Culled Empty Block (label) main::@2 CONTROL FLOW GRAPH SSA @begin: scope:[] from to:@1 main: scope:[main] from @1 (byte*) main::screen#0 ← ((byte*)) (number) $400 (byte) main::i#0 ← (byte) 0 to:main::@1 main::@1: scope:[main] from main main::@1 (byte*) main::screen#3 ← phi( main/(byte*) main::screen#0 main::@1/(byte*) main::screen#2 ) (byte) main::i#2 ← phi( main/(byte) main::i#0 main::@1/(byte) main::i#1 ) (number~) main::$0 ← (byte) main::i#2 * (number) 2 (number~) main::$1 ← (number~) main::$0 + (byte) main::i#2 (number~) main::$2 ← (number~) main::$1 + (number) 3 *((byte*) main::screen#3) ← (number~) main::$2 (byte*) main::screen#1 ← ++ (byte*) main::screen#3 (number~) main::$3 ← (byte) main::i#2 * (number) 2 (number~) main::$4 ← (number~) main::$3 + (byte) main::i#2 (number~) main::$5 ← (number~) main::$4 + (number) 3 *((byte*) main::screen#1) ← (number~) main::$5 (byte*) main::screen#2 ← ++ (byte*) main::screen#1 (byte) main::i#1 ← (byte) main::i#2 + rangenext(0,2) (bool~) main::$6 ← (byte) main::i#1 != rangelast(0,2) if((bool~) main::$6) goto main::@1 to:main::@return main::@return: scope:[main] from main::@1 return to:@return @1: scope:[] from @begin call main to:@2 @2: scope:[] from @1 to:@end @end: scope:[] from @2 SYMBOL TABLE SSA (label) @1 (label) @2 (label) @begin (label) @end (void()) main() (number~) main::$0 (number~) main::$1 (number~) main::$2 (number~) main::$3 (number~) main::$4 (number~) main::$5 (bool~) main::$6 (label) main::@1 (label) main::@return (byte) main::i (byte) main::i#0 (byte) main::i#1 (byte) main::i#2 (byte*) main::screen (byte*) main::screen#0 (byte*) main::screen#1 (byte*) main::screen#2 (byte*) main::screen#3 Adding number conversion cast (unumber) 2 in (number~) main::$0 ← (byte) main::i#2 * (number) 2 Adding number conversion cast (unumber) main::$0 in (number~) main::$0 ← (byte) main::i#2 * (unumber)(number) 2 Adding number conversion cast (unumber) main::$1 in (number~) main::$1 ← (unumber~) main::$0 + (byte) main::i#2 Adding number conversion cast (unumber) 3 in (number~) main::$2 ← (unumber~) main::$1 + (number) 3 Adding number conversion cast (unumber) main::$2 in (number~) main::$2 ← (unumber~) main::$1 + (unumber)(number) 3 Adding number conversion cast (unumber) 2 in (number~) main::$3 ← (byte) main::i#2 * (number) 2 Adding number conversion cast (unumber) main::$3 in (number~) main::$3 ← (byte) main::i#2 * (unumber)(number) 2 Adding number conversion cast (unumber) main::$4 in (number~) main::$4 ← (unumber~) main::$3 + (byte) main::i#2 Adding number conversion cast (unumber) 3 in (number~) main::$5 ← (unumber~) main::$4 + (number) 3 Adding number conversion cast (unumber) main::$5 in (number~) main::$5 ← (unumber~) main::$4 + (unumber)(number) 3 Successful SSA optimization PassNAddNumberTypeConversions Inlining cast (byte*) main::screen#0 ← (byte*)(number) $400 Successful SSA optimization Pass2InlineCast Simplifying constant pointer cast (byte*) 1024 Simplifying constant integer cast 2 Simplifying constant integer cast 3 Simplifying constant integer cast 2 Simplifying constant integer cast 3 Successful SSA optimization PassNCastSimplification