1
0
mirror of https://github.com/cc65/cc65.git synced 2024-11-20 12:32:58 +00:00
cc65/test/float/softfloat/timesoftfloat.c
2022-11-09 02:50:54 +01:00

1085 lines
32 KiB
C

/*============================================================================
This C source file is part of the Berkeley SoftFloat IEEE Floating-Point
Arithmetic Package, Release 2c, by John R. Hauser.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
AND ORGANIZATIONS WHO CAN AND WILL TOLERATE ALL LOSSES, COSTS, OR OTHER
PROBLEMS THEY INCUR DUE TO THE SOFTWARE WITHOUT RECOMPENSE FROM JOHN HAUSER OR
THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE, AND WHO FURTHERMORE EFFECTIVELY
INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE
(possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR OTHER
PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE, OR
INCURRED BY ANYONE DUE TO A DERIVATIVE WORK THEY CREATE USING ANY PART OF THE
SOFTWARE.
Derivative works require also that (1) the source code for the derivative work
includes prominent notice that the work is derivative, and (2) the source code
includes prominent notice of these three paragraphs for those parts of this
code that are retained.
=============================================================================*/
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <stdio.h>
#include <time.h>
#include "milieu.h"
#include "softfloat.h"
#ifndef CLOCKS_PER_SEC
#define CLOCKS_PER_SEC 50
#warning "CLOCKS_PER_SEC not defined"
clock_t clock(void) {
static clock_t cnt;
++cnt;
}
#endif
enum {
minIterations = 1000
};
void fail( const char *message, ... )
{
va_list varArgs;
fputs( "timesoftfloat: ", stderr );
va_start( varArgs, message );
vfprintf( stderr, message, varArgs );
va_end( varArgs );
fputs( ".\n", stderr );
exit( EXIT_FAILURE );
}
static char *functionName, *roundingModeName, *tininessModeName;
static void reportTime( int32 count, long clocks )
{
#if 0
printf(
"%8.1f kops/s: %s",
( count / ( ( (float) clocks ) / CLOCKS_PER_SEC ) ) / 1000,
functionName
);
#endif
if ( roundingModeName ) {
fputs( ", rounding ", stdout );
fputs( roundingModeName, stdout );
if ( tininessModeName ) {
fputs( ", tininess ", stdout );
fputs( tininessModeName, stdout );
fputs( " rounding", stdout );
}
}
fputc( '\n', stdout );
}
enum {
numInputs_int32 = 32
};
static const int32 inputs_int32[ numInputs_int32 ] = {
0xFFFFBB79, 0x405CF80F, 0x00000000, 0xFFFFFD04,
0xFFF20002, 0x0C8EF795, 0xF00011FF, 0x000006CA,
0x00009BFE, 0xFF4862E3, 0x9FFFEFFE, 0xFFFFFFB7,
0x0BFF7FFF, 0x0000F37A, 0x0011DFFE, 0x00000006,
0xFFF02006, 0xFFFFF7D1, 0x10200003, 0xDE8DF765,
0x00003E02, 0x000019E8, 0x0008FFFE, 0xFFFFFB5C,
0xFFDF7FFE, 0x07C42FBF, 0x0FFFE3FF, 0x040B9F13,
0xBFFFFFF8, 0x0001BF56, 0x000017F6, 0x000A908A
};
//static void time_a_int32_z_float32( float32 function( int32 ) )
static void time_a_int32_z_float32( float32 (*function)( int32 ) )
{
clock_t startClock, endClock;
int32 count, i;
int8 inputNum;
count = 0;
inputNum = 0;
startClock = clock();
do {
for ( i = minIterations; i; --i ) {
function( inputs_int32[ inputNum ] );
inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 );
}
count += minIterations;
} while ( clock() - startClock < CLOCKS_PER_SEC );
inputNum = 0;
startClock = clock();
for ( i = count; i; --i ) {
function( inputs_int32[ inputNum ] );
inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 );
