package visual import ( "fmt" "github.com/zellyn/bitset" icpu "github.com/zellyn/go6502/cpu" ) type cpu struct { m icpu.Memory cycle uint64 nodeValues *bitset.BitSet nodePullups *bitset.BitSet nodePulldowns *bitset.BitSet nodeGateCounts [NODES]uint // the number of transistor gates attached to a node nodeGates [NODES][NODES]uint // the list of transistor indexes attached to a node nodeC1C2Counts [NODES]uint // the number of transistor c1/c2s attached to a node nodeC1C2s [NODES][2 * NODES]uint // the list of transistor c1/c2s attached to a node transistorValues *bitset.BitSet transistorGates [TRANSISTORS]uint transistorC1s [TRANSISTORS]uint transistorC2s [TRANSISTORS]uint nodeDependantCounts [NODES]uint nodeDependants [NODES][NODES]uint // all C1 and C2 nodes of transistors attached to a node listIn []uint listOut []uint groupList []uint groupSet *bitset.BitSet groupContainsPullup bool groupContainsPulldown bool groupContainsHi bool } func NewCPU(memory icpu.Memory) icpu.Cpu { c := cpu{m: memory} c.setupNodesAndTransistors() return &c } func (c *cpu) SetPC(uint16) { panic("Not implemented") } // -------------------------------- // Interfacing and extracting state // -------------------------------- func (c *cpu) Read8(n0, n1, n2, n3, n4, n5, n6, n7 uint) byte { return (c.nodeBit(n0) | c.nodeBit(n1)<<1 | c.nodeBit(n2)<<2 | c.nodeBit(n3)<<3 | c.nodeBit(n4)<<4 | c.nodeBit(n5)<<5 | c.nodeBit(n6)<<6 | c.nodeBit(n7)<<7) } func (c *cpu) AddressBus() uint16 { abl := uint16(c.Read8(NODE_ab0, NODE_ab1, NODE_ab2, NODE_ab3, NODE_ab4, NODE_ab5, NODE_ab6, NODE_ab7)) abh := uint16(c.Read8(NODE_ab8, NODE_ab9, NODE_ab10, NODE_ab11, NODE_ab12, NODE_ab13, NODE_ab14, NODE_ab15)) return abl + abh<<8 } func (c *cpu) DataBus() byte { return c.Read8(NODE_db0, NODE_db1, NODE_db2, NODE_db3, NODE_db4, NODE_db5, NODE_db6, NODE_db7) } func (c *cpu) A() byte { return c.Read8(NODE_a0, NODE_a1, NODE_a2, NODE_a3, NODE_a4, NODE_a5, NODE_a6, NODE_a7) } func (c *cpu) X() byte { return c.Read8(NODE_x0, NODE_x1, NODE_x2, NODE_x3, NODE_x4, NODE_x5, NODE_x6, NODE_x7) } func (c *cpu) Y() byte { return c.Read8(NODE_y0, NODE_y1, NODE_y2, NODE_y3, NODE_y4, NODE_y5, NODE_y6, NODE_y7) } func (c *cpu) P() byte { return c.Read8(NODE_p0, NODE_p1, NODE_p2, NODE_p3, NODE_p4, NODE_p5, NODE_p6, NODE_p7) } func (c *cpu) SP() byte { return c.Read8(NODE_s0, NODE_s1, NODE_s2, NODE_s3, NODE_s4, NODE_s5, NODE_s6, NODE_s7) } func (c *cpu) IR() byte { return c.Read8(NODE_notir0, NODE_notir1, NODE_notir2, NODE_notir3, NODE_notir4, NODE_notir5, NODE_notir6, NODE_notir7) ^ 0xFF } func (c *cpu) PCL() byte { return c.Read8(NODE_pcl0, NODE_pcl1, NODE_pcl2, NODE_pcl3, NODE_pcl4, NODE_pcl5, NODE_pcl6, NODE_pcl7) } func (c *cpu) PCH() byte { return c.Read8(NODE_pch0, NODE_pch1, NODE_pch2, NODE_pch3, NODE_pch4, NODE_pch5, NODE_pch6, NODE_pch7) } func (c *cpu) PC() uint16 { return uint16(c.PCH())<<8 + uint16(c.PCL()) } func (c *cpu) nodeBit(n uint) byte { if c.nodeValues.Test(n) { return 1 } return 0 } func (c *cpu) writeDataBus(d byte) { for i := 0; i < 8; i++ { c.setNode(DataBusNodes[i], d&1 == 1) d >>= 1 } } func (c *cpu) Reset() { fmt.Println("Reset called") // All nodes down c.nodeValues.ClearAll() // All transistors off c.transistorValues.ClearAll() c.setNode(NODE_res, false) c.setNode(NODE_clk0, true) c.setNode(NODE_rdy, true) c.setNode(NODE_so, false) c.setNode(NODE_irq, true) c.setNode(NODE_nmi, true) c.recalcAllNodes() // Hold RESET for 8 cycles for i := 0; i < 8; i++ { fmt.Println("Reset step ", i) c.Step() } c.setNode(NODE_res, true) c.cycle = 0 } func (c *cpu) switchLists() { c.listIn, c.listOut = c.listOut, c.listIn } func (c *cpu) addNodeToGroup(n uint) { if c.groupSet.Test(n) { return } c.groupSet.Set(n) c.groupList = append(c.groupList, n) if c.nodePullups.Test(n) { c.groupContainsPullup = true } if c.nodePulldowns.Test(n) { c.groupContainsPulldown = true } if c.nodeValues.Test(n) { c.groupContainsHi = true } if n == NODE_vss || n == NODE_vcc { return } /* revisit all transistors that are controlled by this node */ for t := uint(0); t < c.nodeC1C2Counts[n]; t++ { tn := c.nodeC1C2s[n][t] if c.transistorValues.Test(tn) { if c.transistorC1s[tn] == n { c.addNodeToGroup(c.transistorC2s[tn]) } else { c.addNodeToGroup(c.transistorC1s[tn]) } } } } func (c *cpu) addAllNodesToGroup(node uint) { c.groupList = c.groupList[0:0] c.groupSet.ClearAll() c.groupContainsPullup = false c.groupContainsPulldown = false c.groupContainsHi = false c.addNodeToGroup(node) } func (c *cpu) getGroupValue() bool { if c.groupSet.Test(NODE_vss) { return false } if c.groupSet.Test(NODE_vcc) { return true } if c.groupContainsPulldown { return false } if c.groupContainsPullup { return true } return c.groupContainsHi } func (c *cpu) recalcNode(node uint) { /* * get all nodes that are connected through * transistors, starting with this one */ c.addAllNodesToGroup(node) /* get the state of the group */ newv := c.getGroupValue() /* * - set all nodes to the group state * - check all transistors switched by nodes of the group * - collect all nodes behind toggled transistors * for the next run */ for _, nn := range c.groupList { if c.nodeValues.Test(nn) != newv { c.nodeValues.SetTo(nn, newv) for t := uint(0); t < c.nodeGateCounts[nn]; t++ { tn := c.nodeGates[nn][t] c.transistorValues.Flip(tn) } c.listOut = append(c.listOut, nn) } } } func (c *cpu) recalcNodeList(nodes []uint) { c.listOut = c.listOut[0:0] for _, n := range nodes { c.recalcNode(n) } c.switchLists() for j := 0; j < 100; j++ { /* loop limiter */ if len(c.listIn) == 0 { break } c.listOut = c.listOut[0:0] /* * for all nodes, follow their paths through * turned-on transistors, find the state of the * path and assign it to all nodes, and re-evaluate * all transistors controlled by this path, collecting * all nodes that changed because of it for the next run */ for _, n := range c.listIn { for g := uint(0); g < c.nodeDependantCounts[n]; g++ { c.recalcNode(c.nodeDependants[n][g]) } } /* * make the secondary list our primary list, use * the data storage of the primary list as the * secondary list */ c.switchLists() } } func (c *cpu) recalcAllNodes() { temp := make([]uint, NODES) for i := uint(0); i < NODES; i++ { temp[i] = i } c.recalcNodeList(temp) } /**************/ /* Node State */ /**************/ func (c *cpu) setNode(nn uint, state bool) { c.nodePullups.SetTo(nn, state) c.nodePulldowns.SetTo(nn, !state) c.recalcNodeList([]uint{nn}) } func (c *cpu) isNodeHigh(n uint) bool { return c.nodeValues.Test(n) } // handleMemory is called when clk0 is low, and either reads from or // writes to memory, depending on rw. func (c *cpu) handleMemory() { if c.isNodeHigh(NODE_rw) { c.writeDataBus(c.m.Read(c.AddressBus())) } else { c.m.Write(c.AddressBus(), c.DataBus()) } } // HalfStep is the main clock loop, and takes a half clock step. func (c *cpu) HalfStep() { clk := c.isNodeHigh(NODE_clk0) c.setNode(NODE_clk0, !clk) if !clk { c.handleMemory() } c.cycle++ } // Step takes two half steps. func (c *cpu) Step() error { c.HalfStep() c.HalfStep() return nil } /******************/ /* Initialization */ /******************/ func (c *cpu) addNodeDependant(a, b uint) { for g := uint(0); g < c.nodeDependantCounts[a]; g++ { if c.nodeDependants[a][g] == b { return } } c.nodeDependants[a][c.nodeDependantCounts[a]] = b c.nodeDependantCounts[a]++ } func (c *cpu) setupNodesAndTransistors() { // Zero out bitsets c.nodeValues = bitset.New(NODES) c.nodePullups = bitset.New(NODES) c.nodePulldowns = bitset.New(NODES) c.transistorValues = bitset.New(TRANSISTORS) c.groupSet = bitset.New(NODES) c.groupList = make([]uint, 0, NODES) // Copy node data from SegDefs into r/w data structures for i := uint(0); i < NODES; i++ { c.nodePullups.SetTo(i, SegDefs[i]) c.nodeGateCounts[i] = 0 c.nodeC1C2Counts[i] = 0 } // Copy transistor data from TransDefs into r/w data structures for i, t := range TransDefs { c.transistorGates[i] = t.gate c.transistorC1s[i] = t.c1 c.transistorC2s[i] = t.c2 } // Cross-reference transistors in nodes data structures for j, t := range TransDefs { i := uint(j) c.nodeGates[t.gate][c.nodeGateCounts[t.gate]] = i c.nodeGateCounts[t.gate]++ c.nodeC1C2s[t.c1][c.nodeC1C2Counts[t.c1]] = i c.nodeC1C2Counts[t.c1]++ c.nodeC1C2s[t.c2][c.nodeC1C2Counts[t.c2]] = i c.nodeC1C2Counts[t.c2]++ } for i := uint(0); i < NODES; i++ { c.nodeDependantCounts[i] = 0 for g := uint(0); g < c.nodeGateCounts[i]; g++ { t := c.nodeGates[i][g] c.addNodeDependant(i, c.transistorC1s[t]) c.addNodeDependant(i, c.transistorC2s[t]) } } }