1
0
mirror of https://gitlab.com/camelot/kickc.git synced 2024-10-21 17:24:39 +00:00
kickc/src/test/ref/overlap-allocation.log
2019-11-03 17:05:55 +01:00

747 lines
24 KiB
Plaintext

Identified constant variable (byte*) SCREEN
Culled Empty Block (label) main::@6
Culled Empty Block (label) @1
CONTROL FLOW GRAPH SSA
@begin: scope:[] from
to:@2
(void()) main()
main: scope:[main] from @2
(byte) main::i#0 ← (byte) 0
to:main::@1
main::@1: scope:[main] from main main::@7
(byte) main::i#2 ← phi( main/(byte) main::i#0 main::@7/(byte) main::i#1 )
(byte) plot::x#0 ← (byte) main::i#2
call plot
to:main::@7
main::@7: scope:[main] from main::@1
(byte) main::i#3 ← phi( main::@1/(byte) main::i#2 )
(byte) main::i#1 ← (byte) main::i#3 + rangenext(0,$a)
(bool~) main::$1 ← (byte) main::i#1 != rangelast(0,$a)
if((bool~) main::$1) goto main::@1
to:main::@2
main::@2: scope:[main] from main::@7
(byte) main::j#0 ← (byte) 0
to:main::@3
main::@3: scope:[main] from main::@2 main::@8
(byte) main::j#2 ← phi( main::@2/(byte) main::j#0 main::@8/(byte) main::j#1 )
(byte) plot::x#1 ← (byte) main::j#2
call plot
to:main::@8
main::@8: scope:[main] from main::@3
(byte) main::j#3 ← phi( main::@3/(byte) main::j#2 )
(byte) main::j#1 ← (byte) main::j#3 + rangenext(0,$a)
(bool~) main::$3 ← (byte) main::j#1 != rangelast(0,$a)
if((bool~) main::$3) goto main::@3
to:main::@4
main::@4: scope:[main] from main::@8
(byte) main::k#0 ← (byte) 0
to:main::@5
main::@5: scope:[main] from main::@4 main::@9
(byte) main::k#2 ← phi( main::@4/(byte) main::k#0 main::@9/(byte) main::k#1 )
(byte) plot::x#2 ← (byte) main::k#2
call plot
to:main::@9
main::@9: scope:[main] from main::@5
(byte) main::k#3 ← phi( main::@5/(byte) main::k#2 )
(byte) main::k#1 ← (byte) main::k#3 + rangenext(0,$a)
(bool~) main::$5 ← (byte) main::k#1 != rangelast(0,$a)
if((bool~) main::$5) goto main::@5
to:main::@return
main::@return: scope:[main] from main::@9
return
to:@return
(void()) plot((byte) plot::x)
plot: scope:[plot] from main::@1 main::@3 main::@5
(byte) plot::x#3 ← phi( main::@1/(byte) plot::x#0 main::@3/(byte) plot::x#1 main::@5/(byte) plot::x#2 )
*((const byte*) SCREEN + (byte) plot::x#3) ← (byte) '*'
to:plot::@return
plot::@return: scope:[plot] from plot
return
to:@return
@2: scope:[] from @begin
call main
to:@3
@3: scope:[] from @2
to:@end
@end: scope:[] from @3
SYMBOL TABLE SSA
(label) @2
(label) @3
(label) @begin
(label) @end
(const byte*) SCREEN = (byte*)(number) $400
(void()) main()
(bool~) main::$1
(bool~) main::$3
(bool~) main::$5
(label) main::@1
(label) main::@2
(label) main::@3
(label) main::@4
(label) main::@5
(label) main::@7
(label) main::@8
(label) main::@9
(label) main::@return
(byte) main::i
(byte) main::i#0
(byte) main::i#1
(byte) main::i#2
(byte) main::i#3
(byte) main::j
(byte) main::j#0
(byte) main::j#1
(byte) main::j#2
(byte) main::j#3
(byte) main::k
(byte) main::k#0
(byte) main::k#1
(byte) main::k#2
(byte) main::k#3
(void()) plot((byte) plot::x)
(label) plot::@return
(byte) plot::x
(byte) plot::x#0
(byte) plot::x#1
(byte) plot::x#2
(byte) plot::x#3
Simplifying constant pointer cast (byte*) 1024
Successful SSA optimization PassNCastSimplification
