champ/p65c02.c

1236 lines
37 KiB
C

#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <unistd.h>
#define SCREEN_WIDTH 280
#define SCREEN_HEIGHT 192
#define CARRY 0x01
#define ZERO 0x02
#define INTERRUPT_DISABLE 0x04
#define DECIMAL_MODE 0x08
// #define INTERRUPT_VECTORING 0x10
#define OVERFLOW 0x40
#define NEGATIVE 0x80
uint8_t show_log = 1;
uint8_t show_screen = 1;
uint8_t show_call_stack = 0;
uint8_t trace_stack[0x100];
uint8_t trace_stack_pointer = 0xff;
uint16_t trace_stack_function[0x100];
uint64_t cycles_per_function[0x10000];
uint64_t calls_per_function[0x10000];
uint64_t last_frame_cycle_count = 0;
uint64_t frame_cycle_count = 0;
uint64_t frame_count = 0;
uint16_t start_pc = 0x6000;
uint16_t start_frame_pc = 0xffff;
uint16_t old_pc = 0;
uint8_t brk_encountered = 0;
uint16_t yoffset[192] = {
0x0000, 0x0400, 0x0800, 0x0c00, 0x1000, 0x1400, 0x1800, 0x1c00,
0x0080, 0x0480, 0x0880, 0x0c80, 0x1080, 0x1480, 0x1880, 0x1c80,
0x0100, 0x0500, 0x0900, 0x0d00, 0x1100, 0x1500, 0x1900, 0x1d00,
0x0180, 0x0580, 0x0980, 0x0d80, 0x1180, 0x1580, 0x1980, 0x1d80,
0x0200, 0x0600, 0x0a00, 0x0e00, 0x1200, 0x1600, 0x1a00, 0x1e00,
0x0280, 0x0680, 0x0a80, 0x0e80, 0x1280, 0x1680, 0x1a80, 0x1e80,
0x0300, 0x0700, 0x0b00, 0x0f00, 0x1300, 0x1700, 0x1b00, 0x1f00,
0x0380, 0x0780, 0x0b80, 0x0f80, 0x1380, 0x1780, 0x1b80, 0x1f80,
0x0028, 0x0428, 0x0828, 0x0c28, 0x1028, 0x1428, 0x1828, 0x1c28,
0x00a8, 0x04a8, 0x08a8, 0x0ca8, 0x10a8, 0x14a8, 0x18a8, 0x1ca8,
0x0128, 0x0528, 0x0928, 0x0d28, 0x1128, 0x1528, 0x1928, 0x1d28,
0x01a8, 0x05a8, 0x09a8, 0x0da8, 0x11a8, 0x15a8, 0x19a8, 0x1da8,
0x0228, 0x0628, 0x0a28, 0x0e28, 0x1228, 0x1628, 0x1a28, 0x1e28,
0x02a8, 0x06a8, 0x0aa8, 0x0ea8, 0x12a8, 0x16a8, 0x1aa8, 0x1ea8,
0x0328, 0x0728, 0x0b28, 0x0f28, 0x1328, 0x1728, 0x1b28, 0x1f28,
0x03a8, 0x07a8, 0x0ba8, 0x0fa8, 0x13a8, 0x17a8, 0x1ba8, 0x1fa8,
0x0050, 0x0450, 0x0850, 0x0c50, 0x1050, 0x1450, 0x1850, 0x1c50,
0x00d0, 0x04d0, 0x08d0, 0x0cd0, 0x10d0, 0x14d0, 0x18d0, 0x1cd0,
0x0150, 0x0550, 0x0950, 0x0d50, 0x1150, 0x1550, 0x1950, 0x1d50,
0x01d0, 0x05d0, 0x09d0, 0x0dd0, 0x11d0, 0x15d0, 0x19d0, 0x1dd0,
0x0250, 0x0650, 0x0a50, 0x0e50, 0x1250, 0x1650, 0x1a50, 0x1e50,
0x02d0, 0x06d0, 0x0ad0, 0x0ed0, 0x12d0, 0x16d0, 0x1ad0, 0x1ed0,
0x0350, 0x0750, 0x0b50, 0x0f50, 0x1350, 0x1750, 0x1b50, 0x1f50,
0x03d0, 0x07d0, 0x0bd0, 0x0fd0, 0x13d0, 0x17d0, 0x1bd0, 0x1fd0
};
typedef struct {
uint16_t pc;
uint8_t sp;
uint64_t total_cycles;
uint8_t a, x, y, flags;
} r_cpu;
void init_cpu(r_cpu* cpu)
{
cpu->pc = 0;
cpu->sp = 0xff;
cpu->total_cycles = 0;
cpu->a = 0;
cpu->x = 0;
cpu->y = 0;
cpu->flags = 0x20; // bit 5 is always set
}
uint8_t ram[0x10000];
r_cpu cpu;
typedef struct {
uint32_t index;
uint16_t pc;
uint8_t post;
enum {
u8, s8, u16, s16
} data_type;
enum
{
MEMORY,
REGISTER_A,
REGISTER_X,
REGISTER_Y
} type;
uint16_t memory_address;
} r_watch;
r_watch *watches = 0;
uint8_t watches_allocated = 0;
size_t watch_count = 0;
int32_t watch_offset_for_pc_and_post[0x20000];
void load(char* path, uint16_t offset)
{
uint8_t buffer[0x10000];
size_t size;
FILE* f;
f = fopen(path, "rw");
if (!f)
{
fprintf(stderr, "Error reading file: %s\n", path);
exit(1);
}
size = fread(buffer, 1, 0x10000, f);
