1
0
mirror of https://gitlab.com/camelot/kickc.git synced 2025-01-12 11:31:11 +00:00

Added byte size to test of compatible CPU opcodes.

This commit is contained in:
jespergravgaard 2020-07-31 13:19:11 +02:00
parent 0f7061bcf0
commit b7a6412440
4 changed files with 80 additions and 62 deletions

View File

@ -10,14 +10,14 @@ public enum CpuAddressingMode {
* ACCUMULATOR ADDRESSING This form of addressing is represented with a one byte instruction, implying an operation * ACCUMULATOR ADDRESSING This form of addressing is represented with a one byte instruction, implying an operation
* on the accumulator" * on the accumulator"
*/ */
NON("", "%i", 1), NON("", "%i", 0),
/** /**
* #imm Immediate <br> * #imm Immediate <br>
* IMMEDIATE ADDRESSING In immediate addressing, the operand is contained in the second byte of the instruction, * IMMEDIATE ADDRESSING In immediate addressing, the operand is contained in the second byte of the instruction,
* with no further memory addressing required. * with no further memory addressing required.
*/ */
IMM("#imm", "%i #%p", 2), IMM("#imm", "%i #%p", 1),
/** /**
* zp Zeropage <br> * zp Zeropage <br>
@ -25,7 +25,7 @@ public enum CpuAddressingMode {
* second byte of the instruction and assuming a zero high address byte. Careful use of the zero page can result in * second byte of the instruction and assuming a zero high address byte. Careful use of the zero page can result in
* significant increase in code efficiency. * significant increase in code efficiency.
*/ */
ZP("zp", "%i.z %p", 2), ZP("zp", "%i.z %p", 1),
/** /**
* zp,x X Indexed Zeropage <br> * zp,x X Indexed Zeropage <br>
@ -35,7 +35,7 @@ public enum CpuAddressingMode {
* the second byte references a location in page zero. Additionally, due to the Zero Page" addressing nature of this * the second byte references a location in page zero. Additionally, due to the Zero Page" addressing nature of this
* mode, no carry is added to the high order 8 bits of memory and crossing of page boundaries does not occur. * mode, no carry is added to the high order 8 bits of memory and crossing of page boundaries does not occur.
*/ */
ZPX("zp,x", "%i.z %p,x", 2), ZPX("zp,x", "%i.z %p,x", 1),
/** /**
* zp,y Y Indexed Zeropage <br> * zp,y Y Indexed Zeropage <br>
@ -45,7 +45,7 @@ public enum CpuAddressingMode {
* of the second byte references a location in page zero. Additionally, due to the Zero Page" addressing nature of * of the second byte references a location in page zero. Additionally, due to the Zero Page" addressing nature of
* this mode, no carry is added to the high order 8 bits of memory and crossing of page boundaries does not occur. * this mode, no carry is added to the high order 8 bits of memory and crossing of page boundaries does not occur.
*/ */
ZPY("zp,y", "%i.z %p,y", 2), ZPY("zp,y", "%i.z %p,y", 1),
/** /**
* abs Absolute <br> * abs Absolute <br>
@ -53,7 +53,7 @@ public enum CpuAddressingMode {
* bits of the effective address while the third byte specifies the eight high order bits. Thus, the absolute * bits of the effective address while the third byte specifies the eight high order bits. Thus, the absolute
* addressing mode allows access to the entire 65 K bytes of addressable memory. * addressing mode allows access to the entire 65 K bytes of addressable memory.
*/ */
ABS("abs", "%i %p", 3), ABS("abs", "%i %p", 2),
/** /**
* abs,x Absolute X <br> * abs,x Absolute X <br>
@ -64,7 +64,7 @@ public enum CpuAddressingMode {
* of indexing allows any location referencing and the index to modify multiple fields resulting in reduced coding * of indexing allows any location referencing and the index to modify multiple fields resulting in reduced coding
* and execution time. * and execution time.