Alias (byte) main::i#2 = (byte) main::i#3
Alias (byte) main::j#2 = (byte) main::j#3
Alias (byte) main::k#2 = (byte) main::k#3
Successful SSA optimization Pass2AliasElimination
Simple Condition (bool~) main::$1 [7] if((byte) main::i#1!=rangelast(0,$a)) goto main::@1
Simple Condition (bool~) main::$3 [15] if((byte) main::j#1!=rangelast(0,$a)) goto main::@3
Simple Condition (bool~) main::$5 [23] if((byte) main::k#1!=rangelast(0,$a)) goto main::@5
Successful SSA optimization Pass2ConditionalJumpSimplification
Constant (const byte) main::i#0 = 0
Constant (const byte) main::j#0 = 0
Constant (const byte) main::k#0 = 0
Successful SSA optimization Pass2ConstantIdentification
Resolved ranged next value [5] main::i#1 ← ++ main::i#2 to ++
Resolved ranged comparison value [7] if(main::i#1!=rangelast(0,$a)) goto main::@1 to (number) $b
Resolved ranged next value [13] main::j#1 ← ++ main::j#2 to ++
Resolved ranged comparison value [15] if(main::j#1!=rangelast(0,$a)) goto main::@3 to (number) $b
Resolved ranged next value [21] main::k#1 ← ++ main::k#2 to ++
Resolved ranged comparison value [23] if(main::k#1!=rangelast(0,$a)) goto main::@5 to (number) $b
Adding number conversion cast (unumber) $b in if((byte) main::i#1!=(number) $b) goto main::@1
Adding number conversion cast (unumber) $b in if((byte) main::j#1!=(number) $b) goto main::@3
Adding number conversion cast (unumber) $b in if((byte) main::k#1!=(number) $b) goto main::@5
Successful SSA optimization PassNAddNumberTypeConversions
Simplifying constant integer cast $b
Simplifying constant integer cast $b
Simplifying constant integer cast $b
Successful SSA optimization PassNCastSimplification
Finalized unsigned number type (byte) $b
Finalized unsigned number type (byte) $b
Finalized unsigned number type (byte) $b
Successful SSA optimization PassNFinalizeNumberTypeConversions
Inlining constant with var siblings (const byte) main::i#0
Inlining constant with var siblings (const byte) main::j#0
Inlining constant with var siblings (const byte) main::k#0
Constant inlined main::i#0 = (byte) 0
Constant inlined main::k#0 = (byte) 0
Constant inlined main::j#0 = (byte) 0
Successful SSA optimization Pass2ConstantInlining
Added new block during phi lifting main::@10(between main::@7 and main::@1)
Added new block during phi lifting main::@11(between main::@8 and main::@3)
Added new block during phi lifting main::@12(between main::@9 and main::@5)
Adding NOP phi() at start of @begin
Adding NOP phi() at start of @2
Adding NOP phi() at start of @3
Adding NOP phi() at start of @end
Adding NOP phi() at start of main
Adding NOP phi() at start of main::@2
Adding NOP phi() at start of main::@4
CALL GRAPH
Calls in [] to main:2
Calls in [main] to plot:9 plot:16 plot:23
Created 4 initial phi equivalence classes
Coalesced [8] plot::x#4 ← plot::x#0
Coalesced [15] plot::x#5 ← plot::x#1
Coalesced [22] plot::x#6 ← plot::x#2
Coalesced [27] main::k#4 ← main::k#1
Coalesced [28] main::j#4 ← main::j#1
Coalesced [29] main::i#4 ← main::i#1
Coalesced down to 4 phi equivalence classes
Culled Empty Block (label) @3
Culled Empty Block (label) main::@2
