2011-01-02 21:47:05 +00:00
|
|
|
//===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This pass performs a simple dominator tree walk that eliminates trivially
|
|
|
|
// redundant instructions.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#define DEBUG_TYPE "early-cse"
|
|
|
|
#include "llvm/Transforms/Scalar.h"
|
2011-01-02 23:19:45 +00:00
|
|
|
#include "llvm/Instructions.h"
|
2011-01-02 21:47:05 +00:00
|
|
|
#include "llvm/Pass.h"
|
2011-01-02 23:04:14 +00:00
|
|
|
#include "llvm/Analysis/Dominators.h"
|
|
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
|
|
#include "llvm/Target/TargetData.h"
|
|
|
|
#include "llvm/Transforms/Utils/Local.h"
|
2011-01-02 23:19:45 +00:00
|
|
|
#include "llvm/Support/Debug.h"
|
2011-01-03 01:42:46 +00:00
|
|
|
#include "llvm/Support/RecyclingAllocator.h"
|
2011-01-02 23:04:14 +00:00
|
|
|
#include "llvm/ADT/ScopedHashTable.h"
|
2011-01-02 23:19:45 +00:00
|
|
|
#include "llvm/ADT/Statistic.h"
|
2011-01-02 21:47:05 +00:00
|
|
|
using namespace llvm;
|
|
|
|
|
2011-01-03 03:28:23 +00:00
|
|
|
STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
|
|
|
|
STATISTIC(NumCSE, "Number of instructions CSE'd");
|
|
|
|
STATISTIC(NumCSEMem, "Number of load and call instructions CSE'd");
|
2011-01-03 03:18:43 +00:00
|
|
|
|
|
|
|
static unsigned getHash(const void *V) {
|
|
|
|
return DenseMapInfo<const void*>::getHashValue(V);
|
|
|
|
}
|
2011-01-02 23:19:45 +00:00
|
|
|
|
2011-01-03 02:20:48 +00:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// SimpleValue
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2011-01-02 21:47:05 +00:00
|
|
|
namespace {
|
2011-01-03 02:20:48 +00:00
|
|
|
/// SimpleValue - Instances of this struct represent available values in the
|
2011-01-02 23:04:14 +00:00
|
|
|
/// scoped hash table.
|
2011-01-03 02:20:48 +00:00
|
|
|
struct SimpleValue {
|
2011-01-02 23:04:14 +00:00
|
|
|
Instruction *Inst;
|
|
|
|
|
2011-01-03 03:28:23 +00:00
|
|
|
SimpleValue(Instruction *I) : Inst(I) {
|
|
|
|
assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
|
|
|
|
}
|
|
|
|
|
2011-01-02 23:04:14 +00:00
|
|
|
bool isSentinel() const {
|
|
|
|
return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
|
|
|
|
Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool canHandle(Instruction *Inst) {
|
2011-01-02 23:19:45 +00:00
|
|
|
return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
|
|
|
|
isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
|
|
|
|
isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
|
|
|
|
isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
|
|
|
|
isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
|
2011-01-02 23:04:14 +00:00
|
|
|
}
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace llvm {
|
2011-01-03 02:20:48 +00:00
|
|
|
// SimpleValue is POD.
|
|
|
|
template<> struct isPodLike<SimpleValue> {
|
2011-01-02 23:04:14 +00:00
|
|
|
static const bool value = true;
|
|
|
|
};
|
|
|
|
|
2011-01-03 02:20:48 +00:00
|
|
|
template<> struct DenseMapInfo<SimpleValue> {
|
|
|
|
static inline SimpleValue getEmptyKey() {
|
2011-01-03 03:28:23 +00:00
|
|
|
return DenseMapInfo<Instruction*>::getEmptyKey();
|
2011-01-02 23:04:14 +00:00
|
|
|
}
|
2011-01-03 02:20:48 +00:00
|
|
|
static inline SimpleValue getTombstoneKey() {
|
2011-01-03 03:28:23 +00:00
|
|
|
return DenseMapInfo<Instruction*>::getTombstoneKey();
|
2011-01-02 23:04:14 +00:00
|
|
|
}
|
2011-01-03 02:20:48 +00:00
|
|
|
static unsigned getHashValue(SimpleValue Val);
|
|
|
|
static bool isEqual(SimpleValue LHS, SimpleValue RHS);
|
2011-01-02 23:04:14 +00:00
|
|
|
};
|
|
|
|
}
|
|
|
|
|
2011-01-03 02:20:48 +00:00
|
|
|
unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
|
2011-01-02 23:04:14 +00:00
|
|
|
Instruction *Inst = Val.Inst;
|
2011-01-03 01:10:08 +00:00
|
|
|
|
|
|
|
// Hash in all of the operands as pointers.
