llvm-6502/lib/ExecutionEngine/Orc/OrcMCJITReplacement.h

329 lines
12 KiB
C
Raw Normal View History

//===---- OrcMCJITReplacement.h - Orc based MCJIT replacement ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Orc based MCJIT replacement.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_EXECUTIONENGINE_ORC_ORCMCJITREPLACEMENT_H
#define LLVM_LIB_EXECUTIONENGINE_ORC_ORCMCJITREPLACEMENT_H
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/LazyEmittingLayer.h"
#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
#include "llvm/Object/Archive.h"
namespace llvm {
class OrcMCJITReplacement : public ExecutionEngine {
class ForwardingRTDyldMM : public RTDyldMemoryManager {
public:
ForwardingRTDyldMM(OrcMCJITReplacement &M) : M(M) {}
uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID,
StringRef SectionName) override {
uint8_t *Addr =
M.MM->allocateCodeSection(Size, Alignment, SectionID, SectionName);
M.SectionsAllocatedSinceLastLoad.insert(Addr);
return Addr;
}
uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID, StringRef SectionName,
bool IsReadOnly) override {
uint8_t *Addr = M.MM->allocateDataSection(Size, Alignment, SectionID,
SectionName, IsReadOnly);
M.SectionsAllocatedSinceLastLoad.insert(Addr);
return Addr;
}
void reserveAllocationSpace(uintptr_t CodeSize, uintptr_t DataSizeRO,
uintptr_t DataSizeRW) override {
return M.MM->reserveAllocationSpace(CodeSize, DataSizeRO, DataSizeRW);
}
bool needsToReserveAllocationSpace() override {
return M.MM->needsToReserveAllocationSpace();
}
void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr,
size_t Size) override {
return M.MM->registerEHFrames(Addr, LoadAddr, Size);
}
void deregisterEHFrames(uint8_t *Addr, uint64_t LoadAddr,
size_t Size) override {
return M.MM->deregisterEHFrames(Addr, LoadAddr, Size);
}
uint64_t getSymbolAddress(const std::string &Name) override {
return M.getSymbolAddressWithoutMangling(Name);
}
void *getPointerToNamedFunction(const std::string &Name,
bool AbortOnFailure = true) override {
return M.MM->getPointerToNamedFunction(Name, AbortOnFailure);
}
void notifyObjectLoaded(ExecutionEngine *EE,
const object::ObjectFile &O) override {
return M.MM->notifyObjectLoaded(EE, O);
}
bool finalizeMemory(std::string *ErrMsg = nullptr) override {
// Each set of objects loaded will be finalized exactly once, but since
// symbol lookup during relocation may recursively trigger the
// loading/relocation of other modules, and since we're forwarding all
// finalizeMemory calls to a single underlying memory manager, we need to
// defer forwarding the call on until all necessary objects have been
// loaded. Otherwise, during the relocation of a leaf object, we will end
// up finalizing memory, causing a crash further up the stack when we
// attempt to apply relocations to finalized memory.
// To avoid finalizing too early, look at how many objects have been
// loaded but not yet finalized. This is a bit of a hack that relies on
// the fact that we're lazily emitting object files: The only way you can
// get more than one set of objects loaded but not yet finalized is if
// they were loaded during relocation of another set.
if (M.UnfinalizedSections.size() == 1)
return M.MM->finalizeMemory(ErrMsg);
return false;
}
private:
OrcMCJITReplacement &M;
};
private:
static ExecutionEngine *
createOrcMCJITReplacement(std::string *ErrorMsg,
std::unique_ptr<RTDyldMemoryManager> OrcJMM,
std::unique_ptr<llvm::TargetMachine> TM) {
return new llvm::OrcMCJITReplacement(std::move(OrcJMM), std::move(TM));
}
public:
static void Register() {
OrcMCJITReplacementCtor = createOrcMCJITReplacement;
}
OrcMCJITReplacement(std::unique_ptr<RTDyldMemoryManager> MM,
std::unique_ptr<TargetMachine> TM)
: TM(std::move(TM)), MM(std::move(MM)), Mang(this->TM->getDataLayout()),
NotifyObjectLoaded(*this), NotifyFinalized(*this),
ObjectLayer(ObjectLayerT::CreateRTDyldMMFtor(), NotifyObjectLoaded,
NotifyFinalized),
CompileLayer(ObjectLayer, SimpleCompiler(*this->TM)),
LazyEmitLayer(CompileLayer) {
setDataLayout(this->TM->getDataLayout());
}
void addModule(std::unique_ptr<Module> M) override {
// If this module doesn't have a DataLayout attached then attach the
// default.