Finalized unsigned number type (byte) 2 Finalized unsigned number type (byte) 3 Finalized unsigned number type (byte) 2 Finalized unsigned number type (byte) 3 Successful SSA optimization PassNFinalizeNumberTypeConversions Inferred type updated to byte in (unumber~) main::$0 ← (byte) main::i#2 * (byte) 2 Inferred type updated to byte in (unumber~) main::$1 ← (byte~) main::$0 + (byte) main::i#2 Inferred type updated to byte in (unumber~) main::$2 ← (byte~) main::$1 + (byte) 3 Inferred type updated to byte in (unumber~) main::$3 ← (byte) main::i#2 * (byte) 2 Inferred type updated to byte in (unumber~) main::$4 ← (byte~) main::$3 + (byte) main::i#2 Inferred type updated to byte in (unumber~) main::$5 ← (byte~) main::$4 + (byte) 3 Identified duplicate assignment right side [8] (byte~) main::$3 ← (byte) main::i#2 * (byte) 2 Successful SSA optimization Pass2DuplicateRValueIdentification Simple Condition (bool~) main::$6 [15] if((byte) main::i#1!=rangelast(0,2)) goto main::@1 Successful SSA optimization Pass2ConditionalJumpSimplification Constant (const byte*) main::screen#0 = (byte*) 1024 Constant (const byte) main::i#0 = 0 Successful SSA optimization Pass2ConstantIdentification Resolved ranged next value [13] main::i#1 ← ++ main::i#2 to ++ Resolved ranged comparison value [15] if(main::i#1!=rangelast(0,2)) goto main::@1 to (number) 3 Adding number conversion cast (unumber) 3 in if((byte) main::i#1!=(number) 3) goto main::@1 Successful SSA optimization PassNAddNumberTypeConversions Simplifying constant integer cast 3 Successful SSA optimization PassNCastSimplification Finalized unsigned number type (byte) 3 Successful SSA optimization PassNFinalizeNumberTypeConversions Alias (byte~) main::$3 = (byte~) main::$0 Successful SSA optimization Pass2AliasElimination Rewriting multiplication to use shift [1] (byte~) main::$3 ← (byte) main::i#2 * (byte) 2 Successful SSA optimization Pass2MultiplyToShiftRewriting Inlining constant with var siblings (const byte*) main::screen#0 Inlining constant with var siblings (const byte) main::i#0 Constant inlined main::screen#0 = (byte*) 1024 Constant inlined main::i#0 = (byte) 0 Successful SSA optimization Pass2ConstantInlining Added new block during phi lifting main::@3(between main::@1 and main::@1) Adding NOP phi() at start of @begin Adding NOP phi() at start of @1 Adding NOP phi() at start of @2 Adding NOP phi() at start of @end Adding NOP phi() at start of main CALL GRAPH Calls in [] to main:2 Created 2 initial phi equivalence classes Coalesced [19] main::i#3 ← main::i#1 Coalesced [20] main::screen#4 ← main::screen#2 Coalesced down to 2 phi equivalence classes Culled Empty Block (label) @2 Culled Empty Block (label) main::@3 Adding NOP phi() at start of @begin Adding NOP phi() at start of @1 Adding NOP phi() at start of @end Adding NOP phi() at start of main FINAL CONTROL FLOW GRAPH @begin: scope:[] from [0] phi() to:@1 @1: scope:[] from @begin [1] phi() [2] call main to:@end @end: scope:[] from @1 [3] phi() main: scope:[main] from @1 [4] phi() to:main::@1 main::@1: scope:[main] from main main::@1 [5] (byte*) main::screen#3 ← phi( main/(byte*) 1024 