ numInputs_float32 ] = { - 0x4EFA0000, 0xC1D0B328, 0x80000000, 0x3E69A31E, - 0xAF803EFF, 0x3F800000, 0x17BF8000, 0xE74A301A, - 0x4E010003, 0x7EE3C75D, 0xBD803FE0, 0xBFFEFF00, - 0x7981F800, 0x431FFFFC, 0xC100C000, 0x3D87EFFF, - 0x4103FEFE, 0xBC000007, 0xBF01F7FF, 0x4E6C6B5C, - 0xC187FFFE, 0xC58B9F13, 0x4F88007F, 0xDF004007, - 0xB7FFD7FE, 0x7E8001FB, 0x46EFFBFF, 0x31C10000, - 0xDB428661, 0x33F89B1F, 0xA3BFEFFF, 0x537BFFBE -}; - -static void time_a_float32_z_int32( int32 function( float32 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_float32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_float32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_a_float32_z_int64( int64 function( float32 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_float32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_float32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_a_float32_z_float64( float64 function( float32 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_float32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_float32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#ifdef FLOATX80 - -static void time_a_float32_z_floatx80( floatx80 function( float32 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_float32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_float32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#endif - -#ifdef FLOAT128 - -static void time_a_float32_z_float128( float128 function( float32 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_float32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_float32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#endif - -static void time_az_float32( float32 function( float32 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_float32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_float32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_ab_float32_z_flag( flag function( float32, float32 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNumA, inputNumB; - - count = 0; - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( - inputs_float32[ inputNumA ], inputs_float32[ inputNumB ] ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_float32 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_float32 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( - inputs_float32[ inputNumA ], inputs_float32[ inputNumB ] ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_float32 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_float32 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_abz_float32( float32 function( float32, float32 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNumA, inputNumB; - - count = 0; - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( - inputs_float32[ inputNumA ], inputs_float32[ inputNumB ] ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_float32 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_float32 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( - inputs_float32[ inputNumA ], inputs_float32[ inputNumB ] ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_float32 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_float32 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static const float32 inputs_float32_pos[ numInputs_float32 ] = { - 0x4EFA0000, 0x41D0B328, 0x00000000, 0x3E69A31E, - 0x2F803EFF, 0x3F800000, 0x17BF8000, 0x674A301A, - 0x4E010003, 0x7EE3C75D, 0x3D803FE0, 0x3FFEFF00, - 0x7981F800, 0x431FFFFC, 0x4100C000, 0x3D87EFFF, - 0x4103FEFE, 0x3C000007, 0x3F01F7FF, 0x4E6C6B5C, - 0x4187FFFE, 0x458B9F13, 0x4F88007F, 0x5F004007, - 0x37FFD7FE, 0x7E8001FB, 0x46EFFBFF, 0x31C10000, - 0x5B428661, 0x33F89B1F, 0x23BFEFFF, 0x537BFFBE -}; - -static void time_az_float32_pos( float32 function( float32 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_float32_pos[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_float32_pos[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -enum { - numInputs_float64 = 32 -}; - -static const float64 inputs_float64[ numInputs_float64 ] = { - LIT64( 0x422FFFC008000000 ), - LIT64( 0xB7E0000480000000 ), - LIT64( 0xF3FD2546120B7935 ), - LIT64( 0x3FF0000000000000 ), - LIT64( 0xCE07F766F09588D6 ), - LIT64( 0x8000000000000000 ), - LIT64( 0x3FCE000400000000 ), - LIT64( 0x8313B60F0032BED8 ), - LIT64( 0xC1EFFFFFC0002000 ), - LIT64( 0x3FB3C75D224F2B0F ), - LIT64( 0x7FD00000004000FF ), - LIT64( 0xA12FFF8000001FFF ), - LIT64( 0x3EE0000000FE0000 ), - LIT64( 0x0010000080000004 ), - LIT64( 0x41CFFFFE00000020 ), - LIT64( 0x40303FFFFFFFFFFD ), - LIT64( 0x3FD000003FEFFFFF ), - LIT64( 0xBFD0000010000000 ), - LIT64( 0xB7FC6B5C16CA55CF ), - LIT64( 0x413EEB940B9D1301 ), - LIT64( 0xC7E00200001FFFFF ), - LIT64( 0x47F00021FFFFFFFE ), - LIT64( 0xBFFFFFFFF80000FF ), - LIT64( 0xC07FFFFFE00FFFFF ), - LIT64( 0x001497A63740C5E8 ), - LIT64( 0xC4BFFFE0001FFFFF ), - LIT64( 0x96FFDFFEFFFFFFFF ), - LIT64( 0x403FC000000001FE ), - LIT64( 0xFFD00000000001F6 ), - LIT64( 0x0640400002000000 ), - LIT64( 0x479CEE1E4F789FE0 ), - LIT64( 0xC237FFFFFFFFFDFE ) -}; - -static void time_a_float64_z_int32( int32 function( float64 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_float64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_float64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_a_float64_z_int64( int64 function( float64 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_float64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_float64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_a_float64_z_float32( float32 function( float64 