memcpy(ram + offset, buffer, size);
fclose(f);
}
uint8_t rpc8()
{
return ram[cpu.pc++];
}
uint16_t rpc16()
{
uint16_t result = rpc8();
result |= ((uint16_t)rpc8()) << 8;
return result;
}
uint8_t read8(uint16_t address)
{
return ram[address];
}
uint16_t read16(uint16_t address)
{
uint16_t result = read8(address);
result |= ((uint16_t)read8(address + 1)) << 8;
return result;
}
void write8(uint16_t address, uint8_t value)
{
ram[address] = value;
}
void push(uint8_t value)
{
if (cpu.sp == 0)
{
printf("error %04x Stack overflow\n", old_pc);
fflush(stdout);
fprintf(stderr, "Stack overflow!\n");
exit(1);
}
ram[(uint16_t)cpu.sp + 0x100] = value;
cpu.sp--;
}
uint8_t pop()
{
if (cpu.sp == 0xff)
{
printf("error %04x Stack underrun\n", old_pc);
fflush(stdout);
fprintf(stderr, "Stack underrun!\n");
exit(1);
}
cpu.sp++;
return ram[(uint16_t)cpu.sp + 0x100];
}
void set_flag(int which, int value)
{
cpu.flags &= ~which;
if (value)
cpu.flags |= which;
}
void update_zero_and_negative_flags(uint8_t value)
{
set_flag(ZERO, value == 0);
set_flag(NEGATIVE, value & 0x80);
}
uint8_t test_flag(int which)
{
return ((cpu.flags & which) == 0) ? 0 : 1;
}
void cmp(uint8_t a, uint8_t b)
{
set_flag(CARRY, a >= b);
set_flag(ZERO, a == b);
set_flag(NEGATIVE, (a - b) & 0x80);
}
uint8_t rol(uint8_t x)
{
uint8_t old_carry = test_flag(CARRY);
set_flag(CARRY, x & 0x80);
x <<= 1;
if (old_carry)
x |= 1;
return x;
}
uint8_t ror(uint8_t x)
{
uint8_t old_carry = test_flag(CARRY);
set_flag(CARRY, x & 1);
x >>= 1;
if (old_carry)
x |= 0x80;
return x;
}
void adc(uint8_t value)
{
uint16_t t16 = cpu.a + value + (test_flag(CARRY) ? 1 : 0);
cpu.a = t16 & 0xff;
set_flag(CARRY, t16 > 0xff);
update_zero_and_negative_flags(cpu.a);
set_flag(OVERFLOW, ((t16 ^ (uint16_t)cpu.a) & (t16 ^ (uint16_t)value) & 0x0080));
if (test_flag(DECIMAL_MODE))
{
set_flag(CARRY, 0);
if ((cpu.a & 0xf) > 0x9)
cpu.a += 0x06;
if ((cpu.a & 0xf0) > 0x90)
{
cpu.a += 0x60;
set_flag(CARRY, 1);
}
}
}
void sbc(uint8_t value)
{
uint16_t t16 = cpu.a + ((uint16_t)value ^ 0xff) + (test_flag(CARRY) ? 1 : 0);
cpu.a = t16 & 0xff;
set_flag(CARRY, t16 > 0xff);
update_zero_and_negative_flags(cpu.a);
set_flag(OVERFLOW, ((t16 ^ (uint16_t)cpu.a) & (t16 ^ (uint16_t)value) & 0x0080));
if (test_flag(DECIMAL_MODE))
{
set_flag(CARRY, 0);
cpu.a -= 0x66;
if ((cpu.a & 0xf) > 0x9)
cpu.a += 0x06;
if ((cpu.a & 0xf0) > 0x90)
{
cpu.a += 0x60;
set_flag(CARRY, 1);
}
}
}
#define OPCODES \
_(ADC) _(AND) _(ASL) _(BCC) _(BCS) _(BEQ) _(BIT) _(BMI) _(BNE) _(BPL) _(BRK) _(BVC) \
_(BVS) _(CLC) _(CLD) _(CLI) _(CLV) _(CMP) _(CPX) _(CPY) _(DEC) _(DEX) _(DEY) _(EOR) \
_(INC) _(INX) _(INY) _(JMP) _(JSR) _(LDA) _(LDX) _(LDY) _(LSR) _(NOP) _(ORA) _(PHA) \
_(PHP) _(PLA) _(PLP) _(ROL) _(ROR) _(RTI) _(RTS) _(SBC) _(SEC) _(SED) _(SEI) _(STA) \
_(STX) _(STY) _(TAX) _(TAY) _(TSX) _(TXA) _(TXS) _(TYA) \
_(BRA) _(PHX) _(PHY) _(PLX) _(PLY) _(STZ) _(TRB) _(TSB) _(DEA) _(INA)
#define _(x) x,
typedef enum
{
NO_OPCODE = -1,
OPCODES
} r_opcode;
#undef _
#define _(x) #x,
const char* const OPCODE_STRINGS[] = { OPCODES };
#undef _
#define ADDRESSING_MODES \
_(accumulator) \
_(immediate) \
_(implied) \
_(relative) \
_(absolute) \
_(zero_page) \
_(zero_page_indirect) \