main::@1/(byte*) main::screen#2 ) [5] (byte) main::i#2 ← phi( main/(byte) 0 main::@1/(byte) main::i#1 ) [6] (byte~) main::$3 ← (byte) main::i#2 << (byte) 1 [7] (byte~) main::$1 ← (byte~) main::$3 + (byte) main::i#2 [8] (byte~) main::$2 ← (byte~) main::$1 + (byte) 3 [9] *((byte*) main::screen#3) ← (byte~) main::$2 [10] (byte*) main::screen#1 ← ++ (byte*) main::screen#3 [11] (byte~) main::$4 ← (byte~) main::$3 + (byte) main::i#2 [12] (byte~) main::$5 ← (byte~) main::$4 + (byte) 3 [13] *((byte*) main::screen#1) ← (byte~) main::$5 [14] (byte*) main::screen#2 ← ++ (byte*) main::screen#1 [15] (byte) main::i#1 ← ++ (byte) main::i#2 [16] if((byte) main::i#1!=(byte) 3) goto main::@1 to:main::@return main::@return: scope:[main] from main::@1 [17] return to:@return VARIABLE REGISTER WEIGHTS (void()) main() (byte~) main::$1 22.0 (byte~) main::$2 22.0 (byte~) main::$3 6.6000000000000005 (byte~) main::$4 22.0 (byte~) main::$5 22.0 (byte) main::i (byte) main::i#1 16.5 (byte) main::i#2 5.5 (byte*) main::screen (byte*) main::screen#1 8.25 (byte*) main::screen#2 7.333333333333333 (byte*) main::screen#3 6.6000000000000005 Initial phi equivalence classes [ main::i#2 main::i#1 ] [ main::screen#3 main::screen#2 ] Added variable main::$3 to zero page equivalence class [ main::$3 ] Added variable main::$1 to zero page equivalence class [ main::$1 ] Added variable main::$2 to zero page equivalence class [ main::$2 ] Added variable main::screen#1 to zero page equivalence class [ main::screen#1 ] Added variable main::$4 to zero page equivalence class [ main::$4 ] Added variable main::$5 to zero page equivalence class [ main::$5 ] Complete equivalence classes [ main::i#2 main::i#1 ] [ main::screen#3 main::screen#2 ] [ main::$3 ] [ main::$1 ] [ main::$2 ] [ main::screen#1 ] [ main::$4 ] [ main::$5 ] Allocated zp ZP_BYTE:2 [ main::i#2 main::i#1 ] Allocated zp ZP_WORD:3 [ main::screen#3 main::screen#2 ] Allocated zp ZP_BYTE:5 [ main::$3 ] Allocated zp ZP_BYTE:6 [ main::$1 ] Allocated zp ZP_BYTE:7 [ main::$2 ] Allocated zp ZP_WORD:8 [ main::screen#1 ] Allocated zp ZP_BYTE:10 [ main::$4 ] Allocated zp ZP_BYTE:11 [ main::$5 ] INITIAL ASM Target platform is c64basic / 6502X // File Comments // Tests optimization of identical sub-expressions // Upstart .pc = $801 "Basic" :BasicUpstart(bbegin) .pc = $80d "Program" // Global Constants & labels // @begin bbegin: // [1] phi from @begin to @1 [phi:@begin->@1] b1_from_bbegin: jmp b1 // @1 b1: // [2] call main // [4] phi from @1 to main [phi:@1->main] main_from_b1: jsr main // [3] phi from @1 to @end [phi:@1->@end] bend_from_b1: jmp bend // @end bend: // main main: { .label _1 = 6 .label _2 = 7 .label _3 = 5 .label _4 = $a .label _5 = $b .label screen = 8 .label screen_2 = 3 .label i = 2 .label screen_3 = 3 // [5] phi from main to main::@1 [phi:main->main::@1] b1_from_main: // [5] phi (byte*) main::screen#3 = (byte*) 1024 [phi:main->main::@1#0] -- pbuz1=pbuc1 lda #<$400 sta.z screen_3 lda #>$400 sta.z screen_3+1 // [5] phi (byte) main::i#2 = (byte) 0 [phi:main->main::@1#1] -- vbuz1=vbuc1 lda #0 sta.z i jmp b1 // [5] phi from main::@1 to main::@1 [phi:main::@1->main::@1] b1_from_b1: // [5] phi (byte*) main::screen#3 = (byte*) main::screen#2 [phi:main::@1->main::@1#0] -- register_copy // [5] phi (byte) main::i#2 = (byte) main::i#1 [phi:main::@1->main::@1#1] -- register_copy jmp b1 // main::@1 b1: // [6] (byte~) main::$3 ← (byte) main::i#2 << (byte) 1 -- vbuz1=vbuz2_rol_1 lda.z i asl sta.z _3 // [7] (byte~) main::$1 ← (byte~) main::$3 + (byte) main::i#2 -- vbuz1=vbuz2_plus_vbuz3 lda.z _3 clc adc.z i sta.z _1 // [8] (byte~) main::$2 ← (byte~) main::$1 + (byte) 3 -- vbuz1=vbuz2_plus_vbuc1 lax.z _1 axs #-[3] stx.z _2 // [9] *((byte*) main::screen#3) ← (byte~) main::$2 -- _deref_pbuz1=vbuz2 lda.z _2 ldy #0 sta (screen_3),y // [10] (byte*) main::screen#1 ← ++ (byte*) main::screen#3 -- pbuz1=_inc_pbuz2 lda.z screen_3 clc adc #1 sta.z screen lda.z screen_3+1 adc #0 sta.z screen+1 // [11] (byte~) main::$4 ← (byte~) main::$3 + (byte) main::i#2 -- vbuz1=vbuz2_plus_vbuz3 lda.z _3 clc adc.z i sta.z _4 // [12] (byte~) main::$5 ← (byte~) main::$4 + (byte) 3 -- vbuz1=vbuz2_plus_vbuc1 lax.z _4 axs #-[3] stx.z _5 // [13] *((byte*) main::screen#1) ← (byte~) main::$5 -- _deref_pbuz1=vbuz2 lda.z _5 ldy #0 sta (screen),y // [14] (byte*) main::screen#2 ← ++ (byte*) main::screen#1 -- pbuz1=_inc_pbuz2 lda.z screen clc adc #1 sta.z screen_2 lda.z screen+1 adc #0 sta.z screen_2+1 // [15] (byte) main::i#1 ← ++ (byte) main::i#2 -- vbuz1=_inc_vbuz1 inc.z i // [16] if((byte) main::i#1!=(byte) 3) goto main::@1 -- vbuz1_neq_vbuc1_then_la1 lda #3 cmp.z i bne b1_from_b1 jmp breturn // main::@return breturn: // [17] return rts } // File Data REGISTER UPLIFT POTENTIAL REGISTERS Statement [6] (byte~) main::$3 ← (byte) main::i#2 << (byte) 1 [ main::i#2 main::screen#3 main::$3 ] ( main:2 [ main::i#2 main::screen#3 main::$3 ] ) always clobbers reg byte a Removing always clobbered register reg byte a as potential for zp ZP_BYTE:2 [ main::i#2 main::i#1 ] Statement [7] (byte~) main::$1 ← (byte~) main::$3 + (byte) main::i#2 [ main::i#2 main::screen#3 main::$3 main::$1 ] ( main:2 [ main::i#2 main::screen#3 main::$3 main::$1 ] ) always clobbers reg byte a Removing always clobbered register reg byte a as potential for zp ZP_BYTE:5 [ main::$3 ] Statement [9] *((byte*) main::screen#3) ← (byte~) main::$2 [ main::i#2 main::screen#3 main::$3 ] ( main:2 [ main::i#2 main::screen#3 main::$3 ] ) always clobbers reg byte y Removing always clobbered register reg byte y as potential for zp ZP_BYTE:2 [ main::i#2 main::i#1 ] Removing always clobbered register reg byte y as potential for zp ZP_BYTE:5 [ main::$3 ] Statement [10] (byte*) main::screen#1 ← ++ (byte*) main::screen#3 [ main::i#2 main::$3 main::screen#1 ] ( main:2 [ main::i#2 main::$3 main::screen#1 ] ) always clobbers reg byte a Statement [11] (byte~) main::$4 ← (byte~) main::$3 + (byte) main::i#2 [ main::i#2 main::screen#1 main::$4 ] ( main:2 [ main::i#2 main::screen#1 main::$4 ] ) always clobbers reg byte a Statement [13] *((byte*) main::screen#1) ← (byte~) main::$5 [ main::i#2 main::screen#1 ] ( main:2 [ main::i#2 main::screen#1 ] ) always clobbers reg byte y Statement [14] (byte*) main::screen#2 ← ++ (byte*) main::screen#1 [ main::i#2 main::screen#2 ] ( main:2 [ main::i#2 main::screen#2 ] ) always clobbers reg byte a Statement [6] (byte~) main::$3 ← (byte) main::i#2 << (byte) 1 [ main::i#2 main::screen#3 main::$3 ] ( main:2 [ main::i#2 main::screen#3 main::$3 ] ) always clobbers reg byte a Statement [7] (byte~) main::$1 ← (byte~) main::$3 + (byte) main::i#2 [ main::i#2 main::screen#3 main::$3 main::$1 ] ( main:2 [ main::i#2 main::screen#3 main::$3 main::$1 ] ) always clobbers reg byte a Statement [9] *((byte*) main::screen#3) ← (byte~) main::$2 [ main::i#2 main::screen#3 main::$3 ] ( main:2 [ main::i#2 main::screen#3 main::$3 ] ) always clobbers reg byte y Statement [10] (byte*) main::screen#1 ← ++ (byte*) main::screen#3 [ main::i#2 main::$3 main::screen#1 ] ( main:2 [ main::i#2 main::$3 main::screen#1 ] ) always clobbers reg byte a Statement [11] (byte~) main::$4 ← (byte~) main::$3 + (byte) main::i#2 [ main::i#2 main::screen#1 main::$4 ] ( main:2 [ main::i#2 main::screen#1 main::$4 ] ) always clobbers reg byte a Statement [13] *((byte*) main::screen#1) ← (byte~) main::$5 [ main::i#2 main::screen#1 ] ( main:2 [ main::i#2 main::screen#1 ] ) always clobbers reg byte y Statement [14] (byte*) main::screen#2 ← ++ (byte*) main::screen#1 [ main::i#2 main::screen#2 ] ( main:2 [ main::i#2 main::screen#2 ] ) always clobbers reg byte a Potential registers zp ZP_BYTE:2 [ main::i#2 main::i#1 ] : zp ZP_BYTE:2 , reg byte x , Potential registers zp ZP_WORD:3 [ main::screen#3 main::screen#2 ] : zp ZP_WORD:3 , Potential registers zp ZP_BYTE:5 [ main::$3 ] : zp ZP_BYTE:5 , reg byte x , Potential registers zp ZP_BYTE:6 [ main::$1 ] : zp ZP_BYTE:6 , reg byte a , reg byte x , reg byte y , Potential registers zp ZP_BYTE:7 [ main::$2 ] : zp ZP_BYTE:7 , reg byte a , reg byte x , reg byte y , Potential registers zp ZP_WORD:8 [ main::screen#1 ] : zp ZP_WORD:8 , Potential registers zp ZP_BYTE:10 [ main::$4 ] : zp ZP_BYTE:10 , reg byte a , reg byte x , reg byte y , Potential registers zp ZP_BYTE:11 [ main::$5 ] : zp ZP_BYTE:11 , reg byte a , reg byte x , reg byte y , REGISTER UPLIFT SCOPES Uplift Scope [main] 22: zp ZP_BYTE:2 [ main::i#2 main::i#1 ] 22: zp ZP_BYTE:6 [ main::$1 ] 22: zp ZP_BYTE:7 [ main::$2 ] 22: zp ZP_BYTE:10 [ main::$4 ] 22: zp ZP_BYTE:11 [ main::$5 ] 13.93: zp ZP_WORD:3 [ main::screen#3 main::screen#2 ] 8.25: zp ZP_WORD:8 [ main::screen#1 ] 6.6: zp ZP_BYTE:5 [ main::$3 ] Uplift Scope [] Uplifting [main] best 1163 combination reg byte x [ main::i#2 main::i#1 ] reg byte a [ main::$1 ] reg byte a [ main::$2 ] reg byte a [ main::$4 ] zp ZP_BYTE:11 [ main::$5 ] zp ZP_WORD:3 [ main::screen#3 main::screen#2 ] zp ZP_WORD:8 [ main::screen#1 ] zp ZP_BYTE:5 [ main::$3 ] Limited combination testing to 100 combinations of 1024 possible. Uplifting [] best 1163 combination Attempting to uplift remaining variables inzp ZP_BYTE:11 [ main::$5 ] Uplifting [main] best 1103 combination reg byte a [ main::$5 ] Attempting to uplift remaining variables inzp ZP_BYTE:5 [ main::$3 ] Uplifting [main] best 1103 combination zp ZP_BYTE:5 [ main::$3 ] Coalescing zero page register [ zp ZP_WORD:3 [ main::screen#3 main::screen#2 ] ] with [ zp ZP_WORD:8 [ main::screen#1 ] ] - score: 2 Allocated (was zp ZP_WORD:3) zp