if (!M->getDataLayout())
M->setDataLayout(getDataLayout());
Modules.push_back(std::move(M));
std::vector<Module *> Ms;
Ms.push_back(&*Modules.back());
LazyEmitLayer.addModuleSet(std::move(Ms),
llvm::make_unique<ForwardingRTDyldMM>(*this));
}
void addObjectFile(std::unique_ptr<object::ObjectFile> O) override {
std::vector<std::unique_ptr<object::ObjectFile>> Objs;
Objs.push_back(std::move(O));
ObjectLayer.addObjectSet(std::move(Objs),
llvm::make_unique<ForwardingRTDyldMM>(*this));
}
void addObjectFile(object::OwningBinary<object::ObjectFile> O) override {
std::unique_ptr<object::ObjectFile> Obj;
std::unique_ptr<MemoryBuffer> Buf;
std::tie(Obj, Buf) = O.takeBinary();
std::vector<std::unique_ptr<object::ObjectFile>> Objs;
Objs.push_back(std::move(Obj));
auto H =
ObjectLayer.addObjectSet(std::move(Objs),
llvm::make_unique<ForwardingRTDyldMM>(*this));
std::vector<std::unique_ptr<MemoryBuffer>> Bufs;
Bufs.push_back(std::move(Buf));
ObjectLayer.takeOwnershipOfBuffers(H, std::move(Bufs));
}
void addArchive(object::OwningBinary<object::Archive> A) override {
Archives.push_back(std::move(A));
}
uint64_t getSymbolAddress(StringRef Name) {
return getSymbolAddressWithoutMangling(Mangle(Name));
}
void finalizeObject() override {
// This is deprecated - Aim to remove in ExecutionEngine.
// REMOVE IF POSSIBLE - Doesn't make sense for New JIT.
}
void mapSectionAddress(const void *LocalAddress,
uint64_t TargetAddress) override {
for (auto &P : UnfinalizedSections)
if (P.second.count(LocalAddress))
ObjectLayer.mapSectionAddress(P.first, LocalAddress, TargetAddress);
}
uint64_t getGlobalValueAddress(const std::string &Name) override {
return getSymbolAddress(Name);
}
uint64_t getFunctionAddress(const std::string &Name) override {
return getSymbolAddress(Name);
}
void *getPointerToFunction(Function *F) override {
uint64_t FAddr = getSymbolAddress(F->getName());
return reinterpret_cast<void *>(static_cast<uintptr_t>(FAddr));
}
void *getPointerToNamedFunction(StringRef Name,
bool AbortOnFailure = true) override {
uint64_t Addr = getSymbolAddress(Name);
if (!Addr && AbortOnFailure)
llvm_unreachable("Missing symbol!");
return reinterpret_cast<void *>(static_cast<uintptr_t>(Addr));
}
GenericValue runFunction(Function *F,
const std::vector<GenericValue> &ArgValues) override;
void setObjectCache(ObjectCache *NewCache) override {
CompileLayer.setObjectCache(NewCache);
}
private:
uint64_t getSymbolAddressWithoutMangling(StringRef Name) {
if (uint64_t Addr = LazyEmitLayer.findSymbol(Name, false).getAddress())
return Addr;
if (uint64_t Addr = MM->getSymbolAddress(Name))
return Addr;
if (uint64_t Addr = scanArchives(Name))
return Addr;
return 0;
}
uint64_t scanArchives(StringRef Name) {
for (object::OwningBinary<object::Archive> &OB : Archives) {
object::Archive *A = OB.getBinary();
// Look for our symbols in each Archive
object::Archive::child_iterator ChildIt = A->findSym(Name);
if (ChildIt != A->child_end()) {
// FIXME: Support nested archives?
