1
0
mirror of https://gitlab.com/camelot/kickc.git synced 2024-10-21 17:24:39 +00:00
kickc/src/test/ref/inline-asm-clobber.log

705 lines
24 KiB
Plaintext

Adding pointer type conversion cast (byte*) SCREEN in (byte*) SCREEN ← (number) $400
Identified constant variable (byte*) SCREEN
Culled Empty Block (label) main::@8
CONTROL FLOW GRAPH SSA
@begin: scope:[] from
(byte*) SCREEN#0 ← ((byte*)) (number) $400
to:@1
main: scope:[main] from @1
(byte) main::i#0 ← (byte) 0
to:main::@1
main::@1: scope:[main] from main main::@3
(byte) main::i#4 ← phi( main/(byte) main::i#0 main::@3/(byte) main::i#1 )
(byte) main::j#0 ← (byte) 0
to:main::@2
main::@2: scope:[main] from main::@1 main::@2
(byte) main::i#2 ← phi( main::@1/(byte) main::i#4 main::@2/(byte) main::i#2 )
(byte) main::j#2 ← phi( main::@1/(byte) main::j#0 main::@2/(byte) main::j#1 )
*((byte*) SCREEN#0 + (byte) main::i#2) ← (byte) main::j#2
(byte) main::j#1 ← (byte) main::j#2 + rangenext(0,$64)
(bool~) main::$0 ← (byte) main::j#1 != rangelast(0,$64)
if((bool~) main::$0) goto main::@2
to:main::@3
main::@3: scope:[main] from main::@2
(byte) main::i#3 ← phi( main::@2/(byte) main::i#2 )
(byte) main::i#1 ← (byte) main::i#3 + rangenext(0,$64)
(bool~) main::$1 ← (byte) main::i#1 != rangelast(0,$64)
if((bool~) main::$1) goto main::@1
to:main::@4
main::@4: scope:[main] from main::@3
(byte) main::k#0 ← (byte) 0
to:main::@5
main::@5: scope:[main] from main::@4 main::@7
(byte) main::k#4 ← phi( main::@4/(byte) main::k#0 main::@7/(byte) main::k#1 )
(byte) main::l#0 ← (byte) 0
to:main::@6
main::@6: scope:[main] from main::@5 main::@6
(byte) main::k#2 ← phi( main::@5/(byte) main::k#4 main::@6/(byte) main::k#2 )
(byte) main::l#2 ← phi( main::@5/(byte) main::l#0 main::@6/(byte) main::l#1 )
asm { eor#$55 tax }
*((byte*) SCREEN#0 + (byte) main::k#2) ← (byte) main::l#2
(byte) main::l#1 ← (byte) main::l#2 + rangenext(0,$64)
(bool~) main::$2 ← (byte) main::l#1 != rangelast(0,$64)
if((bool~) main::$2) goto main::@6
to:main::@7
main::@7: scope:[main] from main::@6
(byte) main::k#3 ← phi( main::@6/(byte) main::k#2 )
(byte) main::k#1 ← (byte) main::k#3 + rangenext(0,$64)
(bool~) main::$3 ← (byte) main::k#1 != rangelast(0,$64)
if((bool~) main::$3) goto main::@5
to:main::@return
main::@return: scope:[main] from main::@7
return
to:@return
@1: scope:[] from @begin
call main
to:@2
@2: scope:[] from @1
to:@end
@end: scope:[] from @2
SYMBOL TABLE SSA
(label) @1
(label) @2
(label) @begin
(label) @end
(byte*) SCREEN
(byte*) SCREEN#0
(void()) main()
(bool~) main::$0
(bool~) main::$1
(bool~) main::$2
(bool~) main::$3
(label) main::@1
(label) main::@2
(label) main::@3
(label) main::@4
(label) main::@5
(label) main::@6
(label) main::@7
(label) main::@return
(byte) main::i
(byte) main::i#0
(byte) main::i#1
(byte) main::i#2
(byte) main::i#3
(byte) main::i#4
(byte) main::j
(byte) main::j#0
(byte) main::j#1
(byte) main::j#2
(byte) main::k
(byte) main::k#0
(byte) main::k#1
(byte) main::k#2
(byte) main::k#3
(byte) main::k#4