ZP_WORD:2 [ main::screen#3 main::screen#2 main::screen#1 ] Allocated (was zp ZP_BYTE:5) zp ZP_BYTE:4 [ main::$3 ] ASSEMBLER BEFORE OPTIMIZATION // File Comments // Tests optimization of identical sub-expressions // Upstart .pc = $801 "Basic" :BasicUpstart(bbegin) .pc = $80d "Program" // Global Constants & labels // @begin bbegin: // [1] phi from @begin to @1 [phi:@begin->@1] b1_from_bbegin: jmp b1 // @1 b1: // [2] call main // [4] phi from @1 to main [phi:@1->main] main_from_b1: jsr main // [3] phi from @1 to @end [phi:@1->@end] bend_from_b1: jmp bend // @end bend: // main main: { .label _3 = 4 .label screen = 2 // [5] phi from main to main::@1 [phi:main->main::@1] b1_from_main: // [5] phi (byte*) main::screen#3 = (byte*) 1024 [phi:main->main::@1#0] -- pbuz1=pbuc1 lda #<$400 sta.z screen lda #>$400 sta.z screen+1 // [5] phi (byte) main::i#2 = (byte) 0 [phi:main->main::@1#1] -- vbuxx=vbuc1 ldx #0 jmp b1 // [5] phi from main::@1 to main::@1 [phi:main::@1->main::@1] b1_from_b1: // [5] phi (byte*) main::screen#3 = (byte*) main::screen#2 [phi:main::@1->main::@1#0] -- register_copy // [5] phi (byte) main::i#2 = (byte) main::i#1 [phi:main::@1->main::@1#1] -- register_copy jmp b1 // main::@1 b1: // [6] (byte~) main::$3 ← (byte) main::i#2 << (byte) 1 -- vbuz1=vbuxx_rol_1 txa asl sta.z _3 // [7] (byte~) main::$1 ← (byte~) main::$3 + (byte) main::i#2 -- vbuaa=vbuz1_plus_vbuxx txa clc adc.z _3 // [8] (byte~) main::$2 ← (byte~) main::$1 + (byte) 3 -- vbuaa=vbuaa_plus_vbuc1 clc adc #3 // [9] *((byte*) main::screen#3) ← (byte~) main::$2 -- _deref_pbuz1=vbuaa ldy #0 sta (screen),y // [10] (byte*) main::screen#1 ← ++ (byte*) main::screen#3 -- pbuz1=_inc_pbuz1 inc.z screen bne !+ inc.z screen+1 !: // [11] (byte~) main::$4 ← (byte~) main::$3 + (byte) main::i#2 -- vbuaa=vbuz1_plus_vbuxx txa clc adc.z _3 // [12] (byte~) main::$5 ← (byte~) main::$4 + (byte) 3 -- vbuaa=vbuaa_plus_vbuc1 clc adc #3 // [13] *((byte*) main::screen#1) ← (byte~) main::$5 -- _deref_pbuz1=vbuaa ldy #0 sta (screen),y // [14] (byte*) main::screen#2 ← ++ (byte*) main::screen#1 -- pbuz1=_inc_pbuz1 inc.z screen bne !+ inc.z screen+1 !: // [15] (byte) main::i#1 ← ++ (byte) main::i#2 -- vbuxx=_inc_vbuxx inx // [16] if((byte) main::i#1!=(byte) 3) goto main::@1 -- vbuxx_neq_vbuc1_then_la1 cpx #3 bne b1_from_b1 jmp breturn // main::@return breturn: // [17] return rts } // File Data ASSEMBLER OPTIMIZATIONS Removing instruction jmp b1 Removing instruction jmp bend Removing instruction jmp b1 Removing instruction jmp breturn Succesful ASM optimization Pass5NextJumpElimination Replacing label b1_from_b1 with b1 Removing instruction b1_from_bbegin: Removing instruction b1: Removing instruction main_from_b1: Removing instruction bend_from_b1: Removing instruction b1_from_b1: Succesful ASM optimization Pass5RedundantLabelElimination Removing instruction bend: Removing instruction b1_from_main: Removing instruction breturn: Succesful ASM optimization Pass5UnusedLabelElimination Updating BasicUpstart to call main directly Removing instruction jsr main Succesful ASM optimization Pass5SkipBegin Removing instruction jmp b1 Succesful ASM optimization