Closes #807 bug when rewriting multiplication with power of 2, where the constant is the left operand.

This commit is contained in:
jespergravgaard 2022-11-13 11:11:27 +01:00
parent 95aa5ec6c4
commit 63932ef555
7 changed files with 539 additions and 0 deletions

View File

@ -76,6 +76,7 @@ public class Pass2MultiplyToShiftRewriting extends Pass2SsaOptimization {
getLog().append("Rewriting multiplication to use shift " + assignment.toString(getProgram(), false));
assignment.setOperator(Operators.SHIFT_LEFT);
assignment.setrValue2(new ConstantInteger((long) power2, SymbolType.BYTE));
assignment.setrValue1(varValue);
optimized = true;
} else if(Operators.MULTIPLY.equals(assignment.getOperator())) {
// Multiplication by constant

View File

@ -3354,6 +3354,11 @@ public class TestProgramsFast extends TestPrograms {
compileAndCompare("multiply-2s.c");
}
@Test
public void testMultiply2sLeft() throws IOException {
compileAndCompare("multiply-2s-left.c");
}
@Test
public void testMultiplyNs() throws IOException {
compileAndCompare("multiply-ns.c");

View File

@ -0,0 +1,18 @@
// Check that multiplication by factors of 2 on the left side is converted to shifts
void main() {
byte* const SCREEN = (char*)$400;
for(byte i: 0..10) {
(SCREEN+0*40)[i] = 1*i;
(SCREEN+1*40)[i] = 2*i;
(SCREEN+2*40)[i] = 4*i;
(SCREEN+3*40)[i] = 8*i;
// And a single signed byte
signed byte sb = -(signed byte)i;
(SCREEN+5*40)[i] = (byte)(2*sb);
}
}

View File

@ -0,0 +1,52 @@
// Check that multiplication by factors of 2 on the left side is converted to shifts
// Commodore 64 PRG executable file
.file [name="multiply-2s-left.prg", type="prg", segments="Program"]
.segmentdef Program [segments="Basic, Code, Data"]
.segmentdef Basic [start=$0801]
.segmentdef Code [start=$80d]
.segmentdef Data [startAfter="Code"]
.segment Basic
:BasicUpstart(main)
.segment Code
main: {
.label SCREEN = $400
ldx #0
__b1:
// (SCREEN+0*40)[i] = 1*i
txa
sta SCREEN,x
// 2*i
txa
asl
// (SCREEN+1*40)[i] = 2*i
sta SCREEN+1*$28,x
// 4*i
txa
asl
asl
// (SCREEN+2*40)[i] = 4*i
sta SCREEN+2*$28,x
// 8*i
txa
asl
asl
asl
// (SCREEN+3*40)[i] = 8*i
sta SCREEN+3*$28,x
// signed byte sb = -(signed byte)i
// And a single signed byte
txa
eor #$ff
clc
adc #1
// 2*sb
asl
// (SCREEN+5*40)[i] = (byte)(2*sb)
sta SCREEN+5*$28,x
// for(byte i: 0..10)
inx
cpx #$b
bne __b1
// }
rts
}

View File

@ -0,0 +1,23 @@
void main()
main: scope:[main] from
[0] phi()
to:main::@1
main::@1: scope:[main] from main main::@1
[1] main::i#2 = phi( main/0, main::@1/main::i#1 )
[2] main::SCREEN[main::i#2] = main::i#2
[3] main::$1 = main::i#2 << 1
[4] (main::SCREEN+1*$28)[main::i#2] = main::$1
[5] main::$2 = main::i#2 << 2
[6] (main::SCREEN+2*$28)[main::i#2] = main::$2
[7] main::$3 = main::i#2 << 3
[8] (main::SCREEN+3*$28)[main::i#2] = main::$3
[9] main::sb#0 = - (signed char)main::i#2
[10] main::$5 = main::sb#0 << 1
[11] (main::SCREEN+5*$28)[main::i#2] = (char)main::$5
[12] main::i#1 = ++ main::i#2
[13] if(main::i#1!=$b) goto main::@1
to:main::@return
main::@return: scope:[main] from main::@1
[14] return
to:@return

