1
0
mirror of https://gitlab.com/camelot/kickc.git synced 2024-09-29 03:56:15 +00:00
kickc/src/test/ref/liverange-6.log

506 lines
14 KiB
Plaintext

CONTROL FLOW GRAPH SSA
@begin: scope:[] from
(byte) idx#0 ← (byte) 0
to:@1
(void()) main()
main: scope:[main] from @1
(byte) idx#13 ← phi( @1/(byte) idx#12 )
(byte) main::i#0 ← (byte) 0
to:main::@1
main::@1: scope:[main] from main main::@2
(byte) idx#11 ← phi( main/(byte) idx#13 main::@2/(byte) idx#1 )
(byte) main::i#2 ← phi( main/(byte) main::i#0 main::@2/(byte) main::i#1 )
(byte) out::c#0 ← *((const byte*) msg + (byte) main::i#2)
call out
to:main::@2
main::@2: scope:[main] from main::@1
(byte) main::i#3 ← phi( main::@1/(byte) main::i#2 )
(byte) idx#6 ← phi( main::@1/(byte) idx#4 )
(byte) idx#1 ← (byte) idx#6
(byte) main::i#1 ← (byte) main::i#3 + rangenext(0,$b)
(bool~) main::$1 ← (byte) main::i#1 != rangelast(0,$b)
if((bool~) main::$1) goto main::@1
to:main::@return
main::@return: scope:[main] from main::@2
(byte) idx#7 ← phi( main::@2/(byte) idx#1 )
(byte) idx#2 ← (byte) idx#7
return
to:@return
(void()) out((byte) out::c)
out: scope:[out] from main::@1
(byte) idx#8 ← phi( main::@1/(byte) idx#11 )
(byte) out::c#1 ← phi( main::@1/(byte) out::c#0 )
*((const nomodify byte*) SCREEN + (byte) idx#8) ← (byte) out::c#1
(byte) idx#3 ← ++ (byte) idx#8
to:out::@return
out::@return: scope:[out] from out
(byte) idx#9 ← phi( out/(byte) idx#3 )
(byte) idx#4 ← (byte) idx#9
return
to:@return
@1: scope:[] from @begin
(byte) idx#12 ← phi( @begin/(byte) idx#0 )
call main
to:@2
@2: scope:[] from @1
(byte) idx#10 ← phi( @1/(byte) idx#2 )
(byte) idx#5 ← (byte) idx#10
to:@end
@end: scope:[] from @2
SYMBOL TABLE SSA
(label) @1
(label) @2
(label) @begin
(label) @end
(const nomodify byte*) SCREEN = (byte*)(number) $400
(byte) idx
(byte) idx#0
(byte) idx#1
(byte) idx#10
(byte) idx#11
(byte) idx#12
(byte) idx#13
(byte) idx#2
(byte) idx#3
(byte) idx#4
(byte) idx#5
(byte) idx#6
(byte) idx#7
(byte) idx#8
(byte) idx#9
(void()) main()
(bool~) main::$1
(label) main::@1
(label) main::@2
(label) main::@return
(byte) main::i
(byte) main::i#0
(byte) main::i#1
(byte) main::i#2
(byte) main::i#3
(const byte*) msg[] = (byte*) "hello world!"
(void()) out((byte) out::c)
(label) out::@return
(byte) out::c
(byte) out::c#0
(byte) out::c#1
Simplifying constant pointer cast (byte*) 1024
Successful SSA optimization PassNCastSimplification
Alias main::i#2 = main::i#3
Alias idx#1 = idx#6 idx#7 idx#2
Alias idx#3 = idx#9 idx#4
Alias idx#0 = idx#12
Alias idx#10 = idx#5
Successful SSA optimization Pass2AliasElimination
Identical Phi Values (byte) idx#13 (byte) idx#0
Identical Phi Values (byte) idx#1 (byte) idx#3
Identical Phi Values (byte) out::c#1 (byte) out::c#0
Identical Phi Values (byte) idx#8 (byte) idx#11
Identical Phi Values (byte) idx#10 (byte) idx#1
Successful SSA optimization Pass2IdenticalPhiElimination
Simple Condition (bool~) main::$1 [9] if((byte) main::i#1!=rangelast(0,$b)) goto main::@1
Successful SSA optimization Pass2ConditionalJumpSimplification
Constant (const byte) idx#0 = 0
Constant (const byte) main::i#0 = 0
Successful SSA optimization Pass2ConstantIdentification
Resolved ranged next value [7] main::i#1 ← ++ main::i#2 to ++
Resolved ranged comparison value [9] if(main::i#1!=rangelast(0,$b)) goto main::@1 to (number) $c
Adding number conversion cast (unumber) $c in if((byte) main::i#1!=(number) $c) goto main::@1
Successful SSA optimization PassNAddNumberTypeConversions
Simplifying constant integer cast $c
Successful SSA optimization PassNCastSimplification