(byte) main::l
(byte) main::l#0
(byte) main::l#1
(byte) main::l#2
Inlining cast (byte*) SCREEN#0 ← (byte*)(number) $400
Successful SSA optimization Pass2InlineCast
Simplifying constant pointer cast (byte*) 1024
Successful SSA optimization PassNCastSimplification
Alias (byte) main::i#2 = (byte) main::i#3
Alias (byte) main::k#2 = (byte) main::k#3
Successful SSA optimization Pass2AliasElimination
Self Phi Eliminated (byte) main::i#2
Self Phi Eliminated (byte) main::k#2
Successful SSA optimization Pass2SelfPhiElimination
Identical Phi Values (byte) main::i#2 (byte) main::i#4
Identical Phi Values (byte) main::k#2 (byte) main::k#4
Successful SSA optimization Pass2IdenticalPhiElimination
Simple Condition (bool~) main::$0 [8] if((byte) main::j#1!=rangelast(0,$64)) goto main::@2
Simple Condition (bool~) main::$1 [12] if((byte) main::i#1!=rangelast(0,$64)) goto main::@1
Simple Condition (bool~) main::$2 [21] if((byte) main::l#1!=rangelast(0,$64)) goto main::@6
Simple Condition (bool~) main::$3 [25] if((byte) main::k#1!=rangelast(0,$64)) goto main::@5
Successful SSA optimization Pass2ConditionalJumpSimplification
Constant (const byte*) SCREEN#0 = (byte*) 1024
Constant (const byte) main::i#0 = 0
Constant (const byte) main::j#0 = 0
Constant (const byte) main::k#0 = 0
Constant (const byte) main::l#0 = 0
Successful SSA optimization Pass2ConstantIdentification
Resolved ranged next value [6] main::j#1 ← ++ main::j#2 to ++
Resolved ranged comparison value [8] if(main::j#1!=rangelast(0,$64)) goto main::@2 to (number) $65
Resolved ranged next value [10] main::i#1 ← ++ main::i#4 to ++
Resolved ranged comparison value [12] if(main::i#1!=rangelast(0,$64)) goto main::@1 to (number) $65
Resolved ranged next value [19] main::l#1 ← ++ main::l#2 to ++
Resolved ranged comparison value [21] if(main::l#1!=rangelast(0,$64)) goto main::@6 to (number) $65
Resolved ranged next value [23] main::k#1 ← ++ main::k#4 to ++
Resolved ranged comparison value [25] if(main::k#1!=rangelast(0,$64)) goto main::@5 to (number) $65
Adding number conversion cast (unumber) $65 in if((byte) main::j#1!=(number) $65) goto main::@2
Adding number conversion cast (unumber) $65 in if((byte) main::i#1!=(number) $65) goto main::@1
Adding number conversion cast (unumber) $65 in if((byte) main::l#1!=(number) $65) goto main::@6
Adding number conversion cast (unumber) $65 in if((byte) main::k#1!=(number) $65) goto main::@5
Successful SSA optimization PassNAddNumberTypeConversions
Simplifying constant integer cast $65
Simplifying constant integer cast $65
Simplifying constant integer cast $65
Simplifying constant integer cast $65
Successful SSA optimization PassNCastSimplification
Finalized unsigned number type (byte) $65
Finalized unsigned number type (byte) $65
Finalized unsigned number type (byte) $65
Finalized unsigned number type (byte) $65
Successful SSA optimization PassNFinalizeNumberTypeConversions
Inlining constant with var siblings (const byte) main::i#0
