dcc6502/dcc6502.c
2014-07-24 18:56:51 -04:00

756 lines
25 KiB
C

/**********************************************************************************
* dcc6502.c -> Main module of: *
* Disassembler and Cycle Counter for the 6502 microprocessor *
* *
* This code is offered under the MIT License (MIT) *
* *
* Copyright (c) 2014 Tennessee Carmel-Veilleux <veilleux@tentech.ca *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy *
* of this software and associated documentation files (the "Software"), to deal *
* in the Software without restriction, including without limitation the rights *
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell *
* copies of the Software, and to permit persons to whom the Software is *
* furnished to do so, subject to the following conditions: *
* *
* The above copyright notice and this permission notice shall be included in all *
* copies or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR *
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE *
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER *
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, *
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE *
* SOFTWARE. *
**********************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <ctype.h>
#include <errno.h>
#define VERSION_INFO "v1.6"
#define NUMBER_OPCODES 151
/* The 6502's 13 addressing modes */
#define IMMED 0 /* Immediate */
#define ABSOL 1 /* Absolute */
#define ZEROP 2 /* Zero Page */
#define IMPLI 3 /* Implied */
#define INDIA 4 /* Indirect Absolute */
#define ABSIX 5 /* Absolute indexed with X */
#define ABSIY 6 /* Absolute indexed with Y */
#define ZEPIX 7 /* Zero page indexed with X */
#define ZEPIY 8 /* Zero page indexed with Y */
#define INDIN 9 /* Indexed indirect (with X) */
#define ININD 10 /* Indirect indexed (with Y) */
#define RELAT 11 /* Relative */
#define ACCUM 12 /* Accumulator */
/** Some compilers don't have EOK in errno.h */
#ifndef EOK
#define EOK 0
#endif
typedef struct OPcode {
uint8_t number; /* Number of the opcode */
unsigned int name; /* Index in the name table */
// FIXME: Transform toe num
unsigned int addressing; /* Addressing mode */
unsigned int cycles; /* Number of cycles */
unsigned int cross_page; /* 1 if cross-page boundaries affect cycles */
} OPcode;
typedef uint16_t word;
char name_table[56][4] = {
"ADC", "AND", "ASL", "BCC", "BCS", "BEQ", "BIT", "BMI", "BNE", "BPL",
"BRK", "BVC", "BVS", "CLC", "CLD", "CLI", "CLV", "CMP", "CPX", "CPY",
"DEC", "DEX", "DEY", "EOR", "INC", "INX", "INY", "JMP", "JSR", "LDA",
"LDX", "LDY", "LSR", "NOP", "ORA", "PHA", "PHP", "PLA", "PLP", "ROL",
"ROR", "RTI", "RTS", "SBC", "SEC", "SED", "SEI", "STA", "STX", "STY",
"TAX", "TAY", "TSX", "TXA", "TXS", "TYA"
};
/* Opcode table */
OPcode opcode_table[NUMBER_OPCODES] = {
{0x69, 0, IMMED, 2, 1}, /* ADC */
{0x65, 0, ZEROP, 3, 1},