View File

@ -0,0 +1,422 @@
Eliminating unused variable with no statement main::$4
CONTROL FLOW GRAPH SSA
void main()
main: scope:[main] from __start
main::i#0 = 0
to:main::@1
main::@1: scope:[main] from main main::@1
main::i#2 = phi( main/main::i#0, main::@1/main::i#1 )
main::$0 = 1 * main::i#2
(main::SCREEN+0*$28)[main::i#2] = main::$0
main::$1 = 2 * main::i#2
(main::SCREEN+1*$28)[main::i#2] = main::$1
main::$2 = 4 * main::i#2
(main::SCREEN+2*$28)[main::i#2] = main::$2
main::$3 = 8 * main::i#2
(main::SCREEN+3*$28)[main::i#2] = main::$3
main::sb#0 = - (signed char)main::i#2
main::$5 = 2 * main::sb#0
(main::SCREEN+5*$28)[main::i#2] = (char)main::$5
main::i#1 = main::i#2 + rangenext(0,$a)
main::$6 = main::i#1 != rangelast(0,$a)
if(main::$6) goto main::@1
to:main::@return
main::@return: scope:[main] from main::@1
return
to:@return
void __start()
__start: scope:[__start] from
call main
to:__start::@1
__start::@1: scope:[__start] from __start
to:__start::@return
__start::@return: scope:[__start] from __start::@1
return
to:@return
SYMBOL TABLE SSA
void __start()
void main()
number main::$0
number main::$1
number main::$2
number main::$3
number main::$5
bool main::$6
__constant char * const main::SCREEN = (char *)$400
char main::i
char main::i#0
char main::i#1
char main::i#2
signed char main::sb
signed char main::sb#0
Adding number conversion cast (unumber) 1 in main::$0 = 1 * main::i#2
Adding number conversion cast (unumber) main::$0 in main::$0 = (unumber)1 * main::i#2
Adding number conversion cast (unumber) 0*$28 in (main::SCREEN+0*$28)[main::i#2] = main::$0
Adding number conversion cast (unumber) 2 in main::$1 = 2 * main::i#2
Adding number conversion cast (unumber) main::$1 in main::$1 = (unumber)2 * main::i#2
Adding number conversion cast (unumber) 1*$28 in (main::SCREEN+1*$28)[main::i#2] = main::$1
Adding number conversion cast (unumber) 4 in main::$2 = 4 * main::i#2
Adding number conversion cast (unumber) main::$2 in main::$2 = (unumber)4 * main::i#2
Adding number conversion cast (unumber) 2*$28 in (main::SCREEN+2*$28)[main::i#2] = main::$2
Adding number conversion cast (unumber) 8 in main::$3 = 8 * main::i#2
Adding number conversion cast (unumber) main::$3 in main::$3 = (unumber)8 * main::i#2
Adding number conversion cast (unumber) 3*$28 in (main::SCREEN+3*$28)[main::i#2] = main::$3
Adding number conversion cast (snumber) 2 in main::$5 = 2 * main::sb#0
Adding number conversion cast (snumber) main::$5 in main::$5 = (snumber)2 * main::sb#0
Adding number conversion cast (unumber) 5*$28 in (main::SCREEN+5*$28)[main::i#2] = (char)main::$5
Successful SSA optimization PassNAddNumberTypeConversions
Simplifying constant pointer cast (char *) 1024
Simplifying constant integer cast 1
Simplifying constant integer cast 2
Simplifying constant integer cast 4
Simplifying constant integer cast 8
Simplifying constant integer cast 2
Successful SSA optimization PassNCastSimplification
Finalized unsigned number type (char) 1
Finalized unsigned number type (char) 2
Finalized unsigned number type (char) 4
Finalized unsigned number type (char) 8
Finalized signed number type (signed char) 2
Successful SSA optimization PassNFinalizeNumberTypeConversions
Inferred type updated to char in main::$0 = 1 * main::i#2