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_float64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_float64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#ifdef FLOATX80 - -static void time_a_float64_z_floatx80( floatx80 function( float64 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_float64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_float64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#endif - -#ifdef FLOAT128 - -static void time_a_float64_z_float128( float128 function( float64 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_float64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_float64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#endif - -static void time_az_float64( float64 function( float64 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_float64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_float64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_ab_float64_z_flag( flag function( float64, float64 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNumA, inputNumB; - - count = 0; - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( - inputs_float64[ inputNumA ], inputs_float64[ inputNumB ] ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_float64 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_float64 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( - inputs_float64[ inputNumA ], inputs_float64[ inputNumB ] ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_float64 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_float64 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_abz_float64( float64 function( float64, float64 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNumA, inputNumB; - - count = 0; - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( - inputs_float64[ inputNumA ], inputs_float64[ inputNumB ] ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_float64 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_float64 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( - inputs_float64[ inputNumA ], inputs_float64[ inputNumB ] ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_float64 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_float64 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static const float64 inputs_float64_pos[ numInputs_float64 ] = { - LIT64( 0x422FFFC008000000 ), - LIT64( 0x37E0000480000000 ), - LIT64( 0x73FD2546120B7935 ), - LIT64( 0x3FF0000000000000 ), - LIT64( 0x4E07F766F09588D6 ), - LIT64( 0x0000000000000000 ), - LIT64( 0x3FCE000400000000 ), - LIT64( 0x0313B60F0032BED8 ), - LIT64( 0x41EFFFFFC0002000 ), - LIT64( 0x3FB3C75D224F2B0F ), - LIT64( 0x7FD00000004000FF ), - LIT64( 0x212FFF8000001FFF ), - LIT64( 0x3EE0000000FE0000 ), - LIT64( 0x0010000080000004 ), - LIT64( 0x41CFFFFE00000020 ), - LIT64( 0x40303FFFFFFFFFFD ), - LIT64( 0x3FD000003FEFFFFF ), - LIT64( 0x3FD0000010000000 ), - LIT64( 0x37FC6B5C16CA55CF ), - LIT64( 0x413EEB940B9D1301 ), - LIT64( 0x47E00200001FFFFF ), - LIT64( 0x47F00021FFFFFFFE ), - LIT64( 0x3FFFFFFFF80000FF ), - LIT64( 0x407FFFFFE00FFFFF ), - LIT64( 0x001497A63740C5E8 ), - LIT64( 0x44BFFFE0001FFFFF ), - LIT64( 0x16FFDFFEFFFFFFFF ), - LIT64( 0x403FC000000001FE ), - LIT64( 0x7FD00000000001F6 ), - LIT64( 0x0640400002000000 ), - LIT64( 0x479CEE1E4F789FE0 ), - LIT64( 0x4237FFFFFFFFFDFE ) -}; - -static void time_az_float64_pos( float64 function( float64 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_float64_pos[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_float64_pos[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#ifdef FLOATX80 - -enum { - numInputs_floatx80 = 32 -}; - -static const struct { - bits16 high; - bits64 low; -} inputs_floatx80[ numInputs_floatx80 ] = { - { 0xC03F, LIT64( 0xA9BE15A19C1E8B62 ) }, - { 0x8000, LIT64( 0x0000000000000000 ) }, - { 0x75A8, LIT64( 0xE59591E4788957A5 ) }, - { 0xBFFF, LIT64( 0xFFF0000000000040 ) }, - { 0x0CD8, LIT64( 0xFC000000000007FE ) }, - { 0x43BA, LIT64( 0x99A4000000000000 ) }, - { 0x3FFF, LIT64( 0x8000000000000000 ) }, - { 0x4081, LIT64( 0x94FBF1BCEB5545F0 ) }, - { 0x403E, LIT64( 0xFFF0000000002000 ) }, - { 0x3FFE, LIT64( 0xC860E3C75D224F28 ) }, - { 0x407E, LIT64( 0xFC00000FFFFFFFFE ) }, - { 0x737A, LIT64( 0x800000007FFDFFFE ) }, - { 0x4044, LIT64( 0xFFFFFF80000FFFFF ) }, - { 0xBBFE, LIT64( 0x8000040000001FFE ) }, - { 0xC002, LIT64( 0xFF80000000000020 ) }, - { 0xDE8D, LIT64( 0xFFFFFFFFFFE00004 ) }, - { 0xC004, LIT64( 0x8000000000003FFB ) }, - { 0x407F, LIT64( 0x800000000003FFFE ) }, - { 0xC000, LIT64( 0xA459EE6A5C16CA55 ) }, - { 0x8003, LIT64( 0xC42CBF7399AEEB94 ) }, - { 0xBF7F, LIT64( 0xF800000000000006 ) }, - { 0xC07F, LIT64( 0xBF56BE8871F28FEA ) }, - { 0xC07E, LIT64( 0xFFFF77FFFFFFFFFE ) }, - { 0xADC9, LIT64( 0x8000000FFFFFFFDE ) }, - { 0xC001, LIT64( 0xEFF7FFFFFFFFFFFF ) }, - { 0x4001, LIT64( 0xBE84F30125C497A6 ) }, - { 0xC06B, LIT64( 0xEFFFFFFFFFFFFFFF ) }, - { 0x4080, LIT64( 0xFFFFFFFFBFFFFFFF ) }, - { 0x87E9, LIT64( 0x81FFFFFFFFFFFBFF ) }, - { 0xA63F, LIT64( 0x801FFFFFFEFFFFFE ) }, - { 0x403C, LIT64( 0x801FFFFFFFF7FFFF ) }, - { 0x4018, LIT64( 0x8000000000080003 ) } -}; - -static void time_a_floatx80_z_int32( int32 function( floatx80 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - floatx80 a; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_floatx80[ inputNum ].low; - a.high = inputs_floatx80[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_floatx80[ inputNum ].low; - a.high = inputs_floatx80[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_a_floatx80_z_int64( int64 function( floatx80 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - floatx80 a; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_floatx80[ inputNum ].low; - a.high = inputs_floatx80[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_floatx80[ inputNum ].low; - a.high = inputs_floatx80[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_a_floatx80_z_float32( float32 function( floatx80 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - floatx80 a; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_floatx80[ inputNum ].low; - a.high = inputs_floatx80[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_floatx80[ inputNum ].low; - a.high = inputs_floatx80[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_a_floatx80_z_float64( float64 function( floatx80 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - floatx80 a; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_floatx80[ inputNum ].low; - a.high = inputs_floatx80[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_floatx80[ inputNum ].low; - a.high = inputs_floatx80[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#ifdef FLOAT128 - -static void time_a_floatx80_z_float128( float128 function( floatx80 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - floatx80 a; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_floatx80[ inputNum ].low; - a.high = inputs_floatx80[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_floatx80[ inputNum ].low; - a.high = inputs_floatx80[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#endif - -static void time_az_floatx80( floatx80 function( floatx80 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - floatx80 a; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_floatx80[ inputNum ].low; - a.high = inputs_floatx80[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_floatx80[ inputNum ].low; - a.high = inputs_floatx80[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_ab_floatx80_z_flag( flag function( floatx80, floatx80 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNumA, inputNumB; - floatx80 a, b; - - count = 0; - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_floatx80[ inputNumA ].low; - a.high = inputs_floatx80[ inputNumA ].high; - b.low = inputs_floatx80[ inputNumB ].low; - b.high = inputs_floatx80[ inputNumB ].high; - function( a, b ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_floatx80 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_floatx80 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_floatx80[ inputNumA ].low; - a.high = inputs_floatx80[ inputNumA ].high; - b.low = inputs_floatx80[ inputNumB ].low; - b.high = inputs_floatx80[ inputNumB ].high; - function( a, b ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_floatx80 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_floatx80 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_abz_floatx80( floatx80 function( floatx80, floatx80 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNumA, inputNumB; - floatx80 a, b; - - count = 0; - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_floatx80[ inputNumA ].low; - a.high = inputs_floatx80[ inputNumA ].high; - b.low = inputs_floatx80[ inputNumB ].low; - b.high = inputs_floatx80[ inputNumB ].high; - function( a, b ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_floatx80 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_floatx80 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_floatx80[ inputNumA ].low; - a.high = inputs_floatx80[ inputNumA ].high; - b.low = inputs_floatx80[ inputNumB ].low; - b.high = inputs_floatx80[ inputNumB ].high; - function( a, b ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_floatx80 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_floatx80 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static const struct { - bits16 high; - bits64 low; -} inputs_floatx80_pos[ numInputs_floatx80 ] = { - { 0x403F, LIT64( 0xA9BE15A19C1E8B62 ) }, - { 0x0000, LIT64( 0x0000000000000000 ) }, - { 0x75A8, LIT64( 0xE59591E4788957A5 ) }, - { 0x3FFF, LIT64( 0xFFF0000000000040 ) }, - { 0x0CD8, LIT64( 0xFC000000000007FE ) }, - { 0x43BA, LIT64( 0x99A4000000000000 ) }, - { 0x3FFF, LIT64( 0x8000000000000000 ) }, - { 0x4081, LIT64( 0x94FBF1BCEB5545F0 ) }, - { 0x403E, LIT64( 0xFFF0000000002000 ) }, - { 0x3FFE, LIT64( 0xC860E3C75D224F28 ) }, - { 0x407E, LIT64( 0xFC00000FFFFFFFFE ) }, - { 0x737A, LIT64( 0x800000007FFDFFFE ) }, - { 0x4044, LIT64( 0xFFFFFF80000FFFFF ) }, - { 0x3BFE, LIT64( 0x8000040000001FFE ) }, - { 0x4002, LIT64( 0xFF80000000000020 ) }, - { 0x5E8D, LIT64( 0xFFFFFFFFFFE00004 ) }, - { 0x4004, LIT64( 0x8000000000003FFB ) }, - { 0x407F, LIT64( 0x800000000003FFFE ) }, - { 0x4000, LIT64( 0xA459EE6A5C16CA55 ) }, - { 0x0003, LIT64( 0xC42CBF7399AEEB94 ) }, - { 0x3F7F, LIT64( 0xF800000000000006 ) }, - { 0x407F, LIT64( 0xBF56BE8871F28FEA ) }, - { 0x407E, LIT64( 0xFFFF77FFFFFFFFFE ) }, - { 0x2DC9, LIT64( 0x8000000FFFFFFFDE ) }, - { 0x4001, LIT64( 0xEFF7FFFFFFFFFFFF ) }, - { 0x4001, LIT64( 0xBE84F30125C497A6 ) }, - { 0x406B, LIT64( 0xEFFFFFFFFFFFFFFF ) }, - { 0x4080, LIT64( 0xFFFFFFFFBFFFFFFF ) }, - { 0x07E9, LIT64( 0x81FFFFFFFFFFFBFF ) }, - { 0x263F, LIT64( 0x801FFFFFFEFFFFFE ) }, - { 0x403C, LIT64( 0x801FFFFFFFF7FFFF ) }, - { 0x4018, LIT64( 0x8000000000080003 ) } -}; - -static void time_az_floatx80_pos( floatx80 function( floatx80 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - floatx80 a; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_floatx80_pos[ inputNum ].low; - a.high = inputs_floatx80_pos[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_floatx80_pos[ inputNum ].low; - a.high = inputs_floatx80_pos[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#endif - -#ifdef FLOAT128 - -enum { - numInputs_float128 = 32 -}; - -static const struct { - bits64 high, low; -} inputs_float128[ numInputs_float128 ] = { - { LIT64( 0x3FDA200000100000 ), LIT64( 0x0000000000000000 ) }, - { LIT64( 0x3FFF000000000000 ), LIT64( 0x0000000000000000 ) }, - { LIT64( 0x85F14776190C8306 ), LIT64( 0xD8715F4E3D54BB92 ) }, - { LIT64( 0xF2B00000007FFFFF ), LIT64( 0xFFFFFFFFFFF7FFFF ) }, - { LIT64( 0x8000000000000000 ), LIT64( 0x0000000000000000 ) }, - { LIT64( 0xBFFFFFFFFFE00000 ), LIT64( 0x0000008000000000 ) }, - { LIT64( 0x407F1719CE722F3E ), LIT64( 0xDA6B3FE5FF29425B ) }, - { LIT64( 0x43FFFF8000000000 ), LIT64( 0x0000000000400000 ) }, - { LIT64( 0x401E000000000100 ), LIT64( 0x0000000000002000 ) }, - { LIT64( 0x3FFED71DACDA8E47 ), LIT64( 0x4860E3C75D224F28 ) }, - { LIT64( 0xBF7ECFC1E90647D1 ), LIT64( 0x7A124FE55623EE44 ) }, - { LIT64( 0x0DF7007FFFFFFFFF ), LIT64( 0xFFFFFFFFEFFFFFFF ) }, - { LIT64( 0x3FE5FFEFFFFFFFFF ), LIT64( 0xFFFFFFFFFFFFEFFF ) }, - { LIT64( 0x403FFFFFFFFFFFFF ), LIT64( 0xFFFFFFFFFFFFFBFE ) }, - { LIT64( 0xBFFB2FBF7399AFEB ), LIT64( 0xA459EE6A5C16CA55 ) }, - { LIT64( 0xBDB8FFFFFFFFFFFC ), LIT64( 0x0000000000000400 ) }, - { LIT64( 0x3FC8FFDFFFFFFFFF ), LIT64( 0xFFFFFFFFF0000000 ) }, - { LIT64( 0x3FFBFFFFFFDFFFFF ), LIT64( 0xFFF8000000000000 ) }, - { LIT64( 0x407043C11737BE84 ), LIT64( 0xDDD58212ADC937F4 ) }, - { LIT64( 0x8001000000000000 ), LIT64( 0x0000001000000001 ) }, - { LIT64( 0xC036FFFFFFFFFFFF ), LIT64( 0xFE40000000000000 ) }, - { LIT64( 0x4002FFFFFE000002 ), LIT64( 0x0000000000000000 ) }, - { LIT64( 0x4000C3FEDE897773 ), LIT64( 0x326AC4FD8EFBE6DC ) }, - { LIT64( 0xBFFF0000000FFFFF ), LIT64( 0xFFFFFE0000000000 ) }, - { LIT64( 0x62C3E502146E426D ), LIT64( 0x43F3CAA0DC7DF1A0 ) }, - { LIT64( 0xB5CBD32E52BB570E ), LIT64( 0xBCC477CB11C6236C ) }, - { LIT64( 0xE228FFFFFFC00000 ), LIT64( 0x0000000000000000 ) }, - { LIT64( 0x3F80000000000000 ), LIT64( 0x0000000080000008 ) }, - { LIT64( 0xC1AFFFDFFFFFFFFF ), LIT64( 0xFFFC000000000000 ) }, - { LIT64( 0xC96F000000000000 ), LIT64( 0x00000001FFFBFFFF ) }, - { LIT64( 0x3DE09BFE7923A338 ), LIT64( 0xBCC8FBBD7CEC1F4F ) }, - { LIT64( 0x401CFFFFFFFFFFFF ), LIT64( 0xFFFFFFFEFFFFFF80 ) } -}; - -static void time_a_float128_z_int32( int32 function( float128 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - float128 a; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_float128[ inputNum ].low; - a.high = inputs_float128[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_float128[ inputNum ].low; - a.high = inputs_float128[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_a_float128_z_int64( int64 function( float128 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - float128 a; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_float128[ inputNum ].low; - a.high = inputs_float128[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_float128[ inputNum ].low; - a.high = inputs_float128[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_a_float128_z_float32( float32 function( float128 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - float128 a; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_float128[ inputNum ].low; - a.high = inputs_float128[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_float128[ inputNum ].low; - a.high = inputs_float128[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_a_float128_z_float64( float64 function( float128 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - float128 a; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_float128[ inputNum ].low; - a.high = inputs_float128[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_float128[ inputNum ].low; - a.high = inputs_float128[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#ifdef FLOATX80 - -static void time_a_float128_z_floatx80( floatx80 function( float128 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - float128 a; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_float128[ inputNum ].low; - a.high = inputs_float128[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_float128[ inputNum ].low; - a.high = inputs_float128[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#endif - -static void time_az_float128( float128 function( float128 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - float128 a; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_float128[ inputNum ].low; - a.high = inputs_float128[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_float128[ inputNum ].low; - a.high = inputs_float128[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_ab_float128_z_flag( flag function( float128, float128 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNumA, inputNumB; - float128 a, b; - - count = 0; - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_float128[ inputNumA ].low; - a.high = inputs_float128[ inputNumA ].high; - b.low = inputs_float128[ inputNumB ].low; - b.high = inputs_float128[ inputNumB ].high; - function( a, b ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_float128 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_float128 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_float128[ inputNumA ].low; - a.high = inputs_float128[ inputNumA ].high; - b.low = inputs_float128[ inputNumB ].low; - b.high = inputs_float128[ inputNumB ].high; - function( a, b ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_float128 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_float128 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_abz_float128( float128 