{0x75, 0, ZEPIX, 4, 1},
{0x6D, 0, ABSOL, 4, 1},
{0x7D, 0, ABSIX, 4, 1},
{0x79, 0, ABSIY, 4, 1},
{0x61, 0, INDIN, 6, 1},
{0x71, 0, ININD, 5, 1},
{0x29, 1, IMMED, 2, 1}, /* AND */
{0x25, 1, ZEROP, 3, 1},
{0x35, 1, ZEPIX, 4, 1},
{0x2D, 1, ABSOL, 4, 1},
{0x3D, 1, ABSIX, 4, 1},
{0x39, 1, ABSIY, 4, 1},
{0x21, 1, INDIN, 6, 1},
{0x31, 1, ININD, 5, 1},
{0x0A, 2, ACCUM, 2, 0}, /* ASL */
{0x06, 2, ZEROP, 5, 0},
{0x16, 2, ZEPIX, 6, 0},
{0x0E, 2, ABSOL, 6, 0},
{0x1E, 2, ABSIX, 6, 0},
{0x90, 3, RELAT, 4, 1}, /* BCC */
{0xB0, 4, RELAT, 4, 1}, /* BCS */
{0xF0, 5, RELAT, 4, 1}, /* BEQ */
{0x24, 6, ZEROP, 3, 0}, /* BIT */
{0x2C, 6, ABSOL, 4, 0},
{0x30, 7, RELAT, 4, 1}, /* BMI */
{0xD0, 8, RELAT, 4, 1}, /* BNE */
{0x10, 9, RELAT, 4, 1}, /* BPL */
{0x00, 10, IMPLI, 7, 0}, /* BRK */
{0x50, 11, RELAT, 4, 1}, /* BVC */
{0x70, 12, RELAT, 4, 1}, /* BVS */
{0x18, 13, IMPLI, 2, 0}, /* CLC */
{0xD8, 14, IMPLI, 2, 0}, /* CLD */
{0x58, 15, IMPLI, 2, 0}, /* CLI */
{0xB8, 16, IMPLI, 2, 0}, /* CLV */
{0xC9, 17, IMMED, 2, 0}, /* CMP */
{0xC5, 17, ZEROP, 3, 0},
{0xD5, 17, ZEPIX, 4, 0},
{0xCD, 17, ABSOL, 4, 0},
{0xDD, 17, ABSIX, 4, 0},
{0xD9, 17, ABSIY, 4, 0},
{0xC1, 17, INDIN, 6, 0},
{0xD1, 17, ININD, 5, 0},
{0xE0, 18, IMMED, 2, 0}, /* CPX */
{0xE4, 18, ZEROP, 3, 0},
{0xEC, 18, ABSOL, 4, 0},
{0xC0, 19, IMMED, 2, 0}, /* CPY */
{0xC4, 19, ZEROP, 3, 0},
{0xCC, 19, ABSOL, 4, 0},
{0xC6, 20, ZEROP, 5, 0}, /* DEC */
{0xD6, 20, ZEPIX, 6, 0},
{0xCE, 20, ABSOL, 6, 0},
{0xDE, 20, ABSIX, 6, 0},
{0xCA, 21, IMPLI, 2, 0}, /* DEX */
{0x88, 22, IMPLI, 2, 0}, /* DEY */
{0x49, 23, IMMED, 2, 1}, /* EOR */
{0x45, 23, ZEROP, 3, 1},
{0x55, 23, ZEPIX, 4, 1},
{0x4D, 23, ABSOL, 4, 1},
{0x5D, 23, ABSIX, 4, 1},
{0x59, 23, ABSIY, 4, 1},
{0x41, 23, INDIN, 6, 1},
{0x51, 23, ININD, 5, 1},
{0xE6, 24, ZEROP, 5, 0}, /* INC */
{0xF6, 24, ZEPIX, 6, 0},
{0xEE, 24, ABSOL, 6, 0},
{0xFE, 24, ABSIX, 6, 0},
{0xE8, 25, IMPLI, 2, 0}, /* INX */
{0xC8, 26, IMPLI, 2, 0}, /* INY */
{0x4C, 27, ABSOL, 3, 0}, /* JMP */
{0x6C, 27, INDIA, 5, 0},
{0x20, 28, ABSOL, 6, 0}, /* JSR */
{0xA9, 29, IMMED, 2, 1}, /* LDA */
{0xA5, 29, ZEROP, 3, 1},
{0xB5, 29, ZEPIX, 4, 1},
{0xAD, 29, ABSOL, 4, 1},
{0xBD, 29, ABSIX, 4, 1},
{0xB9, 29, ABSIY, 4, 1},
{0xA1, 29, INDIN, 6, 1},
{0xB1, 29, ININD, 5, 1},
{0xA2, 30, IMMED, 2, 1}, /* LDX */
{0xA6, 30, ZEROP, 3, 1},
{0xB6, 30, ZEPIY, 4, 1},
{0xAE, 30, ABSOL, 4, 1},
{0xBE, 30, ABSIY, 4, 1},
{0xA0, 31, IMMED, 2, 1}, /* LDY */
{0xA4, 31, ZEROP, 3, 1},
{0xB4, 31, ZEPIX, 4, 1},
{0xAC, 31, ABSOL, 4, 1},
{0xBC, 31, ABSIX, 4, 1},
{0x4A, 32, ACCUM, 2, 0}, /* LSR */
{0x46, 32, ZEROP, 5, 0},
{0x56, 32, ZEPIX, 6, 0},
{0x4E, 32, ABSOL, 6, 0},
{0x5E, 32, ABSIX, 6, 0},
{0xEA, 33, IMPLI, 2, 0}, /* NOP */
{0x09, 34, IMMED, 2, 0}, /* ORA */
{0x05, 34, ZEROP, 3, 0},
{0x15, 34, ZEPIX, 4, 0},
{0x0D, 34, ABSOL, 4, 0},
{0x1D, 34, ABSIX, 4, 0},
{0x19, 34, ABSIY, 4, 0},
