Adding pointer type conversion cast (byte*) SCREEN in (byte*) SCREEN ← (number) $400 Identified constant variable (byte) a Culled Empty Block (label) main::@2 Culled Empty Block (label) @1 Culled Empty Block (label) sum::@1 CONTROL FLOW GRAPH SSA @begin: scope:[] from (byte*) SCREEN#0 ← ((byte*)) (number) $400 (byte) a#0 ← (byte) 'a' to:@2 main: scope:[main] from @2 (byte) main::i#0 ← (number) 0 (byte) main::b#0 ← (byte) 0 to:main::@1 main::@1: scope:[main] from main main::@3 (byte) main::i#3 ← phi( main/(byte) main::i#0 main::@3/(byte) main::i#1 ) (byte) main::b#2 ← phi( main/(byte) main::b#0 main::@3/(byte) main::b#1 ) (byte) sum::a#0 ← (byte) a#0 (byte) sum::b#0 ← (byte) main::b#2 call sum (byte) sum::return#0 ← (byte) sum::return#2 to:main::@3 main::@3: scope:[main] from main::@1 (byte) main::b#3 ← phi( main::@1/(byte) main::b#2 ) (byte) main::i#2 ← phi( main::@1/(byte) main::i#3 ) (byte) sum::return#3 ← phi( main::@1/(byte) sum::return#0 ) (byte~) main::$0 ← (byte) sum::return#3 *((byte*) SCREEN#0 + (byte) main::i#2) ← (byte~) main::$0 (byte) main::i#1 ← ++ (byte) main::i#2 (byte) main::b#1 ← (byte) main::b#3 + rangenext(0,$a) (bool~) main::$1 ← (byte) main::b#1 != rangelast(0,$a) if((bool~) main::$1) goto main::@1 to:main::@return main::@return: scope:[main] from main::@3 return to:@return sum: scope:[sum] from main::@1 (byte) sum::b#1 ← phi( main::@1/(byte) sum::b#0 ) (byte) sum::a#1 ← phi( main::@1/(byte) sum::a#0 ) (byte~) sum::$0 ← (byte) sum::a#1 + (byte) sum::b#1 (byte) sum::r#0 ← (byte~) sum::$0 (byte) sum::return#1 ← (byte) sum::r#0 to:sum::@return sum::@return: scope:[sum] from sum (byte) sum::return#4 ← phi( sum/(byte) sum::return#1 ) (byte) sum::return#2 ← (byte) sum::return#4 return to:@return @2: scope:[] from @begin call main to:@3 @3: scope:[] from @2 to:@end @end: scope:[] from @3 SYMBOL TABLE SSA (label) @2 (label) @3 (label) @begin (label) @end (byte*) SCREEN (byte*) SCREEN#0 (byte) a (byte) a#0 (void()) main() (byte~) main::$0 (bool~) main::$1 (label) main::@1 (label) main::@3 (label) main::@return (byte) main::b (byte) main::b#0 (byte) main::b#1 (byte) main::b#2 (byte) main::b#3 (byte) main::i (byte) main::i#0 (byte) main::i#1 (byte) main::i#2 (byte) main::i#3 (byte()) sum((byte) sum::a , (byte) sum::b) (byte~) sum::$0 (label) sum::@return (byte) sum::a (byte) sum::a#0 (byte) sum::a#1 (byte) sum::b (byte) sum::b#0 (byte) sum::b#1 (byte) sum::r (byte) sum::r#0 (byte) sum::return (byte) sum::return#0 (byte) sum::return#1 (byte) sum::return#2 (byte) sum::return#3 (byte) sum::return#4 Adding number conversion cast (unumber) 0 in (byte) main::i#0 ← (number) 0 Successful SSA optimization PassNAddNumberTypeConversions Inlining cast (byte*) SCREEN#0 ← (byte*)(number) $400 Inlining cast (byte) main::i#0 ← (unumber)(number) 0 Successful SSA optimization Pass2InlineCast Simplifying constant pointer cast (byte*) 1024 Simplifying constant integer cast 0 Successful SSA optimization PassNCastSimplification Finalized unsigned number type (byte) 0 Successful