Culled Empty Block (label) main::@4
Culled Empty Block (label) main::@12
Culled Empty Block (label) main::@11
Culled Empty Block (label) main::@10
Renumbering block @2 to @1
Renumbering block main::@3 to main::@2
Renumbering block main::@5 to main::@3
Renumbering block main::@7 to main::@4
Renumbering block main::@8 to main::@5
Renumbering block main::@9 to main::@6
Adding NOP phi() at start of @begin
Adding NOP phi() at start of @1
Adding NOP phi() at start of @end
Adding NOP phi() at start of main
FINAL CONTROL FLOW GRAPH
@begin: scope:[] from
[0] phi()
to:@1
@1: scope:[] from @begin
[1] phi()
[2] call main
to:@end
@end: scope:[] from @1
[3] phi()
(void()) main()
main: scope:[main] from @1
[4] phi()
to:main::@1
main::@1: scope:[main] from main main::@4
[5] (byte) main::i#2 ← phi( main/(byte) 0 main::@4/(byte) main::i#1 )
[6] (byte) plot::x#0 ← (byte) main::i#2
[7] call plot
to:main::@4
main::@4: scope:[main] from main::@1
[8] (byte) main::i#1 ← ++ (byte) main::i#2
[9] if((byte) main::i#1!=(byte) $b) goto main::@1
to:main::@2
main::@2: scope:[main] from main::@4 main::@5
[10] (byte) main::j#2 ← phi( main::@4/(byte) 0 main::@5/(byte) main::j#1 )
[11] (byte) plot::x#1 ← (byte) main::j#2
[12] call plot
to:main::@5
main::@5: scope:[main] from main::@2
[13] (byte) main::j#1 ← ++ (byte) main::j#2
[14] if((byte) main::j#1!=(byte) $b) goto main::@2
to:main::@3
main::@3: scope:[main] from main::@5 main::@6
[15] (byte) main::k#2 ← phi( main::@5/(byte) 0 main::@6/(byte) main::k#1 )
[16] (byte) plot::x#2 ← (byte) main::k#2
[17] call plot
to:main::@6
main::@6: scope:[main] from main::@3
[18] (byte) main::k#1 ← ++ (byte) main::k#2
[19] if((byte) main::k#1!=(byte) $b) goto main::@3
to:main::@return
main::@return: scope:[main] from main::@6
[20] return
to:@return
(void()) plot((byte) plot::x)
plot: scope:[plot] from main::@1 main::@2 main::@3
[21] (byte) plot::x#3 ← phi( main::@1/(byte) plot::x#0 main::@2/(byte) plot::x#1 main::@3/(byte) plot::x#2 )
[22] *((const byte*) SCREEN + (byte) plot::x#3) ← (byte) '*'
to:plot::@return
plot::@return: scope:[plot] from plot
[23] return
to:@return
VARIABLE REGISTER WEIGHTS
(void()) main()
(byte) main::i
(byte) main::i#1 16.5
(byte) main::i#2 11.0
(byte) main::j
(byte) main::j#1 16.5
(byte) main::j#2 11.0
(byte) main::k
(byte) main::k#1 16.5
(byte) main::k#2 11.0
(void()) plot((byte) plot::x)
(byte) plot::x
(byte) plot::x#0 22.0
(byte) plot::x#1 22.0
(byte) plot::x#2 22.0
(byte) plot::x#3 35.0
Initial phi equivalence classes
[ main::i#2 main::i#1 ]
[ main::j#2 main::j#1 ]
[ main::k#2 main::k#1 ]
[ plot::x#3 plot::x#0 plot::x#1 plot::x#2 ]
Complete equivalence classes
[ main::i#2 main::i#1 ]
[ main::j#2 main::j#1 ]
[ main::k#2 main::k#1 ]
[ plot::x#3 plot::x#0 plot::x#1 plot::x#2 ]
Allocated zp[1]:2 [ main::i#2 main::i#1 ]
Allocated zp[1]:3 [ main::j#2 main::j#1 ]
Allocated zp[1]:4 [ main::k#2 main::k#1 ]
Allocated zp[1]:5 [ plot::x#3 plot::x#0 plot::x#1 plot::x#2 ]
INITIAL ASM
Target platform is c64basic / MOS6502X
// File Comments
// Allocates ZP to j/k-variables even though all of i, j, k could be allocates to x and be more efficient.