{0x01, 34, INDIN, 6, 0},
{0x11, 34, ININD, 5, 0},
{0x48, 35, IMPLI, 3, 0}, /* PHA */
{0x08, 36, IMPLI, 3, 0}, /* PHP */
{0x68, 37, IMPLI, 4, 0}, /* PLA */
{0x28, 38, IMPLI, 4, 0}, /* PLP */
{0x2A, 39, ACCUM, 2, 0}, /* ROL */
{0x26, 39, ZEROP, 5, 0},
{0x36, 39, ZEPIX, 6, 0},
{0x2E, 39, ABSOL, 6, 0},
{0x3E, 39, ABSIX, 6, 0},
{0x6A, 40, ACCUM, 2, 0}, /* ROR */
{0x66, 40, ZEROP, 5, 0},
{0x76, 40, ZEPIX, 6, 0},
{0x6E, 40, ABSOL, 6, 0},
{0x7E, 40, ABSIX, 6, 0},
{0x40, 41, IMPLI, 6, 0}, /* RTI */
{0x60, 42, IMPLI, 6, 0}, /* RTS */
{0xE9, 43, IMMED, 2, 1}, /* SBC */
{0xE5, 43, ZEROP, 3, 1},
{0xF5, 43, ZEPIX, 4, 1},
{0xED, 43, ABSOL, 4, 1},
{0xFD, 43, ABSIX, 4, 1},
{0xF9, 43, ABSIY, 4, 1},
{0xE1, 43, INDIN, 6, 1},
{0xF1, 43, ININD, 5, 1},
{0x38, 44, IMPLI, 2, 0}, /* SEC */
{0xF8, 45, IMPLI, 2, 0}, /* SED */
{0x78, 46, IMPLI, 2, 0}, /* SEI */
{0x85, 47, ZEROP, 3, 0}, /* STA */
{0x95, 47, ZEPIX, 4, 0},
{0x8D, 47, ABSOL, 4, 0},
{0x9D, 47, ABSIX, 4, 0},
{0x99, 47, ABSIY, 4, 0},
{0x81, 47, INDIN, 6, 0},
{0x91, 47, ININD, 5, 0},
{0x86, 48, ZEROP, 3, 0}, /* STX */
{0x96, 48, ZEPIY, 4, 0},
{0x8E, 48, ABSOL, 4, 0},
{0x84, 49, ZEROP, 3, 0}, /* STY */
{0x94, 49, ZEPIX, 4, 0},
{0x8C, 49, ABSOL, 4, 0},
{0xAA, 50, IMPLI, 2, 0}, /* TAX */
{0xA8, 51, IMPLI, 2, 0}, /* TAY */
{0xBA, 52, IMPLI, 2, 0}, /* TSX */
{0x8A, 53, IMPLI, 2, 0}, /* TXA */
{0x9A, 54, IMPLI, 2, 0}, /* TXS */
{0x98, 55, IMPLI, 2, 0} /* TYA */
};
// FIXME: use g_ nomenclature for globals
uint16_t org; /* Origin of addresses */
int hex_output = 0; /* 1 if hex output is desired at beginning of line */
int cycle_counting = 0; /* 1 if we want cycle counting */
int nes_mode = 0; /* 1 if NES commenting and warnings are enabled */
FILE *f; /* Input file */
uint8_t buffer[0xffff]; /* Memory buffer */
uint16_t PC = 0; /* Program counter */
uint16_t max = 0xffff; /* Maximum number of bytes to disassemble */
char line[512];
/* This function emits a comment header with information about the file
being disassembled */
void emit_header(char *filename, int fsize, uint16_t org) {
fprintf(stdout, "; Source generated by DCC6502 version %s\n", VERSION_INFO);
fprintf(stdout, "; For more info about DCC6502, see https://github.com/tcarmelveilleux/dcc6502\n");
fprintf(stdout, "; FILENAME: %s, File Size: %d, ORG: $%04X\n", filename, fsize, org);
if (hex_output) fprintf(stdout, "; -> Hex output enabled\n");
if (cycle_counting) fprintf(stdout, "; -> Cycle counting enabled\n");
if (nes_mode) fprintf(stdout, "; -> NES mode enabled\n");
fprintf(stdout, ";---------------------------------------------------------------------------\n");
}
/* This function appends cycle counting to the comment block */
char *append_cycle(char *input, uint8_t entry) {
char tmpstr[256];
int cycles = opcode_table[entry].cycles;
// On page boundary crossing, instruction will take an extra cycle