}
endClock = clock();
reportTime( count, endClock - startClock );
}
#ifdef DOUBLES
static void time_a_int32_z_float64( float64 function( int32 ) )
{
clock_t startClock, endClock;
int32 count, i;
int8 inputNum;
count = 0;
inputNum = 0;
startClock = clock();
do {
for ( i = minIterations; i; --i ) {
function( inputs_int32[ inputNum ] );
inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 );
}
count += minIterations;
} while ( clock() - startClock < CLOCKS_PER_SEC );
inputNum = 0;
startClock = clock();
for ( i = count; i; --i ) {
function( inputs_int32[ inputNum ] );
inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 );
}
endClock = clock();
reportTime( count, endClock - startClock );
}
#endif
enum {
numInputs_float32 = 32
};
static const float32 inputs_float32[ numInputs_float32 ] = {
0x4EFA0000, 0xC1D0B328, 0x80000000, 0x3E69A31E,
0xAF803EFF, 0x3F800000, 0x17BF8000, 0xE74A301A,
0x4E010003, 0x7EE3C75D, 0xBD803FE0, 0xBFFEFF00,
0x7981F800, 0x431FFFFC, 0xC100C000, 0x3D87EFFF,
0x4103FEFE, 0xBC000007, 0xBF01F7FF, 0x4E6C6B5C,
0xC187FFFE, 0xC58B9F13, 0x4F88007F, 0xDF004007,
0xB7FFD7FE, 0x7E8001FB, 0x46EFFBFF, 0x31C10000,
0xDB428661, 0x33F89B1F, 0xA3BFEFFF, 0x537BFFBE
};
//static void time_a_float32_z_int32( int32 function( float32 ) )
static void time_a_float32_z_int32( int32 (*function)( float32 ) )
{
clock_t startClock, endClock;
int32 count, i;
int8 inputNum;
count = 0;
inputNum = 0;
startClock = clock();
do {
for ( i = minIterations; i; --i ) {
function( inputs_float32[ inputNum ] );
inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
}
count += minIterations;
} while ( clock() - startClock < CLOCKS_PER_SEC );
inputNum = 0;
startClock = clock();
for ( i = count; i; --i ) {
function( inputs_float32[ inputNum ] );
inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
}
endClock = clock();
reportTime( count, endClock - startClock );
}
#ifdef DOUBLES
static void time_a_float32_z_float64( float64 function( float32 ) )
{
clock_t startClock, endClock;
int32 count, i;
int8 inputNum;
count = 0;
inputNum = 0;
startClock = clock();
do {
for ( i = minIterations; i; --i ) {
function( inputs_float32[ inputNum ] );
inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
}
count += minIterations;
} while ( clock() - startClock < CLOCKS_PER_SEC );
inputNum = 0;
startClock = clock();
for ( i = count; i; --i ) {
function( inputs_float32[ inputNum ] );
inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
}
endClock = clock();
reportTime( count, endClock - startClock );
}
#endif
//static void time_az_float32( float32 function( float32 ) )
static void time_az_float32( float32 (*function)( float32 ) )
{
clock_t startClock, endClock;
int32 count, i;
int8 inputNum;
count = 0;
inputNum = 0;
startClock = clock();
do {
for ( i = minIterations; i; --i ) {
function( inputs_float32[ inputNum ] );
inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
}
count += minIterations;
} while ( clock() - startClock < CLOCKS_PER_SEC );
inputNum = 0;
startClock = clock();
for ( i = count; i; --i ) {
function( inputs_float32[ inputNum ] );
inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
}
endClock = clock();
reportTime( count, endClock - startClock );
}
//static void time_ab_float32_z_flag( flag function( float32, float32 ) )
static void time_ab_float32_z_flag( flag (*function)( float32, float32 ) )
{
clock_t startClock, endClock;