Pass5NextJumpElimination Removing instruction bbegin: Succesful ASM optimization Pass5UnusedLabelElimination FINAL SYMBOL TABLE (label) @1 (label) @begin (label) @end (void()) main() (byte~) main::$1 reg byte a 22.0 (byte~) main::$2 reg byte a 22.0 (byte~) main::$3 $3 zp ZP_BYTE:4 6.6000000000000005 (byte~) main::$4 reg byte a 22.0 (byte~) main::$5 reg byte a 22.0 (label) main::@1 (label) main::@return (byte) main::i (byte) main::i#1 reg byte x 16.5 (byte) main::i#2 reg byte x 5.5 (byte*) main::screen (byte*) main::screen#1 screen zp ZP_WORD:2 8.25 (byte*) main::screen#2 screen zp ZP_WORD:2 7.333333333333333 (byte*) main::screen#3 screen zp ZP_WORD:2 6.6000000000000005 reg byte x [ main::i#2 main::i#1 ] zp ZP_WORD:2 [ main::screen#3 main::screen#2 main::screen#1 ] zp ZP_BYTE:4 [ main::$3 ] reg byte a [ main::$1 ] reg byte a [ main::$2 ] reg byte a [ main::$4 ] reg byte a [ main::$5 ] FINAL ASSEMBLER Score: 891 // File Comments // Tests optimization of identical sub-expressions // Upstart .pc = $801 "Basic" :BasicUpstart(main) .pc = $80d "Program" // Global Constants & labels // @begin // [1] phi from @begin to @1 [phi:@begin->@1] // @1 // [2] call main // [4] phi from @1 to main [phi:@1->main] // [3] phi from @1 to @end [phi:@1->@end] // @end // main main: { .label _3 = 4 .label screen = 2 // [5] phi from main to main::@1 [phi:main->main::@1] // [5] phi (byte*) main::screen#3 = (byte*) 1024 [phi:main->main::@1#0] -- pbuz1=pbuc1 lda #<$400 sta.z screen lda #>$400 sta.z screen+1 // [5] phi (byte) main::i#2 = (byte) 0 [phi:main->main::@1#1] -- vbuxx=vbuc1 ldx #0 // [5] phi from main::@1 to main::@1 [phi:main::@1->main::@1] // [5] phi (byte*) main::screen#3 = (byte*) main::screen#2 [phi:main::@1->main::@1#0] -- register_copy // [5] phi (byte) main::i#2 = (byte) main::i#1 [phi:main::@1->main::@1#1] -- register_copy // main::@1 b1: // i*2 // [6] (byte~) main::$3 ← (byte) main::i#2 << (byte) 1 -- vbuz1=vbuxx_rol_1 txa asl sta.z _3 // i*2+i // [7] (byte~) main::$1 ← (byte~) main::$3 + (byte) main::i#2 -- vbuaa=vbuz1_plus_vbuxx txa clc adc.z _3 // i*2+i+3 // [8] (byte~) main::$2 ← (byte~) main::$1 + (byte) 3 -- vbuaa=vbuaa_plus_vbuc1 clc adc #3 // *screen++ = i*2+i+3 // [9] *((byte*) main::screen#3) ← (byte~) main::$2 -- _deref_pbuz1=vbuaa ldy #0 sta (screen),y // *screen++ = i*2+i+3; // [10] (byte*) main::screen#1 ← ++ (byte*) main::screen#3 -- pbuz1=_inc_pbuz1 inc.z screen bne !+ inc.z screen+1 !: // i*2+i // [11] (byte~) main::$4 ← (byte~) main::$3 + (byte) main::i#2 -- vbuaa=vbuz1_plus_vbuxx txa clc adc.z _3 // i*2+i+3 // [12] (byte~) main::$5 ← (byte~) main::$4 + (byte) 3 -- vbuaa=vbuaa_plus_vbuc1 clc adc #3 // *screen++ = i*2+i+3 // [13] *((byte*) main::screen#1) ← (byte~) main::$5 -- _deref_pbuz1=vbuaa ldy #0 sta (screen),y // *screen++ = i*2+i+3; // [14] (byte*) main::screen#2 ← ++ (byte*) main::screen#1 -- pbuz1=_inc_pbuz1 inc.z screen bne !+ inc.z screen+1 !: // for( byte i: 0..2) // [15] (byte) main::i#1 ← ++ (byte) main::i#2 -- vbuxx=_inc_vbuxx inx // [16] if((byte) main::i#1!=(byte) 3) goto main::@1 -- vbuxx_neq_vbuc1_then_la1 cpx #3 bne b1 // main::@return // } // [17] return rts } // File Data