*/ */
ABX("abs,x", "%i %p,x", 3), ABX("abs,x", "%i %p,x", 2),
/** /**
* abs,y Absolute Y <br> * abs,y Absolute Y <br>
@ -75,7 +75,7 @@ public enum CpuAddressingMode {
* indexing allows any location referencing and the index to modify multiple fields resulting in reduced coding and * indexing allows any location referencing and the index to modify multiple fields resulting in reduced coding and
* execution time. * execution time.
*/ */
ABY("abs,y", "%i %p,y", 4), ABY("abs,y", "%i %p,y", 2),
/** /**
* (zp,x) Indirect Zeropage X <br> * (zp,x) Indirect Zeropage X <br>
@ -86,7 +86,7 @@ public enum CpuAddressingMode {
* location in page zero contains the high order eight bits of the effective address. Both memory locations * location in page zero contains the high order eight bits of the effective address. Both memory locations
* specifying the high and low order bytes of the effective address must be in page zero." * specifying the high and low order bytes of the effective address must be in page zero."
*/ */
IZX("(zp,x)", "%i (%p,x)", 2), IZX("(zp,x)", "%i (%p,x)", 1),
/** /**
* (abs,x) Indirect Absolute X <br> * (abs,x) Indirect Absolute X <br>
@ -95,7 +95,7 @@ public enum CpuAddressingMode {
* the instruction to form an address to a pointer. This address mode is only used with the JMP/JSR instruction and the * the instruction to form an address to a pointer. This address mode is only used with the JMP/JSR instruction and the
* program Counter is loaded with the first and second bytes at this pointer." * program Counter is loaded with the first and second bytes at this pointer."
*/ */
IAX("(abs,x)", "%i (%p,x)", 3), IAX("(abs,x)", "%i (%p,x)", 2),
/** /**
* (zp),y Indirect Zeropage Y * (zp),y Indirect Zeropage Y
@ -105,7 +105,7 @@ public enum CpuAddressingMode {
* address. The carry from this addition is added to the contents of the next page zero memory location, the result * address. The carry from this addition is added to the contents of the next page zero memory location, the result
* being the high order eight bits of the effective address." * being the high order eight bits of the effective address."
*/ */
IZY("(zp),y", "%i (%p),y", 2), IZY("(zp),y", "%i (%p),y", 1),
/** /**
* (zp),z Indirect Zeropage Z <br> * (zp),z Indirect Zeropage Z <br>
@ -115,7 +115,7 @@ public enum CpuAddressingMode {
* address. The carry from this addition is added to the contents of the next page zero memory location, the result * address. The carry from this addition is added to the contents of the next page zero memory location, the result
* being the high order eight bits of the effective address." * being the high order eight bits of the effective address."
*/ */
IZZ("(zp),z", "%i.z (%p),z", 2), IZZ("(zp),z", "%i.z (%p),z", 1),
/** /**
* (abs) Indirect Absolute <br> * (abs) Indirect Absolute <br>
@ -125,14 +125,14 @@ public enum CpuAddressingMode {
* The next memory location contains the high order byte of the effective address which is loaded into the sixteen * The next memory location contains the high order byte of the effective address which is loaded into the sixteen
* bits of the program counter. * bits of the program counter.
*/ */
IND("(abs)", "%i (%p)", 3), IND("(abs)", "%i (%p)", 2),
/** /**
* (zp) Indirect Zeropage <br> * (zp) Indirect Zeropage <br>
* ZEROPAGE INDIRECT * ZEROPAGE INDIRECT
* The second byte of the instruction contains address of a zeropage memory location. * The second byte of the instruction contains address of a zeropage memory location.
*/ */
INZ("(zp)", "%i.z (%p)", 2), INZ("(zp)", "%i.z (%p)", 1),
/** /**
* ((zp)) 32-bit Indirect Zeropage <br> * ((zp)) 32-bit Indirect Zeropage <br>
@ -140,7 +140,7 @@ public enum CpuAddressingMode {
* In indirect addressing the second byte of the instruction points to a memory location in page zero. This mode is * In indirect addressing the second byte of the instruction points to a memory location in page zero. This mode is
* formed by preceding a Base Page Indirect Mode instruction with NEG NEG NOP instructions. * formed by preceding a Base Page Indirect Mode instruction with NEG NEG NOP instructions.