int32 count, i;
int8 inputNumA, inputNumB;
count = 0;
inputNumA = 0;
inputNumB = 0;
startClock = clock();
do {
for ( i = minIterations; i; --i ) {
function(
inputs_float32[ inputNumA ], inputs_float32[ inputNumB ] );
inputNumA = ( inputNumA + 1 ) & ( numInputs_float32 - 1 );
if ( inputNumA == 0 ) ++inputNumB;
inputNumB = ( inputNumB + 1 ) & ( numInputs_float32 - 1 );
}
count += minIterations;
} while ( clock() - startClock < CLOCKS_PER_SEC );
inputNumA = 0;
inputNumB = 0;
startClock = clock();
for ( i = count; i; --i ) {
function(
inputs_float32[ inputNumA ], inputs_float32[ inputNumB ] );
inputNumA = ( inputNumA + 1 ) & ( numInputs_float32 - 1 );
if ( inputNumA == 0 ) ++inputNumB;
inputNumB = ( inputNumB + 1 ) & ( numInputs_float32 - 1 );
}
endClock = clock();
reportTime( count, endClock - startClock );
}
//static void time_abz_float32( float32 function( float32, float32 ) )
static void time_abz_float32( float32 (*function)( float32, float32 ) )
{
clock_t startClock, endClock;
int32 count, i;
int8 inputNumA, inputNumB;
count = 0;
inputNumA = 0;
inputNumB = 0;
startClock = clock();
do {
for ( i = minIterations; i; --i ) {
function(
inputs_float32[ inputNumA ], inputs_float32[ inputNumB ] );
inputNumA = ( inputNumA + 1 ) & ( numInputs_float32 - 1 );
if ( inputNumA == 0 ) ++inputNumB;
inputNumB = ( inputNumB + 1 ) & ( numInputs_float32 - 1 );
}
count += minIterations;
} while ( clock() - startClock < CLOCKS_PER_SEC );
inputNumA = 0;
inputNumB = 0;
startClock = clock();
for ( i = count; i; --i ) {
function(
inputs_float32[ inputNumA ], inputs_float32[ inputNumB ] );
inputNumA = ( inputNumA + 1 ) & ( numInputs_float32 - 1 );
if ( inputNumA == 0 ) ++inputNumB;
inputNumB = ( inputNumB + 1 ) & ( numInputs_float32 - 1 );
}
endClock = clock();
reportTime( count, endClock - startClock );
}
static const float32 inputs_float32_pos[ numInputs_float32 ] = {
0x4EFA0000, 0x41D0B328, 0x00000000, 0x3E69A31E,
0x2F803EFF, 0x3F800000, 0x17BF8000, 0x674A301A,
0x4E010003, 0x7EE3C75D, 0x3D803FE0, 0x3FFEFF00,
0x7981F800, 0x431FFFFC, 0x4100C000, 0x3D87EFFF,
0x4103FEFE, 0x3C000007, 0x3F01F7FF, 0x4E6C6B5C,
0x4187FFFE, 0x458B9F13, 0x4F88007F, 0x5F004007,
0x37FFD7FE, 0x7E8001FB, 0x46EFFBFF, 0x31C10000,
0x5B428661, 0x33F89B1F, 0x23BFEFFF, 0x537BFFBE
};
//static void time_az_float32_pos( float32 function( float32 ) )
static void time_az_float32_pos( float32 (*function)( float32 ) )
{
clock_t startClock, endClock;
int32 count, i;
int8 inputNum;
count = 0;
inputNum = 0;
startClock = clock();
do {
for ( i = minIterations; i; --i ) {
function( inputs_float32_pos[ inputNum ] );
inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
}
count += minIterations;
} while ( clock() - startClock < CLOCKS_PER_SEC );
inputNum = 0;
startClock = clock();
for ( i = count; i; --i ) {
function( inputs_float32_pos[ inputNum ] );
inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
}
endClock = clock();
reportTime( count, endClock - startClock );
}
#ifdef DOUBLES
enum {
numInputs_float64 = 32
};
static const struct {
bits32 high, low;
} inputs_float64[ numInputs_float64 ] = {
{ 0x422FFFC0, 0x08000000 },
{ 0xB7E00004, 0x80000000 },
{ 0xF3FD2546, 0x120B7935 },
{ 0x3FF00000, 0x00000000 },
{ 0xCE07F766, 0xF09588D6 },
{ 0x80000000, 0x00000000 },
{ 0x3FCE0004, 0x00000000 },
{ 0x8313B60F, 0x0032BED8 },
{ 0xC1EFFFFF, 0xC0002000 },
{ 0x3FB3C75D, 0x224F2B0F },