Finalized unsigned number type (byte) $c
Successful SSA optimization PassNFinalizeNumberTypeConversions
Inlining constant with var siblings (const byte) main::i#0
Inlining constant with var siblings (const byte) idx#0
Constant inlined main::i#0 = (byte) 0
Constant inlined idx#0 = (byte) 0
Successful SSA optimization Pass2ConstantInlining
Added new block during phi lifting main::@3(between main::@2 and main::@1)
Adding NOP phi() at start of @begin
Adding NOP phi() at start of @1
Adding NOP phi() at start of @2
Adding NOP phi() at start of @end
Adding NOP phi() at start of main
CALL GRAPH
Calls in [] to main:2
Calls in [main] to out:8
Created 2 initial phi equivalence classes
Coalesced [12] main::i#4 ← main::i#1
Coalesced [13] idx#14 ← idx#3
Coalesced down to 2 phi equivalence classes
Culled Empty Block (label) @2
Culled Empty Block (label) main::@3
Adding NOP phi() at start of @begin
Adding NOP phi() at start of @1
Adding NOP phi() at start of @end
Adding NOP phi() at start of main
FINAL CONTROL FLOW GRAPH
@begin: scope:[] from
[0] phi()
to:@1
@1: scope:[] from @begin
[1] phi()
[2] call main
to:@end
@end: scope:[] from @1
[3] phi()
(void()) main()
main: scope:[main] from @1
[4] phi()
to:main::@1
main::@1: scope:[main] from main main::@2
[5] (byte) idx#11 ← phi( main/(byte) 0 main::@2/(byte) idx#3 )
[5] (byte) main::i#2 ← phi( main/(byte) 0 main::@2/(byte) main::i#1 )
[6] (byte) out::c#0 ← *((const byte*) msg + (byte) main::i#2)
[7] call out
to:main::@2
main::@2: scope:[main] from main::@1
[8] (byte) main::i#1 ← ++ (byte) main::i#2
[9] if((byte) main::i#1!=(byte) $c) goto main::@1
to:main::@return
main::@return: scope:[main] from main::@2
[10] return
to:@return
(void()) out((byte) out::c)
out: scope:[out] from main::@1
[11] *((const nomodify byte*) SCREEN + (byte) idx#11) ← (byte) out::c#0
[12] (byte) idx#3 ← ++ (byte) idx#11
to:out::@return
out::@return: scope:[out] from out
[13] return
to:@return
VARIABLE REGISTER WEIGHTS
(byte) idx
(byte) idx#11 701.0
(byte) idx#3 220.39999999999998
(void()) main()
(byte) main::i
(byte) main::i#1 151.5
(byte) main::i#2 101.0
(void()) out((byte) out::c)
(byte) out::c
(byte) out::c#0 1102.0
Initial phi equivalence classes
[ main::i#2 main::i#1 ]
[ idx#11 idx#3 ]
Added variable out::c#0 to live range equivalence class [ out::c#0 ]
Complete equivalence classes
[ main::i#2 main::i#1 ]
[ idx#11 idx#3 ]
[ out::c#0 ]
Allocated zp[1]:2 [ main::i#2 main::i#1 ]
Allocated zp[1]:3 [ idx#11 idx#3 ]
Allocated zp[1]:4 [ out::c#0 ]
INITIAL ASM
Target platform is c64basic / MOS6502X
// File Comments
// Test effective live range and register allocation
// out::c should be a hardware register, main::i should be a hardware register, global idx should be a hardware register
// Upstart
.pc = $801 "Basic"
:BasicUpstart(main)
.pc = $80d "Program"
// Global Constants & labels
.label SCREEN = $400
.label idx = 3
// @begin
__bbegin:
// [1] phi from @begin to @1 [phi:@begin->@1]
__b1_from___bbegin:
jmp __b1
// @1
__b1:
// [2] call main
// [4] phi from @1 to main [phi:@1->main]
main_from___b1:
jsr main
// [3] phi from @1 to @end [phi:@1->@end]
__bend_from___b1:
jmp __bend
// @end
__bend:
// main
main: {
.label i = 2
// [5] phi from main to main::@1 [phi:main->main::@1]
__b1_from_main:
// [5] phi (byte) idx#11 = (byte) 0 [phi:main->main::@1#0] -- vbuz1=vbuc1
lda #0
sta.z idx
// [5] phi (byte) main::i#2 = (byte) 0 [phi:main->main::@1#1] -- vbuz1=vbuc1
lda #0
sta.z i
jmp __b1
// [5] phi from main::@2 to main::@1 [phi:main::@2->main::@1]