|
2011-01-02 23:04:14 +00:00
|
|
|
unsigned Res = 0;
|
2011-01-03 01:10:08 +00:00
|
|
|
for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
|
|
|
|
Res ^= getHash(Inst->getOperand(i)) << i;
|
|
|
|
|
2011-01-02 23:04:14 +00:00
|
|
|
if (CastInst *CI = dyn_cast<CastInst>(Inst))
|
2011-01-03 01:10:08 +00:00
|
|
|
Res ^= getHash(CI->getType());
|
|
|
|
else if (CmpInst *CI = dyn_cast<CmpInst>(Inst))
|
|
|
|
Res ^= CI->getPredicate();
|
|
|
|
else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) {
|
|
|
|
for (ExtractValueInst::idx_iterator I = EVI->idx_begin(),
|
|
|
|
E = EVI->idx_end(); I != E; ++I)
|
|
|
|
Res ^= *I;
|
|
|
|
} else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) {
|
|
|
|
for (InsertValueInst::idx_iterator I = IVI->idx_begin(),
|
|
|
|
E = IVI->idx_end(); I != E; ++I)
|
|
|
|
Res ^= *I;
|
2011-01-02 23:19:45 +00:00
|
|
|
} else {
|
2011-01-03 01:10:08 +00:00
|
|
|
// nothing extra to hash in.
|
|
|
|
assert((isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) ||
|
|
|
|
isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
|
|
|
|
isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst)) &&
|
|
|
|
"Invalid/unknown instruction");
|
2011-01-02 23:19:45 +00:00
|
|
|
}
|
2011-01-03 01:10:08 +00:00
|
|
|
|
|
|
|
// Mix in the opcode.
|
2011-01-02 23:04:14 +00:00
|
|
|
return (Res << 1) ^ Inst->getOpcode();
|
|
|
|
}
|
|
|
|
|
2011-01-03 02:20:48 +00:00
|
|
|
bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
|
2011-01-02 23:04:14 +00:00
|
|
|
Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
|
|
|
|
|
|
|
|
if (LHS.isSentinel() || RHS.isSentinel())
|
|
|
|
return LHSI == RHSI;
|
|
|
|
|
|
|
|
if (LHSI->getOpcode() != RHSI->getOpcode()) return false;
|
|
|
|
return LHSI->isIdenticalTo(RHSI);
|
|
|
|
}
|
|
|
|
|
2011-01-03 03:18:43 +00:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// MemoryValue
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
/// MemoryValue - Instances of this struct represent available load and call
|
|
|
|
/// values in the scoped hash table.
|
|
|
|
struct MemoryValue {
|
|
|
|
Instruction *Inst;
|
|
|
|
|
2011-01-03 03:28:23 +00:00
|
|
|
MemoryValue(Instruction *I) : Inst(I) {
|
|
|
|
assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
|
|
|
|
}
|
|
|
|
|
2011-01-03 03:18:43 +00:00
|
|
|
bool isSentinel() const {
|
|
|
|
return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
|
|
|
|
Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool canHandle(Instruction *Inst) {
|
|
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
|
|
|
|
return !LI->isVolatile();
|
|
|
|
if (CallInst *CI = dyn_cast<CallInst>(Inst))
|
|
|
|
return CI->onlyReadsMemory();
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace llvm {
|
|
|
|
// MemoryValue is POD.
|
|
|
|
template<> struct isPodLike<MemoryValue> {
|
|
|
|
static const bool value = true;
|
|
|
|
};
|
|
|
|
|
|
|
|
template<> struct DenseMapInfo<MemoryValue> {
|
|
|
|
static inline MemoryValue getEmptyKey() {
|
2011-01-03 03:28:23 +00:00
|
|
|
return DenseMapInfo<Instruction*>::getEmptyKey();
|
2011-01-03 03:18:43 +00:00
|
|
|
}
|
|
|
|
static inline MemoryValue getTombstoneKey() {
|
2011-01-03 03:28:23 +00:00
|
|
|
return DenseMapInfo<Instruction*>::getTombstoneKey();
|
2011-01-03 03:18:43 +00:00
|
|
|
}
|
|
|
|
static unsigned getHashValue(MemoryValue Val);
|
|
|
|
static bool isEqual(MemoryValue LHS, MemoryValue RHS);
|
|
|
|
};
|
|
|
|
}
|
|
|
|
unsigned DenseMapInfo<MemoryValue>::getHashValue(MemoryValue Val) {
|
|
|
|
Instruction *Inst = Val.Inst;
|
|
|
|
// Hash in all of the operands as pointers.