Inferred type updated to char in main::$1 = 2 * main::i#2
Inferred type updated to char in main::$2 = 4 * main::i#2
Inferred type updated to char in main::$3 = 8 * main::i#2
Inferred type updated to signed char in main::$5 = 2 * main::sb#0
Simple Condition main::$6 [15] if(main::i#1!=rangelast(0,$a)) goto main::@1
Successful SSA optimization Pass2ConditionalJumpSimplification
Constant main::i#0 = 0
Successful SSA optimization Pass2ConstantIdentification
Resolved ranged next value [13] main::i#1 = ++ main::i#2 to ++
Resolved ranged comparison value [15] if(main::i#1!=rangelast(0,$a)) goto main::@1 to $b
Simplifying constant evaluating to zero (char)0*$28 in [3] (main::SCREEN+(char)0*$28)[main::i#2] = main::$0
Successful SSA optimization PassNSimplifyConstantZero
Simplifying expression containing zero main::SCREEN in [3] (main::SCREEN+0)[main::i#2] = main::$0
Successful SSA optimization PassNSimplifyExpressionWithZero
Removing unused procedure __start
Removing unused procedure block __start
Removing unused procedure block __start::@1
Removing unused procedure block __start::@return
Successful SSA optimization PassNEliminateEmptyStart
Adding number conversion cast (unumber) $b in [13] if(main::i#1!=$b) goto main::@1
Successful SSA optimization PassNAddNumberTypeConversions
Simplifying constant integer cast $b
Successful SSA optimization PassNCastSimplification
Finalized unsigned number type (char) $b
Successful SSA optimization PassNFinalizeNumberTypeConversions
Rewriting multiplication to remove identity multiply [1] main::$0 = 1 * main::i#2
Rewriting multiplication to use shift [3] main::$1 = 2 * main::i#2
Rewriting multiplication to use shift [5] main::$2 = 4 * main::i#2
Rewriting multiplication to use shift [7] main::$3 = 8 * main::i#2
Rewriting multiplication to use shift [10] main::$5 = 2 * main::sb#0
Successful SSA optimization Pass2MultiplyToShiftRewriting
Inlining constant with var siblings main::i#0
Constant inlined main::i#0 = 0
Successful SSA optimization Pass2ConstantInlining
Alias main::i#2 = main::$0
Successful SSA optimization Pass2AliasElimination
Finalized unsigned number type (char) 1
Finalized unsigned number type (char) $28
Finalized unsigned number type (char) 2
Finalized unsigned number type (char) $28
Finalized unsigned number type (char) 3
Finalized unsigned number type (char) $28
Finalized unsigned number type (char) 5
Finalized unsigned number type (char) $28
Successful SSA optimization PassNFinalizeNumberTypeConversions
Simplifying constant integer cast 1*$28
Simplifying constant integer cast 2*$28
Simplifying constant integer cast 3*$28
Simplifying constant integer cast 5*$28
Successful SSA optimization PassNCastSimplification
Added new block during phi lifting main::@2(between main::@1 and main::@1)
Adding NOP phi() at start of main
CALL GRAPH
Created 1 initial phi equivalence classes
Coalesced [15] main::i#3 = main::i#1
Coalesced down to 1 phi equivalence classes
Culled Empty Block label main::@2
Adding NOP phi() at start of main
FINAL CONTROL FLOW GRAPH
void main()
main: scope:[main] from
[0] phi()
to:main::@1
main::@1: scope:[main] from main main::@1
[1] main::i#2 = phi( main/0, main::@1/main::i#1 )
[2] main::SCREEN[main::i#2] = main::i#2
[3] main::$1 = main::i#2 << 1
[4] (main::SCREEN+1*$28)[main::i#2] = main::$1