__b1_from___b2:
// [5] phi (byte) idx#11 = (byte) idx#3 [phi:main::@2->main::@1#0] -- register_copy
// [5] phi (byte) main::i#2 = (byte) main::i#1 [phi:main::@2->main::@1#1] -- register_copy
jmp __b1
// main::@1
__b1:
// [6] (byte) out::c#0 ← *((const byte*) msg + (byte) main::i#2) -- vbuz1=pbuc1_derefidx_vbuz2
ldy.z i
lda msg,y
sta.z out.c
// [7] call out
jsr out
jmp __b2
// main::@2
__b2:
// [8] (byte) main::i#1 ← ++ (byte) main::i#2 -- vbuz1=_inc_vbuz1
inc.z i
// [9] if((byte) main::i#1!=(byte) $c) goto main::@1 -- vbuz1_neq_vbuc1_then_la1
lda #$c
cmp.z i
bne __b1_from___b2
jmp __breturn
// main::@return
__breturn:
// [10] return
rts
}
// out
// out(byte zp(4) c)
out: {
.label c = 4
// [11] *((const nomodify byte*) SCREEN + (byte) idx#11) ← (byte) out::c#0 -- pbuc1_derefidx_vbuz1=vbuz2
lda.z c
ldy.z idx
sta SCREEN,y
// [12] (byte) idx#3 ← ++ (byte) idx#11 -- vbuz1=_inc_vbuz1
inc.z idx
jmp __breturn
// out::@return
__breturn:
// [13] return
rts
}
// File Data
msg: .text "hello world!"
.byte 0
REGISTER UPLIFT POTENTIAL REGISTERS
Potential registers zp[1]:2 [ main::i#2 main::i#1 ] : zp[1]:2 , reg byte a , reg byte x , reg byte y ,
Potential registers zp[1]:3 [ idx#11 idx#3 ] : zp[1]:3 , reg byte a , reg byte x , reg byte y ,
Potential registers zp[1]:4 [ out::c#0 ] : zp[1]:4 , reg byte a , reg byte x , reg byte y ,
REGISTER UPLIFT SCOPES
Uplift Scope [out] 1,102: zp[1]:4 [ out::c#0 ]
Uplift Scope [] 921.4: zp[1]:3 [ idx#11 idx#3 ]
Uplift Scope [main] 252.5: zp[1]:2 [ main::i#2 main::i#1 ]
Uplifting [out] best 520 combination reg byte a [ out::c#0 ]
Uplifting [] best 484 combination reg byte x [ idx#11 idx#3 ]
Uplifting [main] best 364 combination reg byte y [ main::i#2 main::i#1 ]
ASSEMBLER BEFORE OPTIMIZATION
// File Comments
// Test effective live range and register allocation
// out::c should be a hardware register, main::i should be a hardware register, global idx should be a hardware register
// Upstart
.pc = $801 "Basic"
:BasicUpstart(main)
.pc = $80d "Program"
// Global Constants & labels
.label SCREEN = $400
// @begin
__bbegin:
// [1] phi from @begin to @1 [phi:@begin->@1]
__b1_from___bbegin:
jmp __b1
// @1
__b1:
// [2] call main
// [4] phi from @1 to main [phi:@1->main]
main_from___b1:
jsr main
// [3] phi from @1 to @end [phi:@1->@end]
__bend_from___b1:
jmp __bend
// @end
__bend:
// main
main: {
// [5] phi from main to main::@1 [phi:main->main::@1]
__b1_from_main:
// [5] phi (byte) idx#11 = (byte) 0 [phi:main->main::@1#0] -- vbuxx=vbuc1
ldx #0
// [5] phi (byte) main::i#2 = (byte) 0 [phi:main->main::@1#1] -- vbuyy=vbuc1
ldy #0
jmp __b1
// [5] phi from main::@2 to main::@1 [phi:main::@2->main::@1]
__b1_from___b2:
// [5] phi (byte) idx#11 = (byte) idx#3 [phi:main::@2->main::@1#0] -- register_copy
// [5] phi (byte) main::i#2 = (byte) main::i#1 [phi:main::@2->main::@1#1] -- register_copy
jmp __b1
// main::@1
__b1:
// [6] (byte) out::c#0 ← *((const byte*) msg + (byte) main::i#2) -- vbuaa=pbuc1_derefidx_vbuyy
lda msg,y
// [7] call out
jsr out
jmp __b2
// main::@2
__b2:
// [8] (byte) main::i#1 ← ++ (byte) main::i#2 -- vbuyy=_inc_vbuyy
iny
// [9] if((byte) main::i#1!=(byte) $c) goto main::@1 -- vbuyy_neq_vbuc1_then_la1
cpy #$c
bne __b1_from___b2
jmp __breturn
// main::@return
__breturn:
// [10] return
rts
}
// out
// out(byte register(A) c)
out: {
// [11] *((const nomodify byte*) SCREEN + (byte) idx#11) ← (byte) out::c#0 -- pbuc1_derefidx_vbuxx=vbuaa
sta SCREEN,x
// [12] (byte) idx#3 ← ++ (byte) idx#11 -- vbuxx=_inc_vbuxx
inx
jmp __breturn
// out::@return
__breturn:
// [13] return
rts
}
// File Data
msg: .text "hello world!"