{ 0x7FD00000, 0x004000FF },
{ 0xA12FFF80, 0x00001FFF },
{ 0x3EE00000, 0x00FE0000 },
{ 0x00100000, 0x80000004 },
{ 0x41CFFFFE, 0x00000020 },
{ 0x40303FFF, 0xFFFFFFFD },
{ 0x3FD00000, 0x3FEFFFFF },
{ 0xBFD00000, 0x10000000 },
{ 0xB7FC6B5C, 0x16CA55CF },
{ 0x413EEB94, 0x0B9D1301 },
{ 0xC7E00200, 0x001FFFFF },
{ 0x47F00021, 0xFFFFFFFE },
{ 0xBFFFFFFF, 0xF80000FF },
{ 0xC07FFFFF, 0xE00FFFFF },
{ 0x001497A6, 0x3740C5E8 },
{ 0xC4BFFFE0, 0x001FFFFF },
{ 0x96FFDFFE, 0xFFFFFFFF },
{ 0x403FC000, 0x000001FE },
{ 0xFFD00000, 0x000001F6 },
{ 0x06404000, 0x02000000 },
{ 0x479CEE1E, 0x4F789FE0 },
{ 0xC237FFFF, 0xFFFFFDFE }
};
//static void time_a_float64_z_int32( int32 function( float64 ) )
static void time_a_float64_z_int32( int32 (*function)( float64 ) )
{
clock_t startClock, endClock;
int32 count, i;
int8 inputNum;
float64 a;
count = 0;
inputNum = 0;
startClock = clock();
do {
for ( i = minIterations; i; --i ) {
a.low = inputs_float64[ inputNum ].low;
a.high = inputs_float64[ inputNum ].high;
function( a );
inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
}
count += minIterations;
} while ( clock() - startClock < CLOCKS_PER_SEC );
inputNum = 0;
startClock = clock();
for ( i = count; i; --i ) {
a.low = inputs_float64[ inputNum ].low;
a.high = inputs_float64[ inputNum ].high;
function( a );
inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
}
endClock = clock();
reportTime( count, endClock - startClock );
}
static void time_a_float64_z_float32( float32 function( float64 ) )
{
clock_t startClock, endClock;
int32 count, i;
int8 inputNum;
float64 a;
count = 0;
inputNum = 0;
startClock = clock();
do {
for ( i = minIterations; i; --i ) {
a.low = inputs_float64[ inputNum ].low;
a.high = inputs_float64[ inputNum ].high;
function( a );
inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
}
count += minIterations;
} while ( clock() - startClock < CLOCKS_PER_SEC );
inputNum = 0;
startClock = clock();
for ( i = count; i; --i ) {
a.low = inputs_float64[ inputNum ].low;
a.high = inputs_float64[ inputNum ].high;
function( a );
inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
}
endClock = clock();
reportTime( count, endClock - startClock );
}
static void time_az_float64( float64 function( float64 ) )
{
clock_t startClock, endClock;
int32 count, i;
int8 inputNum;
float64 a;
count = 0;
inputNum = 0;
startClock = clock();
do {
for ( i = minIterations; i; --i ) {
a.low = inputs_float64[ inputNum ].low;
a.high = inputs_float64[ inputNum ].high;
function( a );
inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
}
count += minIterations;
} while ( clock() - startClock < CLOCKS_PER_SEC );
inputNum = 0;
startClock = clock();
for ( i = count; i; --i ) {
a.low = inputs_float64[ inputNum ].low;
a.high = inputs_float64[ inputNum ].high;
function( a );
inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
}
endClock = clock();
reportTime( count, endClock - startClock );
}
static void time_ab_float64_z_flag( flag function( float64, float64 ) )
{
clock_t startClock, endClock;
int32 count, i;
int8 inputNumA, inputNumB;
float64 a, b;
count = 0;
inputNumA = 0;
inputNumB = 0;
startClock = clock();
do {
for ( i = minIterations; i; --i ) {
a.low = inputs_float64[ inputNumA ].low;
a.high = inputs_float64[ inputNumA ].high;
b.low = inputs_float64[ inputNumB ].low;
b.high = inputs_float64[ inputNumB ].high;
function( a, b );