// Reason: Pass4RegisterUpliftCombinations.isAllocationOverlapping() believes i/j/k variables overlaps insode plot()
// Upstart
.pc = $801 "Basic"
:BasicUpstart(__bbegin)
.pc = $80d "Program"
// Global Constants & labels
.label SCREEN = $400
// @begin
__bbegin:
// [1] phi from @begin to @1 [phi:@begin->@1]
__b1_from___bbegin:
jmp __b1
// @1
__b1:
// [2] call main
// [4] phi from @1 to main [phi:@1->main]
main_from___b1:
jsr main
// [3] phi from @1 to @end [phi:@1->@end]
__bend_from___b1:
jmp __bend
// @end
__bend:
// main
main: {
.label i = 2
.label j = 3
.label k = 4
// [5] phi from main to main::@1 [phi:main->main::@1]
__b1_from_main:
// [5] phi (byte) main::i#2 = (byte) 0 [phi:main->main::@1#0] -- vbuz1=vbuc1
lda #0
sta.z i
jmp __b1
// [5] phi from main::@4 to main::@1 [phi:main::@4->main::@1]
__b1_from___b4:
// [5] phi (byte) main::i#2 = (byte) main::i#1 [phi:main::@4->main::@1#0] -- register_copy
jmp __b1
// main::@1
__b1:
// [6] (byte) plot::x#0 ← (byte) main::i#2 -- vbuz1=vbuz2
lda.z i
sta.z plot.x
// [7] call plot
// [21] phi from main::@1 to plot [phi:main::@1->plot]
plot_from___b1:
// [21] phi (byte) plot::x#3 = (byte) plot::x#0 [phi:main::@1->plot#0] -- register_copy
jsr plot
jmp __b4
// main::@4
__b4:
// [8] (byte) main::i#1 ← ++ (byte) main::i#2 -- vbuz1=_inc_vbuz1
inc.z i
// [9] if((byte) main::i#1!=(byte) $b) goto main::@1 -- vbuz1_neq_vbuc1_then_la1
lda #$b
cmp.z i
bne __b1_from___b4
// [10] phi from main::@4 to main::@2 [phi:main::@4->main::@2]
__b2_from___b4:
// [10] phi (byte) main::j#2 = (byte) 0 [phi:main::@4->main::@2#0] -- vbuz1=vbuc1
lda #0
sta.z j
jmp __b2
// [10] phi from main::@5 to main::@2 [phi:main::@5->main::@2]
__b2_from___b5:
// [10] phi (byte) main::j#2 = (byte) main::j#1 [phi:main::@5->main::@2#0] -- register_copy
jmp __b2
// main::@2
__b2:
// [11] (byte) plot::x#1 ← (byte) main::j#2 -- vbuz1=vbuz2
lda.z j
sta.z plot.x
// [12] call plot
// [21] phi from main::@2 to plot [phi:main::@2->plot]
plot_from___b2:
// [21] phi (byte) plot::x#3 = (byte) plot::x#1 [phi:main::@2->plot#0] -- register_copy
jsr plot
jmp __b5
// main::@5
__b5:
// [13] (byte) main::j#1 ← ++ (byte) main::j#2 -- vbuz1=_inc_vbuz1
inc.z j
// [14] if((byte) main::j#1!=(byte) $b) goto main::@2 -- vbuz1_neq_vbuc1_then_la1
lda #$b
cmp.z j
bne __b2_from___b5
// [15] phi from main::@5 to main::@3 [phi:main::@5->main::@3]
__b3_from___b5:
// [15] phi (byte) main::k#2 = (byte) 0 [phi:main::@5->main::@3#0] -- vbuz1=vbuc1
lda #0
sta.z k
jmp __b3
// [15] phi from main::@6 to main::@3 [phi:main::@6->main::@3]
__b3_from___b6:
// [15] phi (byte) main::k#2 = (byte) main::k#1 [phi:main::@6->main::@3#0] -- register_copy