*/ */
LIN("((zp))", "%i.z ((%p))", 2), LIN("((zp))", "%i.z ((%p))", 1),
/** /**
* ((zp)),z 32-bit Indirect Zeropage Z <br> * ((zp)),z 32-bit Indirect Zeropage Z <br>
@ -148,7 +148,7 @@ public enum CpuAddressingMode {
* In indirect indexed addressing the second byte of the instruction points to a memory location in page zero. This * In indirect indexed addressing the second byte of the instruction points to a memory location in page zero. This
* mode is formed by preceding a Base Page Indirect Z-Indexed Mode instruction with the NOP instruction (opcode $EA). * mode is formed by preceding a Base Page Indirect Z-Indexed Mode instruction with the NOP instruction (opcode $EA).
*/ */
LIZ("((zp)),z", "%i.z ((%p)),z", 2), LIZ("((zp)),z", "%i.z ((%p)),z", 1),
/** /**
* (zp,sp),y Stack Pointer Indirect Indexed <br> * (zp,sp),y Stack Pointer Indirect Indexed <br>
@ -159,7 +159,7 @@ public enum CpuAddressingMode {
* addition is added to the contents of the next (D -1) stack location the result being the high order eight bits of * addition is added to the contents of the next (D -1) stack location the result being the high order eight bits of
* the effective address." STA ($12,SP),Y * the effective address." STA ($12,SP),Y
*/ */
ISY("(zp,sp),y", "%i.z (%p,sp),y", 2), ISY("(zp,sp),y", "%i.z (%p,sp),y", 1),
/** /**
* Relative <br> * Relative <br>
@ -168,7 +168,7 @@ public enum CpuAddressingMode {
* contents of the lower eight bits of the program counter when the counter is set at the next instruction. The range * contents of the lower eight bits of the program counter when the counter is set at the next instruction. The range
* of the offset is 128 to + 127 bytes from the next instruction." * of the offset is 128 to + 127 bytes from the next instruction."
*/ */
REL("rel", "%i %p", 2), REL("rel", "%i %p", 1),
/** /**
* zp,rel Zeropage Test Relative * zp,rel Zeropage Test Relative
@ -176,7 +176,7 @@ public enum CpuAddressingMode {
* test, and one indicating the signed relative PC offset if the branch is taken. This makes BBRi and BBSi the single * test, and one indicating the signed relative PC offset if the branch is taken. This makes BBRi and BBSi the single
* instructions with two explicit operands. * instructions with two explicit operands.
*/ */
REZ("zp,rel", "%i %p,%q", 3); REZ("zp,rel", "%i %p,%q", 2);
/** The short name of the addressing mode. */ /** The short name of the addressing mode. */
private String name; private String name;
@ -184,7 +184,9 @@ public enum CpuAddressingMode {
/** The template for an instruction using the addressing mode. */ /** The template for an instruction using the addressing mode. */
private String template; private String template;
/** The number of bytes that an instruction takes up when using the addressing mode. This includes both opcode and operands. */ /**
* The number of bytes that the operands of the instruction uses. This does not include the bytes used by the opcode.
* TODO: This does not take into account word-relative branches and immediate word*/
private int bytes; private int bytes;
CpuAddressingMode(String name, String template, int bytes) { CpuAddressingMode(String name, String template, int bytes) {
@ -193,6 +195,12 @@ public enum CpuAddressingMode {
this.name = name; this.name = name;
} }
/**
* Get the number of bytes that the operands of the instruction uses. This does not include the bytes used by the opcode.
* NOTE: This misreports number of bytes for instructions that use immediate word or long relative.
* TODO: This does not take into account word-relative branches and immediate word
* @return The number of bytes.
*/
public int getBytes() { public int getBytes() {
return bytes; return bytes;
} }

View File

@ -1,6 +1,7 @@
package dk.camelot64.cpufamily6502; package dk.camelot64.cpufamily6502;
import java.util.Arrays; import java.util.Arrays;
import java.util.List;
/** A specific opcode in the instruction set of a 6502 family CPU. */ /** A specific opcode in the instruction set of a 6502 family CPU. */
public class CpuOpcode { public class CpuOpcode {
@ -65,13 +66,18 @@ public class CpuOpcode {
return cycles; return cycles;
} }
/** Opcodes that use an extra byte for their operand that the addressing mode reports. This is immediate word and long branches.