[5] main::$2 = main::i#2 << 2
[6] (main::SCREEN+2*$28)[main::i#2] = main::$2
[7] main::$3 = main::i#2 << 3
[8] (main::SCREEN+3*$28)[main::i#2] = main::$3
[9] main::sb#0 = - (signed char)main::i#2
[10] main::$5 = main::sb#0 << 1
[11] (main::SCREEN+5*$28)[main::i#2] = (char)main::$5
[12] main::i#1 = ++ main::i#2
[13] if(main::i#1!=$b) goto main::@1
to:main::@return
main::@return: scope:[main] from main::@1
[14] return
to:@return
VARIABLE REGISTER WEIGHTS
void main()
char main::$1 // 22.0
char main::$2 // 22.0
char main::$3 // 22.0
signed char main::$5 // 11.0
char main::i
char main::i#1 // 16.5
char main::i#2 // 11.0
signed char main::sb
signed char main::sb#0 // 22.0
Initial phi equivalence classes
[ main::i#2 main::i#1 ]
Added variable main::$1 to live range equivalence class [ main::$1 ]
Added variable main::$2 to live range equivalence class [ main::$2 ]
Added variable main::$3 to live range equivalence class [ main::$3 ]
Added variable main::sb#0 to live range equivalence class [ main::sb#0 ]
Added variable main::$5 to live range equivalence class [ main::$5 ]
Complete equivalence classes
[ main::i#2 main::i#1 ]
[ main::$1 ]
[ main::$2 ]
[ main::$3 ]
[ main::sb#0 ]
[ main::$5 ]
Allocated zp[1]:2 [ main::i#2 main::i#1 ]
Allocated zp[1]:3 [ main::$1 ]
Allocated zp[1]:4 [ main::$2 ]
Allocated zp[1]:5 [ main::$3 ]
Allocated zp[1]:6 [ main::sb#0 ]
Allocated zp[1]:7 [ main::$5 ]
REGISTER UPLIFT POTENTIAL REGISTERS
Statement [3] main::$1 = main::i#2 << 1 [ main::i#2 main::$1 ] ( [ main::i#2 main::$1 ] { } ) always clobbers reg byte a
Removing always clobbered register reg byte a as potential for zp[1]:2 [ main::i#2 main::i#1 ]
Statement [5] main::$2 = main::i#2 << 2 [ main::i#2 main::$2 ] ( [ main::i#2 main::$2 ] { } ) always clobbers reg byte a
Statement [7] main::$3 = main::i#2 << 3 [ main::i#2 main::$3 ] ( [ main::i#2 main::$3 ] { } ) always clobbers reg byte a
Statement [9] main::sb#0 = - (signed char)main::i#2 [ main::i#2 main::sb#0 ] ( [ main::i#2 main::sb#0 ] { } ) always clobbers reg byte a
Statement [10] main::$5 = main::sb#0 << 1 [ main::i#2 main::$5 ] ( [ main::i#2 main::$5 ] { } ) always clobbers reg byte a
Statement [2] main::SCREEN[main::i#2] = main::i#2 [ main::i#2 ] ( [ main::i#2 ] { } ) always clobbers reg byte a
Statement [3] main::$1 = main::i#2 << 1 [ main::i#2 main::$1 ] ( [ main::i#2 main::$1 ] { } ) always clobbers reg byte a
Statement [5] main::$2 = main::i#2 << 2 [ main::i#2 main::$2 ] ( [ main::i#2 main::$2 ] { } ) always clobbers reg byte a
Statement [7] main::$3 = main::i#2 << 3 [ main::i#2 main::$3 ] ( [ main::i#2 main::$3 ] { } ) always clobbers reg byte a
Statement [9] main::sb#0 = - (signed char)main::i#2 [ main::i#2 main::sb#0 ] ( [ main::i#2 main::sb#0 ] { } ) always clobbers reg byte a
Statement [10] main::$5 = main::sb#0 << 1 [ main::i#2 main::$5 ] ( [ main::i#2 main::$5 ] { } ) always clobbers reg byte a
Potential registers zp[1]:2 [ main::i#2 main::i#1 ] : zp[1]:2 , reg byte x , reg byte y ,
Potential registers zp[1]:3 [ main::$1 ] : zp[1]:3 , reg byte a , reg byte x , reg byte y ,
Potential registers zp[1]:4 [ main::$2 ] : zp[1]:4 , reg byte a , reg byte x , reg byte y ,
Potential registers zp[1]:5 [ main::$3 ] : zp[1]:5 , reg byte a , reg byte x , reg byte y ,