Inlining constant with var siblings (const byte) main::j#0
Inlining constant with var siblings (const byte) main::k#0
Inlining constant with var siblings (const byte) main::l#0
Constant inlined main::i#0 = (byte) 0
Constant inlined main::k#0 = (byte) 0
Constant inlined main::j#0 = (byte) 0
Constant inlined main::l#0 = (byte) 0
Successful SSA optimization Pass2ConstantInlining
Added new block during phi lifting main::@9(between main::@3 and main::@1)
Added new block during phi lifting main::@10(between main::@2 and main::@2)
Added new block during phi lifting main::@11(between main::@7 and main::@5)
Added new block during phi lifting main::@12(between main::@6 and main::@6)
Adding NOP phi() at start of @begin
Adding NOP phi() at start of @1
Adding NOP phi() at start of @2
Adding NOP phi() at start of @end
Adding NOP phi() at start of main
Adding NOP phi() at start of main::@4
CALL GRAPH
Calls in [] to main:2
Created 4 initial phi equivalence classes
Coalesced [23] main::k#5 ← main::k#1
Coalesced [24] main::l#3 ← main::l#1
Coalesced [25] main::i#5 ← main::i#1
Coalesced [26] main::j#3 ← main::j#1
Coalesced down to 4 phi equivalence classes
Culled Empty Block (label) @2
Culled Empty Block (label) main::@4
Culled Empty Block (label) main::@11
Culled Empty Block (label) main::@12
Culled Empty Block (label) main::@9
Culled Empty Block (label) main::@10
Renumbering block main::@5 to main::@4
Renumbering block main::@6 to main::@5
Renumbering block main::@7 to main::@6
Adding NOP phi() at start of @begin
Adding NOP phi() at start of @1
Adding NOP phi() at start of @end
Adding NOP phi() at start of main
FINAL CONTROL FLOW GRAPH
@begin: scope:[] from
[0] phi()
to:@1
@1: scope:[] from @begin
[1] phi()
[2] call main
to:@end
@end: scope:[] from @1
[3] phi()
main: scope:[main] from @1
[4] phi()
to:main::@1
main::@1: scope:[main] from main main::@3
[5] (byte) main::i#4 ← phi( main/(byte) 0 main::@3/(byte) main::i#1 )
to:main::@2
main::@2: scope:[main] from main::@1 main::@2
[6] (byte) main::j#2 ← phi( main::@1/(byte) 0 main::@2/(byte) main::j#1 )
[7] *((const byte*) SCREEN#0 + (byte) main::i#4) ← (byte) main::j#2
[8] (byte) main::j#1 ← ++ (byte) main::j#2
[9] if((byte) main::j#1!=(byte) $65) goto main::@2
to:main::@3
main::@3: scope:[main] from main::@2
[10] (byte) main::i#1 ← ++ (byte) main::i#4
[11] if((byte) main::i#1!=(byte) $65) goto main::@1
to:main::@4
main::@4: scope:[main] from main::@3 main::@6
[12] (byte) main::k#4 ← phi( main::@3/(byte) 0 main::@6/(byte) main::k#1 )
to:main::@5
main::@5: scope:[main] from main::@4 main::@5
[13] (byte) main::l#2 ← phi( main::@4/(byte) 0 main::@5/(byte) main::l#1 )
asm { eor#$55 tax }
[15] *((const byte*) SCREEN#0 + (byte) main::k#4) ← (byte) main::l#2
[16] (byte) main::l#1 ← ++ (byte) main::l#2
[17] if((byte) main::l#1!=(byte) $65) goto main::@5
to:main::@6
main::@6: scope:[main] from main::@5
[18] (byte) main::k#1 ← ++ (byte) main::k#4
[19] if((byte) main::k#1!=(byte) $65) goto main::@4
to:main::@return