* The format of the string is <code>mnemonic + " " + addressingMode</code> */
public static List<String> LONG_MNEMONICS = Arrays.asList("phw #imm", "lbra rel", "lbne rel", "lbeq rel", "lbcc rel", "lbcs rel", "lbmi rel", "lbpl rel", "lbvs rel", "lbvc rel", "lbsr rel" );
/** /**
* Get the number of bytes the instruction with operands takes up in memory * Get the number of bytes the instruction with operands takes up in memory
* *
* @return The number of bytes. * @return The number of bytes.
*/ */
public int getBytes() { public int getBytes() {
return addressingMode.getBytes(); final int numBytes = opcode.length + addressingMode.getBytes() + (LONG_MNEMONICS.contains(mnemonic+" "+addressingMode.getName())?1:0);
return numBytes;
} }
/** /**
@ -85,16 +91,6 @@ public class CpuOpcode {
return opcode; return opcode;
} }
/**
* Determines if this instruction has a specific single byte opcode
*
* @param opcode The byte opcode to check
* @return true if this instruction has a 1-byte opcode that matches the passed value.
*/
public boolean hasOpcode(int opcode) {
return this.opcode.length == 1 && this.opcode[0] == (byte) opcode;
}
/** /**
* Get the printed ASM code for the instruction with an operand value. * Get the printed ASM code for the instruction with an operand value.
* This prints to the syntax that KickAssembler expects. * This prints to the syntax that KickAssembler expects.

View File

@ -181,17 +181,17 @@ public class AsmFragmentInstance {
private static class AsmSequenceGenerator extends KickCParserBaseVisitor { private static class AsmSequenceGenerator extends KickCParserBaseVisitor {
private final String name; private final String name;
private final AsmProgram program; private final AsmProgram asmProgram;
private final AsmFragmentInstance fragmentInstance; private final AsmFragmentInstance fragmentInstance;
public AsmSequenceGenerator(String name, AsmFragmentInstance fragmentInstance, AsmProgram program) { public AsmSequenceGenerator(String name, AsmFragmentInstance fragmentInstance, AsmProgram asmProgram) {
this.name = name; this.name = name;
this.fragmentInstance = fragmentInstance; this.fragmentInstance = fragmentInstance;
this.program = program; this.asmProgram = asmProgram;
} }
public AsmProgram getProgram() { public AsmProgram getAsmProgram() {
return program; return asmProgram;
} }
public void generate(KickCParser.AsmLinesContext context) { public void generate(KickCParser.AsmLinesContext context) {
@ -200,14 +200,14 @@ public class AsmFragmentInstance {
@Override @Override
public Object visitAsmLabelName(KickCParser.AsmLabelNameContext ctx) { public Object visitAsmLabelName(KickCParser.AsmLabelNameContext ctx) {
program.addLine(new AsmLabel(ctx.ASM_NAME().getText())); asmProgram.addLine(new AsmLabel(ctx.ASM_NAME().getText()));
return null; return null;
} }
@Override @Override
public Object visitAsmLabelMulti(KickCParser.AsmLabelMultiContext ctx) { public Object visitAsmLabelMulti(KickCParser.AsmLabelMultiContext ctx) {
String label = ctx.ASM_MULTI_NAME().getText(); String label = ctx.ASM_MULTI_NAME().getText();
program.addLine(new AsmLabel(label)); asmProgram.addLine(new AsmLabel(label));
return null; return null;
} }
@ -217,7 +217,7 @@ public class AsmFragmentInstance {
for(int i = 1; i < ctx.getChildCount(); i = i + 2) { for(int i = 1; i < ctx.getChildCount(); i = i + 2) {