_(indirect) /* JMP only */ \
_(zero_page_x) \
_(zero_page_y) \
_(absolute_x) /* +1 for page overflow */ \
_(absolute_y) /* +1 for page overflow */ \
_(indexed_indirect_x) \
_(indirect_indexed_y) /* +1 for page overflow */
#define _(x) x,
typedef enum
{
NO_ADDRESSING_MODE = -1,
ADDRESSING_MODES
} r_addressing_mode;
#undef _
#define _(x) #x,
const char* const ADDRESSING_MODE_STRINGS[] = { ADDRESSING_MODES };
#undef _
#define TEST_OPCODE(opcode) test_opcode = opcode;
#define OPCODE_VARIANT(opcode, cycles, addressing_mode) \
if (opcode_from_pc == opcode) { \
*_opcode = test_opcode; \
*_addressing_mode = addressing_mode; \
*_cycles = cycles; \
}
void fetch_next_opcode(uint8_t* _read_opcode, r_opcode* _opcode, r_addressing_mode* _addressing_mode, uint8_t* _cycles)
{
/*
* The following data has been transcribed from
* https://www.atarimax.com/jindroush.atari.org/aopc.html
*/
r_opcode test_opcode = NO_OPCODE;
uint8_t opcode_from_pc = rpc8();
*_read_opcode = opcode_from_pc;
TEST_OPCODE(ADC)
OPCODE_VARIANT(0x69, 2, immediate)
OPCODE_VARIANT(0x65, 3, zero_page)
OPCODE_VARIANT(0x75, 4, zero_page_x)
OPCODE_VARIANT(0x6D, 4, absolute)
OPCODE_VARIANT(0x7D, 4, absolute_x)
OPCODE_VARIANT(0x79, 4, absolute_y)
OPCODE_VARIANT(0x61, 6, indexed_indirect_x)
OPCODE_VARIANT(0x71, 6, indirect_indexed_y)
TEST_OPCODE(AND)
OPCODE_VARIANT(0x29, 2, immediate)
OPCODE_VARIANT(0x25, 2, zero_page)
OPCODE_VARIANT(0x35, 3, zero_page_x)
OPCODE_VARIANT(0x2D, 4, absolute)
OPCODE_VARIANT(0x3D, 4, absolute_x)
OPCODE_VARIANT(0x39, 4, absolute_y)
OPCODE_VARIANT(0x21, 6, indexed_indirect_x)
OPCODE_VARIANT(0x31, 5, indirect_indexed_y)
TEST_OPCODE(ASL)
OPCODE_VARIANT(0x0A, 2, accumulator)
OPCODE_VARIANT(0x06, 5, zero_page)
OPCODE_VARIANT(0x16, 6, zero_page_x)
OPCODE_VARIANT(0x0E, 6, absolute)
OPCODE_VARIANT(0x1E, 7, absolute_x)
TEST_OPCODE(BIT)
OPCODE_VARIANT(0x24, 3, zero_page)
OPCODE_VARIANT(0x2C, 4, absolute)
TEST_OPCODE(BPL)
OPCODE_VARIANT(0x10, 2, relative)
TEST_OPCODE(BRA)
OPCODE_VARIANT(0x80, 2, relative)
TEST_OPCODE(BMI)
OPCODE_VARIANT(0x30, 2, relative)
TEST_OPCODE(BVC)
OPCODE_VARIANT(0x50, 2, relative)
TEST_OPCODE(BVS)
OPCODE_VARIANT(0x70, 2, relative)
TEST_OPCODE(BCC)
OPCODE_VARIANT(0x90, 2, relative)
TEST_OPCODE(BCS)
OPCODE_VARIANT(0xB0, 2, relative)
TEST_OPCODE(BNE)
OPCODE_VARIANT(0xD0, 2, relative)
TEST_OPCODE(BEQ)
OPCODE_VARIANT(0xF0, 2, relative)
TEST_OPCODE(BRK)
OPCODE_VARIANT(0x00, 7, implied)
TEST_OPCODE(CMP)
OPCODE_VARIANT(0xC9, 2, immediate)
OPCODE_VARIANT(0xC5, 3, zero_page)
OPCODE_VARIANT(0xD5, 4, zero_page_x)
OPCODE_VARIANT(0xCD, 4, absolute)
OPCODE_VARIANT(0xDD, 4, absolute_x)
OPCODE_VARIANT(0xD9, 4, absolute_y)
OPCODE_VARIANT(0xC1, 6, indexed_indirect_x)
OPCODE_VARIANT(0xD1, 5, indirect_indexed_y)
TEST_OPCODE(CPX)
OPCODE_VARIANT(0xE0, 2, immediate)
OPCODE_VARIANT(0xE4, 3, zero_page)
OPCODE_VARIANT(0xEC, 4, absolute)
TEST_OPCODE(CPY)
OPCODE_VARIANT(0xC0, 2, immediate)
OPCODE_VARIANT(0xC4, 3, zero_page)
OPCODE_VARIANT(0xCC, 4, absolute)
TEST_OPCODE(DEC)
OPCODE_VARIANT(0xC6, 5, zero_page)
OPCODE_VARIANT(0xD6, 6, zero_page_x)
OPCODE_VARIANT(0xCE, 6, absolute)
OPCODE_VARIANT(0xDE, 7, absolute_x)
TEST_OPCODE(EOR)
OPCODE_VARIANT(0x49, 2, immediate)
OPCODE_VARIANT(0x45, 3, zero_page)