main::@return: scope:[main] from main::@6
[20] return
to:@return
VARIABLE REGISTER WEIGHTS
(byte*) SCREEN
(void()) main()
(byte) main::i
(byte) main::i#1 16.5
(byte) main::i#4 24.599999999999998
(byte) main::j
(byte) main::j#1 151.5
(byte) main::j#2 151.5
(byte) main::k
(byte) main::k#1 16.5
(byte) main::k#4 20.499999999999996
(byte) main::l
(byte) main::l#1 151.5
(byte) main::l#2 101.0
Initial phi equivalence classes
[ main::i#4 main::i#1 ]
[ main::j#2 main::j#1 ]
[ main::k#4 main::k#1 ]
[ main::l#2 main::l#1 ]
Complete equivalence classes
[ main::i#4 main::i#1 ]
[ main::j#2 main::j#1 ]
[ main::k#4 main::k#1 ]
[ main::l#2 main::l#1 ]
Allocated zp ZP_BYTE:2 [ main::i#4 main::i#1 ]
Allocated zp ZP_BYTE:3 [ main::j#2 main::j#1 ]
Allocated zp ZP_BYTE:4 [ main::k#4 main::k#1 ]
Allocated zp ZP_BYTE:5 [ main::l#2 main::l#1 ]
INITIAL ASM
//SEG0 File Comments
// Tests that inline ASM clobbering is taken into account when assigning registers
//SEG1 Basic Upstart
.pc = $801 "Basic"
:BasicUpstart(bbegin)
.pc = $80d "Program"
//SEG2 Global Constants & labels
.label SCREEN = $400
//SEG3 @begin
bbegin:
//SEG4 [1] phi from @begin to @1 [phi:@begin->@1]
b1_from_bbegin:
jmp b1
//SEG5 @1
b1:
//SEG6 [2] call main
//SEG7 [4] phi from @1 to main [phi:@1->main]
main_from_b1:
jsr main
//SEG8 [3] phi from @1 to @end [phi:@1->@end]
bend_from_b1:
jmp bend
//SEG9 @end
bend:
//SEG10 main
main: {
.label j = 3
.label i = 2
.label l = 5
.label k = 4
//SEG11 [5] phi from main to main::@1 [phi:main->main::@1]
b1_from_main:
//SEG12 [5] phi (byte) main::i#4 = (byte) 0 [phi:main->main::@1#0] -- vbuz1=vbuc1
lda #0
sta i
jmp b1
// First loop with no clobber
//SEG13 [5] phi from main::@3 to main::@1 [phi:main::@3->main::@1]
b1_from_b3:
//SEG14 [5] phi (byte) main::i#4 = (byte) main::i#1 [phi:main::@3->main::@1#0] -- register_copy
jmp b1
//SEG15 main::@1
b1:
//SEG16 [6] phi from main::@1 to main::@2 [phi:main::@1->main::@2]
b2_from_b1:
//SEG17 [6] phi (byte) main::j#2 = (byte) 0 [phi:main::@1->main::@2#0] -- vbuz1=vbuc1
lda #0
sta j
jmp b2
//SEG18 [6] phi from main::@2 to main::@2 [phi:main::@2->main::@2]
b2_from_b2:
//SEG19 [6] phi (byte) main::j#2 = (byte) main::j#1 [phi:main::@2->main::@2#0] -- register_copy
jmp b2
//SEG20 main::@2
b2:
//SEG21 [7] *((const byte*) SCREEN#0 + (byte) main::i#4) ← (byte) main::j#2 -- pbuc1_derefidx_vbuz1=vbuz2
lda j
ldy i
sta SCREEN,y
//SEG22 [8] (byte) main::j#1 ← ++ (byte) main::j#2 -- vbuz1=_inc_vbuz1
inc j
//SEG23 [9] if((byte) main::j#1!=(byte) $65) goto main::@2 -- vbuz1_neq_vbuc1_then_la1
lda #$65
cmp j
bne b2_from_b2
jmp b3
//SEG24 main::@3
b3:
//SEG25 [10] (byte) main::i#1 ← ++ (byte) main::i#4 -- vbuz1=_inc_vbuz1
inc i
//SEG26 [11] if((byte) main::i#1!=(byte) $65) goto main::@1 -- vbuz1_neq_vbuc1_then_la1
lda #$65
cmp i
bne b1_from_b3
//SEG27 [12] phi from main::@3 to main::@4 [phi:main::@3->main::@4]
b4_from_b3:
//SEG28 [12] phi (byte) main::k#4 = (byte) 0 [phi:main::@3->main::@4#0] -- vbuz1=vbuc1
lda #0
sta k