SSA optimization PassNFinalizeNumberTypeConversions Alias (byte) sum::return#0 = (byte) sum::return#3 Alias (byte) main::i#2 = (byte) main::i#3 Alias (byte) main::b#2 = (byte) main::b#3 Alias (byte) sum::return#1 = (byte) sum::r#0 (byte~) sum::$0 (byte) sum::return#4 (byte) sum::return#2 Successful SSA optimization Pass2AliasElimination Identical Phi Values (byte) sum::a#1 (byte) sum::a#0 Identical Phi Values (byte) sum::b#1 (byte) sum::b#0 Successful SSA optimization Pass2IdenticalPhiElimination Simple Condition (bool~) main::$1 [15] if((byte) main::b#1!=rangelast(0,$a)) goto main::@1 Successful SSA optimization Pass2ConditionalJumpSimplification Constant (const byte*) SCREEN#0 = (byte*) 1024 Constant (const byte) a#0 = 'a' Constant (const byte) main::i#0 = 0 Constant (const byte) main::b#0 = 0 Successful SSA optimization Pass2ConstantIdentification Constant (const byte) sum::a#0 = a#0 Successful SSA optimization Pass2ConstantIdentification Resolved ranged next value [13] main::b#1 ← ++ main::b#2 to ++ Resolved ranged comparison value [15] if(main::b#1!=rangelast(0,$a)) goto main::@1 to (number) $b Adding number conversion cast (unumber) $b in if((byte) main::b#1!=(number) $b) goto main::@1 Successful SSA optimization PassNAddNumberTypeConversions Simplifying constant integer cast $b Successful SSA optimization PassNCastSimplification Finalized unsigned number type (byte) $b Successful SSA optimization PassNFinalizeNumberTypeConversions Inlining constant with var siblings (const byte) main::i#0 Inlining constant with var siblings (const byte) main::b#0 Constant inlined main::i#0 = (byte) 0 Constant inlined sum::a#0 = (const byte) a#0 Constant inlined main::b#0 = (byte) 0 Successful SSA optimization Pass2ConstantInlining Added new block during phi lifting main::@4(between main::@3 and main::@1) Adding NOP phi() at start of @begin Adding NOP phi() at start of @2 Adding NOP phi() at start of @3 Adding NOP phi() at start of @end Adding NOP phi() at start of main CALL GRAPH Calls in [] to main:2 Calls in [main] to sum:8 Created 2 initial phi equivalence classes Coalesced [16] main::b#4 ← main::b#1 Coalesced [17] main::i#4 ← main::i#1 Coalesced down to 2 phi equivalence classes Culled Empty Block (label) @3 Culled Empty Block (label) main::@4 Renumbering block @2 to @1 Renumbering block main::@3 to main::@2 Adding NOP phi() at start of @begin Adding NOP phi() at start of @1 Adding NOP phi() at start of @end Adding NOP phi() at start of main FINAL CONTROL FLOW GRAPH @begin: scope:[] from [0] phi() to:@1 @1: scope:[] from @begin [1] phi() [2] call main to:@end @end: scope:[] from @1 [3] phi() main: scope:[main] from @1 [4] phi() to:main::@1 main::@1: scope:[main] from main main::@2 [5] (byte) main::i#2 ← phi( main/(byte) 0 main::@2/(byte) main::i#1 ) [5] (byte) main::b#2 ← phi( main/(byte) 0 main::@2/(byte) main::b#1 ) [6] (byte) sum::b#0 ← (byte) main::b#2 [7] call sum [8] (byte) sum::return#0 ← (byte) sum::return#1 to:main::@2 main::@2: scope:[main] from main::@1 [9] (byte~) main::$0 ← (byte) sum::return#0 [10] *((const byte*) SCREEN#0 + (byte) main::i#2) ← (byte~) main::$0 [11] (byte) main::i#1 ← ++ (byte) main::i#2 [12] (byte) main::b#1 ← ++ (byte) main::b#2 [13] if((byte) main::b#1!