OPCODE_VARIANT(0x55, 4, zero_page_x)
OPCODE_VARIANT(0x4D, 4, absolute)
OPCODE_VARIANT(0x5D, 4, absolute_x)
OPCODE_VARIANT(0x59, 4, absolute_y)
OPCODE_VARIANT(0x41, 6, indexed_indirect_x)
OPCODE_VARIANT(0x51, 5, indirect_indexed_y)
TEST_OPCODE(CLC)
OPCODE_VARIANT(0x18, 2, implied)
TEST_OPCODE(SEC)
OPCODE_VARIANT(0x38, 2, implied)
TEST_OPCODE(CLI)
OPCODE_VARIANT(0x58, 2, implied)
TEST_OPCODE(SEI)
OPCODE_VARIANT(0x78, 2, implied)
TEST_OPCODE(CLV)
OPCODE_VARIANT(0xB8, 2, implied)
TEST_OPCODE(CLD)
OPCODE_VARIANT(0xD8, 2, implied)
TEST_OPCODE(SED)
OPCODE_VARIANT(0xF8, 2, implied)
TEST_OPCODE(INC)
OPCODE_VARIANT(0xE6, 5, zero_page)
OPCODE_VARIANT(0xF6, 6, zero_page_x)
OPCODE_VARIANT(0xEE, 6, absolute)
OPCODE_VARIANT(0xFE, 7, absolute_x)
TEST_OPCODE(JMP)
OPCODE_VARIANT(0x4C, 3, absolute)
OPCODE_VARIANT(0x6C, 5, indirect)
TEST_OPCODE(JSR)
OPCODE_VARIANT(0x20, 6, absolute)
TEST_OPCODE(LDA)
OPCODE_VARIANT(0xA9, 2, immediate)
OPCODE_VARIANT(0xA5, 3, zero_page)
OPCODE_VARIANT(0xB5, 4, zero_page_x)
OPCODE_VARIANT(0xAD, 4, absolute)
OPCODE_VARIANT(0xBD, 4, absolute_x)
OPCODE_VARIANT(0xB9, 4, absolute_y)
OPCODE_VARIANT(0xA1, 6, indexed_indirect_x)
OPCODE_VARIANT(0xB1, 5, indirect_indexed_y)
TEST_OPCODE(LDX)
OPCODE_VARIANT(0xA2, 2, immediate)
OPCODE_VARIANT(0xA6, 3, zero_page)
OPCODE_VARIANT(0xB6, 4, zero_page_y)
OPCODE_VARIANT(0xAE, 4, absolute)
OPCODE_VARIANT(0xBE, 4, absolute_y)
TEST_OPCODE(LDY)
OPCODE_VARIANT(0xA0, 2, immediate)
OPCODE_VARIANT(0xA4, 3, zero_page)
OPCODE_VARIANT(0xB4, 4, zero_page_x)
OPCODE_VARIANT(0xAC, 4, absolute)
OPCODE_VARIANT(0xBC, 4, absolute_x)
TEST_OPCODE(LSR)
OPCODE_VARIANT(0x4A, 2, accumulator)
OPCODE_VARIANT(0x46, 5, zero_page)
OPCODE_VARIANT(0x56, 6, zero_page_x)
OPCODE_VARIANT(0x4E, 6, absolute)
OPCODE_VARIANT(0x5E, 7, absolute_x)
TEST_OPCODE(NOP)
OPCODE_VARIANT(0xEA, 2, implied)
TEST_OPCODE(ORA)
OPCODE_VARIANT(0x09, 2, immediate)
OPCODE_VARIANT(0x05, 2, zero_page)
OPCODE_VARIANT(0x15, 3, zero_page_x)
OPCODE_VARIANT(0x0D, 4, absolute)
OPCODE_VARIANT(0x1D, 4, absolute_x)
OPCODE_VARIANT(0x19, 4, absolute_y)
OPCODE_VARIANT(0x01, 6, indexed_indirect_x)
OPCODE_VARIANT(0x11, 5, indirect_indexed_y)
TEST_OPCODE(TAX)
OPCODE_VARIANT(0xAA, 2, implied)
TEST_OPCODE(TXA)
OPCODE_VARIANT(0x8A, 2, implied)
TEST_OPCODE(DEA)
OPCODE_VARIANT(0x3A, 2, implied)
TEST_OPCODE(INA)
OPCODE_VARIANT(0x1A, 2, implied)
TEST_OPCODE(DEX)
OPCODE_VARIANT(0xCA, 2, implied)
TEST_OPCODE(INX)
OPCODE_VARIANT(0xE8, 2, implied)
TEST_OPCODE(TAY)
OPCODE_VARIANT(0xA8, 2, implied)
TEST_OPCODE(TYA)
OPCODE_VARIANT(0x98, 2, implied)
TEST_OPCODE(DEY)
OPCODE_VARIANT(0x88, 2, implied)
TEST_OPCODE(INY)
OPCODE_VARIANT(0xC8, 2, implied)
TEST_OPCODE(ROL)
OPCODE_VARIANT(0x2A, 2, accumulator)
OPCODE_VARIANT(0x26, 5, zero_page)
OPCODE_VARIANT(0x36, 6, zero_page_x)
OPCODE_VARIANT(0x2E, 6, absolute)
OPCODE_VARIANT(0x3E, 7, absolute_x)
TEST_OPCODE(ROR)
OPCODE_VARIANT(0x6A, 2, accumulator)
OPCODE_VARIANT(0x66, 5, zero_page)
OPCODE_VARIANT(0x76, 6, zero_page_x)
OPCODE_VARIANT(0x6E, 6, absolute)
OPCODE_VARIANT(0x7E, 7, absolute_x)
TEST_OPCODE(RTI)
OPCODE_VARIANT(0x40, 6, implied)
TEST_OPCODE(RTS)
OPCODE_VARIANT(0x60, 6, implied)
TEST_OPCODE(SBC)