jmp b4
// Then loop with clobbering A&X
//SEG29 [12] phi from main::@6 to main::@4 [phi:main::@6->main::@4]
b4_from_b6:
//SEG30 [12] phi (byte) main::k#4 = (byte) main::k#1 [phi:main::@6->main::@4#0] -- register_copy
jmp b4
//SEG31 main::@4
b4:
//SEG32 [13] phi from main::@4 to main::@5 [phi:main::@4->main::@5]
b5_from_b4:
//SEG33 [13] phi (byte) main::l#2 = (byte) 0 [phi:main::@4->main::@5#0] -- vbuz1=vbuc1
lda #0
sta l
jmp b5
//SEG34 [13] phi from main::@5 to main::@5 [phi:main::@5->main::@5]
b5_from_b5:
//SEG35 [13] phi (byte) main::l#2 = (byte) main::l#1 [phi:main::@5->main::@5#0] -- register_copy
jmp b5
//SEG36 main::@5
b5:
//SEG37 asm { eor#$55 tax }
eor #$55
tax
//SEG38 [15] *((const byte*) SCREEN#0 + (byte) main::k#4) ← (byte) main::l#2 -- pbuc1_derefidx_vbuz1=vbuz2
lda l
ldy k
sta SCREEN,y
//SEG39 [16] (byte) main::l#1 ← ++ (byte) main::l#2 -- vbuz1=_inc_vbuz1
inc l
//SEG40 [17] if((byte) main::l#1!=(byte) $65) goto main::@5 -- vbuz1_neq_vbuc1_then_la1
lda #$65
cmp l
bne b5_from_b5
jmp b6
//SEG41 main::@6
b6:
//SEG42 [18] (byte) main::k#1 ← ++ (byte) main::k#4 -- vbuz1=_inc_vbuz1
inc k
//SEG43 [19] if((byte) main::k#1!=(byte) $65) goto main::@4 -- vbuz1_neq_vbuc1_then_la1
lda #$65
cmp k
bne b4_from_b6
jmp breturn
//SEG44 main::@return
breturn:
//SEG45 [20] return
rts
}
REGISTER UPLIFT POTENTIAL REGISTERS
Statement asm { eor#$55 tax } always clobbers reg byte a reg byte x
Removing always clobbered register reg byte a as potential for zp ZP_BYTE:4 [ main::k#4 main::k#1 ]
Removing always clobbered register reg byte x as potential for zp ZP_BYTE:4 [ main::k#4 main::k#1 ]
Removing always clobbered register reg byte a as potential for zp ZP_BYTE:5 [ main::l#2 main::l#1 ]
Removing always clobbered register reg byte x as potential for zp ZP_BYTE:5 [ main::l#2 main::l#1 ]
Statement [15] *((const byte*) SCREEN#0 + (byte) main::k#4) ← (byte) main::l#2 [ main::k#4 main::l#2 ] ( main:2 [ main::k#4 main::l#2 ] ) always clobbers reg byte a
Statement asm { eor#$55 tax } always clobbers reg byte a reg byte x
Statement [15] *((const byte*) SCREEN#0 + (byte) main::k#4) ← (byte) main::l#2 [ main::k#4 main::l#2 ] ( main:2 [ main::k#4 main::l#2 ] ) always clobbers reg byte a
Potential registers zp ZP_BYTE:2 [ main::i#4 main::i#1 ] : zp ZP_BYTE:2 , reg byte a , reg byte x , reg byte y ,
Potential registers zp ZP_BYTE:3 [ main::j#2 main::j#1 ] : zp ZP_BYTE:3 , reg byte a , reg byte x , reg byte y ,
Potential registers zp ZP_BYTE:4 [ main::k#4 main::k#1 ] : zp ZP_BYTE:4 , reg byte y ,
Potential registers zp ZP_BYTE:5 [ main::l#2 main::l#1 ] : zp ZP_BYTE:5 , reg byte y ,
REGISTER UPLIFT SCOPES
Uplift Scope [main] 303: zp ZP_BYTE:3 [ main::j#2 main::j#1 ] 252.5: zp ZP_BYTE:5 [ main::l#2 main::l#1 ] 41.1: zp ZP_BYTE:2 [ main::i#4 main::i#1 ] 37: zp ZP_BYTE:4 [ main::k#4 main::k#1 ]
Uplift Scope []
Uplifting [main] best 6638 combination reg byte a [ main::j#2 main::j#1 ] zp ZP_BYTE:5 [ main::l#2 main::l#1 ] reg byte x [ main::i#4 main::i#1 ] reg byte y [ main::k#4 main::k#1 ]