.byte 0
ASSEMBLER OPTIMIZATIONS
Removing instruction jmp __b1
Removing instruction jmp __bend
Removing instruction jmp __b1
Removing instruction jmp __b2
Removing instruction jmp __breturn
Removing instruction jmp __breturn
Succesful ASM optimization Pass5NextJumpElimination
Replacing label __b1_from___b2 with __b1
Removing instruction __b1_from___bbegin:
Removing instruction __b1:
Removing instruction main_from___b1:
Removing instruction __bend_from___b1:
Removing instruction __b1_from___b2:
Succesful ASM optimization Pass5RedundantLabelElimination
Removing instruction __bbegin:
Removing instruction __bend:
Removing instruction __b1_from_main:
Removing instruction __b2:
Removing instruction __breturn:
Removing instruction __breturn:
Succesful ASM optimization Pass5UnusedLabelElimination
Removing instruction jsr main
Succesful ASM optimization Pass5SkipBegin
Removing instruction jmp __b1
Succesful ASM optimization Pass5NextJumpElimination
FINAL SYMBOL TABLE
(label) @1
(label) @begin
(label) @end
(const nomodify byte*) SCREEN = (byte*) 1024
(byte) idx
(byte) idx#11 reg byte x 701.0
(byte) idx#3 reg byte x 220.39999999999998
(void()) main()
(label) main::@1
(label) main::@2
(label) main::@return
(byte) main::i
(byte) main::i#1 reg byte y 151.5
(byte) main::i#2 reg byte y 101.0
(const byte*) msg[] = (byte*) "hello world!"
(void()) out((byte) out::c)
(label) out::@return
(byte) out::c
(byte) out::c#0 reg byte a 1102.0
reg byte y [ main::i#2 main::i#1 ]
reg byte x [ idx#11 idx#3 ]
reg byte a [ out::c#0 ]
FINAL ASSEMBLER
Score: 229
// File Comments
// Test effective live range and register allocation
// out::c should be a hardware register, main::i should be a hardware register, global idx should be a hardware register
// Upstart
.pc = $801 "Basic"
:BasicUpstart(main)
.pc = $80d "Program"
// Global Constants & labels
.label SCREEN = $400
// @begin
// [1] phi from @begin to @1 [phi:@begin->@1]
// @1
// [2] call main
// [4] phi from @1 to main [phi:@1->main]
// [3] phi from @1 to @end [phi:@1->@end]
// @end
// main
main: {
// [5] phi from main to main::@1 [phi:main->main::@1]
// [5] phi (byte) idx#11 = (byte) 0 [phi:main->main::@1#0] -- vbuxx=vbuc1
ldx #0
// [5] phi (byte) main::i#2 = (byte) 0 [phi:main->main::@1#1] -- vbuyy=vbuc1
ldy #0
// [5] phi from main::@2 to main::@1 [phi:main::@2->main::@1]
// [5] phi (byte) idx#11 = (byte) idx#3 [phi:main::@2->main::@1#0] -- register_copy
// [5] phi (byte) main::i#2 = (byte) main::i#1 [phi:main::@2->main::@1#1] -- register_copy
// main::@1
__b1:
// out(msg[i])
// [6] (byte) out::c#0 ← *((const byte*) msg + (byte) main::i#2) -- vbuaa=pbuc1_derefidx_vbuyy
lda msg,y
// [7] call out
jsr out
// main::@2
// for( byte i: 0..11)
// [8] (byte) main::i#1 ← ++ (byte) main::i#2 -- vbuyy=_inc_vbuyy
iny
// [9] if((byte) main::i#1!=(byte) $c) goto main::@1 -- vbuyy_neq_vbuc1_then_la1
cpy #$c
bne __b1
// main::@return
// }
// [10] return
rts
}
// out
// out(byte register(A) c)
out: {
// SCREEN[idx++] = c
// [11] *((const nomodify byte*) SCREEN + (byte) idx#11) ← (byte) out::c#0 -- pbuc1_derefidx_vbuxx=vbuaa
sta SCREEN,x
// SCREEN[idx++] = c;
// [12] (byte) idx#3 ← ++ (byte) idx#11 -- vbuxx=_inc_vbuxx
inx
// out::@return
// }
// [13] return
rts
}
// File Data
msg: .text "hello world!"
.byte 0