if (opcode_table[entry].cross_page) {
sprintf(tmpstr, " Cycles: %d/%d", cycles, cycles + 1);
} else {
sprintf(tmpstr, " Cycles: %d", cycles);
}
strcat(input, tmpstr);
return (input + strlen(input));
}
void add_nes_str(char *instr, char *instr2) {
strcat(instr, " [NES] ");
strcat(instr, instr2);
}
/* This function put NES-specific info in the comment block */
void append_nes(char *input, uint16_t arg) {
switch(arg) {
case 0x2000: add_nes_str(input, "PPU setup #1"); break;
case 0x2001: add_nes_str(input, "PPU setup #2"); break;
case 0x2002: add_nes_str(input, "PPU status"); break;
case 0x2003: add_nes_str(input, "SPR-RAM address select"); break;
case 0x2004: add_nes_str(input, "SPR-RAM data"); break;
case 0x2005: add_nes_str(input, "PPU scroll"); break;
case 0x2006: add_nes_str(input, "VRAM address select"); break;
case 0x2007: add_nes_str(input, "VRAM data"); break;
case 0x4000: add_nes_str(input, "Audio -> Square 1"); break;
case 0x4001: add_nes_str(input, "Audio -> Square 1"); break;
case 0x4002: add_nes_str(input, "Audio -> Square 1"); break;
case 0x4003: add_nes_str(input, "Audio -> Square 1"); break;
case 0x4004: add_nes_str(input, "Audio -> Square 2"); break;
case 0x4005: add_nes_str(input, "Audio -> Square 2"); break;
case 0x4006: add_nes_str(input, "Audio -> Square 2"); break;
case 0x4007: add_nes_str(input, "Audio -> Square 2"); break;
case 0x4008: add_nes_str(input, "Audio -> Triangle"); break;
case 0x4009: add_nes_str(input, "Audio -> Triangle"); break;
case 0x400a: add_nes_str(input, "Audio -> Triangle"); break;
case 0x400b: add_nes_str(input, "Audio -> Triangle"); break;
case 0x400c: add_nes_str(input, "Audio -> Noise control reg"); break;
case 0x400e: add_nes_str(input, "Audio -> Noise Frequency reg #1"); break;
case 0x400f: add_nes_str(input, "Audio -> Noise Frequency reg #2"); break;
case 0x4010: add_nes_str(input, "Audio -> DPCM control"); break;
case 0x4011: add_nes_str(input, "Audio -> DPCM D/A data"); break;
case 0x4012: add_nes_str(input, "Audio -> DPCM address"); break;
case 0x4013: add_nes_str(input, "Audio -> DPCM data length"); break;
case 0x4014: add_nes_str(input, "Sprite DMA trigger"); break;
case 0x4015: add_nes_str(input, "IRQ status / Sound enable"); break;
case 0x4016: add_nes_str(input, "Joypad & I/O port for port #1"); break;
case 0x4017: add_nes_str(input, "Joypad & I/O port for port #2"); break;
}
}
#define DUMP_FORMAT (hex_output ? "%-16s%-16s;" : "%-8s%-16s;")
#define HIGH_PART(val) (((val) >> 8) & 0xFFu)
#define LOW_PART(val) ((val) & 0xFFu)
#define LOAD_WORD(buffer, current_pc) ((uint16_t)buffer[(current_pc) + 1] | (((uint16_t)buffer[(current_pc) + 2]) << 8))
/* This function disassembles the opcode at the PC and outputs it in *output */
void disassemble(char *output) {
char opcode_repr[256], hex_dump[256];
int i;
int len = 0;
int entry = 0;
int found = 0;
uint8_t tmp_byte1, opcode;