OPCODE_VARIANT(0xE9, 2, immediate)
OPCODE_VARIANT(0xE5, 3, zero_page)
OPCODE_VARIANT(0xF5, 4, zero_page_x)
OPCODE_VARIANT(0xED, 4, absolute)
OPCODE_VARIANT(0xFD, 4, absolute_x)
OPCODE_VARIANT(0xF9, 4, absolute_y)
OPCODE_VARIANT(0xE1, 6, indexed_indirect_x)
OPCODE_VARIANT(0xF1, 5, indirect_indexed_y)
TEST_OPCODE(STA)
OPCODE_VARIANT(0x85, 3, zero_page)
OPCODE_VARIANT(0x95, 4, zero_page_x)
OPCODE_VARIANT(0x8D, 4, absolute)
OPCODE_VARIANT(0x9D, 5, absolute_x) /* no page cross penalty? */
OPCODE_VARIANT(0x99, 5, absolute_y)
OPCODE_VARIANT(0x81, 6, indexed_indirect_x)
OPCODE_VARIANT(0x91, 6, indirect_indexed_y)
OPCODE_VARIANT(0x92, 5, zero_page_indirect)
TEST_OPCODE(TXS)
OPCODE_VARIANT(0x9A, 2, implied)
TEST_OPCODE(TSX)
OPCODE_VARIANT(0xBA, 2, implied)
TEST_OPCODE(PHA)
OPCODE_VARIANT(0x48, 3, implied)
TEST_OPCODE(PLA)
OPCODE_VARIANT(0x68, 4, implied)
TEST_OPCODE(PLX)
OPCODE_VARIANT(0xFA, 4, implied)
TEST_OPCODE(PLY)
OPCODE_VARIANT(0x7A, 4, implied)
TEST_OPCODE(PHP)
OPCODE_VARIANT(0x08, 3, implied)
TEST_OPCODE(PHX)
OPCODE_VARIANT(0xDA, 3, implied)
TEST_OPCODE(PHY)
OPCODE_VARIANT(0x5A, 3, implied)
TEST_OPCODE(PLP)
OPCODE_VARIANT(0x28, 4, implied)
TEST_OPCODE(STX)
OPCODE_VARIANT(0x86, 3, zero_page)
OPCODE_VARIANT(0x96, 4, zero_page_y)
OPCODE_VARIANT(0x8E, 4, absolute)
TEST_OPCODE(STY)
OPCODE_VARIANT(0x84, 3, zero_page)
OPCODE_VARIANT(0x94, 4, zero_page_x)
OPCODE_VARIANT(0x8C, 4, absolute)
TEST_OPCODE(STZ)
OPCODE_VARIANT(0x64, 3, zero_page)
OPCODE_VARIANT(0x74, 4, zero_page_x)
OPCODE_VARIANT(0x9C, 4, absolute)
OPCODE_VARIANT(0x9E, 5, absolute_x)
}
void branch(uint8_t condition, int8_t offset, uint8_t* cycles)
{
if (condition)
{
// branch succeeds
*cycles += 1;
if ((cpu.pc & 0xfff0) != ((cpu.pc + offset) & 0xfff0))
*cycles += 1;
cpu.pc += offset;
}
}
void handle_next_opcode()
{
old_pc = cpu.pc;
// fetch opcode, addressing mode and cycles for next instruction
uint8_t read_opcode = 0;
r_opcode opcode = NO_OPCODE;
r_addressing_mode addressing_mode = NO_ADDRESSING_MODE;
uint8_t cycles = 0;
fetch_next_opcode(&read_opcode, &opcode, &addressing_mode, &cycles);
if (opcode == NO_OPCODE || addressing_mode == NO_ADDRESSING_MODE)
{
printf("error %04x Unhandled opcode: %02x\n", old_pc, read_opcode);
fflush(stdout);
fprintf(stderr, "Unhandled opcode at %04x: %02x\n", old_pc, read_opcode);
exit(1);
}
// handle addressing modes, store result in target_address
uint16_t target_address = 0;
uint8_t immediate_value = 0;
int8_t relative_offset = 0;
switch (addressing_mode)
{
case immediate:
immediate_value = rpc8();
break;
case relative:
relative_offset = (int8_t)rpc8();
break;
case absolute:
target_address = rpc16();
break;
case zero_page:
target_address = rpc8();
break;
case indirect:
target_address = read16(rpc16());
break;
case zero_page_indirect:
target_address = read16(rpc8());
break;
case zero_page_x:
target_address = (rpc8() + cpu.x) & 0xff;
break;
case zero_page_y:
target_address = (rpc8() + cpu.y) & 0xff;
break;
case absolute_x:
target_address = rpc16();
if ((target_address >> 12) != ((target_address + cpu.x) >> 12))
cycles += 1;
target_address += cpu.x;
break;
case absolute_y:
target_address = rpc16();
if ((target_address >> 12) != ((target_address + cpu.y) >> 12))