inputNumA = ( inputNumA + 1 ) & ( numInputs_float64 - 1 );
if ( inputNumA == 0 ) ++inputNumB;
inputNumB = ( inputNumB + 1 ) & ( numInputs_float64 - 1 );
}
count += minIterations;
} while ( clock() - startClock < CLOCKS_PER_SEC );
inputNumA = 0;
inputNumB = 0;
startClock = clock();
for ( i = count; i; --i ) {
a.low = inputs_float64[ inputNumA ].low;
a.high = inputs_float64[ inputNumA ].high;
b.low = inputs_float64[ inputNumB ].low;
b.high = inputs_float64[ inputNumB ].high;
function( a, b );
inputNumA = ( inputNumA + 1 ) & ( numInputs_float64 - 1 );
if ( inputNumA == 0 ) ++inputNumB;
inputNumB = ( inputNumB + 1 ) & ( numInputs_float64 - 1 );
}
endClock = clock();
reportTime( count, endClock - startClock );
}
static void time_abz_float64( float64 function( float64, float64 ) )
{
clock_t startClock, endClock;
int32 count, i;
int8 inputNumA, inputNumB;
float64 a, b;
count = 0;
inputNumA = 0;
inputNumB = 0;
startClock = clock();
do {
for ( i = minIterations; i; --i ) {
a.low = inputs_float64[ inputNumA ].low;
a.high = inputs_float64[ inputNumA ].high;
b.low = inputs_float64[ inputNumB ].low;
b.high = inputs_float64[ inputNumB ].high;
function( a, b );
inputNumA = ( inputNumA + 1 ) & ( numInputs_float64 - 1 );
if ( inputNumA == 0 ) ++inputNumB;
inputNumB = ( inputNumB + 1 ) & ( numInputs_float64 - 1 );
}
count += minIterations;
} while ( clock() - startClock < CLOCKS_PER_SEC );
inputNumA = 0;
inputNumB = 0;
startClock = clock();
for ( i = count; i; --i ) {
a.low = inputs_float64[ inputNumA ].low;
a.high = inputs_float64[ inputNumA ].high;
b.low = inputs_float64[ inputNumB ].low;
b.high = inputs_float64[ inputNumB ].high;
function( a, b );
inputNumA = ( inputNumA + 1 ) & ( numInputs_float64 - 1 );
if ( inputNumA == 0 ) ++inputNumB;
inputNumB = ( inputNumB + 1 ) & ( numInputs_float64 - 1 );
}
endClock = clock();
reportTime( count, endClock - startClock );
}
static const struct {
bits32 high, low;
} inputs_float64_pos[ numInputs_float64 ] = {
{ 0x422FFFC0, 0x08000000 },
{ 0x37E00004, 0x80000000 },
{ 0x73FD2546, 0x120B7935 },
{ 0x3FF00000, 0x00000000 },
{ 0x4E07F766, 0xF09588D6 },
{ 0x00000000, 0x00000000 },
{ 0x3FCE0004, 0x00000000 },
{ 0x0313B60F, 0x0032BED8 },
{ 0x41EFFFFF, 0xC0002000 },
{ 0x3FB3C75D, 0x224F2B0F },
{ 0x7FD00000, 0x004000FF },
{ 0x212FFF80, 0x00001FFF },
{ 0x3EE00000, 0x00FE0000 },
{ 0x00100000, 0x80000004 },
{ 0x41CFFFFE, 0x00000020 },
{ 0x40303FFF, 0xFFFFFFFD },
{ 0x3FD00000, 0x3FEFFFFF },
{ 0x3FD00000, 0x10000000 },
{ 0x37FC6B5C, 0x16CA55CF },
{ 0x413EEB94, 0x0B9D1301 },
{ 0x47E00200, 0x001FFFFF },
{ 0x47F00021, 0xFFFFFFFE },
{ 0x3FFFFFFF, 0xF80000FF },
{ 0x407FFFFF, 0xE00FFFFF },
{ 0x001497A6, 0x3740C5E8 },
{ 0x44BFFFE0, 0x001FFFFF },
{ 0x16FFDFFE, 0xFFFFFFFF },
{ 0x403FC000, 0x000001FE },
{ 0x7FD00000, 0x000001F6 },
{ 0x06404000, 0x02000000 },
{ 0x479CEE1E, 0x4F789FE0 },
{ 0x4237FFFF, 0xFFFFFDFE }
};
static void time_az_float64_pos( float64 function( float64 ) )
{
clock_t startClock, endClock;
int32 count, i;
int8 inputNum;
float64 a;
count = 0;
inputNum = 0;
startClock = clock();
do {
for ( i = minIterations; i; --i ) {
a.low = inputs_float64_pos[ inputNum ].low;
a.high = inputs_float64_pos[ inputNum ].high;
function( a );
inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
}
count += minIterations;
} while ( clock() - startClock < CLOCKS_PER_SEC );
inputNum = 0;
startClock = clock();
for ( i = count; i; --i ) {