Uplifting [] best 6638 combination
Attempting to uplift remaining variables inzp ZP_BYTE:5 [ main::l#2 main::l#1 ]
Uplifting [main] best 6638 combination zp ZP_BYTE:5 [ main::l#2 main::l#1 ]
Allocated (was zp ZP_BYTE:5) zp ZP_BYTE:2 [ main::l#2 main::l#1 ]
ASSEMBLER BEFORE OPTIMIZATION
//SEG0 File Comments
// Tests that inline ASM clobbering is taken into account when assigning registers
//SEG1 Basic Upstart
.pc = $801 "Basic"
:BasicUpstart(bbegin)
.pc = $80d "Program"
//SEG2 Global Constants & labels
.label SCREEN = $400
//SEG3 @begin
bbegin:
//SEG4 [1] phi from @begin to @1 [phi:@begin->@1]
b1_from_bbegin:
jmp b1
//SEG5 @1
b1:
//SEG6 [2] call main
//SEG7 [4] phi from @1 to main [phi:@1->main]
main_from_b1:
jsr main
//SEG8 [3] phi from @1 to @end [phi:@1->@end]
bend_from_b1:
jmp bend
//SEG9 @end
bend:
//SEG10 main
main: {
.label l = 2
//SEG11 [5] phi from main to main::@1 [phi:main->main::@1]
b1_from_main:
//SEG12 [5] phi (byte) main::i#4 = (byte) 0 [phi:main->main::@1#0] -- vbuxx=vbuc1
ldx #0
jmp b1
// First loop with no clobber
//SEG13 [5] phi from main::@3 to main::@1 [phi:main::@3->main::@1]
b1_from_b3:
//SEG14 [5] phi (byte) main::i#4 = (byte) main::i#1 [phi:main::@3->main::@1#0] -- register_copy
jmp b1
//SEG15 main::@1
b1:
//SEG16 [6] phi from main::@1 to main::@2 [phi:main::@1->main::@2]
b2_from_b1:
//SEG17 [6] phi (byte) main::j#2 = (byte) 0 [phi:main::@1->main::@2#0] -- vbuaa=vbuc1
lda #0
jmp b2
//SEG18 [6] phi from main::@2 to main::@2 [phi:main::@2->main::@2]
b2_from_b2:
//SEG19 [6] phi (byte) main::j#2 = (byte) main::j#1 [phi:main::@2->main::@2#0] -- register_copy
jmp b2
//SEG20 main::@2
b2:
//SEG21 [7] *((const byte*) SCREEN#0 + (byte) main::i#4) ← (byte) main::j#2 -- pbuc1_derefidx_vbuxx=vbuaa
sta SCREEN,x
//SEG22 [8] (byte) main::j#1 ← ++ (byte) main::j#2 -- vbuaa=_inc_vbuaa
clc
adc #1
//SEG23 [9] if((byte) main::j#1!=(byte) $65) goto main::@2 -- vbuaa_neq_vbuc1_then_la1
cmp #$65
bne b2_from_b2
jmp b3
//SEG24 main::@3
b3:
//SEG25 [10] (byte) main::i#1 ← ++ (byte) main::i#4 -- vbuxx=_inc_vbuxx
inx
//SEG26 [11] if((byte) main::i#1!=(byte) $65) goto main::@1 -- vbuxx_neq_vbuc1_then_la1
cpx #$65
bne b1_from_b3
//SEG27 [12] phi from main::@3 to main::@4 [phi:main::@3->main::@4]
b4_from_b3:
//SEG28 [12] phi (byte) main::k#4 = (byte) 0 [phi:main::@3->main::@4#0] -- vbuyy=vbuc1
ldy #0
jmp b4
// Then loop with clobbering A&X
//SEG29 [12] phi from main::@6 to main::@4 [phi:main::@6->main::@4]
b4_from_b6:
//SEG30 [12] phi (byte) main::k#4 = (byte) main::k#1 [phi:main::@6->main::@4#0] -- register_copy
jmp b4
//SEG31 main::@4
b4:
//SEG32 [13] phi from main::@4 to main::@5 [phi:main::@4->main::@5]
b5_from_b4:
//SEG33 [13] phi (byte) main::l#2 = (byte) 0 [phi:main::@4->main::@5#0] -- vbuz1=vbuc1
lda #0
sta l
jmp b5
//SEG34 [13] phi from main::@5 to main::@5 [phi:main::@5->main::@5]
b5_from_b5:
//SEG35 [13] phi (byte) main::l#2 = (byte) main::l#1 [phi:main::@5->main::@5#0] -- register_copy
