The driver requires a special linker configuration: "vic20-tgi.cfg".
The VIC-20 computer needs at least 8K of expansion RAM!
"tgidemo.c" needed to be adjusted because the VIC-20's vertical (y) range is greater than its horizontal (x) range -- the opposite of most other platforms. Also, the circle demo would jam on the VIC-20.
To do this we add a constructor call to UPDCRAMPTR, which is the ROM
routine that fixes up CRAM_PTR to match the screen location pointed to
by SCREEN_PTR.
This adds two additional bytes to programs using cputc() or other
routines that call it. These are in theory recoverable, but the VIC-20
does not yet free space used by constructors after the constructors
have been called.
Thanks to <greg.king5@verizon.net> (GitHub: greg-king5) for
investigating the difference in the VIC-20 KERNAL from the C64 and
proposing this solution to the problem.[1]
[1]: https://github.com/cc65/cc65/issues/946#issuecomment-538502820
On C64, VIC-20 and Plus/4, the conio library PLOT routine uses direct
calls into the Kernal, including the Kernal PLOT routine that we're
replacing. These were previously hardcoded addresses; we change these
to use the symbols for those routines defined in cbm_kernal.inc. (This
changes no functionality.)
To do this, we need to import cbm_kernal.inc in a namespace so we
don't have a collision between the PLOT that we're defining and the
Kernal definition.
We also add a UPDCRAMPTR symbol (used by kplot for VIC-20 and C64) to
the direct entry kernal routines in in cbm_kernal.inc, and expand the
comments describing what the "direct entry" Kernal routines are.
<greg.king5@verizon.net> (GitHub: greg-king5) came up with this idea
and did initial testing of it.
This has been tested on VICE xvic, x64 and xplus4 emulators with a
program that does a cputs() call (github.com/0cjs/vic20cc65) to
confirm that it works the same way after as it did before.
All but one joystick drivers didn't use IRQs. Espsecially when the joystick driver kernel was the only .interruptor this meant quite some unnecessary overhead because it pulled in the whole IRQ infrastructure.
I was told that the one driver using IRQs (the DXS/HIT-4 Player joystick driver for the C64) can be reworked to not do it. Until this is done that driver is defunct.
As discussed in https://github.com/cc65/cc65/pull/452 after my premature merge the two functions in question don't work as expected.
Additionally I adjusted several style deviations in the pull request in question.
Please note that this change is absolutely untested!
Apart from the recent driver interface change:
- vic20-stdjoy.s was "slightly broken" because it didn't clear x on return from joy_read.
- vic20-ptvjoy.s was "heavily broken" because it returned a totally different set of bits of the first joystick.
So far the joy_masks array allowed several joystick drivers for a single target to each have different joy_read return values. However this meant that every call to joy_read implied an additional joy_masks lookup to post-process the return value.
Given that almost all targets only come with a single joystick driver this seems an inappropriate overhead. Therefore now the target header files contain constants matching the return value of the joy_read of the joystick driver(s) on that target.
If there indeed are several joystick drivers for a single target they must agree on a common return value for joy_read. In some cases this was alredy the case as there's a "natural" return value for joy_read. However a few joystick drivers need to be adjusted. This may cause some overhead inside the driver. But that is for sure smaller than the overhead introduced by the joy_masks lookup before.
!!! ToDo !!!
The following three joystick drivers become broken with this commit and need to be adjusted:
- atrmj8.s
- c64-numpad.s
- vic20-stdjoy.s
About all CONIO functions offering a <...>xy variant call
popa
_gotoxy
By providing an internal gotoxy variant that starts with a popa all those CONIO function can be shortened by 3 bytes. As soon as program calls more than one CONIO function this means an overall code size reduction.
The Vic20 does not have kernal table entries for the following functions.
;-----------------------------------------------------------------------------
; Functions which are not in the kernal jump table for VIC-20 but are for C64
CINT := $E518
IOINIT := $FDF9
RAMTAS := $FD8D
All other kernal entries are the same as the C64, however, without this change, the startup code fails.
Without this change the vic20.lib builds incorrectly.
The name RAM doesn't make much sense in general for a memeory area because i.e. the zero page is for sure RAM but is not part of the memory area named RAM.
For disk based targets it makes sense to put the disk file more into focus and here MAIN means the main part of the file - in contrast to some header.
Only for ROM based targets the name RAM is kept as it makes sense to focus on the difference between RAM and ROM.
The way we want to use the INITBSS segment - and especially the fact that it won't have the type bss on all ROM based targets - means that the name INITBSS is misleading. After all INIT is the best name from my perspective as it serves several purposes and therefore needs a rather generic name.
Unfortunately this means that the current INIT segment needs to be renamed too. Looking for a short (ideally 4 letter) name I came up with ONCE as it contains all code (and data) accessed only once during initialization.
So far the INIT segment was run from the later heap+stack. Now the INIT segment is run from the later BSS. The background is that so far the INIT segment was pretty small (from $80 to $180 bytes). But upcoming changes will increase the INIT segment in certain scenarios up to ~ $1000 bytes. So programs with very limited heap+stack might just not been able to move the INIT segment to its run location. But moving the INIT segment to the later BSS allows it to occupy the later BSS+heap+stack.
In order to allow that the constructors are _NOT_ allowed anymore to access the BSS. Rather they must use the DATA segment or the new INITBSS segment. The latter isn't cleared at any point so the constructors may use it to expose values to the main program. However they must make sure to always write the values as they are not pre-initialized.