=(byte) $b) goto main::@1 to:main::@return main::@return: scope:[main] from main::@2 [14] return to:@return sum: scope:[sum] from main::@1 [15] (byte) sum::return#1 ← (const byte) a#0 + (byte) sum::b#0 to:sum::@return sum::@return: scope:[sum] from sum [16] return to:@return VARIABLE REGISTER WEIGHTS (byte*) SCREEN (byte) a (void()) main() (byte~) main::$0 22.0 (byte) main::b (byte) main::b#1 16.5 (byte) main::b#2 4.714285714285714 (byte) main::i (byte) main::i#1 7.333333333333333 (byte) main::i#2 5.5 (byte()) sum((byte) sum::a , (byte) sum::b) (byte) sum::a (byte) sum::b (byte) sum::b#0 13.0 (byte) sum::r (byte) sum::return (byte) sum::return#0 22.0 (byte) sum::return#1 4.333333333333333 Initial phi equivalence classes [ main::b#2 main::b#1 ] [ main::i#2 main::i#1 ] Added variable sum::b#0 to zero page equivalence class [ sum::b#0 ] Added variable sum::return#0 to zero page equivalence class [ sum::return#0 ] Added variable main::$0 to zero page equivalence class [ main::$0 ] Added variable sum::return#1 to zero page equivalence class [ sum::return#1 ] Complete equivalence classes [ main::b#2 main::b#1 ] [ main::i#2 main::i#1 ] [ sum::b#0 ] [ sum::return#0 ] [ main::$0 ] [ sum::return#1 ] Allocated zp ZP_BYTE:2 [ main::b#2 main::b#1 ] Allocated zp ZP_BYTE:3 [ main::i#2 main::i#1 ] Allocated zp ZP_BYTE:4 [ sum::b#0 ] Allocated zp ZP_BYTE:5 [ sum::return#0 ] Allocated zp ZP_BYTE:6 [ main::$0 ] Allocated zp ZP_BYTE:7 [ sum::return#1 ] INITIAL ASM //SEG0 File Comments /* Tests that block comments are compiled correctly * Has a bunch of comments that will be moved into the generated ASM */ //SEG1 Basic Upstart .pc = $801 "Basic" :BasicUpstart(bbegin) .pc = $80d "Program" //SEG2 Global Constants & labels // The C64 screen .label SCREEN = $400 // One of the bytes used for addition .const a = 'a' //SEG3 @begin bbegin: //SEG4 [1] phi from @begin to @1 [phi:@begin->@1] b1_from_bbegin: jmp b1 //SEG5 @1 b1: //SEG6 [2] call main //SEG7 [4] phi from @1 to main [phi:@1->main] main_from_b1: jsr main //SEG8 [3] phi from @1 to @end [phi:@1->@end] bend_from_b1: jmp bend //SEG9 @end bend: //SEG10 main /* The program entry point */ main: { .label _0 = 6 .label i = 3 .label b = 2 //SEG11 [5] phi from main to main::@1 [phi:main->main::@1] b1_from_main: //SEG12 [5] phi (byte) main::i#2 = (byte) 0 [phi:main->main::@1#0] -- vbuz1=vbuc1 lda #0 sta i //SEG13 [5] phi (byte) main::b#2 = (byte) 0 [phi:main->main::@1#1] -- vbuz1=vbuc1 lda #0 sta b jmp b1 // Do some sums //SEG14 [5] phi from main::@2 to main::@1 [phi:main::@2->main::@1] b1_from_b2: //SEG15 [5] phi (byte) main::i#2 = (byte) main::i#1 [phi:main::@2->main::@1#0] -- register_copy //SEG16 [5] phi (byte) main::b#2 = (byte) main::b#1 [phi:main::@2->main::@1#1] -- register_copy jmp b1 //SEG17 main::@1 b1: //SEG18 [6] (byte) sum::b#0 ← (byte) main::b#2 -- vbuz1=vbuz2 lda b sta sum.b //SEG19 [7] call sum jsr sum //SEG20 [8] (byte) sum::return#0 ← (byte) sum::return#1 -- vbuz1=vbuz2 lda sum.return_1 sta sum.return jmp b2 //SEG21 main::@2 b2: //SEG22 [9] (byte~) main::$0 ← (byte) sum::return#0 -- vbuz1=vbuz2 lda sum.return sta _0 //SEG23 [10] *((const byte*) SCREEN#0 + (byte) main::i#2) ← (byte~) main::$0 -- pbuc1_derefidx_vbuz1=vbuz2 // Output the result on the screen lda _0 ldy i sta SCREEN,y //SEG24 [11] (byte) main::i#1 ← ++ (byte) main::i#2 -- vbuz1=_inc_vbuz1 inc i //SEG25 [12] (byte) main::b#1 ← ++ (byte) main::b#2 -- vbuz1=_inc_vbuz1 inc b //SEG26 [13] if((byte) main::b#1!=(byte) $b) goto main::@1 -- vbuz1_neq_vbuc1_then_la1 lda #$b cmp b bne b1_from_b2 jmp breturn //SEG27 main::@return breturn: //SEG28 [14] return rts } //SEG29 sum /** Adds up two bytes and returns the result * a - the first byte * b - the second byte * Returns the sum pf the two bytes */ // sum(byte zeropage(4) b) sum: { .label b = 4 .label return = 5 .label return_1 = 7 //SEG30 [15] (byte) sum::return#1 ← (const byte) a#0 + (byte) sum::b#0 -- vbuz1=vbuc1_plus_vbuz2 lax b axs #-[a] stx return_1 jmp breturn //SEG31 sum::@return breturn: //SEG32 [16] return rts } REGISTER UPLIFT POTENTIAL REGISTERS Potential registers zp ZP_BYTE:2 [ main::b#2 main::b#1 ] : zp ZP_BYTE:2 , reg byte a , reg byte x , reg byte y , Potential registers zp ZP_BYTE:3 [ main::i#2 main::i#1 ] : zp ZP_BYTE:3 , reg byte a , reg byte x , reg byte y , Potential registers zp ZP_BYTE:4 [ sum::b#0 ] : zp ZP_BYTE:4 , reg byte a , reg byte x , reg byte y , Potential registers zp ZP_BYTE:5 [ sum::return#0 ] : zp ZP_BYTE:5 , reg byte a , reg byte x , reg byte y , Potential registers zp ZP_BYTE:6 [ main::$0 ] : zp ZP_BYTE:6 , reg byte a , reg byte x , reg byte y , Potential registers zp ZP_BYTE:7 [ sum::return#1 ] : zp ZP_BYTE:7 , reg byte a , reg byte x , reg byte y , REGISTER UPLIFT SCOPES Uplift Scope [main] 22: zp ZP_BYTE:6 [ main::$0 ] 21.21: zp ZP_BYTE:2 [ main::b#2 main::b#1 ] 12.83: zp ZP_BYTE:3 [ main::i#2 main::i#1 ] Uplift Scope [sum] 22: zp ZP_BYTE:5 [ sum::return#0 ] 13: zp ZP_BYTE:4 [ sum::b#0 ] 4.33: zp ZP_BYTE:7 [ sum::return#1 ] Uplift Scope [] Uplifting [main] best 630 combination reg byte a [ main::$0 ] zp ZP_BYTE:2 [ main::b#2 main::b#1 ] reg byte y [ main::i#2 main::i#1 ] Uplifting [sum] best 506 combination reg byte a [ sum::return#0 ] reg byte a [ sum::b#0 ] reg byte a [ sum::return#1 ] Uplifting [] best 506 combination Attempting to uplift remaining variables inzp ZP_BYTE:2 [ main::b#2 main::b#1 ] Uplifting [main] best 406 combination reg byte x [ main::b#2 main::b#1 ] ASSEMBLER BEFORE OPTIMIZATION //SEG0 File Comments /* Tests that block comments are compiled correctly * Has a bunch of comments that will be moved into the generated ASM */ //SEG1 Basic Upstart .pc = $801 "Basic" :BasicUpstart(bbegin) .pc = $80d "Program" //SEG2 Global Constants & labels // The C64 screen .label SCREEN = $400 // One of the bytes used