jmp b5
//SEG36 main::@5
b5:
//SEG37 asm { eor#$55 tax }
eor #$55
tax
//SEG38 [15] *((const byte*) SCREEN#0 + (byte) main::k#4) ← (byte) main::l#2 -- pbuc1_derefidx_vbuyy=vbuz1
lda l
sta SCREEN,y
//SEG39 [16] (byte) main::l#1 ← ++ (byte) main::l#2 -- vbuz1=_inc_vbuz1
inc l
//SEG40 [17] if((byte) main::l#1!=(byte) $65) goto main::@5 -- vbuz1_neq_vbuc1_then_la1
lda #$65
cmp l
bne b5_from_b5
jmp b6
//SEG41 main::@6
b6:
//SEG42 [18] (byte) main::k#1 ← ++ (byte) main::k#4 -- vbuyy=_inc_vbuyy
iny
//SEG43 [19] if((byte) main::k#1!=(byte) $65) goto main::@4 -- vbuyy_neq_vbuc1_then_la1
cpy #$65
bne b4_from_b6
jmp breturn
//SEG44 main::@return
breturn:
//SEG45 [20] return
rts
}
ASSEMBLER OPTIMIZATIONS
Removing instruction jmp b1
Removing instruction jmp bend
Removing instruction jmp b1
Removing instruction jmp b2
Removing instruction jmp b3
Removing instruction jmp b4
Removing instruction jmp b5
Removing instruction jmp b6
Removing instruction jmp breturn
Succesful ASM optimization Pass5NextJumpElimination
Replacing label b2_from_b2 with b2
Replacing label b1_from_b3 with b1
Replacing label b5_from_b5 with b5
Replacing label b4_from_b6 with b4
Removing instruction b1_from_bbegin:
Removing instruction b1:
Removing instruction main_from_b1:
Removing instruction bend_from_b1:
Removing instruction b1_from_b3:
Removing instruction b2_from_b1:
Removing instruction b2_from_b2:
Removing instruction b4_from_b6:
Removing instruction b5_from_b4:
Removing instruction b5_from_b5:
Succesful ASM optimization Pass5RedundantLabelElimination
Removing instruction bend:
Removing instruction b1_from_main:
Removing instruction b3:
Removing instruction b4_from_b3:
Removing instruction b6:
Removing instruction breturn:
Succesful ASM optimization Pass5UnusedLabelElimination
Updating BasicUpstart to call main directly
Removing instruction jsr main
Succesful ASM optimization Pass5SkipBegin
Removing instruction jmp b1
Removing instruction jmp b2
Removing instruction jmp b4
Removing instruction jmp b5
Succesful ASM optimization Pass5NextJumpElimination
Removing instruction bbegin:
Succesful ASM optimization Pass5UnusedLabelElimination
FINAL SYMBOL TABLE
(label) @1
(label) @begin
(label) @end
(byte*) SCREEN
(const byte*) SCREEN#0 SCREEN = (byte*) 1024
(void()) main()
(label) main::@1
(label) main::@2
(label) main::@3
(label) main::@4
(label) main::@5
(label) main::@6
(label) main::@return
(byte) main::i
(byte) main::i#1 reg byte x 16.5
(byte) main::i#4 reg byte x 24.599999999999998
(byte) main::j
(byte) main::j#1 reg byte a 151.5
(byte) main::j#2 reg byte a 151.5
(byte) main::k
(byte) main::k#1 reg byte y 16.5
(byte) main::k#4 reg byte y 20.499999999999996
(byte) main::l
(byte) main::l#1 l zp ZP_BYTE:2 151.5
(byte) main::l#2 l zp ZP_BYTE:2 101.0
reg byte x [ main::i#4 main::i#1 ]
reg byte a [ main::j#2 main::j#1 ]
reg byte y [ main::k#4 main::k#1 ]
zp ZP_BYTE:2 [ main::l#2 main::l#1 ]
FINAL ASSEMBLER
Score: 4676
//SEG0 File Comments