jmp __b3
// main::@3
__b3:
// [16] (byte) plot::x#2 ← (byte) main::k#2 -- vbuz1=vbuz2
lda.z k
sta.z plot.x
// [17] call plot
// [21] phi from main::@3 to plot [phi:main::@3->plot]
plot_from___b3:
// [21] phi (byte) plot::x#3 = (byte) plot::x#2 [phi:main::@3->plot#0] -- register_copy
jsr plot
jmp __b6
// main::@6
__b6:
// [18] (byte) main::k#1 ← ++ (byte) main::k#2 -- vbuz1=_inc_vbuz1
inc.z k
// [19] if((byte) main::k#1!=(byte) $b) goto main::@3 -- vbuz1_neq_vbuc1_then_la1
lda #$b
cmp.z k
bne __b3_from___b6
jmp __breturn
// main::@return
__breturn:
// [20] return
rts
}
// plot
// plot(byte zeropage(5) x)
plot: {
.label x = 5
// [22] *((const byte*) SCREEN + (byte) plot::x#3) ← (byte) '*' -- pbuc1_derefidx_vbuz1=vbuc2
lda #'*'
ldy.z x
sta SCREEN,y
jmp __breturn
// plot::@return
__breturn:
// [23] return
rts
}
// File Data
REGISTER UPLIFT POTENTIAL REGISTERS
Statement [22] *((const byte*) SCREEN + (byte) plot::x#3) ← (byte) '*' [ ] ( main:2::plot:7 [ main::i#2 ] main:2::plot:12 [ main::j#2 ] main:2::plot:17 [ main::k#2 ] ) always clobbers reg byte a
Removing always clobbered register reg byte a as potential for zp[1]:2 [ main::i#2 main::i#1 ]
Removing always clobbered register reg byte a as potential for zp[1]:3 [ main::j#2 main::j#1 ]
Removing always clobbered register reg byte a as potential for zp[1]:4 [ main::k#2 main::k#1 ]
Statement [22] *((const byte*) SCREEN + (byte) plot::x#3) ← (byte) '*' [ ] ( main:2::plot:7 [ main::i#2 ] main:2::plot:12 [ main::j#2 ] main:2::plot:17 [ main::k#2 ] ) always clobbers reg byte a
Potential registers zp[1]:2 [ main::i#2 main::i#1 ] : zp[1]:2 , reg byte x , reg byte y ,
Potential registers zp[1]:3 [ main::j#2 main::j#1 ] : zp[1]:3 , reg byte x , reg byte y ,
Potential registers zp[1]:4 [ main::k#2 main::k#1 ] : zp[1]:4 , reg byte x , reg byte y ,
Potential registers zp[1]:5 [ plot::x#3 plot::x#0 plot::x#1 plot::x#2 ] : zp[1]:5 , reg byte a , reg byte x , reg byte y ,
REGISTER UPLIFT SCOPES
Uplift Scope [plot] 101: zp[1]:5 [ plot::x#3 plot::x#0 plot::x#1 plot::x#2 ]
Uplift Scope [main] 27.5: zp[1]:2 [ main::i#2 main::i#1 ] 27.5: zp[1]:3 [ main::j#2 main::j#1 ] 27.5: zp[1]:4 [ main::k#2 main::k#1 ]
Uplift Scope []
Uplifting [plot] best 886 combination reg byte x [ plot::x#3 plot::x#0 plot::x#1 plot::x#2 ]
Uplifting [main] best 526 combination reg byte x [ main::i#2 main::i#1 ] reg byte x [ main::j#2 main::j#1 ] reg byte x [ main::k#2 main::k#1 ]
Uplifting [] best 526 combination
ASSEMBLER BEFORE OPTIMIZATION
// File Comments
// Allocates ZP to j/k-variables even though all of i, j, k could be allocates to x and be more efficient.