values.add(ctx.getChild(i).getText()); values.add(ctx.getChild(i).getText());
} }
program.addLine(new AsmDataNumeric(null, AsmDataNumeric.Type.BYTE, values)); asmProgram.addLine(new AsmDataNumeric(null, AsmDataNumeric.Type.BYTE, values));
return null; return null;
} }
@ -231,7 +231,7 @@ public class AsmFragmentInstance {
instruction = (AsmInstruction) this.visit(paramModeCtx); instruction = (AsmInstruction) this.visit(paramModeCtx);
} }
if(instruction != null) { if(instruction != null) {
program.addLine(instruction); asmProgram.addLine(instruction);
} else { } else {
throw new RuntimeException("Error parsing ASM fragment line " + name + ".asm\n - Line: " + ctx.getText()); throw new RuntimeException("Error parsing ASM fragment line " + name + ".asm\n - Line: " + ctx.getText());
} }
@ -334,7 +334,7 @@ public class AsmFragmentInstance {
AsmParameter param2 = operand2Ctx == null ? null : (AsmParameter) this.visit(operand2Ctx); AsmParameter param2 = operand2Ctx == null ? null : (AsmParameter) this.visit(operand2Ctx);
// Convert to ZP-addressing mode if possible // Convert to ZP-addressing mode if possible
boolean isZp = param1 != null && param1.isZp(); boolean isZp = param1 != null && param1.isZp();
CpuOpcode cpuOpcode = this.fragmentInstance.fragmentTemplate.getTargetCpu().getCpu65xx().getOpcode(mnemonic, addressingMode, isZp); CpuOpcode cpuOpcode = this.getAsmProgram().getTargetCpu().getCpu65xx().getOpcode(mnemonic, addressingMode, isZp);
String operand1 = param1 == null ? null : param1.getParam(); String operand1 = param1 == null ? null : param1.getParam();
String operand2 = param2 == null ? null : param2.getParam(); String operand2 = param2 == null ? null : param2.getParam();
if(cpuOpcode == null) { if(cpuOpcode == null) {

View File

@ -8,8 +8,7 @@ import org.junit.Test;
import java.util.*; import java.util.*;
import static junit.framework.TestCase.assertNotNull; import static junit.framework.TestCase.*;
import static junit.framework.TestCase.assertTrue;
public class TestCpuFamilyKickAssCompatibility { public class TestCpuFamilyKickAssCompatibility {
@ -49,7 +48,7 @@ public class TestCpuFamilyKickAssCompatibility {
assertNotNull("KickAss CPU " + kaCpu.name + " does not know the KickC CPU " + kcCpu.getName() + " mnemonic", kcOpcode.getMnemonic()); assertNotNull("KickAss CPU " + kaCpu.name + " does not know the KickC CPU " + kcCpu.getName() + " mnemonic", kcOpcode.getMnemonic());
final List<_65xxArgType> kaArgTypes = kaAddressingModeMap.get(kcOpcode.getAddressingMode()); final List<_65xxArgType> kaArgTypes = kaAddressingModeMap.get(kcOpcode.getAddressingMode());
assertNotNull("KickAss addressing mode not found " + kcOpcode.getAddressingMode().getName(), kaArgTypes); assertNotNull("KickAss addressing mode not found " + kcOpcode.getAddressingMode().getName(), kaArgTypes);
// Try each argtype // Try each argtype to find the one that works
boolean found = false; boolean found = false;
for(_65xxArgType kaArgType : kaArgTypes) { for(_65xxArgType kaArgType : kaArgTypes) {
final int kaArgTypeIdx = kaArgType.getIdNo(); final int kaArgTypeIdx = kaArgType.getIdNo();
@ -57,33 +56,49 @@ public class TestCpuFamilyKickAssCompatibility {
final int kaOpcodeRaw = kaOpcodes[kaArgTypeIdx]; final int kaOpcodeRaw = kaOpcodes[kaArgTypeIdx];
if(kaOpcodeRaw >= 0) { if(kaOpcodeRaw >= 0) {