cycles += 1;
target_address += cpu.y;
break;
case indexed_indirect_x:
target_address = read16((rpc8() + cpu.x) & 0xff);
break;
case indirect_indexed_y:
target_address = cpu.y;
uint16_t temp = read16(rpc8());
if ((target_address >> 12) != ((target_address + temp) >> 12))
cycles += 1;
target_address += temp;
break;
}
int unhandled_opcode = 0;
uint8_t t8 = 0;
uint16_t t16 = 0;
// handle opcode
switch (opcode)
{
case ADC:
adc((addressing_mode == immediate) ? immediate_value : read8(target_address));
break;
case AND:
t8 = (addressing_mode == immediate) ? immediate_value : read8(target_address);
cpu.a &= t8;
update_zero_and_negative_flags(cpu.a);
break;
case ASL:
if (addressing_mode == accumulator)
{
set_flag(CARRY, cpu.a & 0x80);
cpu.a <<= 1;
update_zero_and_negative_flags(cpu.a);
}
else
{
t8 = read8(target_address);
set_flag(CARRY, t8 & 0x80);
t8 <<= 1;
update_zero_and_negative_flags(t8);
write8(target_address, t8);
}
break;
case BCC:
branch(!test_flag(CARRY), relative_offset, &cycles);
break;
case BCS:
branch(test_flag(CARRY), relative_offset, &cycles);
break;
case BEQ:
branch(test_flag(ZERO), relative_offset, &cycles);
break;
case BIT:
t8 = read8(target_address);
uint8_t temp = cpu.a;
temp &= t8;
update_zero_and_negative_flags(temp);
set_flag(NEGATIVE, t8 & 0x80);
set_flag(OVERFLOW, t8 & 0x40);
break;
case BMI:
branch(test_flag(NEGATIVE), relative_offset, &cycles);
break;
case BNE:
branch(!test_flag(ZERO), relative_offset, &cycles);
break;
case BPL:
branch(!test_flag(NEGATIVE), relative_offset, &cycles);
break;
case BRA:
branch(1, relative_offset, &cycles);
break;
case BRK:
brk_encountered = 1;
break;
case BVC:
branch(!test_flag(OVERFLOW), relative_offset, &cycles);
break;
case BVS:
branch(test_flag(OVERFLOW), relative_offset, &cycles);
break;
case CLC:
set_flag(CARRY, 0);
break;
case CLD:
set_flag(DECIMAL_MODE, 0);
break;
case CLI:
// is this the right flag 0x04 ?
set_flag(INTERRUPT_DISABLE, 0);
break;
case CLV:
set_flag(OVERFLOW, 0);
break;
case CMP:
t8 = (addressing_mode == immediate) ? immediate_value : read8(target_address);
cmp(cpu.a, t8);
break;
case CPX:
t8 = (addressing_mode == immediate) ? immediate_value : read8(target_address);
cmp(cpu.x, t8);
break;
case CPY:
t8 = (addressing_mode == immediate) ? immediate_value : read8(target_address);
cmp(cpu.y, t8);
break;
case DEC:
t8 = read8(target_address);
t8 -= 1;
write8(target_address, t8);
update_zero_and_negative_flags(t8);
break;
case DEA:
cpu.a -= 1;
update_zero_and_negative_flags(cpu.a);
break;
case DEX:
cpu.x -= 1;
update_zero_and_negative_flags(cpu.x);
break;
case DEY:
cpu.y -= 1;
update_zero_and_negative_flags(cpu.y);
break;
case EOR:
t8 = (addressing_mode == immediate) ? immediate_value : read8(target_address);
cpu.a ^= t8;
update_zero_and_negative_flags(cpu.a);
break;
case INC:
t8 = read8(target_address);
t8 += 1;
write8(target_address, t8);
update_zero_and_negative_flags(t8);
break;
case INA:
cpu.a += 1;
update_zero_and_negative_flags(cpu.a);
break;
case INX:
cpu.x += 1;
update_zero_and_negative_flags(cpu.x);
break;
case INY:
cpu.y += 1;
update_zero_and_negative_flags(cpu.y);
break;
case JMP:
cpu.pc = target_address;
// TODO handle page boundary behaviour?