// Reason: Pass4RegisterUpliftCombinations.isAllocationOverlapping() believes i/j/k variables overlaps insode plot()
// Upstart
.pc = $801 "Basic"
:BasicUpstart(__bbegin)
.pc = $80d "Program"
// Global Constants & labels
.label SCREEN = $400
// @begin
__bbegin:
// [1] phi from @begin to @1 [phi:@begin->@1]
__b1_from___bbegin:
jmp __b1
// @1
__b1:
// [2] call main
// [4] phi from @1 to main [phi:@1->main]
main_from___b1:
jsr main
// [3] phi from @1 to @end [phi:@1->@end]
__bend_from___b1:
jmp __bend
// @end
__bend:
// main
main: {
// [5] phi from main to main::@1 [phi:main->main::@1]
__b1_from_main:
// [5] phi (byte) main::i#2 = (byte) 0 [phi:main->main::@1#0] -- vbuxx=vbuc1
ldx #0
jmp __b1
// [5] phi from main::@4 to main::@1 [phi:main::@4->main::@1]
__b1_from___b4:
// [5] phi (byte) main::i#2 = (byte) main::i#1 [phi:main::@4->main::@1#0] -- register_copy
jmp __b1
// main::@1
__b1:
// [6] (byte) plot::x#0 ← (byte) main::i#2
// [7] call plot
// [21] phi from main::@1 to plot [phi:main::@1->plot]
plot_from___b1:
// [21] phi (byte) plot::x#3 = (byte) plot::x#0 [phi:main::@1->plot#0] -- register_copy
jsr plot
jmp __b4
// main::@4
__b4:
// [8] (byte) main::i#1 ← ++ (byte) main::i#2 -- vbuxx=_inc_vbuxx
inx
// [9] if((byte) main::i#1!=(byte) $b) goto main::@1 -- vbuxx_neq_vbuc1_then_la1
cpx #$b
bne __b1_from___b4
// [10] phi from main::@4 to main::@2 [phi:main::@4->main::@2]
__b2_from___b4:
// [10] phi (byte) main::j#2 = (byte) 0 [phi:main::@4->main::@2#0] -- vbuxx=vbuc1
ldx #0
jmp __b2
// [10] phi from main::@5 to main::@2 [phi:main::@5->main::@2]
__b2_from___b5:
// [10] phi (byte) main::j#2 = (byte) main::j#1 [phi:main::@5->main::@2#0] -- register_copy
jmp __b2
// main::@2
__b2:
// [11] (byte) plot::x#1 ← (byte) main::j#2
// [12] call plot
// [21] phi from main::@2 to plot [phi:main::@2->plot]
plot_from___b2:
// [21] phi (byte) plot::x#3 = (byte) plot::x#1 [phi:main::@2->plot#0] -- register_copy
jsr plot
jmp __b5
// main::@5
__b5:
// [13] (byte) main::j#1 ← ++ (byte) main::j#2 -- vbuxx=_inc_vbuxx
inx
// [14] if((byte) main::j#1!=(byte) $b) goto main::@2 -- vbuxx_neq_vbuc1_then_la1
cpx #$b
bne __b2_from___b5
// [15] phi from main::@5 to main::@3 [phi:main::@5->main::@3]
__b3_from___b5:
// [15] phi (byte) main::k#2 = (byte) 0 [phi:main::@5->main::@3#0] -- vbuxx=vbuc1
ldx #0
jmp __b3
// [15] phi from main::@6 to main::@3 [phi:main::@6->main::@3]
__b3_from___b6:
// [15] phi (byte) main::k#2 = (byte) main::k#1 [phi:main::@6->main::@3#0] -- register_copy
jmp __b3
// main::@3
__b3:
// [16] (byte) plot::x#2 ← (byte) main::k#2
// [17] call plot
// [21] phi from main::@3 to plot [phi:main::@3->plot]
plot_from___b3:
// [21] phi (byte) plot::x#3 = (byte) plot::x#2 [phi:main::@3->plot#0] -- register_copy
jsr plot
jmp __b6
// main::@6
__b6:
// [18] (byte) main::k#1 ← ++ (byte) main::k#2 -- vbuxx=_inc_vbuxx
inx
// [19] if((byte) main::k#1!=(byte) $b) goto main::@3 -- vbuxx_neq_vbuc1_then_la1
cpx #$b
bne __b3_from___b6