a.low = inputs_float64_pos[ inputNum ].low;
a.high = inputs_float64_pos[ inputNum ].high;
function( a );
inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
}
endClock = clock();
reportTime( count, endClock - startClock );
}
#endif
enum {
INT32_TO_FLOAT32 = 1,
#ifdef DOUBLES
INT32_TO_FLOAT64,
#endif
FLOAT32_TO_INT32,
FLOAT32_TO_INT32_ROUND_TO_ZERO,
#ifdef DOUBLES
FLOAT32_TO_FLOAT64,
#endif
FLOAT32_ROUND_TO_INT,
FLOAT32_ADD,
FLOAT32_SUB,
FLOAT32_MUL,
FLOAT32_DIV,
FLOAT32_REM,
FLOAT32_SQRT,
FLOAT32_EQ,
FLOAT32_LE,
FLOAT32_LT,
FLOAT32_EQ_SIGNALING,
FLOAT32_LE_QUIET,
FLOAT32_LT_QUIET,
#ifdef DOUBLES
FLOAT64_TO_INT32,
FLOAT64_TO_INT32_ROUND_TO_ZERO,
FLOAT64_TO_FLOAT32,
FLOAT64_ROUND_TO_INT,
FLOAT64_ADD,
FLOAT64_SUB,
FLOAT64_MUL,
FLOAT64_DIV,
FLOAT64_REM,
FLOAT64_SQRT,
FLOAT64_EQ,
FLOAT64_LE,
FLOAT64_LT,
FLOAT64_EQ_SIGNALING,
FLOAT64_LE_QUIET,
FLOAT64_LT_QUIET,
#endif
NUM_FUNCTIONS
};
static struct {
char *name;
int8 numInputs;
flag roundingMode, tininessMode;
} functions[ NUM_FUNCTIONS ] = {
{ 0, 0, 0, 0 },
{ "int32_to_float32", 1, TRUE, FALSE },
#ifdef DOUBLES
{ "int32_to_float64", 1, FALSE, FALSE },
#endif
{ "float32_to_int32", 1, TRUE, FALSE },
{ "float32_to_int32_round_to_zero", 1, FALSE, FALSE },
#ifdef DOUBLES
{ "float32_to_float64", 1, FALSE, FALSE },
#endif
{ "float32_round_to_int", 1, TRUE, FALSE },
{ "float32_add", 2, TRUE, FALSE },
{ "float32_sub", 2, TRUE, FALSE },
{ "float32_mul", 2, TRUE, TRUE, },
{ "float32_div", 2, TRUE, FALSE },
{ "float32_rem", 2, FALSE, FALSE },
{ "float32_sqrt", 1, TRUE, FALSE },
{ "float32_eq", 2, FALSE, FALSE },
{ "float32_le", 2, FALSE, FALSE },
{ "float32_lt", 2, FALSE, FALSE },
{ "float32_eq_signaling", 2, FALSE, FALSE },
{ "float32_le_quiet", 2, FALSE, FALSE },
{ "float32_lt_quiet", 2, FALSE, FALSE },
#ifdef DOUBLES
{ "float64_to_int32", 1, TRUE, FALSE },
{ "float64_to_int32_round_to_zero", 1, FALSE, FALSE },
{ "float64_to_float32", 1, TRUE, TRUE, },
{ "float64_round_to_int", 1, TRUE, FALSE },
{ "float64_add", 2, TRUE, FALSE },
{ "float64_sub", 2, TRUE, FALSE },
{ "float64_mul", 2, TRUE, TRUE, },
{ "float64_div", 2, TRUE, FALSE },
{ "float64_rem", 2, FALSE, FALSE },
{ "float64_sqrt", 1, TRUE, FALSE },
{ "float64_eq", 2, FALSE, FALSE },
{ "float64_le", 2, FALSE, FALSE },
{ "float64_lt", 2, FALSE, FALSE },
{ "float64_eq_signaling", 2, FALSE, FALSE },
{ "float64_le_quiet", 2, FALSE, FALSE },
{ "float64_lt_quiet", 2, FALSE, FALSE }
#endif
};
enum {
ROUND_NEAREST_EVEN = 1,
ROUND_TO_ZERO,
ROUND_DOWN,
ROUND_UP,
NUM_ROUNDINGMODES
};
enum {
TININESS_BEFORE_ROUNDING = 1,
TININESS_AFTER_ROUNDING,
NUM_TININESSMODES
};
static void
timeFunctionVariety(
uint8 functionCode, int8 roundingMode, int8 tininessMode )
{
uint8 roundingCode;
int8 tininessCode;
functionName = functions[ functionCode ].name;
switch ( roundingMode ) {
case 0:
roundingModeName = 0;
roundingCode = float_round_nearest_even;
break;
case ROUND_NEAREST_EVEN:
roundingModeName = "nearest_even";
roundingCode = float_round_nearest_even;
break;
case ROUND_TO_ZERO:
roundingModeName = "to_zero";
roundingCode = float_round_to_zero;
break;
case ROUND_DOWN:
roundingModeName = "down";
roundingCode = float_round_down;
break;
case ROUND_UP:
roundingModeName = "up";
roundingCode = float_round_up;
break;
}
float_rounding_mode = roundingCode;
switch ( tininessMode ) {
case 0:
tininessModeName = 0;
tininessCode = float_tininess_after_rounding;