ErrorOr<std::unique_ptr<object::Binary>> ChildBinOrErr =
ChildIt->getAsBinary();
if (ChildBinOrErr.getError())
continue;
std::unique_ptr<object::Binary> &ChildBin = ChildBinOrErr.get();
if (ChildBin->isObject()) {
std::vector<std::unique_ptr<object::ObjectFile>> ObjSet;
ObjSet.push_back(std::unique_ptr<object::ObjectFile>(
static_cast<object::ObjectFile *>(ChildBin.release())));
ObjectLayer.addObjectSet(
std::move(ObjSet), llvm::make_unique<ForwardingRTDyldMM>(*this));
if (uint64_t Addr = ObjectLayer.findSymbol(Name, true).getAddress())
return Addr;
}
}
}
return 0;
}
class NotifyObjectLoadedT {
public:
typedef std::vector<std::unique_ptr<object::ObjectFile>> ObjListT;
typedef std::vector<std::unique_ptr<RuntimeDyld::LoadedObjectInfo>>
LoadedObjInfoListT;
NotifyObjectLoadedT(OrcMCJITReplacement &M) : M(M) {}
void operator()(ObjectLinkingLayerBase::ObjSetHandleT H,
const ObjListT &Objects,
const LoadedObjInfoListT &Infos) const {
M.UnfinalizedSections[H] = std::move(M.SectionsAllocatedSinceLastLoad);
M.SectionsAllocatedSinceLastLoad = SectionAddrSet();
assert(Objects.size() == Infos.size() &&
"Incorrect number of Infos for Objects.");
for (unsigned I = 0; I < Objects.size(); ++I)
M.MM->notifyObjectLoaded(&M, *Objects[I]);
};
private:
OrcMCJITReplacement &M;
};
class NotifyFinalizedT {
public:
NotifyFinalizedT(OrcMCJITReplacement &M) : M(M) {}
void operator()(ObjectLinkingLayerBase::ObjSetHandleT H) {
M.UnfinalizedSections.erase(H);
}
private:
OrcMCJITReplacement &M;
};
std::string Mangle(StringRef Name) {
std::string MangledName;
{
raw_string_ostream MangledNameStream(MangledName);
Mang.getNameWithPrefix(MangledNameStream, Name);
}
return MangledName;
}
typedef ObjectLinkingLayer<NotifyObjectLoadedT> ObjectLayerT;
typedef IRCompileLayer<ObjectLayerT> CompileLayerT;
typedef LazyEmittingLayer<CompileLayerT> LazyEmitLayerT;
std::unique_ptr<TargetMachine> TM;
std::unique_ptr<RTDyldMemoryManager> MM;
Mangler Mang;
NotifyObjectLoadedT NotifyObjectLoaded;
NotifyFinalizedT NotifyFinalized;
ObjectLayerT ObjectLayer;
CompileLayerT CompileLayer;
LazyEmitLayerT LazyEmitLayer;
// We need to store ObjLayerT::ObjSetHandles for each of the object sets
// that have been emitted but not yet finalized so that we can forward the
// mapSectionAddress calls appropriately.
typedef std::set<const void *> SectionAddrSet;
struct ObjSetHandleCompare {
bool operator()(ObjectLayerT::ObjSetHandleT H1,
ObjectLayerT::ObjSetHandleT H2) const {
return &*H1 < &*H2;
}
};
SectionAddrSet SectionsAllocatedSinceLastLoad;
std::map<ObjectLayerT::ObjSetHandleT, SectionAddrSet, ObjSetHandleCompare>
UnfinalizedSections;
std::vector<object::OwningBinary<object::Archive>> Archives;
};
}
#endif // LLVM_LIB_EXECUTIONENGINE_ORC_MCJITREPLACEMENT_H