word tmp_word = 0;
uint16_t current_addr = org + PC;
opcode = buffer[current_addr - org];
opcode_repr[0] = '\0';
hex_dump[0] = '\0';
// Linear search for opcode
for (i = 0; i < NUMBER_OPCODES; i++) {
if (opcode == opcode_table[i].number) {
/* Found the opcode, record its table index */
found = 1;
entry = i;
}
}
// TODO: Normalize %02x versus %02X
// For opcode not found, terminate early
if (!found) {
sprintf(opcode_repr, ".byte $%02x", opcode);
if (hex_output) {
sprintf(hex_dump, "$%04X> %02X:", current_addr, opcode);
sprintf(output, "%-16s%-16s; INVALID OPCODE !!!\n", hex_dump, opcode_repr);
} else {
sprintf(hex_dump, "$%04X", current_addr);
sprintf(output, "%-8s%-16s; INVALID OPCODE !!!\n", hex_dump, opcode_repr);
}
return;
}
// Opcode found in table: disassemble properly according to addressing mode
// Set hex dump to default single address format. Will be overwritten
// by more complex output in case of hex dump mode enabled
sprintf(hex_dump, "$%04X", current_addr);
switch (opcode_table[entry].addressing) {
case IMMED:
/* Get immediate value operand */
tmp_byte1 = buffer[PC + 1];
PC++;
sprintf(opcode_repr, "%s #$%02x", name_table[opcode_table[entry].name], tmp_byte1);
if (hex_output) {
sprintf(hex_dump, "$%04X> %02X %02X:", current_addr, opcode, tmp_byte1);
}
break;
case ABSOL:
/* Get absolute address operand */
tmp_word = LOAD_WORD(buffer, PC);
PC += 2;
sprintf(opcode_repr, "%s $%02X%02X", name_table[opcode_table[entry].name], HIGH_PART(tmp_word), LOW_PART(tmp_word));
if (hex_output) {
sprintf(hex_dump, "$%04X> %02X %02X%02X:", current_addr, opcode, LOW_PART(tmp_word), HIGH_PART(tmp_word));
}
break;
case ZEROP:
/* Get zero page address */
tmp_byte1 = buffer[PC + 1];
PC++;
sprintf(opcode_repr, "%s $%02X", name_table[opcode_table[entry].name], tmp_byte1);
if (hex_output) {
sprintf(hex_dump, "$%04X> %02X %02X:", current_addr, opcode, tmp_byte1);
}
break;
case IMPLI:
sprintf(opcode_repr, "%s", name_table[opcode_table[entry].name]);
if (hex_output) {
sprintf(hex_dump, "$%04X> %02X:", current_addr, opcode);
}
break;
case INDIA:
/* Get indirection address */
tmp_word = LOAD_WORD(buffer, PC);
PC += 2;
sprintf(opcode_repr, "%s ($%02X%02X)", name_table[opcode_table[entry].name], HIGH_PART(tmp_word), LOW_PART(tmp_word));
if (hex_output) {
sprintf(hex_dump, "$%04X> %02X %02X%02X:", current_addr, opcode, LOW_PART(tmp_word), HIGH_PART(tmp_word));
}
break;
case ABSIX:
/* Get base address */
tmp_word = LOAD_WORD(buffer, PC);
PC += 2;
sprintf(opcode_repr, "%s $%02X%02X,X", name_table[opcode_table[entry].name], HIGH_PART(tmp_word), LOW_PART(tmp_word));
if (hex_output) {
sprintf(hex_dump, "$%04X> %02X %02X%02X:", current_addr, opcode, LOW_PART(tmp_word), HIGH_PART(tmp_word));
}
break;
case ABSIY:
/* Get baser address */
tmp_word = LOAD_WORD(buffer, PC);
PC += 2;