break;
case TININESS_BEFORE_ROUNDING:
tininessModeName = "before";
tininessCode = float_tininess_before_rounding;
break;
case TININESS_AFTER_ROUNDING:
tininessModeName = "after";
tininessCode = float_tininess_after_rounding;
break;
}
float_detect_tininess = tininessCode;
switch ( functionCode ) {
case INT32_TO_FLOAT32:
time_a_int32_z_float32( int32_to_float32 );
break;
#ifdef DOUBLES
case INT32_TO_FLOAT64:
time_a_int32_z_float64( int32_to_float64 );
break;
#endif
case FLOAT32_TO_INT32:
time_a_float32_z_int32( float32_to_int32 );
break;
case FLOAT32_TO_INT32_ROUND_TO_ZERO:
time_a_float32_z_int32( float32_to_int32_round_to_zero );
break;
#ifdef DOUBLES
case FLOAT32_TO_FLOAT64:
time_a_float32_z_float64( float32_to_float64 );
break;
#endif
case FLOAT32_ROUND_TO_INT:
time_az_float32( float32_round_to_int );
break;
case FLOAT32_ADD:
time_abz_float32( float32_add );
break;
case FLOAT32_SUB:
time_abz_float32( float32_sub );
break;
case FLOAT32_MUL:
time_abz_float32( float32_mul );
break;
case FLOAT32_DIV:
time_abz_float32( float32_div );
break;
case FLOAT32_REM:
time_abz_float32( float32_rem );
break;
case FLOAT32_SQRT:
time_az_float32_pos( float32_sqrt );
break;
case FLOAT32_EQ:
time_ab_float32_z_flag( float32_eq );
break;
case FLOAT32_LE:
time_ab_float32_z_flag( float32_le );
break;
case FLOAT32_LT:
time_ab_float32_z_flag( float32_lt );
break;
case FLOAT32_EQ_SIGNALING:
time_ab_float32_z_flag( float32_eq_signaling );
break;
case FLOAT32_LE_QUIET:
time_ab_float32_z_flag( float32_le_quiet );
break;
case FLOAT32_LT_QUIET:
time_ab_float32_z_flag( float32_lt_quiet );
break;
#ifdef DOUBLES
case FLOAT64_TO_INT32:
time_a_float64_z_int32( float64_to_int32 );
break;
case FLOAT64_TO_INT32_ROUND_TO_ZERO:
time_a_float64_z_int32( float64_to_int32_round_to_zero );
break;
case FLOAT64_TO_FLOAT32:
time_a_float64_z_float32( float64_to_float32 );
break;
case FLOAT64_ROUND_TO_INT:
time_az_float64( float64_round_to_int );
break;
case FLOAT64_ADD:
time_abz_float64( float64_add );
break;
case FLOAT64_SUB:
time_abz_float64( float64_sub );
break;
case FLOAT64_MUL:
time_abz_float64( float64_mul );
break;
case FLOAT64_DIV:
time_abz_float64( float64_div );
break;
case FLOAT64_REM:
time_abz_float64( float64_rem );
break;
case FLOAT64_SQRT:
time_az_float64_pos( float64_sqrt );
break;
case FLOAT64_EQ:
time_ab_float64_z_flag( float64_eq );
break;
case FLOAT64_LE:
time_ab_float64_z_flag( float64_le );
break;
case FLOAT64_LT:
time_ab_float64_z_flag( float64_lt );
break;
case FLOAT64_EQ_SIGNALING:
time_ab_float64_z_flag( float64_eq_signaling );
break;
case FLOAT64_LE_QUIET:
time_ab_float64_z_flag( float64_le_quiet );
break;
case FLOAT64_LT_QUIET:
time_ab_float64_z_flag( float64_lt_quiet );
break;
#endif
}
}
static void
timeFunction( uint8 functionCode, int8 roundingModeIn, int8 tininessModeIn )
{
int8 roundingMode, tininessMode;
for ( roundingMode = 1;
roundingMode < NUM_ROUNDINGMODES;
++roundingMode
) {
if ( ! functions[ functionCode ].roundingMode ) {
roundingMode = 0;
}
else if ( roundingModeIn ) {
roundingMode = roundingModeIn;
}
for ( tininessMode = 1;
tininessMode < NUM_TININESSMODES;
++tininessMode
) {
if ( ! functions[ functionCode ].tininessMode ) {
tininessMode = 0;
}
else if ( tininessModeIn ) {
tininessMode = tininessModeIn;
}
timeFunctionVariety( functionCode, roundingMode, tininessMode );
if ( tininessModeIn || ! tininessMode ) break;
}