found = true; found = true;
int[] kaOpcode; int[] kaOpcode = getKAOpcode(kaOpcodeRaw, kaArgType, kcOpcode.getMnemonic());
if(kcOpcode.getOpcode().length==1) {
kaOpcode = new int[]{kaOpcodeRaw};
} else {
List<Integer> kaOpcodeList = new ArrayList<>();
if(CPU_45GS02.R32_MNEMONICS.contains(kcOpcode.getMnemonic())) {
kaOpcodeList.add((int)CPU_45GS02.R32_OPCODE_PREFIX);
kaOpcodeList.add((int)CPU_45GS02.R32_OPCODE_PREFIX);
}
if (kaArgType == _65xxArgType.indirect32ZeropageZ || kaArgType == _65xxArgType.indirect32Zeropage) {
// Make sure the prefix is unsigned
kaOpcodeList.add(CPU_45GS02.A32_OPCODE_PREFIX&0xff);
}
kaOpcodeList.add(kaOpcodeRaw);
kaOpcode = kaOpcodeList.stream().mapToInt(i->i).toArray();
}
Assert.assertArrayEquals("KickAss opcode not matching for mnemonic " + kcOpcode.toString(), kcOpcode.getOpcode(), kaOpcode); Assert.assertArrayEquals("KickAss opcode not matching for mnemonic " + kcOpcode.toString(), kcOpcode.getOpcode(), kaOpcode);
int kaByteSize = kaOpcode.length + kaArgType.getByteSize();
assertEquals("KickAss opcode byte size not matching KickC byte size "+kcOpcode.toString(), kcOpcode.getBytes(), kaByteSize);
} }
} }
} }
assertTrue("KickAss opcode not found for mnemonic " + kcOpcode.toString(), found); assertTrue("KickAss opcode not found for mnemonic " + kcOpcode.toString(), found);
} }
// Test that each KickAss opcode has a matching KickC opcode
}
/**
* Convert KickAssembler opcode to int array, that also contains the prefix opcodes used by 45GS02.
*
* @param kaOpcodeRaw The "raw" one-byte opcode
* @param kaArgType The addressing mode
* @param mnemonic The instruction mnemonic
* @return The opcode list.
*/
private int[] getKAOpcode(int kaOpcodeRaw, _65xxArgType kaArgType, String mnemonic) {
List<Integer> kaOpcodeList = new ArrayList<>();
if(CPU_45GS02.R32_MNEMONICS.contains(mnemonic)) {
// Make sure the prefix is unsigned
kaOpcodeList.add((int) CPU_45GS02.R32_OPCODE_PREFIX & 0xff);
kaOpcodeList.add((int) CPU_45GS02.R32_OPCODE_PREFIX & 0xff);
}
if(kaArgType == _65xxArgType.indirect32ZeropageZ || kaArgType == _65xxArgType.indirect32Zeropage) {
// Make sure the prefix is unsigned
kaOpcodeList.add(CPU_45GS02.A32_OPCODE_PREFIX & 0xff);
}
kaOpcodeList.add(kaOpcodeRaw);
int[] kaOpcode = kaOpcodeList.stream().mapToInt(i -> i).toArray();
return kaOpcode;
} }
/** /**
* Get the KickAss ArgType that matches a KickC addressing mode. * Get the KickAss ArgType that matches a KickC addressing mode.
*
* @return The argtype. * @return The argtype.
*/ */
Map<CpuAddressingMode, List<_65xxArgType>> getKAAddressingModeMap() { Map<CpuAddressingMode, List<_65xxArgType>> getKAAddressingModeMap() {
@ -107,7 +122,6 @@ public class TestCpuFamilyKickAssCompatibility {
map.put(CpuAddressingMode.ISY, Collections.singletonList(_65xxArgType.indirectStackZeropageY)); map.put(CpuAddressingMode.ISY, Collections.singletonList(_65xxArgType.indirectStackZeropageY));
map.put(CpuAddressingMode.REL, Arrays.asList(_65xxArgType.relative, _65xxArgType.relativeWord)); map.put(CpuAddressingMode.REL, Arrays.asList(_65xxArgType.relative, _65xxArgType.relativeWord));
map.put(CpuAddressingMode.REZ, Collections.singletonList(_65xxArgType.zeropageRelative)); map.put(CpuAddressingMode.REZ, Collections.singletonList(_65xxArgType.zeropageRelative));
// TODO: Handle Immediate Word, relative Word
return map; return map;
} }