jmp __breturn
// main::@return
__breturn:
// [20] return
rts
}
// plot
// plot(byte register(X) x)
plot: {
// [22] *((const byte*) SCREEN + (byte) plot::x#3) ← (byte) '*' -- pbuc1_derefidx_vbuxx=vbuc2
lda #'*'
sta SCREEN,x
jmp __breturn
// plot::@return
__breturn:
// [23] return
rts
}
// File Data
ASSEMBLER OPTIMIZATIONS
Removing instruction jmp __b1
Removing instruction jmp __bend
Removing instruction jmp __b1
Removing instruction jmp __b4
Removing instruction jmp __b2
Removing instruction jmp __b5
Removing instruction jmp __b3
Removing instruction jmp __b6
Removing instruction jmp __breturn
Removing instruction jmp __breturn
Succesful ASM optimization Pass5NextJumpElimination
Replacing label __bbegin with __b1
Replacing label __b1_from___b4 with __b1
Replacing label __b2_from___b5 with __b2
Replacing label __b3_from___b6 with __b3
Removing instruction __bbegin:
Removing instruction __b1_from___bbegin:
Removing instruction main_from___b1:
Removing instruction __bend_from___b1:
Removing instruction __b1_from___b4:
Removing instruction plot_from___b1:
Removing instruction __b2_from___b5:
Removing instruction plot_from___b2:
Removing instruction __b3_from___b6:
Removing instruction plot_from___b3:
Succesful ASM optimization Pass5RedundantLabelElimination
Removing instruction __bend:
Removing instruction __b1_from_main:
Removing instruction __b4:
Removing instruction __b2_from___b4:
Removing instruction __b5:
Removing instruction __b3_from___b5:
Removing instruction __b6:
Removing instruction __breturn:
Removing instruction __breturn:
Succesful ASM optimization Pass5UnusedLabelElimination
Updating BasicUpstart to call main directly
Removing instruction jsr main
Succesful ASM optimization Pass5SkipBegin
Removing instruction jmp __b1
Removing instruction jmp __b2
Removing instruction jmp __b3
Succesful ASM optimization Pass5NextJumpElimination
Removing instruction __b1:
Succesful ASM optimization Pass5UnusedLabelElimination
FINAL SYMBOL TABLE
(label) @1
(label) @begin
(label) @end
(const byte*) SCREEN = (byte*) 1024
(void()) main()
(label) main::@1
(label) main::@2
(label) main::@3
(label) main::@4
(label) main::@5
(label) main::@6
(label) main::@return
(byte) main::i
(byte) main::i#1 reg byte x 16.5
(byte) main::i#2 reg byte x 11.0
(byte) main::j
(byte) main::j#1 reg byte x 16.5
(byte) main::j#2 reg byte x 11.0
(byte) main::k
(byte) main::k#1 reg byte x 16.5
(byte) main::k#2 reg byte x 11.0
(void()) plot((byte) plot::x)
(label) plot::@return
(byte) plot::x
(byte) plot::x#0 reg byte x 22.0
(byte) plot::x#1 reg byte x 22.0
(byte) plot::x#2 reg byte x 22.0
(byte) plot::x#3 reg byte x 35.0
reg byte x [ main::i#2 main::i#1 ]
reg byte x [ main::j#2 main::j#1 ]
reg byte x [ main::k#2 main::k#1 ]
reg byte x [ plot::x#3 plot::x#0 plot::x#1 plot::x#2 ]
FINAL ASSEMBLER
Score: 292
// File Comments
// Allocates ZP to j/k-variables even though all of i, j, k could be allocates to x and be more efficient.