function( float128, float128 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNumA, inputNumB; - float128 a, b; - - count = 0; - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_float128[ inputNumA ].low; - a.high = inputs_float128[ inputNumA ].high; - b.low = inputs_float128[ inputNumB ].low; - b.high = inputs_float128[ inputNumB ].high; - function( a, b ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_float128 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_float128 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_float128[ inputNumA ].low; - a.high = inputs_float128[ inputNumA ].high; - b.low = inputs_float128[ inputNumB ].low; - b.high = inputs_float128[ inputNumB ].high; - function( a, b ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_float128 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_float128 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static const struct { - bits64 high, low; -} inputs_float128_pos[ numInputs_float128 ] = { - { LIT64( 0x3FDA200000100000 ), LIT64( 0x0000000000000000 ) }, - { LIT64( 0x3FFF000000000000 ), LIT64( 0x0000000000000000 ) }, - { LIT64( 0x05F14776190C8306 ), LIT64( 0xD8715F4E3D54BB92 ) }, - { LIT64( 0x72B00000007FFFFF ), LIT64( 0xFFFFFFFFFFF7FFFF ) }, - { LIT64( 0x0000000000000000 ), LIT64( 0x0000000000000000 ) }, - { LIT64( 0x3FFFFFFFFFE00000 ), LIT64( 0x0000008000000000 ) }, - { LIT64( 0x407F1719CE722F3E ), LIT64( 0xDA6B3FE5FF29425B ) }, - { LIT64( 0x43FFFF8000000000 ), LIT64( 0x0000000000400000 ) }, - { LIT64( 0x401E000000000100 ), LIT64( 0x0000000000002000 ) }, - { LIT64( 0x3FFED71DACDA8E47 ), LIT64( 0x4860E3C75D224F28 ) }, - { LIT64( 0x3F7ECFC1E90647D1 ), LIT64( 0x7A124FE55623EE44 ) }, - { LIT64( 0x0DF7007FFFFFFFFF ), LIT64( 0xFFFFFFFFEFFFFFFF ) }, - { LIT64( 0x3FE5FFEFFFFFFFFF ), LIT64( 0xFFFFFFFFFFFFEFFF ) }, - { LIT64( 0x403FFFFFFFFFFFFF ), LIT64( 0xFFFFFFFFFFFFFBFE ) }, - { LIT64( 0x3FFB2FBF7399AFEB ), LIT64( 0xA459EE6A5C16CA55 ) }, - { LIT64( 0x3DB8FFFFFFFFFFFC ), LIT64( 0x0000000000000400 ) }, - { LIT64( 0x3FC8FFDFFFFFFFFF ), LIT64( 0xFFFFFFFFF0000000 ) }, - { LIT64( 0x3FFBFFFFFFDFFFFF ), LIT64( 0xFFF8000000000000 ) }, - { LIT64( 0x407043C11737BE84 ), LIT64( 0xDDD58212ADC937F4 ) }, - { LIT64( 0x0001000000000000 ), LIT64( 0x0000001000000001 ) }, - { LIT64( 0x4036FFFFFFFFFFFF ), LIT64( 0xFE40000000000000 ) }, - { LIT64( 0x4002FFFFFE000002 ), LIT64( 0x0000000000000000 ) }, - { LIT64( 0x4000C3FEDE897773 ), LIT64( 0x326AC4FD8EFBE6DC ) }, - { LIT64( 0x3FFF0000000FFFFF ), LIT64( 0xFFFFFE0000000000 ) }, - { LIT64( 0x62C3E502146E426D ), LIT64( 0x43F3CAA0DC7DF1A0 ) }, - { LIT64( 0x35CBD32E52BB570E ), LIT64( 0xBCC477CB11C6236C ) }, - { LIT64( 0x6228FFFFFFC00000 ), LIT64( 0x0000000000000000 ) }, - { LIT64( 0x3F80000000000000 ), LIT64( 0x0000000080000008 ) }, - { LIT64( 0x41AFFFDFFFFFFFFF ), LIT64( 0xFFFC000000000000 ) }, - { LIT64( 0x496F000000000000 ), LIT64( 0x00000001FFFBFFFF ) }, - { LIT64( 0x3DE09BFE7923A338 ), LIT64( 0xBCC8FBBD7CEC1F4F ) }, - { LIT64( 0x401CFFFFFFFFFFFF ), LIT64( 0xFFFFFFFEFFFFFF80 ) } -}; - -static void time_az_float128_pos( float128 function( float128 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - float128 a; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_float128_pos[ inputNum ].low; - a.high = inputs_float128_pos[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_float128_pos[ inputNum ].low; - a.high = inputs_float128_pos[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#endif - -enum { - INT32_TO_FLOAT32 = 1, - INT32_TO_FLOAT64, -#ifdef FLOATX80 - INT32_TO_FLOATX80, -#endif -#ifdef FLOAT128 - INT32_TO_FLOAT128, -#endif - INT64_TO_FLOAT32, - INT64_TO_FLOAT64, -#ifdef FLOATX80 - INT64_TO_FLOATX80, -#endif -#ifdef FLOAT128 - INT64_TO_FLOAT128, -#endif - FLOAT32_TO_INT32, - FLOAT32_TO_INT32_ROUND_TO_ZERO, - FLOAT32_TO_INT64, - FLOAT32_TO_INT64_ROUND_TO_ZERO, - FLOAT32_TO_FLOAT64, -#ifdef FLOATX80 - FLOAT32_TO_FLOATX80, -#endif -#ifdef FLOAT128 - FLOAT32_TO_FLOAT128, -#endif - FLOAT32_ROUND_TO_INT, - FLOAT32_ADD, - FLOAT32_SUB, - FLOAT32_MUL, - FLOAT32_DIV, - FLOAT32_REM, - FLOAT32_SQRT, - FLOAT32_EQ, - FLOAT32_LE, - FLOAT32_LT, - FLOAT32_EQ_SIGNALING, - FLOAT32_LE_QUIET, - FLOAT32_LT_QUIET, - FLOAT64_TO_INT32, - FLOAT64_TO_INT32_ROUND_TO_ZERO, - FLOAT64_TO_INT64, - FLOAT64_TO_INT64_ROUND_TO_ZERO, - FLOAT64_TO_FLOAT32, -#ifdef FLOATX80 - FLOAT64_TO_FLOATX80, -#endif -#ifdef FLOAT128 - FLOAT64_TO_FLOAT128, -#endif - FLOAT64_ROUND_TO_INT, - FLOAT64_ADD, - FLOAT64_SUB, - FLOAT64_MUL, - FLOAT64_DIV, - FLOAT64_REM, - FLOAT64_SQRT, - FLOAT64_EQ, - FLOAT64_LE, - FLOAT64_LT, - FLOAT64_EQ_SIGNALING, - FLOAT64_LE_QUIET, - FLOAT64_LT_QUIET, -#ifdef FLOATX80 - FLOATX80_TO_INT32, - FLOATX80_TO_INT32_ROUND_TO_ZERO, - FLOATX80_TO_INT64, - FLOATX80_TO_INT64_ROUND_TO_ZERO, - FLOATX80_TO_FLOAT32, - FLOATX80_TO_FLOAT64, -#ifdef FLOAT128 - FLOATX80_TO_FLOAT128, -#endif - FLOATX80_ROUND_TO_INT, - FLOATX80_ADD, - FLOATX80_SUB, - FLOATX80_MUL, - FLOATX80_DIV, - FLOATX80_REM, - FLOATX80_SQRT, - FLOATX80_EQ, - FLOATX80_LE, - FLOATX80_LT, - FLOATX80_EQ_SIGNALING, - FLOATX80_LE_QUIET, - FLOATX80_LT_QUIET, -#endif -#ifdef FLOAT128 - FLOAT128_TO_INT32, - FLOAT128_TO_INT32_ROUND_TO_ZERO, - FLOAT128_TO_INT64, - FLOAT128_TO_INT64_ROUND_TO_ZERO, - FLOAT128_TO_FLOAT32, - FLOAT128_TO_FLOAT64, -#ifdef FLOATX80 - FLOAT128_TO_FLOATX80, -#endif - FLOAT128_ROUND_TO_INT, - FLOAT128_ADD, - FLOAT128_SUB, - FLOAT128_MUL, - FLOAT128_DIV, - FLOAT128_REM, - FLOAT128_SQRT, - FLOAT128_EQ, - FLOAT128_LE, - FLOAT128_LT, - FLOAT128_EQ_SIGNALING, - FLOAT128_LE_QUIET, - FLOAT128_LT_QUIET, -#endif - NUM_FUNCTIONS -}; - -static struct { - char *name; - int8 numInputs; - flag roundingPrecision, roundingMode; - flag tininessMode, tininessModeAtReducedPrecision; -} functions[ NUM_FUNCTIONS ] = { - { 0, 0, 0, 0, 0, 0 }, - { "int32_to_float32", 1, FALSE, TRUE, FALSE, FALSE }, - { "int32_to_float64", 1, FALSE, FALSE, FALSE, FALSE }, -#ifdef FLOATX80 - { "int32_to_floatx80", 1, FALSE, FALSE, FALSE, FALSE }, -#endif -#ifdef FLOAT128 - { "int32_to_float128", 1, FALSE, FALSE, FALSE, FALSE }, -#endif - { "int64_to_float32", 1, FALSE, TRUE, FALSE, FALSE }, - { "int64_to_float64", 1, FALSE, TRUE, FALSE, FALSE }, -#ifdef FLOATX80 - { "int64_to_floatx80", 1, FALSE, FALSE, FALSE, FALSE }, -#endif -#ifdef FLOAT128 - { "int64_to_float128", 1, FALSE, FALSE, FALSE, FALSE }, -#endif - { "float32_to_int32", 1, FALSE, TRUE, FALSE, FALSE }, - { "float32_to_int32_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, - { "float32_to_int64", 1, FALSE, TRUE, FALSE, FALSE }, - { "float32_to_int64_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, - { "float32_to_float64", 1, FALSE, FALSE, FALSE, FALSE }, -#ifdef FLOATX80 - { "float32_to_floatx80", 1, FALSE, FALSE, FALSE, FALSE }, -#endif -#ifdef FLOAT128 - { "float32_to_float128", 1, FALSE, FALSE, FALSE, FALSE }, -#endif - { "float32_round_to_int", 1, FALSE, TRUE, FALSE, FALSE }, - { "float32_add", 2, FALSE, TRUE, FALSE, FALSE }, - { "float32_sub", 2, FALSE, TRUE, FALSE, FALSE }, - { "float32_mul", 2, FALSE, TRUE, TRUE, FALSE }, - { "float32_div", 2, FALSE, TRUE, FALSE, FALSE }, - { "float32_rem", 2, FALSE, FALSE, FALSE, FALSE }, - { "float32_sqrt", 1, FALSE, TRUE, FALSE, FALSE }, - { "float32_eq", 2, FALSE, FALSE, FALSE, FALSE }, - { "float32_le", 2, FALSE, FALSE, FALSE, FALSE }, - { "float32_lt", 2, FALSE, FALSE, FALSE, FALSE }, - { "float32_eq_signaling", 2, FALSE, FALSE, FALSE, FALSE }, - { "float32_le_quiet", 2, FALSE, FALSE, FALSE, FALSE }, - { "float32_lt_quiet", 2, FALSE, FALSE, FALSE, FALSE }, - { "float64_to_int32", 1, FALSE, TRUE, FALSE, FALSE }, - { "float64_to_int32_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, - { "float64_to_int64", 1, FALSE, TRUE, FALSE, FALSE }, - { "float64_to_int64_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, - { "float64_to_float32", 1, FALSE, TRUE, TRUE, FALSE }, -#ifdef FLOATX80 - { "float64_to_floatx80", 1, FALSE, FALSE, FALSE, FALSE }, -#endif -#ifdef FLOAT128 - { "float64_to_float128", 1, FALSE, FALSE, FALSE, FALSE }, -#endif - { "float64_round_to_int", 1, FALSE, TRUE, FALSE, FALSE }, - { "float64_add", 2, FALSE, TRUE, FALSE, FALSE }, - { "float64_sub", 2, FALSE, TRUE, FALSE, FALSE }, - { "float64_mul", 2, FALSE, TRUE, TRUE, FALSE }, - { "float64_div", 2, FALSE, TRUE, FALSE, FALSE }, - { "float64_rem", 2, FALSE, FALSE, FALSE, FALSE }, - { "float64_sqrt", 1, FALSE, TRUE, FALSE, FALSE }, - { "float64_eq", 2, FALSE, FALSE, FALSE, FALSE }, - { "float64_le", 2, FALSE, FALSE, FALSE, FALSE }, - { "float64_lt", 2, FALSE, FALSE, FALSE, FALSE }, - { "float64_eq_signaling", 2, FALSE, FALSE, FALSE, FALSE }, - { "float64_le_quiet", 2, FALSE, FALSE, FALSE, FALSE }, - { "float64_lt_quiet", 2, FALSE, FALSE, FALSE, FALSE }, -#ifdef FLOATX80 - { "floatx80_to_int32", 1, FALSE, TRUE, FALSE, FALSE }, - { "floatx80_to_int32_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, - { "floatx80_to_int64", 1, FALSE, TRUE, FALSE, FALSE }, - { "floatx80_to_int64_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, - { "floatx80_to_float32", 1, FALSE, TRUE, TRUE, FALSE }, - { "floatx80_to_float64", 1, FALSE, TRUE, TRUE, FALSE }, -#ifdef FLOAT128 - { "floatx80_to_float128", 1, FALSE, FALSE, FALSE, FALSE }, -#endif - { "floatx80_round_to_int", 1, FALSE, TRUE, FALSE, FALSE }, - { "floatx80_add", 2, TRUE, TRUE, FALSE, TRUE }, - { "floatx80_sub", 2, TRUE, TRUE, FALSE, TRUE }, - { "floatx80_mul", 2, TRUE, TRUE, TRUE, TRUE }, - { "floatx80_div", 2, TRUE, TRUE, FALSE, TRUE }, - { "floatx80_rem", 2, FALSE, FALSE, FALSE, FALSE }, - { "floatx80_sqrt", 1, TRUE, TRUE, FALSE, FALSE }, - { "floatx80_eq", 2, FALSE, FALSE, FALSE, FALSE }, - { "floatx80_le", 2, FALSE, FALSE, FALSE, FALSE }, - { "floatx80_lt", 2, FALSE, FALSE, FALSE, FALSE }, - { "floatx80_eq_signaling", 2, FALSE, FALSE, FALSE, FALSE }, - { "floatx80_le_quiet", 2, FALSE, FALSE, FALSE, FALSE }, - { "floatx80_lt_quiet", 2, FALSE, FALSE, FALSE, FALSE }, -#endif -#ifdef FLOAT128 - { "float128_to_int32", 1, FALSE, TRUE, FALSE, FALSE }, - { "float128_to_int32_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, - { "float128_to_int64", 1, FALSE, TRUE, FALSE, FALSE }, - { "float128_to_int64_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, - { "float128_to_float32", 1, FALSE, TRUE, TRUE, FALSE }, - { "float128_to_float64", 1, FALSE, TRUE, TRUE, FALSE }, -#ifdef FLOATX80 - { "float128_to_floatx80", 1, FALSE, TRUE, TRUE, FALSE }, -#endif - { "float128_round_to_int", 1, FALSE, TRUE, FALSE, FALSE }, - { "float128_add", 2, FALSE, TRUE, FALSE, FALSE }, - { "float128_sub", 2, FALSE, TRUE, FALSE, FALSE }, - { "float128_mul", 2, FALSE, TRUE, TRUE, FALSE }, - { "float128_div", 2, FALSE, TRUE, FALSE, FALSE }, - { "float128_rem", 2, FALSE, FALSE, FALSE, FALSE }, - { "float128_sqrt", 1, FALSE, TRUE, FALSE, FALSE }, - { "float128_eq", 2, FALSE, FALSE, FALSE, FALSE }, - { "float128_le", 2, FALSE, FALSE, FALSE, FALSE }, - { "float128_lt", 2, FALSE, FALSE, FALSE, FALSE }, - { "float128_eq_signaling", 2, FALSE, FALSE, FALSE, FALSE }, - { "float128_le_quiet", 2, FALSE, FALSE, FALSE, FALSE }, - { "float128_lt_quiet", 2, FALSE, FALSE, FALSE, FALSE }, -#endif -}; - -enum { - ROUND_NEAREST_EVEN = 1, - ROUND_TO_ZERO, - ROUND_DOWN, - ROUND_UP, - NUM_ROUNDINGMODES -}; -enum { - TININESS_BEFORE_ROUNDING = 1, - TININESS_AFTER_ROUNDING, - NUM_TININESSMODES -}; - -static void - timeFunctionVariety( - uint8 functionCode, - int8 roundingPrecision, - int8 roundingMode, - int8 tininessMode - ) -{ - uint8 roundingCode; - int8 tininessCode; - - functionName = functions[ functionCode ].name; - if ( roundingPrecision == 32 ) { - roundingPrecisionName = "32"; - } - else if ( roundingPrecision == 64 ) { - roundingPrecisionName = "64"; - } - else if ( roundingPrecision == 80 ) { - roundingPrecisionName = "80"; - } - else { - roundingPrecisionName = 0; - } -#ifdef FLOATX80 - floatx80_rounding_precision = roundingPrecision; -#endif - switch ( roundingMode ) { - case 0: - roundingModeName = 0; - roundingCode = float_round_nearest_even; - break; - case ROUND_NEAREST_EVEN: - roundingModeName = "nearest_even"; - roundingCode = float_round_nearest_even; - break; - case ROUND_TO_ZERO: - roundingModeName = "to_zero"; - roundingCode = float_round_to_zero; - break; - case ROUND_DOWN: - roundingModeName = "down"; - roundingCode = float_round_down; - break; - case ROUND_UP: - roundingModeName = "up"; - roundingCode = float_round_up; - break; - } - float_rounding_mode = roundingCode; - switch ( tininessMode ) { - case 0: - tininessModeName = 0; - tininessCode = float_tininess_after_rounding; - break; - case TININESS_BEFORE_ROUNDING: - tininessModeName = "before"; - tininessCode = float_tininess_before_rounding; - break; - case TININESS_AFTER_ROUNDING: - tininessModeName = "after"; - tininessCode = float_tininess_after_rounding; - break; - } - float_detect_tininess = tininessCode; - switch ( functionCode ) { - case INT32_TO_FLOAT32: - time_a_int32_z_float32( int32_to_float32 ); - break; - case INT32_TO_FLOAT64: - time_a_int32_z_float64( int32_to_float64 ); - break; -#ifdef FLOATX80 - case INT32_TO_FLOATX80: - time_a_int32_z_floatx80( int32_to_floatx80 ); - break; -#endif -#ifdef FLOAT128 - case INT32_TO_FLOAT128: - time_a_int32_z_float128( int32_to_float128 ); - break; -#endif - case INT64_TO_FLOAT32: - time_a_int64_z_float32( int64_to_float32 ); - break; - case INT64_TO_FLOAT64: - time_a_int64_z_float64( int64_to_float64 ); - break; -#ifdef FLOATX80 - case INT64_TO_FLOATX80: - time_a_int64_z_floatx80( int64_to_floatx80 ); - break; -#endif -#ifdef FLOAT128 - case INT64_TO_FLOAT128: - time_a_int64_z_float128( int64_to_float128 ); - break; -#endif - case FLOAT32_TO_INT32: - time_a_float32_z_int32( float32_to_int32 ); - break; - case FLOAT32_TO_INT32_ROUND_TO_ZERO: - time_a_float32_z_int32( float32_to_int32_round_to_zero ); - break; - case FLOAT32_TO_INT64: - time_a_float32_z_int64( float32_to_int64 ); - break; - case FLOAT32_TO_INT64_ROUND_TO_ZERO: - time_a_float32_z_int64( float32_to_int64_round_to_zero ); - break; - case FLOAT32_TO_FLOAT64: - time_a_float32_z_float64( float32_to_float64 ); - break; -#ifdef FLOATX80 - case FLOAT32_TO_FLOATX80: - time_a_float32_z_floatx80( float32_to_floatx80 ); - break; -#endif -#ifdef FLOAT128 - case FLOAT32_TO_FLOAT128: - time_a_float32_z_float128( float32_to_float128 ); - break; -#endif - case FLOAT32_ROUND_TO_INT: - time_az_float32( float32_round_to_int ); - break; - case FLOAT32_ADD: - time_abz_float32( float32_add ); - break; - case FLOAT32_SUB: - time_abz_float32( float32_sub ); - break; - case FLOAT32_MUL: - time_abz_float32( float32_mul ); - break; - case FLOAT32_DIV: - time_abz_float32( float32_div ); - break; - case FLOAT32_REM: - time_abz_float32( float32_rem ); - break; - case FLOAT32_SQRT: - time_az_float32_pos( float32_sqrt ); - break; - case FLOAT32_EQ: - time_ab_float32_z_flag( float32_eq ); - break; - case FLOAT32_LE: - time_ab_float32_z_flag( float32_le ); - break; - case FLOAT32_LT: - time_ab_float32_z_flag( float32_lt ); - break; - case FLOAT32_EQ_SIGNALING: - time_ab_float32_z_flag( float32_eq_signaling ); - break; - case FLOAT32_LE_QUIET: - time_ab_float32_z_flag( float32_le_quiet ); - break; - case FLOAT32_LT_QUIET: - time_ab_float32_z_flag( float32_lt_quiet ); - break; - case FLOAT64_TO_INT32: - time_a_float64_z_int32( float64_to_int32 ); - break; - case FLOAT64_TO_INT32_ROUND_TO_ZERO: - time_a_float64_z_int32( float64_to_int32_round_to_zero ); - break; - case FLOAT64_TO_INT64: - time_a_float64_z_int64( float64_to_int64 ); - break; - case FLOAT64_TO_INT64_ROUND_TO_ZERO: - time_a_float64_z_int64( float64_to_int64_round_to_zero ); - break; - case FLOAT64_TO_FLOAT32: - time_a_float64_z_float32( float64_to_float32 ); - break; -#ifdef FLOATX80 - case FLOAT64_TO_FLOATX80: - time_a_float64_z_floatx80( float64_to_floatx80 ); - break; -#endif -#ifdef FLOAT128 - case FLOAT64_TO_FLOAT128: - time_a_float64_z_float128( float64_to_float128 ); - break; -#endif - case FLOAT64_ROUND_TO_INT: - time_az_float64( float64_round_to_int ); - break; - case FLOAT64_ADD: - time_abz_float64( float64_add ); - break; - case FLOAT64_SUB: - time_abz_float64( float64_sub ); - break; - case FLOAT64_MUL: - time_abz_float64( float64_mul ); - break; - case FLOAT64_DIV: - time_abz_float64( float64_div ); - break; - case FLOAT64_REM: - time_abz_float64( float64_rem ); - break; - case FLOAT64_SQRT: - time_az_float64_pos( float64_sqrt ); - break; - case FLOAT64_EQ: - time_ab_float64_z_flag( float64_eq ); - break; - case FLOAT64_LE: - time_ab_float64_z_flag( float64_le ); - break; - case FLOAT64_LT: - time_ab_float64_z_flag( float64_lt ); - break; - case FLOAT64_EQ_SIGNALING: - time_ab_float64_z_flag( float64_eq_signaling ); - break; - case FLOAT64_LE_QUIET: - time_ab_float64_z_flag( float64_le_quiet ); - break; - case FLOAT64_LT_QUIET: - time_ab_float64_z_flag( float64_lt_quiet ); - break; -#ifdef FLOATX80 - case FLOATX80_TO_INT32: - time_a_floatx80_z_int32( floatx80_to_int32 ); - break; - case FLOATX80_TO_INT32_ROUND_TO_ZERO: - time_a_floatx80_z_int32( floatx80_to_int32_round_to_zero ); - break; - case FLOATX80_TO_INT64: - time_a_floatx80_z_int64( floatx80_to_int64 ); - break; - case FLOATX80_TO_INT64_ROUND_TO_ZERO: - time_a_floatx80_z_int64( floatx80_to_int64_round_to_zero ); - break; - case FLOATX80_TO_FLOAT32: - time_a_floatx80_z_float32( floatx80_to_float32 ); - break; - case FLOATX80_TO_FLOAT64: - time_a_floatx80_z_float64( floatx80_to_float64 ); - break; -#ifdef FLOAT128 - case FLOATX80_TO_FLOAT128: - time_a_floatx80_z_float128( floatx80_to_float128 ); - break; -#endif - case FLOATX80_ROUND_TO_INT: - time_az_floatx80( floatx80_round_to_int ); - break; - case FLOATX80_ADD: - time_abz_floatx80( floatx80_add ); - break; - case FLOATX80_SUB: - time_abz_floatx80( floatx80_sub ); - break; - case FLOATX80_MUL: - time_abz_floatx80( floatx80_mul ); - break; - case FLOATX80_DIV: - time_abz_floatx80( floatx80_div ); - break; - case FLOATX80_REM: - time_abz_floatx80( floatx80_rem ); - break; - case FLOATX80_SQRT: - time_az_floatx80_pos( floatx80_sqrt ); - break; - case FLOATX80_EQ: - time_ab_floatx80_z_flag( floatx80_eq ); - break; - case FLOATX80_LE: - time_ab_floatx80_z_flag( floatx80_le ); - break; - case FLOATX80_LT: - time_ab_floatx80_z_flag( floatx80_lt ); - break; - case FLOATX80_EQ_SIGNALING: - time_ab_floatx80_z_flag( floatx80_eq_signaling ); - break; - case FLOATX80_LE_QUIET: - time_ab_floatx80_z_flag( floatx80_le_quiet ); - break; - case FLOATX80_LT_QUIET: - time_ab_floatx80_z_flag( floatx80_lt_quiet ); - break; -#endif -#ifdef FLOAT128 - case FLOAT128_TO_INT32: - time_a_float128_z_int32( float128_to_int32 ); - break; - case FLOAT128_TO_INT32_ROUND_TO_ZERO: - time_a_float128_z_int32( float128_to_int32_round_to_zero ); - break; - case FLOAT128_TO_INT64: - time_a_float128_z_int64( float128_to_int64 ); - break; - case FLOAT128_TO_INT64_ROUND_TO_ZERO: - time_a_float128_z_int64( float128_to_int64_round_to_zero ); - break; - case FLOAT128_TO_FLOAT32: - time_a_float128_z_float32( float128_to_float32 ); - break; - case FLOAT128_TO_FLOAT64: - time_a_float128_z_float64( float128_to_float64 ); - break; -#ifdef FLOATX80 - case FLOAT128_TO_FLOATX80: - time_a_float128_z_floatx80( float128_to_floatx80 ); - break; -#endif - case FLOAT128_ROUND_TO_INT: - time_az_float128( float128_round_to_int ); - break; - case FLOAT128_ADD: - time_abz_float128( float128_add ); - break; - case FLOAT128_SUB: - time_abz_float128( float128_sub ); - break; - case FLOAT128_MUL: - time_abz_float128( float128_mul ); - break; - case FLOAT128_DIV: - time_abz_float128( float128_div ); - break; - case FLOAT128_REM: - time_abz_float128( float128_rem ); - break; - case FLOAT128_SQRT: - time_az_float128_pos( float128_sqrt ); - break; - case FLOAT128_EQ: - time_ab_float128_z_flag( float128_eq ); - break; - case FLOAT128_LE: - time_ab_float128_z_flag( float128_le ); - break; - case FLOAT128_LT: - time_ab_float128_z_flag( float128_lt ); - break; - case FLOAT128_EQ_SIGNALING: - time_ab_float128_z_flag( float128_eq_signaling ); - break; - case FLOAT128_LE_QUIET: - time_ab_float128_z_flag( float128_le_quiet ); - break; - case FLOAT128_LT_QUIET: - time_ab_float128_z_flag( float128_lt_quiet ); - break; -#endif - } - -} - -static void - timeFunction( - uint8 functionCode, - int8 roundingPrecisionIn, - int8 roundingModeIn, - int8 tininessModeIn - ) -{ - int8 roundingPrecision, roundingMode, tininessMode; - - roundingPrecision = 32; - for (;;) { - if ( ! functions[ functionCode ].roundingPrecision ) { - roundingPrecision = 0; - } - else if ( roundingPrecisionIn ) { - roundingPrecision = roundingPrecisionIn; - } - for ( roundingMode = 1; - roundingMode < NUM_ROUNDINGMODES; - ++roundingMode - ) { - if ( ! functions[ functionCode ].roundingMode ) { - roundingMode = 0; - } - else if ( roundingModeIn ) { - roundingMode = roundingModeIn; - } - for ( tininessMode = 1; - tininessMode < NUM_TININESSMODES; - ++tininessMode - ) { - if ( ( roundingPrecision == 32 ) - || ( roundingPrecision == 64 ) ) { - if ( ! functions[ functionCode ] - .tininessModeAtReducedPrecision - ) { - tininessMode = 0; - } - else if ( tininessModeIn ) { - tininessMode = tininessModeIn; - } - } - else { - if ( ! functions[ functionCode ].tininessMode ) { - tininessMode = 0; - } - else if ( tininessModeIn ) { - tininessMode = tininessModeIn; - } - } - timeFunctionVariety( - functionCode, roundingPrecision, roundingMode, tininessMode - ); - if ( tininessModeIn || ! tininessMode ) break; - } - if ( roundingModeIn || ! roundingMode ) break; - } - if ( roundingPrecisionIn || ! roundingPrecision ) break; - if ( roundingPrecision == 80 ) { - break; - } - else if ( roundingPrecision == 64 ) { - roundingPrecision = 80; - } - else if ( roundingPrecision == 32 ) { - roundingPrecision = 64; - } - } - -} - -main( int argc, char **argv ) -{ - char *argPtr; - flag functionArgument; - uint8 functionCode; - int8 operands, roundingPrecision, roundingMode, tininessMode; - - if ( argc <= 1 ) goto writeHelpMessage; - functionArgument = FALSE; - functionCode = 0; - operands = 0; - roundingPrecision = 0; - roundingMode = 0; - tininessMode = 0; - --argc; - ++argv; - while ( argc && ( argPtr = argv[ 0 ] ) ) { - if ( argPtr[ 0 ] == '-' ) ++argPtr; - if ( strcmp( argPtr, "help" ) == 0 ) { - writeHelpMessage: - fputs( -"timesoftfloat [