// Tests that inline ASM clobbering is taken into account when assigning registers
//SEG1 Basic Upstart
.pc = $801 "Basic"
:BasicUpstart(main)
.pc = $80d "Program"
//SEG2 Global Constants & labels
.label SCREEN = $400
//SEG3 @begin
//SEG4 [1] phi from @begin to @1 [phi:@begin->@1]
//SEG5 @1
//SEG6 [2] call main
//SEG7 [4] phi from @1 to main [phi:@1->main]
//SEG8 [3] phi from @1 to @end [phi:@1->@end]
//SEG9 @end
//SEG10 main
main: {
.label l = 2
//SEG11 [5] phi from main to main::@1 [phi:main->main::@1]
//SEG12 [5] phi (byte) main::i#4 = (byte) 0 [phi:main->main::@1#0] -- vbuxx=vbuc1
ldx #0
// First loop with no clobber
//SEG13 [5] phi from main::@3 to main::@1 [phi:main::@3->main::@1]
//SEG14 [5] phi (byte) main::i#4 = (byte) main::i#1 [phi:main::@3->main::@1#0] -- register_copy
//SEG15 main::@1
b1:
//SEG16 [6] phi from main::@1 to main::@2 [phi:main::@1->main::@2]
//SEG17 [6] phi (byte) main::j#2 = (byte) 0 [phi:main::@1->main::@2#0] -- vbuaa=vbuc1
lda #0
//SEG18 [6] phi from main::@2 to main::@2 [phi:main::@2->main::@2]
//SEG19 [6] phi (byte) main::j#2 = (byte) main::j#1 [phi:main::@2->main::@2#0] -- register_copy
//SEG20 main::@2
b2:
//SEG21 [7] *((const byte*) SCREEN#0 + (byte) main::i#4) ← (byte) main::j#2 -- pbuc1_derefidx_vbuxx=vbuaa
sta SCREEN,x
//SEG22 [8] (byte) main::j#1 ← ++ (byte) main::j#2 -- vbuaa=_inc_vbuaa
clc
adc #1
//SEG23 [9] if((byte) main::j#1!=(byte) $65) goto main::@2 -- vbuaa_neq_vbuc1_then_la1
cmp #$65
bne b2
//SEG24 main::@3
//SEG25 [10] (byte) main::i#1 ← ++ (byte) main::i#4 -- vbuxx=_inc_vbuxx
inx
//SEG26 [11] if((byte) main::i#1!=(byte) $65) goto main::@1 -- vbuxx_neq_vbuc1_then_la1
cpx #$65
bne b1
//SEG27 [12] phi from main::@3 to main::@4 [phi:main::@3->main::@4]
//SEG28 [12] phi (byte) main::k#4 = (byte) 0 [phi:main::@3->main::@4#0] -- vbuyy=vbuc1
ldy #0
// Then loop with clobbering A&X
//SEG29 [12] phi from main::@6 to main::@4 [phi:main::@6->main::@4]
//SEG30 [12] phi (byte) main::k#4 = (byte) main::k#1 [phi:main::@6->main::@4#0] -- register_copy
//SEG31 main::@4
b4:
//SEG32 [13] phi from main::@4 to main::@5 [phi:main::@4->main::@5]
//SEG33 [13] phi (byte) main::l#2 = (byte) 0 [phi:main::@4->main::@5#0] -- vbuz1=vbuc1
lda #0
sta l
//SEG34 [13] phi from main::@5 to main::@5 [phi:main::@5->main::@5]
//SEG35 [13] phi (byte) main::l#2 = (byte) main::l#1 [phi:main::@5->main::@5#0] -- register_copy
//SEG36 main::@5
b5:
//SEG37 asm { eor#$55 tax }
eor #$55
tax
//SEG38 [15] *((const byte*) SCREEN#0 + (byte) main::k#4) ← (byte) main::l#2 -- pbuc1_derefidx_vbuyy=vbuz1
lda l
sta SCREEN,y
//SEG39 [16] (byte) main::l#1 ← ++ (byte) main::l#2 -- vbuz1=_inc_vbuz1
inc l
//SEG40 [17] if((byte) main::l#1!=(byte) $65) goto main::@5 -- vbuz1_neq_vbuc1_then_la1
lda #$65
cmp l
bne b5
//SEG41 main::@6
//SEG42 [18] (byte) main::k#1 ← ++ (byte) main::k#4 -- vbuyy=_inc_vbuyy
iny
//SEG43 [19] if((byte) main::k#1!=(byte) $65) goto main::@4 -- vbuyy_neq_vbuc1_then_la1
cpy #$65
bne b4
//SEG44 main::@return
//SEG45 [20] return
rts
}