// Reason: Pass4RegisterUpliftCombinations.isAllocationOverlapping() believes i/j/k variables overlaps insode plot()
// Upstart
.pc = $801 "Basic"
:BasicUpstart(main)
.pc = $80d "Program"
// Global Constants & labels
.label SCREEN = $400
// @begin
// [1] phi from @begin to @1 [phi:@begin->@1]
// @1
// [2] call main
// [4] phi from @1 to main [phi:@1->main]
// [3] phi from @1 to @end [phi:@1->@end]
// @end
// main
main: {
// [5] phi from main to main::@1 [phi:main->main::@1]
// [5] phi (byte) main::i#2 = (byte) 0 [phi:main->main::@1#0] -- vbuxx=vbuc1
ldx #0
// [5] phi from main::@4 to main::@1 [phi:main::@4->main::@1]
// [5] phi (byte) main::i#2 = (byte) main::i#1 [phi:main::@4->main::@1#0] -- register_copy
// main::@1
__b1:
// plot(i)
// [6] (byte) plot::x#0 ← (byte) main::i#2
// [7] call plot
// [21] phi from main::@1 to plot [phi:main::@1->plot]
// [21] phi (byte) plot::x#3 = (byte) plot::x#0 [phi:main::@1->plot#0] -- register_copy
jsr plot
// main::@4
// for(byte i : 0..10)
// [8] (byte) main::i#1 ← ++ (byte) main::i#2 -- vbuxx=_inc_vbuxx
inx
// [9] if((byte) main::i#1!=(byte) $b) goto main::@1 -- vbuxx_neq_vbuc1_then_la1
cpx #$b
bne __b1
// [10] phi from main::@4 to main::@2 [phi:main::@4->main::@2]
// [10] phi (byte) main::j#2 = (byte) 0 [phi:main::@4->main::@2#0] -- vbuxx=vbuc1
ldx #0
// [10] phi from main::@5 to main::@2 [phi:main::@5->main::@2]
// [10] phi (byte) main::j#2 = (byte) main::j#1 [phi:main::@5->main::@2#0] -- register_copy
// main::@2
__b2:
// plot(j)
// [11] (byte) plot::x#1 ← (byte) main::j#2
// [12] call plot
// [21] phi from main::@2 to plot [phi:main::@2->plot]
// [21] phi (byte) plot::x#3 = (byte) plot::x#1 [phi:main::@2->plot#0] -- register_copy
jsr plot
// main::@5
// for(byte j : 0..10)
// [13] (byte) main::j#1 ← ++ (byte) main::j#2 -- vbuxx=_inc_vbuxx
inx
// [14] if((byte) main::j#1!=(byte) $b) goto main::@2 -- vbuxx_neq_vbuc1_then_la1
cpx #$b
bne __b2
// [15] phi from main::@5 to main::@3 [phi:main::@5->main::@3]
// [15] phi (byte) main::k#2 = (byte) 0 [phi:main::@5->main::@3#0] -- vbuxx=vbuc1
ldx #0
// [15] phi from main::@6 to main::@3 [phi:main::@6->main::@3]
// [15] phi (byte) main::k#2 = (byte) main::k#1 [phi:main::@6->main::@3#0] -- register_copy
// main::@3
__b3:
// plot(k)
// [16] (byte) plot::x#2 ← (byte) main::k#2
// [17] call plot
// [21] phi from main::@3 to plot [phi:main::@3->plot]
// [21] phi (byte) plot::x#3 = (byte) plot::x#2 [phi:main::@3->plot#0] -- register_copy
jsr plot
// main::@6
// for(byte k : 0..10)
// [18] (byte) main::k#1 ← ++ (byte) main::k#2 -- vbuxx=_inc_vbuxx
inx
// [19] if((byte) main::k#1!=(byte) $b) goto main::@3 -- vbuxx_neq_vbuc1_then_la1
cpx #$b
bne __b3
// main::@return
// }
// [20] return
rts
}
// plot
// plot(byte register(X) x)
plot: {
// SCREEN[x] = '*'
// [22] *((const byte*) SCREEN + (byte) plot::x#3) ← (byte) '*' -- pbuc1_derefidx_vbuxx=vbuc2
lda #'*'
sta SCREEN,x
// plot::@return
// }
// [23] return
rts
}
// File Data