|
|
|
|
unsigned Res = 0;
|
|
|
|
for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
|
|
|
|
Res ^= getHash(Inst->getOperand(i)) << i;
|
|
|
|
// Mix in the opcode.
|
|
|
|
return (Res << 1) ^ Inst->getOpcode();
|
|
|
|
}
|
|
|
|
|
|
|
|
bool DenseMapInfo<MemoryValue>::isEqual(MemoryValue LHS, MemoryValue RHS) {
|
|
|
|
Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
|
|
|
|
|
|
|
|
if (LHS.isSentinel() || RHS.isSentinel())
|
|
|
|
return LHSI == RHSI;
|
|
|
|
|
|
|
|
if (LHSI->getOpcode() != RHSI->getOpcode()) return false;
|
|
|
|
return LHSI->isIdenticalTo(RHSI);
|
|
|
|
}
|
|
|
|
|
2011-01-02 23:04:14 +00:00
|
|
|
|
2011-01-03 02:20:48 +00:00
|
|
|
//===----------------------------------------------------------------------===//
|
2011-01-03 03:18:43 +00:00
|
|
|
// EarlyCSE pass.
|
2011-01-03 02:20:48 +00:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2011-01-02 23:04:14 +00:00
|
|
|
namespace {
|
|
|
|
|
2011-01-02 21:47:05 +00:00
|
|
|
/// EarlyCSE - This pass does a simple depth-first walk over the dominator
|
|
|
|
/// tree, eliminating trivially redundant instructions and using instsimplify
|
|
|
|
/// to canonicalize things as it goes. It is intended to be fast and catch
|
|
|
|
/// obvious cases so that instcombine and other passes are more effective. It
|
|
|
|
/// is expected that a later pass of GVN will catch the interesting/hard
|
|
|
|
/// cases.
|
|
|
|
class EarlyCSE : public FunctionPass {
|
|
|
|
public:
|
2011-01-02 23:04:14 +00:00
|
|
|
const TargetData *TD;
|
|
|
|
DominatorTree *DT;
|
2011-01-03 01:42:46 +00:00
|
|
|
typedef RecyclingAllocator<BumpPtrAllocator,
|
2011-01-03 02:20:48 +00:00
|
|
|
ScopedHashTableVal<SimpleValue, Value*> > AllocatorTy;
|
|
|
|
typedef ScopedHashTable<SimpleValue, Value*, DenseMapInfo<SimpleValue>,
|
2011-01-03 01:42:46 +00:00
|
|
|
AllocatorTy> ScopedHTType;
|
2011-01-02 23:04:14 +00:00
|
|
|
|
2011-01-03 02:20:48 +00:00
|
|
|
/// AvailableValues - This scoped hash table contains the current values of
|
|
|
|
/// all of our simple scalar expressions. As we walk down the domtree, we
|
|
|
|
/// look to see if instructions are in this: if so, we replace them with what
|
|
|
|
/// we find, otherwise we insert them so that dominated values can succeed in
|
|
|
|
/// their lookup.
|
|
|
|
ScopedHTType *AvailableValues;
|
2011-01-03 03:18:43 +00:00
|
|
|
|
|
|
|
typedef ScopedHashTable<MemoryValue, std::pair<Value*, unsigned> > MemHTType;
|
|
|
|
/// AvailableMemValues - This scoped hash table contains the current values of
|
|
|
|
/// loads and other read-only memory values. This allows us to get efficient
|
|
|
|
/// access to dominating loads we we find a fully redundant load. In addition
|
|
|
|
/// to the most recent load, we keep track of a generation count of the read,
|
|
|
|
/// which is compared against the current generation count. The current
|
|
|
|
/// generation count is incremented after every possibly writing memory
|
|
|
|
/// operation, which ensures that we only CSE loads with other loads that have
|
|
|
|
/// no intervening store.
|
|
|
|
MemHTType *AvailableMemValues;
|
|
|
|
|
|
|
|
/// CurrentGeneration - This is the current generation of the memory value.