break;
case JSR:
// push PC - 1 because target address has already been read
trace_stack_function[trace_stack_pointer] = target_address;
trace_stack[trace_stack_pointer] = cpu.sp;
trace_stack_pointer--;
calls_per_function[target_address]++;
printf("jsr 0x%04x %d\n", target_address, cpu.total_cycles);
fflush(stdout);
push(((cpu.pc - 1) >> 8) & 0xff);
push((cpu.pc - 1) & 0xff);
cpu.pc = target_address;
break;
case LDA:
cpu.a = (addressing_mode == immediate) ? immediate_value : read8(target_address);
update_zero_and_negative_flags(cpu.a);
break;
case LDX:
cpu.x = (addressing_mode == immediate) ? immediate_value : read8(target_address);
update_zero_and_negative_flags(cpu.x);
break;
case LDY:
cpu.y = (addressing_mode == immediate) ? immediate_value : read8(target_address);
update_zero_and_negative_flags(cpu.y);
break;
case LSR:
if (addressing_mode == accumulator)
{
set_flag(CARRY, cpu.a & 1);
cpu.a >>= 1;
update_zero_and_negative_flags(cpu.a);
}
else
{
t8 = read8(target_address);
set_flag(CARRY, t8 & 1);
t8 >>= 1;
update_zero_and_negative_flags(t8);
write8(target_address, t8);
}
break;
case NOP:
break;
case ORA:
t8 = (addressing_mode == immediate) ? immediate_value : read8(target_address);
cpu.a |= t8;
update_zero_and_negative_flags(cpu.a);
break;
case PHA:
push(cpu.a);
break;
case PHX:
push(cpu.x);
break;
case PHY:
push(cpu.y);
break;
case PHP:
push(cpu.flags);
break;
case PLA:
cpu.a = pop();
break;
case PLX:
cpu.x = pop();
break;
case PLY:
cpu.y = pop();
break;
case PLP:
pop(cpu.flags);
break;
case ROL:
if (addressing_mode == accumulator)
{
cpu.a = rol(cpu.a);
update_zero_and_negative_flags(cpu.a);
}
else
{
t8 = rol(read8(target_address));
write8(target_address, t8);
update_zero_and_negative_flags(t8);
}
break;
case ROR:
if (addressing_mode == accumulator)
{
cpu.a = ror(cpu.a);
update_zero_and_negative_flags(cpu.a);
}
else
{
t8 = ror(read8(target_address));
write8(target_address, t8);
update_zero_and_negative_flags(t8);
}
break;
case RTI:
cpu.flags = pop();
t16 = pop();
t16 |= ((uint16_t)pop()) << 8;
cpu.pc = t16;
break;
case RTS:
if (trace_stack[trace_stack_pointer + 1] == cpu.sp + 2)
{
printf("rts %d\n", cpu.total_cycles);
fflush(stdout);
trace_stack_pointer++;
}
t16 = pop();
t16 |= ((uint16_t)pop()) << 8;
cpu.pc = t16 + 1;
break;
case SBC:
sbc((addressing_mode == immediate) ? immediate_value : read8(target_address));
break;
case SEC:
set_flag(CARRY, 1);
break;
case SED:
set_flag(DECIMAL_MODE, 1);
break;
case SEI:
// is this the right flag 0x04 ?
set_flag(INTERRUPT_DISABLE, 1);
break;
case STA:
write8(target_address, cpu.a);
break;
case STX:
write8(target_address, cpu.x);
break;
case STY:
write8(target_address, cpu.y);
break;
case STZ:
write8(target_address, 0);
break;
case TAX:
cpu.x = cpu.a;
update_zero_and_negative_flags(cpu.x);
break;
case TAY:
cpu.y = cpu.a;
update_zero_and_negative_flags(cpu.y);
break;
case TSX:
cpu.x = cpu.sp;
break;
case TXA:
cpu.a = cpu.x;
update_zero_and_negative_flags(cpu.a);
break;
case TXS:
cpu.sp = cpu.x;
break;
case TYA:
cpu.a = cpu.y;
update_zero_and_negative_flags(cpu.a);
break;
default:
unhandled_opcode = 1;
break;
};
if (unhandled_opcode)
{
printf("error %04x Opcode %s not implemented yet.\n",
old_pc, OPCODE_STRINGS[opcode]);
fflush(stdout);
fprintf(stderr, "Opcode %s not implemented yet at PC 0x%04x.\n",
OPCODE_STRINGS[opcode], cpu.pc);
exit(1);
}
cpu.total_cycles += cycles;
if (trace_stack_pointer < 0xff)
cycles_per_function[trace_stack_function[trace_stack_pointer + 1]] += cycles;
if (show_log)
{
printf("log %04x %02x %02x %02x %04x %02x %02x\n",
old_pc, cpu.a, cpu.x, cpu.y, cpu.pc, cpu.sp, cpu.flags);
fflush(stdout);
}
}
int parse_int(const char* s, int base)
{
char *p = 0;
int i = strtol(s, &p, base);
if (p == s)
{
fprintf(stderr, "Error parsing integer: %s", s);
exit(1);
}
return i;
}
void handle_watch(uint16_t pc, uint8_t post)
{
int32_t offset = watch_offset_for_pc_and_post[((int32_t)pc << 1) | post];
if (offset == -1)
return;
int32_t old_index = -1;
while (watches[offset].pc == pc && watches[offset].post == post)
{
r_watch* watch = &watches[offset];
uint16_t watch_in_subroutine = 0;
for (int i = trace_stack_pointer + 1; i <= 0xff; i++)
{
if (trace_stack[i] == cpu.sp + 2)
{
watch_in_subroutine = trace_stack_function[i];
break;
}
}
if (old_index == -1)
printf("watch 0x%04x %d %d", watch_in_subroutine, watch->index, cpu.total_cycles);
else
if (old_index != watch->index)
printf("\nwatch 0x%04x %d %d", watch_in_subroutine, watch->index, cpu.total_cycles);
old_index = watch->index;
int32_t value = 0;
if (watch->type == MEMORY)
{
switch (watch->data_type)
{
case u8:
value = (uint8_t)read8(watch->memory_address);
break;
case s8:
value = (int8_t)read8(watch->memory_address);