for addition .const a = 'a' //SEG3 @begin bbegin: //SEG4 [1] phi from @begin to @1 [phi:@begin->@1] b1_from_bbegin: jmp b1 //SEG5 @1 b1: //SEG6 [2] call main //SEG7 [4] phi from @1 to main [phi:@1->main] main_from_b1: jsr main //SEG8 [3] phi from @1 to @end [phi:@1->@end] bend_from_b1: jmp bend //SEG9 @end bend: //SEG10 main /* The program entry point */ main: { //SEG11 [5] phi from main to main::@1 [phi:main->main::@1] b1_from_main: //SEG12 [5] phi (byte) main::i#2 = (byte) 0 [phi:main->main::@1#0] -- vbuyy=vbuc1 ldy #0 //SEG13 [5] phi (byte) main::b#2 = (byte) 0 [phi:main->main::@1#1] -- vbuxx=vbuc1 ldx #0 jmp b1 // Do some sums //SEG14 [5] phi from main::@2 to main::@1 [phi:main::@2->main::@1] b1_from_b2: //SEG15 [5] phi (byte) main::i#2 = (byte) main::i#1 [phi:main::@2->main::@1#0] -- register_copy //SEG16 [5] phi (byte) main::b#2 = (byte) main::b#1 [phi:main::@2->main::@1#1] -- register_copy jmp b1 //SEG17 main::@1 b1: //SEG18 [6] (byte) sum::b#0 ← (byte) main::b#2 -- vbuaa=vbuxx txa //SEG19 [7] call sum jsr sum //SEG20 [8] (byte) sum::return#0 ← (byte) sum::return#1 jmp b2 //SEG21 main::@2 b2: //SEG22 [9] (byte~) main::$0 ← (byte) sum::return#0 //SEG23 [10] *((const byte*) SCREEN#0 + (byte) main::i#2) ← (byte~) main::$0 -- pbuc1_derefidx_vbuyy=vbuaa // Output the result on the screen sta SCREEN,y //SEG24 [11] (byte) main::i#1 ← ++ (byte) main::i#2 -- vbuyy=_inc_vbuyy iny //SEG25 [12] (byte) main::b#1 ← ++ (byte) main::b#2 -- vbuxx=_inc_vbuxx inx //SEG26 [13] if((byte) main::b#1!=(byte) $b) goto main::@1 -- vbuxx_neq_vbuc1_then_la1 cpx #$b bne b1_from_b2 jmp breturn //SEG27 main::@return breturn: //SEG28 [14] return rts } //SEG29 sum /** Adds up two bytes and returns the result * a - the first byte * b - the second byte * Returns the sum pf the two bytes */ // sum(byte register(A) b) sum: { //SEG30 [15] (byte) sum::return#1 ← (const byte) a#0 + (byte) sum::b#0 -- vbuaa=vbuc1_plus_vbuaa clc adc #a jmp breturn //SEG31 sum::@return breturn: //SEG32 [16] return rts } ASSEMBLER OPTIMIZATIONS Removing instruction jmp b1 Removing instruction jmp bend Removing instruction jmp b1 Removing instruction jmp b2 Removing instruction jmp breturn Removing instruction jmp breturn Succesful ASM optimization Pass5NextJumpElimination Replacing label b1_from_b2 with b1 Removing instruction b1_from_bbegin: Removing instruction b1: Removing instruction main_from_b1: Removing instruction bend_from_b1: Removing instruction b1_from_b2: Succesful ASM optimization Pass5RedundantLabelElimination Removing instruction bend: Removing instruction b1_from_main: Removing instruction b2: Removing instruction breturn: Removing instruction breturn: Succesful ASM optimization Pass5UnusedLabelElimination Updating BasicUpstart to call main directly Removing instruction jsr main Succesful ASM optimization Pass5SkipBegin Removing instruction jmp b1 Succesful ASM optimization Pass5NextJumpElimination Removing instruction bbegin: Succesful ASM optimization Pass5UnusedLabelElimination FINAL SYMBOL TABLE (label) @1 (label) @begin (label) @end (byte*) SCREEN (const byte*) SCREEN#0 SCREEN = (byte*) 1024 (byte) a (const byte) a#0 a = (byte) 'a' (void()) main() (byte~) main::$0 reg byte a 22.0 (label) main::@1 (label) main::@2 (label) main::@return (byte) main::b (byte) main::b#1 reg byte x 16.5 (byte) main::b#2 reg byte x 4.714285714285714 (byte) main::i (byte) main::i#1 reg byte y 7.333333333333333 (byte) main::i#2 reg byte y 5.5 (byte()) sum((byte) sum::a , (byte) sum::b) (label) sum::@return (byte) sum::a (byte) sum::b (byte) sum::b#0 reg byte a 13.0 (byte) sum::r (byte) sum::return (byte) sum::return#0 reg byte a 22.0 (byte) sum::return#1 reg byte a 4.333333333333333 reg byte x [ main::b#2 main::b#1 ] reg byte y [ main::i#2 main::i#1 ] reg byte a [ sum::b#0 ] reg byte a [ sum::return#0 ] reg byte a [ main::$0 ] reg byte a [ sum::return#1 ] FINAL ASSEMBLER Score: 271 //SEG0 File Comments /* Tests that block comments are compiled correctly * Has a bunch of comments that will be moved into the generated ASM */ //SEG1 Basic Upstart .pc = $801 "Basic" :BasicUpstart(main) .pc = $80d "Program" //SEG2 Global Constants & labels // The C64 screen .label SCREEN = $400 // One of the bytes used for addition .const a = 'a' //SEG3 @begin //SEG4 [1] phi from @begin to @1 [phi:@begin->@1] //SEG5 @1 //SEG6 [2] call main //SEG7 [4] phi from @1 to main [phi:@1->main] //SEG8 [3] phi from @1 to @end [phi:@1->@end] //SEG9 @end //SEG10 main /* The program entry point */ main: { //SEG11 [5] phi from main to main::@1 [phi:main->main::@1] //SEG12 [5] phi (byte) main::i#2 = (byte) 0 [phi:main->main::@1#0] -- vbuyy=vbuc1 ldy #0 //SEG13 [5] phi (byte) main::b#2 = (byte) 0 [phi:main->main::@1#1] -- vbuxx=vbuc1 ldx #0 // Do some sums //SEG14 [5] phi from main::@2 to main::@1 [phi:main::@2->main::@1] //SEG15 [5] phi (byte) main::i#2 = (byte) main::i#1 [phi:main::@2->main::@1#0] -- register_copy //SEG16 [5] phi (byte) main::b#2 = (byte) main::b#1 [phi:main::@2->main::@1#1] -- register_copy //SEG17 main::@1 b1: //SEG18 [6] (byte) sum::b#0 ← (byte) main::b#2 -- vbuaa=vbuxx txa //SEG19 [7] call sum jsr sum //SEG20 [8] (byte) sum::return#0 ← (byte) sum::return#1 //SEG21 main::@2 //SEG22 [9] (byte~) main::$0 ← (byte) sum::return#0 //SEG23 [10] *((const byte*) SCREEN#0 + (byte) main::i#2) ← (byte~) main::$0 -- pbuc1_derefidx_vbuyy=vbuaa // Output the result on the screen sta SCREEN,y //SEG24 [11] (byte) main::i#1 ← ++ (byte) main::i#2 -- vbuyy=_inc_vbuyy iny //SEG25 [12] (byte) main::b#1 ← ++ (byte) main::b#2 -- vbuxx=_inc_vbuxx inx //SEG26 [13] if((byte) main::b#1!=(byte) $b) goto main::@1 -- vbuxx_neq_vbuc1_then_la1 cpx #$b bne b1 //SEG27 main::@return //SEG28 [14] return rts } //SEG29 sum /** Adds up two bytes and returns the result * a - the first byte * b - the second byte * Returns the sum pf the two bytes */ // sum(byte register(A) b) sum: { //SEG30 [15] (byte) sum::return#1 ← (const byte) a#0 + (byte) sum::b#0 -- vbuaa=vbuc1_plus_vbuaa clc adc #a //SEG31 sum::@return //SEG32 [16] return rts }