sprintf(opcode_repr, "%s $%02X%02X,Y", name_table[opcode_table[entry].name], HIGH_PART(tmp_word), LOW_PART(tmp_word));
if (hex_output) {
sprintf(hex_dump, "$%04X> %02X %02X%02X:", current_addr, opcode, LOW_PART(tmp_word), HIGH_PART(tmp_word));
}
break;
case ZEPIX:
/* Get zero-page base address */
tmp_byte1 = buffer[PC + 1];
PC++;
sprintf(opcode_repr, "%s $%02X,X", name_table[opcode_table[entry].name], tmp_byte1);
if (hex_output) {
sprintf(hex_dump, "$%04X> %02X %02X:", current_addr, opcode, tmp_byte1);
}
break;
case ZEPIY:
/* Get zero-page base address */
tmp_byte1 = buffer[PC + 1];
PC++;
sprintf(opcode_repr, "%s $%02X,Y", name_table[opcode_table[entry].name], tmp_byte1);
if (hex_output) {
sprintf(hex_dump, "$%04X> %02X %02X:", current_addr, opcode, tmp_byte1);
}
break;
case INDIN:
/* Get zero-page base address */
tmp_byte1 = buffer[PC + 1];
PC++;
sprintf(opcode_repr, "%s ($%02X,X)", name_table[opcode_table[entry].name], tmp_byte1);
if (hex_output) {
sprintf(hex_dump, "$%04X> %02X %02X:", current_addr, opcode, tmp_byte1);
}
break;
case ININD:
/* Get zero-page base address */
tmp_byte1 = buffer[PC + 1];
PC++;
sprintf(opcode_repr, "%s ($%02X),Y", name_table[opcode_table[entry].name], tmp_byte1);
if (hex_output) {
sprintf(hex_dump, "$%04X> %02X %02X:", current_addr, opcode, tmp_byte1);
}
break;
case RELAT:
/* Get relative modifier */
tmp_byte1 = buffer[PC + 1];
PC++;
// Compute displacement from first byte after full instruction.
tmp_word = current_addr + 2;
if (tmp_byte1 > 0x7Fu) {
tmp_word -= ((~tmp_byte1 & 0x7Fu) + 1);
} else {
tmp_word += tmp_byte1 & 0x7Fu;
}
sprintf(opcode_repr, "%s $%04X", name_table[opcode_table[entry].name], tmp_word);
if (hex_output) {
sprintf(hex_dump, "$%04X> %02X %02X:", current_addr, opcode, tmp_byte1);
}
break;
case ACCUM:
sprintf(opcode_repr, "%s A", name_table[opcode_table[entry].name]);
if (hex_output) {
sprintf(hex_dump, "$%04X> %02X:", current_addr, opcode);
}
break;
default:
// Will not happen since each entry in opcode_table has address mode set
break;
}
len = sprintf(output, DUMP_FORMAT, hex_dump, opcode_repr);
output += len;
/* Add cycle count if necessary */
if (cycle_counting) {
output = append_cycle(output, entry);
}
/* Add NES port info if necessary */
switch (opcode_table[entry].addressing) {
case ABSOL:
case ABSIX:
case ABSIY:
if (nes_mode) {
append_nes(output, tmp_word);
}
break;
default:
/* Other addressing modes: not enough info to add NES register annotation */
break;
}
}
void version(void) {
fprintf(stderr, "DCC6502 %s (C)1998-2014 Tennessee Carmel-Veilleux <veilleux@tentech.ca>\n", VERSION_INFO);
fprintf(stderr, "This software is licensed under the MIT license. See the LICENSE file.\n");
fprintf(stderr, "See source on github: https://github.com/tcarmelveilleux/dcc6502.\n");
}
void usage_helper(char *str) {
fprintf(stderr, "\t%s\n", str);
}
// FIXME: add command line sample