if ( roundingModeIn || ! roundingMode ) break;
}
}
main( int argc, char **argv )
{
char *argPtr;
flag functionArgument;
uint8 functionCode;
int8 operands, roundingMode, tininessMode;
if ( argc <= 1 ) goto writeHelpMessage;
functionArgument = FALSE;
functionCode = 0;
operands = 0;
roundingMode = 0;
tininessMode = 0;
--argc;
++argv;
while ( argc && ( argPtr = argv[ 0 ] ) ) {
if ( argPtr[ 0 ] == '-' ) ++argPtr;
if ( strcmp( argPtr, "help" ) == 0 ) {
writeHelpMessage:
fputs(
"timesoftfloat [<option>...] <function>\n"
" <option>: (* is default)\n"
" -help --Write this message and exit.\n"
" -nearesteven --Only time rounding to nearest/even.\n"
" -tozero --Only time rounding to zero.\n"
" -down --Only time rounding down.\n"
" -up --Only time rounding up.\n"
" -tininessbefore --Only time underflow tininess before rounding.\n"
" -tininessafter --Only time underflow tininess after rounding.\n"
" <function>:\n"
" int32_to_<float> <float>_add <float>_eq\n"
" <float>_to_int32 <float>_sub <float>_le\n"
" <float>_to_int32_round_to_zero <float>_mul <float>_lt\n"
" <float>_to_<float> <float>_div <float>_eq_signaling\n"
" <float>_round_to_int <float>_rem <float>_le_quiet\n"
" <float>_sqrt <float>_lt_quiet\n"
" -all1 --All 1-operand functions.\n"
" -all2 --All 2-operand functions.\n"
" -all --All functions.\n"
" <float>:\n"
" float32 --32-bit single-precision.\n"
" float64 --64-bit double-precision.\n",
stdout
);
return EXIT_SUCCESS;
}
else if ( ( strcmp( argPtr, "nearesteven" ) == 0 )
|| ( strcmp( argPtr, "nearest_even" ) == 0 ) ) {
roundingMode = ROUND_NEAREST_EVEN;
}
else if ( ( strcmp( argPtr, "tozero" ) == 0 )
|| ( strcmp( argPtr, "to_zero" ) == 0 ) ) {
roundingMode = ROUND_TO_ZERO;
}
else if ( strcmp( argPtr, "down" ) == 0 ) {
roundingMode = ROUND_DOWN;
}
else if ( strcmp( argPtr, "up" ) == 0 ) {
roundingMode = ROUND_UP;
}
else if ( strcmp( argPtr, "tininessbefore" ) == 0 ) {
tininessMode = TININESS_BEFORE_ROUNDING;
}
else if ( strcmp( argPtr, "tininessafter" ) == 0 ) {
tininessMode = TININESS_AFTER_ROUNDING;
}
else if ( strcmp( argPtr, "all1" ) == 0 ) {
functionArgument = TRUE;
functionCode = 0;
operands = 1;
}
else if ( strcmp( argPtr, "all2" ) == 0 ) {
functionArgument = TRUE;
functionCode = 0;
operands = 2;
}
else if ( strcmp( argPtr, "all" ) == 0 ) {
functionArgument = TRUE;
functionCode = 0;
operands = 0;
}
else {
for ( functionCode = 1;
functionCode < NUM_FUNCTIONS;
++functionCode
) {
if ( strcmp( argPtr, functions[ functionCode ].name ) == 0 ) {
break;
}
}
if ( functionCode == NUM_FUNCTIONS ) {
fail( "Invalid option or function `%s'", argv[ 0 ] );
}
functionArgument = TRUE;
}
--argc;
++argv;
}
if ( ! functionArgument ) fail( "Function argument required" );
if ( functionCode ) {
timeFunction( functionCode, roundingMode, tininessMode );
}
else if ( operands == 1 ) {
for ( functionCode = 1; functionCode < NUM_FUNCTIONS; ++functionCode
) {
if ( functions[ functionCode ].numInputs == 1 ) {
timeFunction( functionCode, roundingMode, tininessMode );
}
}
}
else if ( operands == 2 ) {
for ( functionCode = 1; functionCode < NUM_FUNCTIONS; ++functionCode
) {
if ( functions[ functionCode ].numInputs == 2 ) {
timeFunction( functionCode, roundingMode, tininessMode );
}
}
}
else {
for ( functionCode = 1; functionCode < NUM_FUNCTIONS; ++functionCode
) {
timeFunction( functionCode, roundingMode, tininessMode );
}
}
return EXIT_SUCCESS;
}