|
|
|
|
unsigned CurrentGeneration;
|
|
|
|
|
2011-01-02 21:47:05 +00:00
|
|
|
static char ID;
|
2011-01-03 02:20:48 +00:00
|
|
|
explicit EarlyCSE() : FunctionPass(ID) {
|
2011-01-02 21:47:05 +00:00
|
|
|
initializeEarlyCSEPass(*PassRegistry::getPassRegistry());
|
|
|
|
}
|
|
|
|
|
|
|
|
bool runOnFunction(Function &F);
|
|
|
|
|
|
|
|
private:
|
2011-01-02 23:04:14 +00:00
|
|
|
|
|
|
|
bool processNode(DomTreeNode *Node);
|
|
|
|
|
2011-01-02 21:47:05 +00:00
|
|
|
// This transformation requires dominator postdominator info
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
|
|
AU.addRequired<DominatorTree>();
|
|
|
|
AU.setPreservesCFG();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
char EarlyCSE::ID = 0;
|
|
|
|
|
|
|
|
// createEarlyCSEPass - The public interface to this file.
|
|
|
|
FunctionPass *llvm::createEarlyCSEPass() {
|
|
|
|
return new EarlyCSE();
|
|
|
|
}
|
|
|
|
|
|
|
|
INITIALIZE_PASS_BEGIN(EarlyCSE, "early-cse", "Early CSE", false, false)
|
|
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
|
|
|
|
INITIALIZE_PASS_END(EarlyCSE, "early-cse", "Early CSE", false, false)
|
|
|
|
|
2011-01-02 23:04:14 +00:00
|
|
|
bool EarlyCSE::processNode(DomTreeNode *Node) {
|
2011-01-03 02:20:48 +00:00
|
|
|
// Define a scope in the scoped hash table. When we are done processing this
|
|
|
|
// domtree node and recurse back up to our parent domtree node, this will pop
|
|
|
|
// off all the values we install.
|
2011-01-03 03:18:43 +00:00
|
|
|
ScopedHTType::ScopeTy Scope(*AvailableValues);
|
|
|
|
|
|
|
|
// Define a scope for the memory values so that anything we add will get
|
|
|
|
// popped when we recurse back up to our parent domtree node.
|
|
|
|
MemHTType::ScopeTy MemScope(*AvailableMemValues);
|
2011-01-02 23:04:14 +00:00
|
|
|
|
|
|
|
BasicBlock *BB = Node->getBlock();
|
|
|
|
|
2011-01-03 03:18:43 +00:00
|
|
|
// If this block has a single predecessor, then the predecessor is the parent
|
|
|
|
// of the domtree node and all of the live out memory values are still current
|
|
|
|
// in this block. If this block has multiple predecessors, then they could
|
|
|
|
// have invalidated the live-out memory values of our parent value. For now,
|
|
|
|
// just be conservative and invalidate memory if this block has multiple
|
|
|
|
// predecessors.
|
|
|
|
if (BB->getSinglePredecessor() == 0)
|
|
|
|
++CurrentGeneration;
|
|
|
|
|
2011-01-02 23:04:14 +00:00
|
|
|
bool Changed = false;
|
|
|
|
|
|
|
|
// See if any instructions in the block can be eliminated. If so, do it. If
|
|
|
|
// not, add them to AvailableValues.
|
|
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
|
|
|
|
Instruction *Inst = I++;
|
|
|
|
|
|
|
|
// Dead instructions should just be removed.
|
|
|
|
if (isInstructionTriviallyDead(Inst)) {
|
2011-01-02 23:19:45 +00:00
|
|
|
DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
|
2011-01-02 23:04:14 +00:00
|
|
|
Inst->eraseFromParent();
|
|
|
|
Changed = true;
|
2011-01-02 23:19:45 +00:00
|
|
|
++NumSimplify;
|
2011-01-02 23:04:14 +00:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If the instruction can be simplified (e.g. X+0 = X) then replace it with
|
|
|
|
// its simpler value.
|
|
|
|
if (Value *V = SimplifyInstruction(Inst, TD, DT)) {
|
2011-01-02 23:19:45 +00:00
|
|
|
DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n');
|
2011-01-02 23:04:14 +00:00
|
|
|
Inst->replaceAllUsesWith(V);
|
|
|
|
Inst->eraseFromParent();
|
|
|
|
Changed = true;
|
2011-01-02 23:19:45 +00:00
|
|
|
++NumSimplify;
|
2011-01-02 23:04:14 +00:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2011-01-03 03:18:43 +00:00
|
|
|
// If this is a simple instruction that we can value number, process it.