Potential registers zp[1]:6 [ main::sb#0 ] : zp[1]:6 , reg byte a , reg byte x , reg byte y ,
Potential registers zp[1]:7 [ main::$5 ] : zp[1]:7 , reg byte a , reg byte x , reg byte y ,
REGISTER UPLIFT SCOPES
Uplift Scope [main] 27.5: zp[1]:2 [ main::i#2 main::i#1 ] 22: zp[1]:3 [ main::$1 ] 22: zp[1]:4 [ main::$2 ] 22: zp[1]:5 [ main::$3 ] 22: zp[1]:6 [ main::sb#0 ] 11: zp[1]:7 [ main::$5 ]
Uplift Scope []
Uplifting [main] best 851 combination reg byte x [ main::i#2 main::i#1 ] reg byte a [ main::$1 ] reg byte a [ main::$2 ] reg byte a [ main::$3 ] zp[1]:6 [ main::sb#0 ] zp[1]:7 [ main::$5 ]
Limited combination testing to 100 combinations of 3072 possible.
Uplifting [] best 851 combination
Attempting to uplift remaining variables inzp[1]:6 [ main::sb#0 ]
Uplifting [main] best 791 combination reg byte a [ main::sb#0 ]
Attempting to uplift remaining variables inzp[1]:7 [ main::$5 ]
Uplifting [main] best 731 combination reg byte a [ main::$5 ]
ASSEMBLER BEFORE OPTIMIZATION
// File Comments
// Check that multiplication by factors of 2 on the left side is converted to shifts
// Upstart
// Commodore 64 PRG executable file
.file [name="multiply-2s-left.prg", type="prg", segments="Program"]
.segmentdef Program [segments="Basic, Code, Data"]
.segmentdef Basic [start=$0801]
.segmentdef Code [start=$80d]
.segmentdef Data [startAfter="Code"]
.segment Basic
:BasicUpstart(main)
// Global Constants & labels
.segment Code
// main
main: {
.label SCREEN = $400
// [1] phi from main to main::@1 [phi:main->main::@1]
__b1_from_main:
// [1] phi main::i#2 = 0 [phi:main->main::@1#0] -- vbuxx=vbuc1
ldx #0
jmp __b1
// [1] phi from main::@1 to main::@1 [phi:main::@1->main::@1]
__b1_from___b1:
// [1] phi main::i#2 = main::i#1 [phi:main::@1->main::@1#0] -- register_copy
jmp __b1
// main::@1
__b1:
// [2] main::SCREEN[main::i#2] = main::i#2 -- pbuc1_derefidx_vbuxx=vbuxx
txa
sta SCREEN,x
// [3] main::$1 = main::i#2 << 1 -- vbuaa=vbuxx_rol_1
txa
asl
// [4] (main::SCREEN+1*$28)[main::i#2] = main::$1 -- pbuc1_derefidx_vbuxx=vbuaa
sta SCREEN+1*$28,x
// [5] main::$2 = main::i#2 << 2 -- vbuaa=vbuxx_rol_2
txa
asl
asl
// [6] (main::SCREEN+2*$28)[main::i#2] = main::$2 -- pbuc1_derefidx_vbuxx=vbuaa
sta SCREEN+2*$28,x
// [7] main::$3 = main::i#2 << 3 -- vbuaa=vbuxx_rol_3
txa
asl
asl
asl
// [8] (main::SCREEN+3*$28)[main::i#2] = main::$3 -- pbuc1_derefidx_vbuxx=vbuaa
sta SCREEN+3*$28,x
// [9] main::sb#0 = - (signed char)main::i#2 -- vbsaa=_neg_vbsxx
// And a single signed byte
txa
eor #$ff
clc
adc #1
// [10] main::$5 = main::sb#0 << 1 -- vbsaa=vbsaa_rol_1
asl
// [11] (main::SCREEN+5*$28)[main::i#2] = (char)main::$5 -- pbuc1_derefidx_vbuxx=vbuaa
sta SCREEN+5*$28,x
// [12] main::i#1 = ++ main::i#2 -- vbuxx=_inc_vbuxx
inx
// [13] if(main::i#1!=$b) goto main::@1 -- vbuxx_neq_vbuc1_then_la1
cpx #$b
bne __b1_from___b1
jmp __breturn
// main::@return
__breturn:
// [14] return
rts
}
// File Data
ASSEMBLER OPTIMIZATIONS
Removing instruction jmp __b1
Removing instruction jmp __breturn
Succesful ASM optimization Pass5NextJumpElimination
Replacing label __b1_from___b1 with __b1
Removing instruction __b1_from___b1:
Succesful ASM optimization Pass5RedundantLabelElimination
Removing instruction __b1_from_main:
Removing instruction __breturn:
Succesful ASM optimization Pass5UnusedLabelElimination
Removing instruction jmp __b1
Succesful ASM optimization Pass5NextJumpElimination
FINAL SYMBOL TABLE
void main()
char main::$1 // reg byte a 22.0
char main::$2 // reg byte a 22.0
char main::$3 // reg byte a 22.0
signed char main::$5 // reg byte a 11.0
__constant char * const main::SCREEN = (char *) 1024
char main::i
char main::i#1 // reg byte x 16.5
char main::i#2 // reg byte x 11.0
signed char main::sb
signed char main::sb#0 // reg byte a 22.0
reg byte x [ main::i#2 main::i#1 ]
reg byte a [ main::$1 ]
reg byte a [ main::$2 ]
reg byte a [ main::$3 ]
reg byte a [ main::sb#0 ]
reg byte a [ main::$5 ]
FINAL ASSEMBLER
Score: 641
// File Comments
// Check that multiplication by factors of 2 on the left side is converted to shifts
// Upstart
// Commodore 64 PRG executable file
.file [name="multiply-2s-left.prg", type="prg", segments="Program"]
.segmentdef Program [segments="Basic, Code, Data"]
.segmentdef Basic [start=$0801]
.segmentdef Code [start=$80d]
.segmentdef Data [startAfter="Code"]
.segment Basic
:BasicUpstart(main)
// Global Constants & labels
.segment Code
// main
main: {
.label SCREEN = $400
// [1] phi from main to main::@1 [phi:main->main::@1]
// [1] phi main::i#2 = 0 [phi:main->main::@1#0] -- vbuxx=vbuc1
ldx #0
// [1] phi from main::@1 to main::@1 [phi:main::@1->main::@1]
// [1] phi main::i#2 = main::i#1 [phi:main::@1->main::@1#0] -- register_copy
// main::@1
__b1:
// (SCREEN+0*40)[i] = 1*i
// [2] main::SCREEN[main::i#2] = main::i#2 -- pbuc1_derefidx_vbuxx=vbuxx
txa
sta SCREEN,x
// 2*i
// [3] main::$1 = main::i#2 << 1 -- vbuaa=vbuxx_rol_1
txa
asl
// (SCREEN+1*40)[i] = 2*i
// [4] (main::SCREEN+1*$28)[main::i#2] = main::$1 -- pbuc1_derefidx_vbuxx=vbuaa
sta SCREEN+1*$28,x
// 4*i
// [5] main::$2 = main::i#2 << 2 -- vbuaa=vbuxx_rol_2
txa
asl
asl
// (SCREEN+2*40)[i] = 4*i
// [6] (main::SCREEN+2*$28)[main::i#2] = main::$2 -- pbuc1_derefidx_vbuxx=vbuaa
sta SCREEN+2*$28,x
// 8*i
// [7] main::$3 = main::i#2 << 3 -- vbuaa=vbuxx_rol_3
txa
asl
asl
asl
// (SCREEN+3*40)[i] = 8*i
// [8] (main::SCREEN+3*$28)[main::i#2] = main::$3 -- pbuc1_derefidx_vbuxx=vbuaa
sta SCREEN+3*$28,x
// signed byte sb = -(signed byte)i
// [9] main::sb#0 = - (signed char)main::i#2 -- vbsaa=_neg_vbsxx
// And a single signed byte
txa
eor #$ff
clc
adc #1
// 2*sb
// [10] main::$5 = main::sb#0 << 1 -- vbsaa=vbsaa_rol_1
asl
// (SCREEN+5*40)[i] = (byte)(2*sb)
// [11] (main::SCREEN+5*$28)[main::i#2] = (char)main::$5 -- pbuc1_derefidx_vbuxx=vbuaa
sta SCREEN+5*$28,x
// for(byte i: 0..10)
// [12] main::i#1 = ++ main::i#2 -- vbuxx=_inc_vbuxx
inx
// [13] if(main::i#1!=$b) goto main::@1 -- vbuxx_neq_vbuc1_then_la1
cpx #$b
bne __b1
// main::@return
// }
// [14] return
rts
}
// File Data

View File

@ -0,0 +1,18 @@
void main()
char main::$1 // reg byte a 22.0
char main::$2 // reg byte a 22.0
char main::$3 // reg byte a 22.0
signed char main::$5 // reg byte a 11.0
__constant char * const main::SCREEN = (char *) 1024
char main::i
char main::i#1 // reg byte x 16.5
char main::i#2 // reg byte x 11.0
signed char main::sb
signed char main::sb#0 // reg byte a 22.0
reg byte x [ main::i#2 main::i#1 ]
reg byte a [ main::$1 ]
reg byte a [ main::$2 ]
reg byte a [ main::$3 ]
reg byte a [ main::sb#0 ]
reg byte a [ main::$5 ]