// FIXME: Make these more sane and add option for decimal
void usage(void) {
usage_helper("-? -> Show this help message");
usage_helper("-oXXXX -> Set the origin (ORG), where XXXX is hexadecimal [default: 8000]");
usage_helper("-h -> Enable hex dump within disassembly");
usage_helper("-mXXXX -> Only disassemble the first XXXX bytes, where XXXX is hexadecimal");
usage_helper("-mXXXX -> Only disassemble the first XXXX bytes, where XXXX is hexadecimal");
usage_helper("-n -> Enable NES register annotations");
usage_helper("-v -> Get only version information");
usage_helper("-c -> Enable cycle counting annotations");
fprintf(stderr, "\n");
}
// FIXME: DE-KLUDGIFY THIS :D
uint16_t hex2int (char *str, uint16_t dfl) {
uint32_t tmp = 0;
errno = EOK;
tmp = strtoul(str, NULL, 16);
/* In case of conversion error, take default value */
if (EOK != errno) {
fprintf(stderr, "WARNING -> error converting %s to a numerical value.", str);
return dfl;
} else {
return (uint16_t)(tmp & 0xFFFFu);
}
}
void set_org(char *str) {
if (strlen(str) < 3) {
fprintf(stderr, "WARNING -> %s is not a valid ORG switch, defaulting to $8000\n", str);
org = 0x8000;
return;
}
org = hex2int(&str[2], 0x8000u);
}
void set_max(char *str) {
if (strlen(str) < 3) {
max = 0xFFFF-org;
fprintf(stderr, "WARNING -> %s is not a valid MAX switch, defaulting to $%04X\n", str, max);
return;
}
max = hex2int(&str[2], 0xFFFFu);
}
int main(int argc, char *argv[]) {
int idx = 0;
char tmpstring[512];
char filename[512];
cycle_counting = 0;
hex_output = 0;
org = 0x8000;
if (argc < 2) {
version();
usage();
exit(1);
}
if (argc > 2) {
for (idx = 1; idx < argc - 1; idx++) {
if (argv[idx][0] != '-') {
version();
usage();
fprintf(stderr, "Unrecognized switch: %s\n", argv[idx]);
exit(1);
}
switch (argv[idx][1]) {
case '?':
version();
usage();
exit(0);
break;
case 'n':
nes_mode = 1;
break;
case 'c':
cycle_counting = 1;
break;
case 'h':
hex_output = 1;
break;
case 'v':
version();
exit(0);
break;
case 'o':
set_org(argv[idx]);
break;
case 'm':
set_max(argv[idx]);
break;
default:
version();
usage();
fprintf(stderr, "Unrecognized switch: %s\n", argv[idx]);
exit(1);
}
}
} else {
if (argv[1][0] != '-') {
strncpy(filename, argv[1], 511);
} else {
switch (argv[1][1]) {
case '?':
version();
usage();
exit(0);
break;
case 'v':
version();
exit(0);
break;
default:
version();
usage();
fprintf(stderr, "Unrecognized switch: %s\n", argv[1]);
exit(1);
}
}
}
strncpy(filename, argv[argc - 1], 511);
f = fopen(filename, "rb");
if (NULL == f) {
version();
fprintf(stderr, "File not found or invalid filename : %s\n", filename);
exit(1);
}
idx = 0;
while(!feof(f) && ((idx + org) < 65535)) {
fread(&buffer[idx], 1, 1, f);
idx++;
}
fclose(f);
emit_header(filename, idx, org);
PC = 0;
while(((PC + org) < 65535) && (PC <= max) && (PC < idx)) {
disassemble(tmpstring);
fprintf(stdout, "%s\n", tmpstring);
PC++;
}
return 0;
}