break;
case u16:
value = (uint16_t)read16(watch->memory_address);
break;
case s16:
value = (int16_t)read16(watch->memory_address);
break;
default:
fprintf(stderr, "Invalid data type!\n");
exit(1);
}
printf(" %d", value);
}
else
{
switch (watch->type)
{
case REGISTER_A:
value = (watch->data_type == u8) ? (uint8_t)cpu.a : (int8_t)cpu.a;
break;
case REGISTER_X:
value = (watch->data_type == u8) ? (uint8_t)cpu.x : (int8_t)cpu.x;
break;
case REGISTER_Y:
value = (watch->data_type == u8) ? (uint8_t)cpu.y : (int8_t)cpu.y;
break;
default:
fprintf(stderr, "Invalid type!\n");
exit(1);
}
printf(" %d", value);
}
offset++;
}
printf("\n");
fflush(stdout);
}
int main(int argc, char** argv)
{
if (argc < 2)
{
printf("Usage: ./champ [options] <memory dump>\n");
printf("\n");
printf("Options:\n");
printf(" --hide-log\n");
printf(" --start-pc <address or label>\n");
printf(" --frame-start <address or label>\n");
printf(" --max-frames <n>\n");
printf(" --no-screen\n");
exit(1);
}
for (int i = 0; i < 0x20000; i++)
watch_offset_for_pc_and_post[i] = -1;
char s[1024];
int watch_index = 0;
while (fgets(s, 1024, stdin))
{
if (s[0] == '\n')
break;
if (!watches_allocated)
{
watch_count = parse_int(s, 0);
if (watch_count > 0)
watches = malloc(sizeof(r_watch) * watch_count);
watches_allocated = 1;
}
else
{
char *p = s;
r_watch watch;
memset(&watch, 0, sizeof(watch));
watch.index = parse_int(p, 0);
while (*(p++) != ',');
watch.pc = parse_int(p + 2, 16);
while (*(p++) != ',');
watch.post = parse_int(p, 0);
while (*(p++) != ',');
if (strncmp(p, "u8", 2) == 0)
watch.data_type = u8;
else if (strncmp(p, "s8", 2) == 0)
watch.data_type = s8;
else if (strncmp(p, "u16", 3) == 0)
watch.data_type = u16;
else if (strncmp(p, "s16", 3) == 0)
watch.data_type = s16;
else
{
fprintf(stderr, "Invalid data type!");
exit(1);
}
while (*(p++) != ',');
if (strncmp(p, "mem", 3) == 0)
{
watch.type = MEMORY;
while (*(p++) != ',');
watch.memory_address = parse_int(p + 2, 16);
}
else
{
while (*(p++) != ',');
if (strncmp(p, "A", 1) == 0)
watch.type = REGISTER_A;
else if (strncmp(p, "X", 1) == 0)
watch.type = REGISTER_X;
else if (strncmp(p, "Y", 1) == 0)
watch.type = REGISTER_Y;
}
int32_t offset = (((int32_t)watch.pc) << 1) | watch.post;
if (watch_offset_for_pc_and_post[offset] == -1)
watch_offset_for_pc_and_post[offset] = watch_index;
watches[watch_index++] = watch;
// printf("watch index %d pc 0x%04x post %d data_type %d type %d memory_address 0x%04x offset %d value %d\n",
// watch.index, watch.pc, watch.post, watch.data_type, watch.type,
// watch.memory_address, offset, watch_offset_for_pc_and_post[offset]
// );
}
}
for (int i = 1; i < argc - 1; i++)
{
if (strcmp(argv[i], "--hide-log") == 0)
show_log = 0;
else if (strcmp(argv[i], "--no-screen") == 0)
show_screen = 0;
else if (strcmp(argv[i], "--start-pc") == 0)
{
char *temp = argv[++i];
char *p = 0;
start_pc = strtol(temp, &p, 0);
fprintf(stderr, "Using start PC: 0x%04x\n", start_pc);
}
else if (strcmp(argv[i], "--start-frame") == 0)
{
char *temp = argv[++i];
char *p = 0;
start_frame_pc = strtol(temp, &p, 0);
fprintf(stderr, "Using frame start: 0x%04x\n", start_frame_pc);
}
else
{
fprintf(stderr, "Unknown argument: %s\n", argv[i]);
exit(1);
}
}
memset(ram, 0, sizeof(ram));
memset(cycles_per_function, 0, sizeof(cycles_per_function));
memset(calls_per_function, 0, sizeof(calls_per_function));
load(argv[argc - 1], 0);
init_cpu(&cpu);
cpu.pc = start_pc;
struct timespec tstart = {0, 0};
clock_gettime(CLOCK_MONOTONIC, &tstart);
unsigned long start_time = tstart.tv_sec * 1000000000 + tstart.tv_nsec;
uint32_t next_display_refresh = 0;
uint8_t old_screen_number = 0;
int last_cycles = -1;
brk_encountered = 0;
while (1) {
if (brk_encountered) break;
handle_watch(cpu.pc, 0);
uint16_t old_pc = cpu.pc;
handle_next_opcode();
handle_watch(old_pc, 1);
if ((start_frame_pc != 0xffff) && (cpu.pc == start_frame_pc))
{
if (last_frame_cycle_count > 0)
{
frame_cycle_count += (cpu.total_cycles - last_frame_cycle_count);
frame_count += 1;
}
last_frame_cycle_count = cpu.total_cycles;
}
if (cpu.total_cycles / 100000 != last_cycles)
{
last_cycles = cpu.total_cycles / 100000;
printf("cycles %d\n", last_cycles * 100000);
}
if (ram[0x30b] != old_screen_number)
{
old_screen_number = ram[0x30b];
uint8_t current_screen = old_screen_number;
int x, y;
printf("screen %d", cpu.total_cycles);
if (show_screen)
{
for (y = 0; y < 192; y++)
{
uint16_t line_offset = yoffset[y] | (current_screen == 1 ? 0x2000 : 0x4000);
for (x = 0; x < 40; x++)
printf(" %d", ram[line_offset + x]);
}
}
printf("\n");
fflush(stdout);
}
}
fprintf(stderr, "Total cycles: %d\n", cpu.total_cycles);
if (watches)
{
free(watches);
watches = 0;
}
return 0;
}