|
|
|
|
if (SimpleValue::canHandle(Inst)) {
|
|
|
|
// See if the instruction has an available value. If so, use it.
|
2011-01-03 03:28:23 +00:00
|
|
|
if (Value *V = AvailableValues->lookup(Inst)) {
|
2011-01-03 03:18:43 +00:00
|
|
|
DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V << '\n');
|
|
|
|
Inst->replaceAllUsesWith(V);
|
|
|
|
Inst->eraseFromParent();
|
|
|
|
Changed = true;
|
|
|
|
++NumCSE;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Otherwise, just remember that this value is available.
|
2011-01-03 03:28:23 +00:00
|
|
|
AvailableValues->insert(Inst, Inst);
|
2011-01-02 23:04:14 +00:00
|
|
|
continue;
|
2011-01-03 03:18:43 +00:00
|
|
|
}
|
2011-01-02 23:04:14 +00:00
|
|
|
|
2011-01-03 03:18:43 +00:00
|
|
|
// If this is a read-only memory value, process it.
|
|
|
|
if (MemoryValue::canHandle(Inst)) {
|
|
|
|
// If we have an available version of this value, and if it is the right
|
|
|
|
// generation, replace this instruction.
|
2011-01-03 03:28:23 +00:00
|
|
|
std::pair<Value*, unsigned> InVal = AvailableMemValues->lookup(Inst);
|
2011-01-03 03:18:43 +00:00
|
|
|
if (InVal.first != 0 && InVal.second == CurrentGeneration) {
|
|
|
|
DEBUG(dbgs() << "EarlyCSE CSE MEM: " << *Inst << " to: "
|
|
|
|
<< *InVal.first << '\n');
|
|
|
|
if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
|
|
|
|
Inst->eraseFromParent();
|
|
|
|
Changed = true;
|
|
|
|
++NumCSEMem;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Otherwise, remember that we have this instruction.
|
2011-01-03 03:28:23 +00:00
|
|
|
AvailableMemValues->insert(Inst,
|
2011-01-03 03:18:43 +00:00
|
|
|
std::pair<Value*, unsigned>(Inst, CurrentGeneration));
|
2011-01-02 23:04:14 +00:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2011-01-03 03:18:43 +00:00
|
|
|
// Okay, this isn't something we can CSE at all. Check to see if it is
|
|
|
|
// something that could modify memory. If so, our available memory values
|
|
|
|
// cannot be used so bump the generation count.
|
|
|
|
if (Inst->mayWriteToMemory())
|
|
|
|
++CurrentGeneration;
|
2011-01-02 23:04:14 +00:00
|
|
|
}
|
|
|
|
|
2011-01-03 03:18:43 +00:00
|
|
|
unsigned LiveOutGeneration = CurrentGeneration;
|
|
|
|
for (DomTreeNode::iterator I = Node->begin(), E = Node->end(); I != E; ++I) {
|
2011-01-02 23:04:14 +00:00
|
|
|
Changed |= processNode(*I);
|
2011-01-03 03:18:43 +00:00
|
|
|
// Pop any generation changes off the stack from the recursive walk.
|
|
|
|
CurrentGeneration = LiveOutGeneration;
|
|
|
|
}
|
2011-01-02 23:04:14 +00:00
|
|
|
return Changed;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2011-01-02 21:47:05 +00:00
|
|
|
bool EarlyCSE::runOnFunction(Function &F) {
|
2011-01-02 23:04:14 +00:00
|
|
|
TD = getAnalysisIfAvailable<TargetData>();
|
|
|
|
DT = &getAnalysis<DominatorTree>();
|
2011-01-03 01:42:46 +00:00
|
|
|
ScopedHTType AVTable;
|
2011-01-02 23:04:14 +00:00
|
|
|
AvailableValues = &AVTable;
|
2011-01-03 02:20:48 +00:00
|
|
|
|
2011-01-03 03:18:43 +00:00
|
|
|
MemHTType MemTable;
|
|
|
|
AvailableMemValues = &MemTable;
|
|
|
|
|
|
|
|
CurrentGeneration = 0;
|
2011-01-02 23:04:14 +00:00
|
|
|
return processNode(DT->getRootNode());
|
2011-01-02 21:47:05 +00:00
|
|
|
}
|